(完整版)历届高考三角函数习题集
三角函数历年高考题汇编(附答案)yidayin
三角函数历年高考题汇编(附答案)yidayin考点 三角函数的概念、同角三角函数的基本关系式和诱导公式1.(2018北京支,7,5分)在平面直角坐标系中,AB,CD,CA 是圆 x ³+y ²=1 上的四段弧(如图),点P 在其中一段A.ABB. CD c.即 D.参考答案 C 本题主要考查三角函数的概念,同角三角函数的基本关系式. 若点P 在 AB ⃗⃗⃗⃗⃗ 或 CD ⃗⃗⃗⃗⃗ 矛盾,故排除A,B.若点P 在CH(不包含端点G)上,则角α在第三象限。
此时tan α>0, cos α<0,与tan α<cos α矛盾,故排除 D,故选C.A. ming:0B.QOE ρ≥0C. ain 2a>0D. cos 2α>0参考答案 C 由AanaPO 得α是第一或第三象限角,若α是第三象限角,则A,B 错;由 sin 2a=2sin acos α知sin 2a>0,C 正确;α取¹/₂时.cos2α=2cos2α−1=2×(12)2−1=−12<0,D错.故选 C.分析本题考查三角图数值的符号,判定时可运用基本知识,程等变形及特殊值等多种方法,具有一定的灵活性..A.45B. 35C.35D.÷45参考答案 D 由三角函数的定义知cosα=√(−4)2+32=45故选D.4.(2011课标,理5,文7,5分)已知角θ的顶点与原点置合,始边与x轴的正半轴重合,终边在直线y=2x上,则00s 20=( )A.4/5B. 35C.35D.54参考答案 B 解法一:由三角函数定义知,tanθ=2,则cos2θ=cos2θ−sin2θcos2B+sin2θ=1−tan2θ1+tan2B=35.cos2θ=15故cos2θ=2cos2θ−1=35.5.(2015福建文,6,5分)若sinα=513,A.125B.−125C.512D.−512参考答案 D 'sin α=513,a为露四象限角,cosα=√1−sin2α=1213,∴tanα=sinαcosα=512故选 D.6.(2014课标1理,8,5分)设α∈(0,π2),β∈(0,π2),且tanα=1+sinβcosβ则( )A.30−β=π2B.3α+β=π2C.2α−β=π2D.2ca∗βa=112参考答案 C 由tanα=1+sinβcosβ得sinαcosα=1+sinβcosβ即sin acosβ=cosα+sin βcos α,所以sin(α-β)=cos α,又cos α=sin (π2−α)所以:sin (α−β)=sin (π2−α),又因为 cos (0,π2),β∈(0,π2)所以 −π2<α−β<π2,0<π2<α<π2因此 cos −β=π37a 所以 2a +b =π2.故选C.参考答案 C . b=00855°=sin 35°>sin 33°±0, b=a. 又 ∴c =tan35∘=sin35∘cos35∘>sin35∘=cos55∘=b,∴c >b.∴c >b ”.故选C.9.(2013 大纲全国文,2,5分)已知a 是第二象限角, sinα=513,则cos α=( )A.1213B.513C.513D.1 236∴cosα=√1×sin 2α=−1213故选A.分析 本题考查三角图数值在各象限的符号,同角三角函数关系,属容易题。
2016-2019年高考真题三角函数解答题全集(含详细解析)
2016-2019年高考真题三角函数解答题全集(含详细解析)1.(2019•全国)已知函数22()2sin 4cos 1f x x x =-+. (1)求()f x 的最小正周期;(2)设g ()()2x x f =,求()g x 在区间[0,]3π的最大值与最小值.2.(2019•新课标Ⅲ)ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c .已知sin sin 2A Ca b A +=.(1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.3.(2019•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值; (Ⅱ)求sin(2)6B π+的值.4.(2019•浙江)设函数()sin f x x =,x R ∈.(Ⅰ)已知[0θ∈,2)π,函数()f x θ+是偶函数,求θ的值; (Ⅱ)求函数22[()][()]124y f x f x ππ=+++的值域.5.(2019•北京)在ABC ∆中,3a =,2b c -=,1cos 2B =-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin()B C -的值.6.(2019•江苏)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .(1)若3a c =,b =,2cos 3B =,求c 的值; (2)若sin cos 2A Ba b=,求sin()2B π+的值. 7.(2019•北京)在ABC ∆中,3a =,2b c -=,1cos 2B =-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin()B C +的值.8.