S参数定义,矢量网络分析仪基本知识和S参数测量

合集下载

S参数的原理及使用详解

S参数的原理及使用详解

S参数的原理及使用详解在进行射频、微波等高频电路设计时,需采用分布参数电路分析方法。

大多采用微波网络分析法来分析电路,对于一个网络,可用S、Y、Z参数来进行测量和分析。

S称为散射参数(或散射系数),Y称为导纳参数,Z称为阻抗参数。

Y、Z参数主要用于集总电路,对集总电路分析非常有效,测试也比较方便。

在处理高频网络时,等效电压和电流及有关的阻抗、导纳参数变得很抽象。

散射参数能更准确地表示直接测量的入射波、反射波及传输波的概念。

参数矩阵更适合于分布参数电路。

S参数是建立在入射波、反射波关系基础上的网络参数,以元器件端口的反射信号及从该端口向另外一个端口发送信号的分散程度和分量大小来描述高频网络。

S参数可以用网络分析仪来实际测量。

本文将详细介绍S参数的原理及使用。

内容包含:S参数定义S参数端口特性史密斯图观察S参数S参数仿真讲解S参数模型讲解项目中S参数使用流程需要S参数的测试场景1.S参数定义S参数测量是射频设计过程中的基本手段之一。

S参数将元件描述成一个黑盒子,并被用来模拟电子元件在不同频率下的行为。

在有源和无源电路设计和分析中经常会用到S 参数。

1)从时域与频域评估传输线特性良好的传输线,讯号从一个点传送到另一点的失真(扭曲),必须在一个可接受的程度内。

而如何去衡量传输线互连对讯号的影响,可分别从时域与频域的角度观察。

2)S散射也叫散射参数。

是微波传输中的一组重要参数。

由于我们很难在高频率时测量电流或电压,因此我们要测量散射参数或S 参数。

这些参数用来表征RF 元件或网络的电气属性或性能,与我们熟悉的测量(如增益、损耗和反射系数)有关。

如上图所示,其中:S12为反向传输系数,也就是隔离;S21为正向传输系数,也就是增益;S11为输入反射系数,也就是输入回波损耗;S22为输出反射系数,也就是输出回波损耗。

3)S参数即是频域特性的观察,其中"S"意指"Scatter",与Y或Z参数,同属双端口网络系统的参数表示S参数是在传输线两端有终端的条件下定义出来的,一般这Zo=50奥姆,因为VNAport也是50奥姆终端。

(2021年整理)矢量网络分析仪基础知识和S参数的测量..

(2021年整理)矢量网络分析仪基础知识和S参数的测量..

矢量网络分析仪基础知识和S参数的测量..编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(矢量网络分析仪基础知识和S 参数的测量..)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为矢量网络分析仪基础知识和S参数的测量..的全部内容。

矢量网络分析仪基础知识及S参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络.注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。

1.单端口网络习惯上又叫负载Z L。

因为只有一个端口,总是接在最后又称终端负载。

最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。

·单端口网络的电参数通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S11)更方便些。

2.两端口网络最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。

·匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性.·传输系数与插损对于一个两端口网络除匹配特性(反射系数)外,还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。

插损(IL) = 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移.·两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足够,但对考究的场合会用到散射参量。

S参数的意义及矢网实例测量方法

S参数的意义及矢网实例测量方法

S参数的意义及矢网实例测量方法1、S参数的定义和意义S参数(Scattering Parameters,散射参数)是一个表征器件在射频信号激励下的电气行为的工具,它以输入信号、输出信号为元素的矩阵来表现DUT的“传输”和“散射”效应,输入、输出信号是可测量的物理量,测量到的物理量的大小反应出DUT对不同的输入信号具有不同的响应,这种不同的响应程度就可以用来描述DUT的特性,而且这种表征方法可以作为非常精确的矢量模型用于建模。

此处的DUT就包括很多无源器件如电缆、连接器、滤波器,有源器件包括放大器和混频器等,因此都可以用S 参数来表征。

S参数是在射频中用来描述器件特性的参数,S参数将电磁场中相关的特性转换为网络的概念,让读者可以很形象地理解电路中增益、回波损耗、稳定性、隔离度、网络匹配等概念,将电磁场中一些电气特性具体化为数字,提供了极大的方便。

2、S参数的测量方法2.1 S参数的测量原理测量2端口DUT的S参数需要使用2端口及以上矢量网络分析仪;图2.1 S参数测量硬件框体图2.2 2端口矢量网络分析仪简要结构Sout-in:out =analyzer port number where the device signal output is measured (receiver)in =analyzer port number where the signal is applied (incident) to the device (source)S11测量原理:当矢网Source1-OUT1输出信号经过reference接收机R1输出到DUTport1,接收机A接收DUT port1反射回来的功率,测量比值被称为回波损耗,S11=20log(a/r1),单位dB。

图2.3 S11的信号传输路径S21测量原理:当矢网Source1-OUT1输出信号经过reference接收机R1输出到DUTport1,接收机B接收DUT port2输出的功率,测量比值被称为正向传输,S21=20log(b/r1),单位dB。

第五部分 S参量测量及网络分析

第五部分  S参量测量及网络分析

b1 s11a1 s12 a2 b2 s21a1 s22 a2
当二端口网络特性用散射参量描述时,两端口面上的 a1 和 a2 为入射波, b1 和 b2 为出射波,且有
a1 U i 1
U i1 Z 01
a2 U i 2
b2 U r 2
Ui 2 Z 02
Ur2 Z 02
T
S
T
S 1
*
T
式中 S 为 S 的转置矩阵,若网络可逆,则 S
S

