小学奥数面积计算(综合题型)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十八周面积计算(一)
专题简析:
计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
图形面积)
简单的面积计算是小学数学的一项重要内容.要会计算面积,首先要能识别一些特别的图形:正方形、三角形、平行四边形、梯形等等,然后会计算这些图形的面积.如果我们把这些图形画在方格纸上,不但容易识别,而且容易计算.
上面左图是边长为4的正方形,它的面积是4×4=16(格);右图是3×5的长方形,它的面积是3×5=15(格).
上面左图是一个锐角三角形,它的底是5,高是4,面积是5×4÷2=10(格);右图是一个钝角三角形,底是4,高也是4,它的面积是4×4÷2=8(格).这里特别说明,这两个三角形的高线一样长,钝角三角形的高线有可能在三角形的外面.
上面左图是一个平行四边形,底是5,高是3,它的面积是5×3=15(格);右图是一个梯形,上底是4,下底是7,高是4,它的面积是
(4+7)×4÷2=22(格).
上面面积计算的单位用“格”,一格就是一个小正方形.如果小正方形边长是1厘米,1格就是1平方厘米;如果小正方形边长是1米,1格就是1平方米.也就是说我们设定一个方格的边长是1个长度单位,1格就是一个面积单位.在这一讲中,我们直接用数表示长度或面积,省略了相应的长度单位和面积单位.
一、三角形的面积
用直线组成的图形,都可以划分成若干个三角形来计算面积.三角形面积的计算公式是:三角形面积= 底×高÷2.
这个公式是许多面积计算的基础.因此我们不仅要掌握这一公式,而且要会灵活运用.
例1 右图中BD长是4,DC长是2,那么三角形ABD的面积是三角形ADC面积的多少倍呢
解:三角形ABD与三角形ADC的高相同.
三角形ABD面积=4×高÷2.
三角形ADC面积=2×高÷2.
因此三角形ABD的面积是三角形ADC面积的2倍.注意:三角形的任意一边都可以看作是底,这条边上的高就是三角形的高,所以每个三角形都可看成有三个底,和相应的三条高.
例2右图中,BD,DE,EC的长分别是2,4,2.F是线段AE的中点,三角形ABC的高为4.求三角形DFE的面积.
解:BC=2+4+2=8.
三角形ABC面积= 8×4÷2=16.
我们把A和D连成线段,组成三角形ADE,它与三角形ABC的高相同,而DE长是4,也是BC的一半,因此三角形ADE面积是三角形ABC面积的一半.同样道理,EF是AE的一半,三角形DFE面积是三角形ADE面积的一半.
三角形DFE面积= 16÷4=4.
例3右图中长方形的长是20,宽是12,求它的内部阴影部分面积.
解:ABEF也是一个长方形,它内部的三个三角形阴影部分高都与BE一样长.
而三个三角形底边的长加起来,就是FE的长.因此这三个三角形的面积之和是
FE×BE÷2,
它恰好是长方形ABEF面积的一半.
同样道理,FECD也是长方形,它内部三个三角形(阴影部分)面积之和是它的面积的一半.
因此所有阴影的面积是长方形ABCD面积的一半,也就是
20×12÷2=120.
通过方格纸,我们还可以从另一个途径来求解.当我们画出中间两个三角形的高线,把每个三角形分成两个直角三角形后,图中每个直角三角形都是某个长方形的一半,而长方形ABCD是由这若干个长方形拼成.因此所有这些直角三角形(阴影部分)的面积之和是长方形ABCD面积的的一半.
例4 右图中,有四条线段的长度已经知道,还有两个角是直角,那么四边形ABCD(阴影部分)的面积是多少
解:把A和C连成线段,四边形ABCD就分成了两个,三角形ABC和三角形ADC.
对三角形ABC来说,AB是底边,高是10,因此
面积=4×10÷2=20.
对三角形ADC来说,DC是底边,高是8,因此
面积=7×8÷2=28.
四边形ABCD面积= 20+28=48.
这一例题再一次告诉我们,钝角三角形的高线有可能是在三角形的外面.
例5在边长为6的正方形内有一个三角形BEF,线段AE=3,DF=2,求三角形BEF 的面积.
解:要直接求出三角形BEF的面积是困难的,但容易求出下面列的三个直角三角形的面积
三角形ABE面积=3×6×2=9.
三角形BCF面积= 6×(6-2)÷2=12.
三角形DEF面积=2×(6-3)÷2=3.
我们只要用正方形面积减去这三个直角三角形的面积就能算出:
三角形BEF面积=6×6-9-12-3=12.
例6 在右图中,ABCD是长方形,三条线段的长度如图所示,M是线段DE的中点,求四边形ABMD(阴影部分)的面积.
解:四边形ABMD中,已知的太少,直接求它面积是不可能的,我们设法求出三角形DCE与三角形MBE的面积,然后用长方形ABCD的面积减去它们,由此就可以求得四边形ABMD的面积.
把M与C用线段连起来,将三角形DCE分成两个三角形.三角形DCE的面积是7×2÷2=7.
因为M是线段DE的中点,三角形DMC与三角形MCE面积相等,所以三角形MCE 面积是7÷2=3.5.
因为BE=8是CE=2的4倍,三角形MBE与三角形MCE高一样,因此三角形MBE面积是
3.5×4=1
4.
长方形ABCD面积=7×(8+2)=70.