(2019•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .设22(sin sin )sin sin sin B C A B -=-C . (1)求A ;(22b c +=,求sin C .9.(2018•全国)在ABC ∆中,角A 、B 、C 对应边a 、b 、c ,外接圆半径为1,已知222(sin sin )()sin A C a b B -=-. (1)证明222a b c ab +-=; (2)求角C 和边c .10.(2018•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos()6b A a B π=-.(Ⅰ)求角B 的大小;(Ⅱ)设2a =,3c =,求b 和sin(2)A B -的值.11.(2018•北京)在ABC ∆中,7a =,8b =,1cos 7B =-.(Ⅰ)求A ∠;(Ⅱ)求AC 边上的高.12.(2018•江苏)已知α,β为锐角,4tan 3α=,cos()αβ+=(1)求cos2α的值; (2)求tan()αβ-的值.13.(2018•新课标Ⅰ)在平面四边形ABCD 中,90ADC ∠=︒,45A ∠=︒,2AB =,5BD =. (1)求cos ADB ∠;(2)若DC =,求BC .14.(2018•浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点3(5P -,4)5-.(Ⅰ)求sin()απ+的值; (Ⅱ)若角β满足5sin()13αβ+=,求cos β的值.15.(2018•北京)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若()f x 在区间[3π-,]m 上的最大值为32,求m 的最小值. 16.(2018•上海)设常数a R ∈,函数2()sin 22cos f x a x x =+.(1)若()f x 为偶函数,求a 的值;(2)若()14f π=,求方程()1f x =-[π-,]π上的解.17.(2018•上海)已知cos y x =(1)若1()3f α=,且[0α∈,]π,求()3f πα-的值(2)求函数(2)2()y f x f x =-的最小值18.(2017•上海)已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设ABC ∆为锐角三角形,角A 所对边a =B 所对边5b =,若f (A )0=,求ABC ∆的面积.19.(2017•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin 4sin a A b B =,222)ac a b c =--(Ⅰ)求cos A 的值; (Ⅱ)求sin(2)B A -的值20.(2017•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a b >,5a =,6c =,3sin 5B =. (Ⅰ)求b 和sin A 的值; (Ⅱ)求sin(2)4A π+的值.21.(2017•山东)设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<,已知()06f π=.(Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在[4π-,3]4π上的最小值.22.(2017•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC ∆的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1B C =,3a =,求ABC ∆的周长.23.(2017•新课标Ⅱ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin 2B AC +=. (1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b .24.(2017•北京)已知函数())2sin cos 3f x x x x π=--.()I 求()f x 的最小正周期; ()II 求证:当[4x π∈-,]4π时,1()2f x -….25.(2017•新课标Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 0A A =,a =,2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积.26.(2017•江苏)已知向量(cos ,sin )a x x =,(3,3)b =-,[0x ∈,]π. (1)若//a b ,求x 的值;(2)记()f x a b =,求()f x 的最大值和最小值以及对应的x 的值. 27.(2017•北京)在ABC ∆中,60A ∠=︒,37c a =.(1)求sin C 的值;(2)若7a =,求ABC ∆的面积.28.(2017•浙江)已知函数22()sin cos f x x x x =--cos ()x x R ∈. (Ⅰ)求2()3f π的值. (Ⅱ)求()f x 的最小正周期及单调递增区间.29.