为 S 的共轭矩阵;1 为单位矩阵。对于可逆无耗二 端口网络有
S
*
S11 S22
令 S11
S11 e j11
22
S12 1 S11
j12
2
,S22 S22 e j ,S12 S12 e
= =
b1
a2
b2
a1=0 a1 = 0
2端口反射系数
S12=
a2
2端口到1端口正向传输系数
1. 传输参数测量
矢量电压表
高 频 信 号 源
12dB衰减
功 分 器
入射
传输
0-70dB衰减 S12(s21)= 传输 入射
DUT
2. 反射参数测量
矢量电压表 高 频 信 号 源 12dB衰减
功 分 器
入射
间的频响跟踪误差系数,; 串扰信号的总和。
t30 跨接在网络输入端和输出端的两个测试口之间的各项
(3)反射/传输测试单元 1)二定向耦合器测试单元
t30 :各项串扰信号之总和
t11 : 向源端看的等效源的反射
系数
r01
r01

s参数的测量方法

s参数的测量方法

s参数的测量方法s参数测量方法引言:s参数是指散射参数(scattering parameters),也称为传输参数(transmission parameters),是用于描述电子元件或电子系统中信号传输和散射特性的重要参数。

s参数测量方法广泛应用于射频(RF)和微波领域。

本文将介绍s参数的测量方法,并详细阐述其中的步骤和注意事项。

一、仪器准备s参数的测量需要使用一些特定的仪器设备,包括信号源、功率计、频谱分析仪、网络分析仪等。

在进行测量前,需要确保仪器的状态良好,并校准好相关的参数。

此外,还需要准备适当的连接线缆和适配器,以确保信号的传输和连接的稳定性。

二、建立测量系统在进行s参数测量之前,需要建立一个稳定可靠的测量系统。

首先,将待测元件与其他设备正确连接,确保信号的顺利传输。

连接线缆的选择应根据待测元件的特性阻抗来确定,以确保信号的匹配。

然后,根据实际情况设置信号源的频率范围、功率级别等参数。

最后,进行系统校准,包括响应校准和参考面校准,以消除系统中的误差。

三、测量步骤1. 响应校准:在测量之前,需要进行响应校准,以消除系统中的响应误差。

首先,将测量端口连接到响应校准器,然后通过网络分析仪对系统进行校准。

校准过程中,网络分析仪会发送信号并测量返回的信号,根据测量结果自动调整校准器,直到系统响应达到最佳状态。

2. 参考面校准:参考面校准是为了确定待测元件的参考平面,以准确测量其s参数。

将待测元件连接到系统中,并将参考平面设置为待测元件的端口。

通过网络分析仪进行参考面校准,校准过程中会测量参考面上的反射系数,并根据测量结果进行调整。

3. s参数测量:在完成校准后,即可进行s参数的测量。

通过网络分析仪设置所需的频率范围和步进值,并选择合适的测量模式(如单端口或双端口)。

网络分析仪会发送信号并测量返回的信号,然后计算出s参数的值。

测量结果可以以图表或数据的形式显示出来,以供后续分析和处理。

四、测量注意事项1. 避免干扰:在进行s参数测量时,需要注意避免其他信号的干扰。

s参数 测试标准

s参数 测试标准

s参数 测试标准
S参数被大量应用于高速电路和高频电路设计和仿真中,不仅仅是信号完整性和电源完整性工程师需要了解S参数,对于电子工程师、测试工程师和EMC工程师等等都需要了解,如果看不懂S参数曲线,那就无从分析频域信号,在高频的时候参数变化也无从说起。

今天我们总结了关于网络分析仪中的S参数测试问题。

测试一下,关于网络分析仪和S参数,您能回答多少问题?
什么是S参数
A: S-parameters S参数通过指定反射信号的幅度和相位,描述射频信号如何响应设备端口的值。

该名称来源于“散射 Scattering parameter”的S。

S参数可以以表格或图形的形式表示,并且是有价值的测量,因为它们可以洞察设备的整体性能和健康状况。

S参数是一个复数矩阵,反映了在频域范围内的反射信号 / 传输信号的特性(幅度/相位)。

S参数一直占据着微波理论和技术中最重要的位置,它们包括了早已为工程师所熟悉的测量项目,例如 S11 (输入匹配)、S22 (输出匹配)、S21 (增益/ 损耗)、S12 (隔离度)等,这些测量项目的测试结果可以很方便地导入到电子仿真工具。

S参数定义矢量网络分析仪基础知识和S参数测量

S参数定义矢量网络分析仪基础知识和S参数测量

S参数定义矢量网络分析仪基础知识和S参数测量S参数是描述线性电路的重要参数,用于描述电路的传输特性。

S参数测量是设计和分析微波电路的重要手段。

本文将介绍S参数的定义、矢量网络分析仪基础知识和S参数测量的方法。

1.S参数定义S参数,即散射参数(Scattering parameters),是描述电路的传输特性的一组参数。

在一个多端口网络中,每个端口都可以分别看作是一个发射端口和一个接收端口。

S参数描述了从发射端口射入电磁波与接收端口接收的电磁波之间的关系。

一个二端口网络的S参数通常用S11、S12、S21和S22来表示。

其中,S11表示从端口1发射的波经过网络后返回端口1的比例系数,S12表示从端口2发射的波经过网络后到达端口1的比例系数,S21表示从端口1发射的波经过网络后到达端口2的比例系数,S22表示从端口2发射的波经过网络后返回端口2的比例系数。