(2016•北京)已知函数()2sin cos cos2(0)f x x x x ωωωω=+>的最小正周期为π. (1)求ω的值;(2)求()f x 的单调递增区间.30.(2016•浙江)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=. (1)证明:2A B =; (2)若2cos 3B =,求cos C 的值. 31.(2016•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2sin a B A =.(1)求B ; (2)已知1cos 3A =,求sin C 的值.32.(2016•山东)设2())sin (sin cos )f x x x x x π=---. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移3π个单位,得到函数()y g x =的图象,求()6g π的值. 33.(2016•浙江)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=. (Ⅰ)证明:2A B =;(Ⅱ)若ABC ∆的面积24a S =,求角A 的大小.34.(2016•江苏)在ABC ∆中,6AC =,4cos 5B =,4C π=.(1)求AB 的长; (2)求cos()6A π-的值.35.(2016•北京)在ABC ∆中,222a c b +=+. (Ⅰ)求B ∠的大小;cos A C +的最大值.36.(2016•四川)在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且c o s c o ss i n A B Cab c+=.(Ⅰ)证明:sin sin sin A B C =; (Ⅱ)若22265b c a bc +-=,求tan B .37.(2016•天津)已知函数()4tan sin()cos()23f x x x x ππ=--(1)求()f x 的定义域与最小正周期; (2)讨论()f x 在区间[4π-,]4π上的单调性. 38.(2016•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=.(Ⅰ)求C ;(Ⅱ)若c =ABC ∆,求ABC ∆的周长. 39.(2016•山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知t a n t a n2(t a n t a n )c o s c o sA B A B B A +=+. (Ⅰ)证明:2a b c +=; (Ⅱ)求cos C 的最小值.40.(2016•江苏)如图,在ABC ∆中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 为BC 的中点,求证:EDC ABD ∠=∠.41.(2016•上海)已知函数()sin f x x x =+,求()f x 的最小正周期及最大值,并指出()f x 取得最大值时x 的值.2016-2019年高考真题三角函数解答题全集(含详细解析)参考答案与试题解析1.(2019•全国)已知函数22()2sin 4cos 1f x x x =-+. (1)求()f x 的最小正周期;(2)设g ()()2x x f =,求()g x 在区间[0,]3π的最大值与最小值.【解答】解:22()2sin 4cos 11cos22(1cos2)13cos2f x x x x x x =-+=--++=-. (1)()f x 的最小正周期22T ππ==; (2)g ()()3cos(2)3cos 22x xx f x ==-=-,[0x ∈,]3π,3cos [3x ∴-∈-,3]2-.即()g x 在区间[0,]3π的最大值为32-,最小值为3-.2.(2019•新课标Ⅲ)ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c .已知sin sin 2A Ca b A +=.(1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【解答】解:(1)sin sin 2A C a b A +=,即为sin cos sin 22B Ba ab A π-==, 可得sin cossin sin 2sin cos sin 222B B BA B A A ==, sin 0A >,cos2sin cos 222B B B ∴=, 若cos 02B=,可得(21)B k π=+,k Z ∈不成立, 1sin22B ∴=, 由0B π<<,可得3B π=;(2)若ABC ∆为锐角三角形,且1c =,由余弦定理可得1cos3b a =,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>,且2211a a a +>-+,解得122a <<, 可得ABC ∆面积13sin 23S a π==∈. 3.(2019•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值; (Ⅱ)求sin(2)6B π+的值. 