S参数是复数,可以用幅度和相位表示。

2.矢量网络分析仪基础知识矢量网络分析仪是用于测量和分析S参数的仪器。

它可以测量信号的幅度和相位,并绘制相应的频率响应曲线。

矢量网络分析仪通常由发射器、接收器、参考源、功率传感器和频率合成器等部分组成。

矢量网络分析仪通过提供一定频率范围内的连续信号,对待测电路的输入和输出进行测量,并计算出S参数。

在测量过程中,需要将待测电路与矢量网络分析仪连接,通过校准步骤来消除测试线路的误差,确保测量的准确性。

3.S参数测量方法S参数测量通常分为基于功率反射法和功率传输法两种方法。

基于功率反射法的S参数测量是通过测量待测网络的反射功率和传输功率来计算S参数。

该方法适用于测量反射系数较大的网络,如天线。

基于功率传输法的S参数测量是通过测量待测网络的输入功率和输出功率来计算S参数。

该方法适用于测量传输系数较大的网络,如放大器。

在进行S参数测量时,需要进行一系列的校准步骤来消除测试系统中的误差。

常见的校准方法包括短路校准、开路校准和负载校准等。

S参数定义矢量网络分析仪基础知识和S参数测量

S参数定义矢量网络分析仪基础知识和S参数测量

S参数定义矢量网络分析仪基础知识和S参数测量S参数(Scattering parameters)是一种描述线性电路的频率响应的参数,常用于微波电路和高频电路的设计和分析。

S参数以复数形式表示,包括幅度和相位两个部分,可以描述信号在电路中的功率传递和反射情况。

S参数通常用Sij表示,其中i和j分别表示信号源和负载之间的端口编号。

S11表示输入端口处的反射系数,S22表示输出端口处的反射系数,S21表示从输入端口到输出端口的传输系数,S12表示从输出端口到输入端口的传输系数。

参数的值一般是一个复数,包括幅度和相位两个部分。

矢量网络分析仪基础知识:矢量网络分析仪(Vector Network Analyzer,简称VNA)是用于测量和分析电路的频率响应的仪器。

它能够通过发送和接收信号来测量电路的散射参数,并可以对信号进行幅度和相位的测量。

矢量网络分析仪有多个端口,其中一个端口连接信号源,其他端口用来连接待测电路。

通过在不同频率下测量电路的散射参数,可以得到电路的频率响应,从而了解电路的传输和反射情况。

S参数测量:S参数可以通过矢量网络分析仪来测量。

测量时,信号源会向待测电路的一个端口发送信号,而其他端口的信号会被矢量网络分析仪接收并测量。

具体的S参数测量步骤如下:1.连接待测电路和矢量网络分析仪,确保连接正确。

2.设置矢量网络分析仪的频率范围和步进大小。

3.将矢量网络分析仪设置为"测量模式",并选择要测量的S参数。

4.开始测量,矢量网络分析仪会依次在每个频率点上测量S参数的幅度和相位。

5.测量完成后,可以通过矢量网络分析仪显示屏上的图表或数据来查看测量结果。

也可以将测量结果导出进行进一步的分析和处理。

S参数测量可以帮助工程师了解电路在不同频率下的传输和反射情况,并用于电路的设计和优化。

在微波电路和高频电路的设计和分析中,S参数测量是一项重要的技术。

s参数测试方法

s参数测试方法

s参数测试方法摘要:1.引言2.S参数测试方法的原理3.S参数测试的步骤与注意事项4.S参数测试的应用领域5.总结正文:【引言】在电子电路设计和通信系统中,S参数是一个重要的性能参数,它反映了电路的输入输出特性。

S参数测试方法是评估电路性能的关键手段,通过对S 参数的测量,可以有效评估电路的频率响应、群延迟、相位差等性能指标。

本文将详细介绍S参数测试方法的原理、步骤、注意事项及应用领域。

【S参数测试方法的原理】S参数,全称为Scattering Parameters,是指在开放电路条件下,电路的输入端和输出端的电压、电流关系。

S参数共有四个,分别为S11、S21、S12和S22。

S参数测试方法的原理是基于网络分析仪进行测量,通过向电路输入端施加信号,检测输出端的信号变化,从而得到S参数。

【S参数测试的步骤与注意事项】1.步骤一:准备工作在进行S参数测试前,首先要确保测试仪器和被测电路的连接正确无误。

这包括连接网络分析仪、信号发生器、功率计等设备,并确保连接线的质量和稳定性。

2.步骤二:设置测试参数根据被测电路的性能要求,设置网络分析仪的测试频率范围、功率范围等参数。

同时,确保信号发生器的输出信号质量和稳定性。

3.步骤三:测量S参数启动网络分析仪,使其向被测电路输入信号,并开始测量。

在测量过程中,应注意实时监测信号强度、频率等方面的变化,以确保测试结果的准确性。

4.步骤四:数据处理与分析测量完成后,通过网络分析仪的数据处理软件,提取S参数数据。

然后对数据进行分析,评估电路的性能指标,如频率响应、群延迟、相位差等。

5.注意事项在进行S参数测试时,应注意以下几点:(1)确保连接线的质量和稳定性,避免测试误差;(2)测试环境应尽量远离电磁干扰源,以减小干扰;(3)被测电路的电源应稳定,避免电压波动影响测试结果;(4)测量过程中,避免触碰电路元件,以免影响性能。