【解答】解(Ⅰ)在三角形ABC 中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得43a b =,23a c =,由余弦定理可得222222416199cos 22423a a a ac b B ac aa +-+-===-.(Ⅱ)由(Ⅰ)得sin B ,从而sin 22sin cos B B B ==, 227cos2cos sin 8BB B =-=-,故71sin(2)sin 2cos cos2sin 66682B B B πππ+=+=-⨯=. 4.(2019•浙江)设函数()sin f x x =,x R ∈.(Ⅰ)已知[0θ∈,2)π,函数()f x θ+是偶函数,求θ的值; (Ⅱ)求函数22[()][()]124y f x f x ππ=+++的值域.【解答】解:(1)由()sin f x x =,得 ()sin()f x x θθ+=+, ()f x θ+为偶函数,∴()2k k Z πθπ=+∈, [0θ∈,2)π,∴2πθ=或32πθ=, (2)22[()][()]124y f x f x ππ=+++ 22sin ()sin ()124x x ππ=+++1cos(2)1cos(2)6222x x ππ-+-+=+11(cos2cos sin 2sin sin 2)266x x x ππ=---3sin 214x x =+)16x π=-+, x R ∈,∴sin(2)[1,1]6x π-∈-,∴)1[16y x π=-+∈, ∴函数22[()][()]124y f x f x ππ=+++的值域为:[1. 5.(2019•北京)在ABC ∆中,3a =,2b c -=,1cos 2B =-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin()B C -的值.【解答】解:(Ⅰ)3a =,2b c -=,1cos 2B =-.∴由余弦定理,得2222cos b a c ac B =+-219(2)23(2)()2b b =+--⨯⨯-⨯-,7b ∴=,25c b ∴=-=;(Ⅱ)在ABC ∆中,1cos 2B =-,sin B ∴=,由正弦定理有:sin sin c bC B=,∴5sin 2sin 7c BC b=== b c >,B C ∴>,C ∴为锐角,11cos 14C ∴=, sin()sin cos cos sin B C B C B C ∴-=-111()142=--=. 6.(2019•江苏)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .(1)若3a c =,b =,2cos 3B =,求c 的值; (2)若sin cos 2A Ba b=,求sin()2B π+的值. 【解答】解:(1)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c . 3a c =,b =,2cos 3B =, ∴由余弦定理得:222221022cos 263a cbc B ac c +--===,解得c =. (2)sin cos 2A Ba b=, ∴由正弦定理得:sin sin cos 2A B Ba b b==, 2sin cos B B ∴=,22sin cos 1B B +=,sin B ∴,cos B =sin()cos 2B B π∴+==. 7.(2019•北京)在ABC ∆中,3a =,2b c -=,1cos 2B =-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin()B C +的值.【解答】解:(1)3a =,2b c -=,1cos 2B =-.∴由余弦定理,得2222cos b a c ac B =+-219(2)23(2)()2b b =+--⨯⨯-⨯-,7b ∴=,25c b ∴=-=;(2)在ABC ∆中,1cos 2B =-,sin B ∴=,由正弦定理有:sin sin a bA B =,3sin 2sin 7a BA b∴===,sin()sin()sin B C A A π∴+=-==8.(2019•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .设22(sin sin )sin sin sin B C A B -=-C . (1)求A ;(22b c +=,求sin C .【解答】解:(1)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c . 设22(sin sin )sin sin sin B C A B -=-C .则222sin sin 2sin sin sin sin sin B C B C A B C +-=-,∴由正弦定理得:222b c a bc +-=,2221cos 222b c a bc A bc bc +-∴===,0A π<<,3A π∴=.(2)2b c +=,3A π=,∴sin 2sin A B C +=,∴2sin()2sin 3C C π+-=解得sin()6C π-=64C ππ∴-=,46C ππ=+,1sin sin()sin cos cos sin 464646222C ππππππ∴=+=+=⨯=. 9.(2018•全国)在ABC ∆中,角A 、B 、C 对应边a 、b 、c ,外接圆半径为1,已知222(sin sin )()sin A C a b B -=-. (1)证明222a b c ab +-=; (2)求角C 和边c .【解答】证明:(1)在ABC ∆中,角A 、B 、C 对应边a 、b 、c ,外接圆半径为1,∴由正弦定理得:22sin sin sin a b cR A B C====, sin 2aA ∴=,sin 2b B =,sin 2c C =,222(sin sin )()sin A C a b B -=-,222()()442a cb a b ∴-=-,化简,得:222a b c ab +-=, 故222a b c ab +-=. 解:(2)222a b c ab +-=,2221cos 222a b c ab C ab ab +-∴===,解得3C π=,32sin 23c C ∴===. 10.(2018•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos()6b A a B π=-.(Ⅰ)求角B 的大小;(Ⅱ)设2a =,3c =,求b 和sin(2)A B -的值. 【解答】解:(Ⅰ)在ABC ∆中,由正弦定理得sin sin a bA B=,得sin sin b A a B =, 又sin cos()6b A a B π=-.sin cos()6a B a B π∴=-,即1sin cos()cos cos sin sin sin 6662B B B B B B πππ=-=+=+,tan B ∴又(0,)B π∈,3B π∴=.(Ⅱ)在ABC ∆中,2a =,3c =,3B π=,由余弦定理得b ==sin cos()6b A a B π=-,得sin A =,a c <,cosA ∴=,sin 22sin cos A A A ∴==, 21cos22cos 17A A =-=,11sin(2)sin 2cos cos2sin 27A B A B A B ∴-=-=-=11.(2018•北京)在ABC ∆中,7a =,8b =,1cos 7B =-.(Ⅰ)求A ∠;(Ⅱ)求AC 边上的高.【解答】解:(Ⅰ)a b <,A B ∴<,即A 是锐角, 1cos 7B =-,sin B ∴== 由正弦定理得sin sin a b A B =得7sin 7sin 8a BA b===, 则3A π=.(Ⅱ)由余弦定理得2222cos b a c ac B =+-, 即216449277c c =++⨯⨯⨯,即22150c c +-=, 得(3)(5)0c c -+=, 得3c =或5c =-(舍), 则AC边上的高sin 3h c A ===12.(2018•江苏)已知α,β为锐角,4tan 3α=,cos()αβ+=(1)求cos2α的值; (2)求tan()αβ-的值.【解答】解:(1)由22431sin cos sin cos ααααα⎧=⎪⎪+=⎨⎪⎪⎩为锐角,解得4sin 53cos 5αα⎧=⎪⎪⎨⎪=⎪⎩,227cos225cos sin ααα∴=-=-; (2)由(1)得,24sin 22sin cos 25ααα==,则sin 224tan 2cos27ααα==-. α,(0,)2πβ∈,(0,)αβπ∴+∈,sin()αβ∴+= 则sin()tan()2cos()αβαβαβ++==-+.tan 2tan()2tan()tan[2()]1tan 2tan()11ααβαβααβααβ-+∴-=-+==-++.13.(2018•新课标Ⅰ)在平面四边形ABCD 中,90ADC ∠=︒,45A ∠=︒,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .【解答】解:(1)90ADC ∠=︒,45A ∠=︒,2AB =,5BD =.∴由正弦定理得:sin sin AB BD ADB A =∠∠,即25sin sin 45ADB =∠︒,2sin 45sin 5ADB ︒∴∠==, AB BD <,ADB A ∴∠<∠,cos ADB ∴∠==(2)90ADC ∠=︒,cos sin BDC ADB ∴∠=∠=, 2DC =BC ∴=5==.14.(2018•浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点3(5P -,4)5-.(Ⅰ)求sin()απ+的值; (Ⅱ)若角β满足5sin()13αβ+=,求cos β的值. 【解答】解:(Ⅰ)角α的顶点与原点O 重合,始边与x 轴非负半轴重合,终边过点3(5P -,4)5-.35x ∴=-,45y =-,||1r OP =,4sin()sin 5y r απα∴+=-=-=; (Ⅱ)由35x =-,45y =-,||1r OP ==,得4sin 5α=-,3cos 5α=-,又由5sin()13αβ+=,得12cos()13αβ+=±,则1235456cos cos[()]cos()cos sin()sin ()()13513565βαβααβααβα=+-=+++=⨯-+⨯-=-, 或1235416cos cos[()]cos()cos sin()sin ()()13513565βαβααβααβα=+-=+++=-⨯-+⨯-=. cos β∴的值为5665-或1665.15.