【S参数测试的应用领域】S参数测试方法广泛应用于通信、雷达、电子对抗等领域,对于评估电路性能、故障诊断和系统优化具有重要意义。

S参数的介绍以及一些理解

S参数的介绍以及一些理解

关于S参数的一些理解无源网络如电阻、电感、电容、连接器、电缆、PCB线等在高频下会呈现射频、微波方面的特性。

S参数是表征无源网络特性的一种模型,在仿真中即用S参数来代表无源网络,在射频、微波和信号完整性领域的应用都很广泛。

本文将从S参数的定义,S参数的表达方式,S参数的特性,混合模式S参数,S参数测量等多个方面介绍S参数的一些最基本的知识。

1,S参数的定义人们都喜欢用一句话来概括一个术语。

譬如用一句话来表达什么是示波器的带宽,笔者概括为:带宽就是示波器前端放大器幅频特性曲线的截止频率点。

如何用一句话来回答什么是S参数呢?笔者在网上搜索了很多关于S参数的文章,现摘录几段关于S参数的定义。

在维基百科上,关于S参数的定义是:Scattering parameters or S-parameters (the elements of a scattering matrix or S-matrix) describe the electrical behaviors of linear electrical networks when undergoing various steady state stimuli by electrical signals. The parameters are useful for electrical engineering, electronics engineering, and communication systems design. 翻译成中文:散射参数或者说S参数描述了线性电气网络在变化的稳态电信号激励时的电气行为。

该参数对于电气工程、电子工程和通信系统的研发是很有用的。

(抱歉,英语水平太差,翻译得很别扭。

)这个定义似乎不够好!在另外一篇文章中的定义是:The S-parameter (Scattering parameter) expresses device characteristics using the degree of scattering when an AC signal is considered as a wave. The word “scattering” is a general term that refers to refl ection back to the source and transmission to other directions.中文含义是:“S参数是利用器件在受到带有“波”特点的AC信号激励下的散射程度来表达器件的特征。

s参数测试方法

s参数测试方法

s参数测试方法【实用版2篇】目录(篇1)1.S 参数的定义与意义2.S 参数测试方法的原理3.S 参数测试方法的实施步骤4.S 参数测试方法的应用实例5.S 参数测试方法的优缺点分析正文(篇1)一、S 参数的定义与意义S 参数(System Parameters)是一种描述电子系统特性的参数,主要用于微波和射频电路的设计与分析。

S 参数包括反射系数和传输系数,可以描述信号在传输线上的反射和传输特性。

通过 S 参数,可以直观地了解系统的匹配性、损耗以及隔离度等重要性能指标。

二、S 参数测试方法的原理S 参数测试方法的原理是通过向待测系统输入已知频率和功率的测试信号,测量输入和输出端的反射和传输系数,进而计算出 S 参数。

根据 S 参数的数值,可以评估系统的性能,并对电路进行优化和调整。

三、S 参数测试方法的实施步骤1.准备测试设备,如矢量网络分析仪、信号发生器和功率计等。

2.连接测试设备,确保测试系统的正确连接。

3.设置测试设备参数,如频率范围、功率级别和测试模式等。

4.对待测系统输入测试信号,同时记录输入和输出端的反射和传输系数。

5.计算得出 S 参数,并根据 S 参数的数值对系统进行性能评估和优化。

四、S 参数测试方法的应用实例S 参数测试方法在微波和射频电路设计中具有广泛的应用,例如在基站天线、滤波器和放大器等电子设备的性能测试中。

通过 S 参数测试,可以确保这些设备在实际应用中具有良好的性能和稳定性。

五、S 参数测试方法的优缺点分析优点:1.S 参数测试方法可以直接反映系统的匹配性、损耗和隔离度等性能指标,对电路设计具有较高的参考价值。

2.S 参数测试方法具有较高的测量精度和可靠性,适用于各种复杂的微波和射频电路。

3.S 参数测试方法操作简便,测试速度快,可以提高工作效率。

缺点:1.对测试设备的要求较高,需要配备高性能的矢量网络分析仪等设备。

目录(篇2)1.s 参数的定义和重要性2.s 参数测试方法的概述3.s 参数测试方法的具体步骤4.s 参数测试方法的应用实例5.s 参数测试方法的优缺点分析正文(篇2)s 参数是描述电磁波在传输线上传播特性的重要参数,其全称为特性阻抗,是反映传输线特性的重要指标。

电路s参数

电路s参数

电路s参数一、什么是电路S参数电路S参数(Scattering parameters)是指在高频电路中,描述电路中各个端口之间互相传递信号的复数系数。

S参数可以用来描述电路的反射和传输特性,是高频电路设计和测试中非常重要的参考指标。

二、S参数的物理意义1. S11:反射系数,表示从端口1输入的信号在端口1处反射回来的程度。

当S11=0时,表示输入信号完全被吸收。

2. S12:传输系数,表示从端口1输入的信号传输到端口2的程度。

当S12=0时,表示输入信号无法到达端口2。

3. S21:插入损耗系数,表示从端口2输出的信号与从端口1输入的信号之间存在多大程度上的损耗。

当S21=0时,表示输出信号无法被正确传递。

4. S22:反射系数,表示从端口2输入的信号在端口2处反射回来的程度。

当S22=0时,表示输入信号完全被吸收。

三、如何测量电路S参数测量电路S参数需要使用网络分析仪(Network Analyzer),一般分为两种类型:1. 矢量网络分析仪:可以同时测量幅度和相位信息,适用于高频电路的测量。

2. 频谱网络分析仪:只能测量幅度信息,适用于低频电路的测量。

测量S参数时需要注意以下几点:1. 测试设备和被测试电路之间需要使用匹配器进行匹配,以避免反射和干扰。

2. 测试时需要保持被测电路的稳定性,避免温度等因素对测试结果产生影响。

3. 测试时需要选择合适的测试频率范围,以覆盖被测电路的工作频率范围。

四、S参数在高频电路设计中的应用1. 优化反射系数:通过调整电路中各个元件的参数,可以使S11接近于0,从而减少信号反射和损耗。

2. 优化传输系数:通过调整电路中各个元件的参数,可以使S12和S21接近于1,从而提高信号传输效率。

3. 设计匹配网络:根据S参数特性设计匹配网络,以实现最佳传输效果和最小反射损耗。

4. 分析故障原因:当出现故障时,可以通过分析S参数变化来确定故障原因所在位置和性质。

s参数测试方法

s参数测试方法

s参数测试方法【原创版】目录1.S 参数的定义与意义2.S 参数测试方法的原理3.S 参数测试方法的步骤4.S 参数测试方法的应用实例5.S 参数测试方法的优缺点分析正文一、S 参数的定义与意义S 参数(Scattering parameters)是一种描述电磁波在传输线上传播特性的参数,其主要用于分析和设计微波传输系统。

S 参数反映了微波信号在传输线上的散射特性,包括信号的反射和传输特性。

在微波传输系统中,S 参数是一个关键的性能指标,对于确保系统的正常工作和优化系统性能具有重要意义。

二、S 参数测试方法的原理S 参数测试方法是一种用于测量微波传输系统中 S 参数的实验方法。

其基本原理是利用散射矩阵和传输矩阵之间的关系,通过测量系统的输入和输出端口之间的散射矩阵,从而计算出 S 参数。

具体来说,S 参数测试方法通过对传输线上的输入信号和反射信号进行测量,然后通过计算得出 S 参数的值。

三、S 参数测试方法的步骤1.准备测试设备:包括信号源、传输线、测试仪器等。

2.连接测试设备:将信号源连接到传输线上,并将传输线连接到测试仪器。

3.设置测试参数:根据需要测量的 S 参数类型,设置测试仪器的相关参数。

4.测量输入和反射信号:通过测试仪器测量传输线上的输入信号和反射信号。

5.计算 S 参数:根据输入和反射信号的测量结果,利用相关公式计算出 S 参数的值。

四、S 参数测试方法的应用实例S 参数测试方法在微波传输系统中有广泛的应用,例如在通信系统、雷达系统、卫星接收系统等。

通过 S 参数测试方法,可以对微波传输系统的性能进行准确评估,为系统的优化和改进提供重要依据。

五、S 参数测试方法的优缺点分析优点:1.测量精度高:S 参数测试方法可以直接测量微波传输系统中的 S 参数,具有较高的测量精度。

2.适用范围广:S 参数测试方法适用于各种类型的微波传输系统,具有较强的通用性。

3.系统性能评估准确:通过 S 参数测试方法,可以对微波传输系统的性能进行准确评估,为系统的优化和改进提供重要依据。

微波电路S参数测量实验报告

微波电路S参数测量实验报告

微波电路S参数测量实验报告一、实验目的掌握微波电路S参数的基本概念、测试的原理和方法。

二、实验内容用矢量网络分析仪测试微波滤波器的二端口S参数。

三、基本原理网络分析仪中最常用的应用是矢量网络分析仪,它是用来测量、分析各种微波器件和组件S参数的高精度仪器,在整个行业中使用率极高,作为重要仪器很多从事产品研发和测试的电子工程师都有可能需要使用。

矢量网络分析仪的原理如图1所示。

图1 矢量网络分析仪的原理图上图中各部分的功能如下:A、信号源:提供被测件激励输入信号,被测器件通过传输和反射对激励波作出响应,被测器件的频率响应可以通过信号源扫频来获取,由于测试结构需要考虑多种不同的信号源参数对系统造成的影响,故一般我们采用合成扫频信号源。

B、信号分离装置:含功分器和定向耦合器,分别提取被测件输入和反射信号,从而测量出它们各自的相位和幅度大小,测试装置可以单独也可以集成到分析仪的内部。

C、接收机:对被测件的反射、传输和输入信号进行测试;采用调谐接收机可以提供最好的灵敏度和动态范围,还能抑制谐波和寄生信号。

D、处理显示单元:对测试结果进行处理和显示,它作为多通道一起,需要有基准通道和测试通道,通过二者的比较才能知道测试的精准度,它的显示功能很强大并且灵活,如多种标记功能、极限线功能等,给系统和元器件的性能和参数测试带来很大的便利性。

矢量网络分析仪本身自带了一个信号发生器,可以对一个频段进行频率扫描. 如果是单端口测量的话,将激励信号加在端口上,通过测量反射回来信号的幅度和相位,就可以判断出阻抗或者反射情况。

而对于双端口测量,则还可以测量传输参数。

图2 利用网络分析仪测微波电路的S参数微波滤波器可看作是一个二端口网络,具有选频的功能,可以分离阻隔频率,使得信号在规定的频带内通过或被抑制。

滤波器按其插入衰减的频率特征来分有四种类型:(1)低通滤波器:使直流与某一上限角频率ωC(截至频率)之间的信号通过,而抑制频率高于截至频率ωC的所有信号;(2)高通滤波器:使下限频率ωC以上的所有信号通过,抑制频率在ωC 以下的所有信号;(3)带通滤波器:使ω1至ω2频率范围内的信号通过,而抑制这个频率范围外的所有信号。

S参数定义,矢量网络分析仪基本知识和S参数测量

S参数定义,矢量网络分析仪基本知识和S参数测量

S参数定义、矢量网络分析仪基础知识及S参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。

注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。

1.单端口网络习惯上又叫负载Z L。

因为只有一个口,总是接在最后又称终端负载。

最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。

➢单端口网络的电参数通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S11)更方便些。

2.两端口网络最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。

➢匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。

➢传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。

插损(IL)= 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。

V2➢两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。

两端口网络的散射参量有4个,即S11、S21、S12、S22。

S参数的基本定义:S11:端口2匹配时,端口1的反射系数Г及输入驻波,描述器件输入端的匹配情况,S11=a2/a1;也可用输入回波损耗RL=-2Olg(ρ)(能量方面的反应)表示。

S22:端口1匹配时,端口2输出驻波,描述器件输出端的匹配情况,S22=b2/b1。

S21:增益或插损,描述信号经过器件后被放大的倍数或者衰减量。

S21=b1/a1. 对于无源网络即传输系数T或插损,对放大器即增益。

S12:反向隔离度,描述器件输出端的信号对输入端的影响,S12=a2/b2。

矢量网络分析仪基础知识及S参数测量

矢量网络分析仪基础知识及S参数测量

矢量网络分析仪基础知识及S参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。

注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。

1.单端口网络习惯上又叫负载ZL。

因为只有一个口,总是接在zui后又称终端负载。

zui常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。

单端口网络的电参数通常用阻抗或导纳表示,在射频畴用反射系数Γ(回损、驻波比、S11)更方便些。

2.两端口网络 zui常见、zui简单的两端口网络就是一根两端装有连接器的射频电缆。

匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。

传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。

插损(IL) = 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。

两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。

两端口网络的散射参量有4个,即S11、S21、S12、S22。

这里仅简单的(但不严格)带上一笔。

S11与网络输出端接上匹配负载后的输入反射系数Г相当。

注意:它是网络的失配,不是负载的失配。

负载不好测出的Γ,要经过修正才能得到S11 。

S21与网络输出端匹配时的电压和输入端电压比值相当,对于无源网络即传输系数T或插损,对放大器即增益。

上述两项是zui常用的。

S12即网络输出端对输入端的影响,对不可逆器件常称隔离度。

S22即由输出端向网络看的网络本身引入的反射系数。

中高档矢网可以交替或同时显示经过全端口校正的四个参数,普及型矢网不具备这种能力,只有插头重新连接才能测得4个参数,而且没有作全端口校正。

矢量网络分析仪介绍

矢量网络分析仪介绍

矢量网络分析仪介绍矢量网络分析仪(Vector Network Analyzer,VNA)是现代无线通信领域中不可或缺的测试设备之一,用来测量网络中各个点之间的复数反射系数、传输系数、延迟等特征参数。

它的应用场景非常广泛,包括电磁兼容性测试,毫米波通信测试,天线设计优化,信号测量分析,信号灵敏度研究等。

矢量网络分析仪一般是由频率源,微波信号传输和接收件,数据处理与显示设备组成。

通过矢量网络分析仪可以获得电路中各个测试端口的传输参数,包括S参数,即散射参数。

S参数是指有源器件或无源器件中存在的散射系数,包括反射系数(S11,S22)和传输系数(S21,S12)两种。

反射系数和传输系数是矢量网络分析仪的明星参数,因为它们能够完整地描述某个端口的性能,并可以用它们来计算其他参数,如误差系数、电功率、噪声系数等。

S11反射系数表征能量从端口1反射回同一端口1的程度,S22反射系数则是表征能量从端口2反射回同一端口2的程度。

而S21传输系数则反映了从端口1到端口2的传输效率,S12则反映了从端口2到端口1的传输效率。

除了S参数,矢量网络分析仪还可以进行时域仿真,即测量电路中不同信号随时间的变化情况。

矢量网络分析仪还可以进行功率扫描测试,测试器件的故障情况。

除了传统的基础测试外,矢量网络分析仪还有一些应用领域的拓展。

电磁兼容性测试:电磁兼容性是指不同设备之间共享和保护电磁环境的能力。

矢量网络分析仪可以用于电磁兼容性测试中,测量不同设备之间的干扰和抗干扰能力。

毫米波通信测试:毫米波通信是5G通信的关键技术之一,用于实现高速数据传输。

矢量网络分析仪可以在毫米波波段进行测试,测量毫米波通信信号的传输和反射特性。

天线设计优化:天线是无线通信领域中的关键组件之一,它的性能直接影响到通信质量。

矢量网络分析仪可以测量不同天线设计的反射系数、辐射模式和带宽等特征参数,来实现天线设计的优化。

信号测量分析:在实际应用场景中,矢量网络分析仪可以用于测量和分析信号的特性,如时域特性、频域特性、噪声特性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S参数定义、矢量网络分析仪基础知识及S参数测量§1 基本知识1.1 射频网络这里所指的网络是指一个盒子,不管大小如何,中间装的什么,我们并不一定知道,它只要是对外接有一个同轴连接器,我们就称其为单端口网络,它上面若装有两个同轴连接器则称为两端口网络。

注意:这儿的网络与计算机网络并不是一回事,计算机网络是比较复杂的多端(口)网络,这儿主要是指各种各样简单的射频器件(射频网络),而不是互连成网的网络。

1.单端口网络习惯上又叫负载Z L。

因为只有一个口,总是接在最后又称终端负载。

最常见的有负载、短路器等,复杂一点的有滑动负载、滑动短路器等。

➢单端口网络的电参数通常用阻抗或导纳表示,在射频范畴用反射系数Γ(回损、驻波比、S11)更方便些。

2.两端口网络最常见、最简单的两端口网络就是一根两端装有连接器的射频电缆。

➢匹配特性两端口网络一端接精密负载(标阻)后,在另一端测得的反射系数,可用来表征匹配特性。

➢传输系数与插损对于一个两端口网络除匹配特性(反射系数)外, 还有一个传输特性,即经过网络与不经过网络的电压之比叫作传输系数T。

插损(IL)= 20Log│T│dB ,一般为负值,但有时也不记负号,Φ即相移。

V2➢两端口的四个散射参量测量两端口网络的电参数,一般用上述的插损与回损已足,但对考究的场合会用到散射参量。

两端口网络的散射参量有4个,即S11、S21、S12、S22。

S参数的基本定义:S11:端口2匹配时,端口1的反射系数Г及输入驻波,描述器件输入端的匹配情况,S11=a2/a1;也可用输入回波损耗RL=-2Olg(ρ)(能量方面的反应)表示。

S22:端口1匹配时,端口2输出驻波,描述器件输出端的匹配情况,S22=b2/b1。

S21:增益或插损,描述信号经过器件后被放大的倍数或者衰减量。

S21=b1/a1. 对于无源网络即传输系数T或插损,对放大器即增益。

S12:反向隔离度,描述器件输出端的信号对输入端的影响,S12=a2/b2。

特点:1、对于互易网络有S12=S212、对于对称网络有S11=S223、对于无耗网络,有S11*S11+S21*S21=1,即网络不消耗任何能量,从端口1输入的能量不是被反射回端口1就是传输到端口2上4、在高速电路设计中用到的微带线或带状线,都有参考平面,为不对称结构(但平行双导线就是对称结构),所以S11不等于S22,但满足互易条件,总是有S12=S21。

假设Port1为信号输入端口,Port2为信号输出端口,则我们关心的S参数有两个:S11和S21,S11表示回波损耗,也就是有多少能量被反射回源端(Port1)了,这个值越小越好,一般建议S11<0.1,即-20dB,S21表示插入损耗,也就是有多少能量被传输到目的端(Port2)了,这个值越大越好,理想值是1,即0dB,越大传输的效率越高,一般建议S21>0.7,即-3dB。

如果网络是无耗的,那么只要Port1上的反射很小,就可以满足S21>0.7的要求,但通常的传输线是有耗的,尤其在GHz以上,损耗很显著,即使在Port1上没有反射,经过长距离的传输线后,S21的值就会变得很小,表示能量在传输过程中还没到达目的地,就已经消耗在路上了。

中高档矢网可以交替或同时显示经过全端口校正的四个参数,普及型矢网不具备这种能力,只有插头重新连接才能测得4个参数,而且没有作全端口校正。

反射系数、回波损耗、电压驻波比回波损耗(Return Loss): 入射功率/反射功率, RL=-S11=-20lg(ρ),为dB数值反射系数(Г): 反射电压/入射电压, 为标量Г=反射波振幅/入射波振幅=(传输线特性阻抗-负载阻抗)/(传输线特性阻抗+负载阻抗),即Г=|(ZL-Zo)/(ZL+Zo)︱的绝对值电压驻波比(Voltage Standing Wave Ration): 波腹电压/波节电压,VSWR=电压最大值/电压最小值=Umax/Umin= (1+反射系数模值)/(1-反射系数模值)=(1+ρ)/(1-ρ) 行波系数:K=电压最小值/电压最大值=Umin/Umax=(入射波振幅-反射波振幅)/(反射波振幅+入射波振幅)反射系数、回波损耗、驻波比对照表(RL单位是dB,实际值是负值)实际要求的参数基本网络基数:1.2 传输线传输射频信号的线缆泛称传输线。

常用的有两种:双线与同轴线,频率更高则会用到微带线与波导,虽然结构不同,用途各异,但其基本特性都可由传输线公式所表征。

·特性阻抗Z0 它是一种由结构尺寸决定的电参数,对于同轴线:式中εr为相对介电系数,D为同轴线外导体内径,d为内导体外径。

·反射系数、返回损失、驻波比这三个参数采用了不同术语来描述匹配特性,人们希望传输线上只有入射电压, 没有反射电压, 这时线上各处电压一样高,只是相位不同,而实际上反射总是存在的, 这就需要定义一个参数。

•式中ZL为负载阻抗, Z0为同轴线的特性阻抗。

由于反射系数永远≤1, 而且在甚高频以上频段手边容易得到的校准装置为衰减器,所以有人用返回损失(回损)R.L.来描述反射系数的幅度特性,并且将负号扔掉。

••••回损R.L. = 20Log│ΓdB (1.4)有反射时, 线上电压即有起伏, 驻波比(S.W.R)是使用开槽测量线最易得到的一个参数,比较直观。

当|Г|<< 1时,ρ= 1 + 2│Γ│(1.6)•本仪器三种读数皆有, 可任意选用。

·阻抗圆图如A,B两个规格的天线,若只在标网上选择,肯定选B而不要A,而在矢网上看,A 比B有潜力得多,加个电容就比B好了。

这种情况是大量存在的,在全波振子对测试中就是这种情况。

因此,在调试中首先要将天线阻抗调集中(在圆图上成团)。

举例来看,反射网与振子高度调节就有这种情况,折合振子单边加粗也有这种情况,然后再采取措施(如并电容,串电感,调短路片位置,改平衡器内导体等)使其匹配。

而且经常不是使中频处于圆图中心,而是使整个频带处于中心某一小圆内,即牺牲一下中频性能,来换取总带宽。

阻抗圆图上适于作串联运算,若要作并联运算时,就要转成导纳;在圆图上这非常容易,某一点的反对称点即其导纳。

请记住当时的状态,作阻抗运算时图上即阻抗,当要找某点的导纳值时,可由该点的矢徑转180°即得;此时圆图所示值即全部成导纳。

状态不能记错,否则出错。

记住,只在一个圆图上转阻抗与导纳,千万不要再引入一个导纳圆图,那除了把你弄昏外,别无任何好处。

另外还请记住一点,不管它是负载端还是源端,只要我们向里面看,它就是负载端。

永远按离开负载方向为正转圆图,不要用源端作参考,否则又要把人弄昏。

圆图作为输入阻抗特性的表征,用作简单的单节匹配计算是非常有用的,非常直观,把复杂的运算用简单的形象表现出来,概念清楚。

但对于多节级连的场合,还是编程由计算机优化来得方便。

·传输线的传输参数同上面两端口网络,不再重复。

1.3 有关仪器的几个术语·网络分析仪能测单或两端口网络的各种参数的仪器, 称网络分析仪。

只能测网络各种参数的幅值特性者称为标量网络分析仪,简称标网。

既能测幅值又能测相位者称为矢量网络分析仪,简称矢网,矢网能用史密斯圆图显示测试数据。

·连接电缆一根两端装有连接器的射频电缆叫连接电缆(也有称跳线的),反射特小的连接电缆称测试电缆。

·反射电桥为了测得反射系数,需要一种带有方向性(或定向性)并保持相位信息的器件,如定向耦合器或反射电桥,本仪器采用的是反射电桥,它的输出正比于反射系数。

其原理与惠司顿电桥完全相同,只不过结构尺寸改小适于高频连接,并且不再想法调平衡,而是直接取出误差电压而已。

反射电桥一般只能测同轴线等单端馈线系统。

·差分电桥能测双线馈线系统的反射电桥称差分电桥。

·谐杂波抑制能力一般国产扫频源的谐杂波在-20dB左右,甚至杂散波只有-15dB,进口扫频源好的也就在-30dB多一些,外差式接收机对谐杂波的抑制能力皆在40dB以上,不会出现什么问题。

而对于宽带检波低放的扫频仪与标网,不外接滤波器对寄生谐杂波是没有抑制能力的,有时就会出现下面几种问题:滤波器带外抑制会被测小,天线驻波会被测大,窄带天线增益会测低。

·动态范围仪器设置到测插损,将一根好的短电缆的一头接到输出口,另一头接到与屏幕显示相对应的输入口上,按执行键进行校直通后,拔掉电缆后仪器显示的数值即动态范围,应≥70dB。

·对插损的广义理解隔离度不该通而通了的插损称隔离度或防卫度。

方向图天线对一固定信号在不同方向的插损称方向图。

§2 传输线的测量2.1 同轴线缆的测量一.测电缆回损1.待测电缆末端接上阴负载(或阳负载加双阴),测其入端回损,应满足规定要求。

假如是全频段测试的话,那一般是低端约在30-40分贝左右,随着频率增高到3GHz,一般只能在20dB左右。

假如全频段能在30dB以上此电缆可作测试电缆,一般情况下尤其是3GHz附近是很难作到30dB的,能作到26dB就不错了。

2.回损测试曲线呈现周期性起伏,而平均值单调上升,起伏周期满足⊿F=150/L,式中L 为电缆的电长度(米),⊿F单位为MHz,则此电缆属常规正常现象,主要反射来自两端连接器处的反射;若低端就不好,甚至低频差高频好,或起伏数少,则电缆本身质量不好。

3.回损测试曲线中某一频点回损明显低于左右频点呈一谐振峰状,此时出现了电缆谐振现象。

只要不在使用频率内可以不去管它,这是电缆制造中周期性的偏差引起的周期性反射在某一频点下叠加的结果,我们只能先避开它。

这种现象在1998年我们买的SYV-50-3电缆中多次碰到,回损只有10-14dB,粗的电缆倒不常见此情况,用户只有自己保护自己,选择质量好的才买。

4.在测回损中出现超差现象时,可按下面提到时域故障定位检查加以确诊,以便采取相应措施。

二.测电缆插损(也称测衰减)1.替代法在使用要求频段下,用插损档通过两个10dB衰减器用双阳校直通,校后用电缆代替双阳接入两衰减器之间即得插损曲线,此法为最常用的方法。

2.回损法测插损在仪器经过开短路校正后,接上待测电缆,测末端开路时的回损,回损除2即得插损,此法的优点在于不会出现插损为正的矛盾,特别适合于已架设好的长的粗馈管首尾相距较远的场合。

3.非正常情况检测电缆时最好用全频段测试,插损由小到大应是一单调平滑曲线,并且插损在标准规定以内,小有起伏也不要紧,那是反射叠加引起的。

但若有某一频点附近显著高于左右频点(插损增大)呈一下陷曲线状,说明此电缆有问题。

多数是连接器外皮压接不良所造成,返工后重测。

少数是电缆本身形成的,那么此电缆只能隔离待查,停止使用。

相关文档
最新文档