(2018•北京)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若()f x 在区间[3π-,]m 上的最大值为32,求m 的最小值.【解答】解:()I 函数21cos2()sin cos 22x f x x x x x -=+=+ 1sin(2)62x π=-+,()f x 的最小正周期为22T ππ==; (Ⅱ)若()f x 在区间[3π-,]m 上的最大值为32, 可得52[66x ππ-∈-,2]6m π-,即有262m ππ-…,解得3m π…, 则m 的最小值为3π. 16.(2018•上海)设常数a R ∈,函数2()sin 22cos f x a x x =+. (1)若()f x 为偶函数,求a 的值;(2)若()14f π=,求方程()1f x =-[π-,]π上的解.【解答】解:(1)2()sin 22cos f x a x x =+,2()sin 22cos f x a x x ∴-=-+,()f x 为偶函数, ()()f x f x ∴-=,22sin 22cos sin 22cos a x x a x x ∴-+=+, 2sin20a x ∴=, 0a ∴=;(2)()14f π=,2sin2cos ()1124a a ππ∴+=+=,a ∴=,2()22cos 2cos212sin(2)16f x x x x x x π∴+++=++,()1f x =2sin(2)116x π∴++=sin(2)6x π∴+= 2264x k πππ∴+=-+,或52264x k πππ+=+,k Z ∈, 524x k πππ∴=-+,或1324x k ππ=+,k Z ∈, [x π∈-,]π, 1324x π∴=或1924x π=或524x π=-或1124x π=-17.(2018•上海)已知cos y x =(1)若1()3f α=,且[0α∈,]π,求()3f πα-的值(2)求函数(2)2()y f x f x =-的最小值 【解答】解:(1)若1()3f α=,且[0α∈,]π,则1cos 3α=,则sin 3α==,则111()cos()cos cos sin sin 3333326f ππππαααα-=-=+=⨯+=. (2)函数2213(2)2()cos22cos 2cos 2cos 12(cos )22y f x f x x x x x x =-=-=--=--,1cos 1x -剟,∴当1cos 2x =时,函数取得最小值,最小值为32-. 18.(2017•上海)已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设ABC ∆为锐角三角形,角A 所对边a =B 所对边5b =,若f (A )0=,求ABC ∆的面积.【解答】解:(1)函数221()cos sin 2f x x x =-+ 1cos22x =+,(0,)x π∈, 由222k x k πππ-剟,解得12k x k πππ-剟,k Z ∈,1k =时,12x ππ剟,可得()f x 的增区间为[2π,)π;(2)设ABC ∆为锐角三角形,角A 所对边a =B 所对边5b =, 若f (A )0=,即有1cos202A +=, 解得223A π=,即13A π=,由余弦定理可得2222cos a b c bc A =+-, 化为2560c c -+=, 解得2c =或3, 若2c =,则cos 0B =<,即有B 为钝角,2c =不成立, 则3c =,ABC ∆的面积为11sin 5322S bc A ==⨯⨯=. 19.(2017•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin 4sin a A b B =,222)ac a b c =--(Ⅰ)求cos A 的值; (Ⅱ)求sin(2)B A -的值【解答】(Ⅰ)解:由sin sin a bA B=,得sin sin a B b A =, 又sin 4sin a A b B =,得4sin sin b B a A =, 两式作比得:4a bb a=,2a b ∴=.由222)ac a b c =--,得222b c a +-=,由余弦定理,得2225cos 2b c aA bcac +-===; (Ⅱ)解:由(Ⅰ),可得sin A =,代入sin 4sin a A b B =,得sin sin 4a A B b ==. 由(Ⅰ)知,A 为钝角,则B 为锐角,∴cos B = 于是4sin 22sin cos 5B B B ==,23cos212sin 5B B =-=,故43sin(2)sin 2cos cos2sin (55B A B A B A -=-=⨯-= 20.(2017•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a b >,5a =,6c =,3sin 5B =. (Ⅰ)求b 和sin A 的值; (Ⅱ)求sin(2)4A π+的值.【解答】解:(Ⅰ)在ABC ∆中,a b >, 故由3sin 5B =,可得4cos 5B =. 由已知及余弦定理,有22242cos 2536256135b ac ac B =+-=+-⨯⨯⨯=,b ∴=由正弦定理sin sin a bA B=,得sin sin a B A b =b ∴=sin A (Ⅱ)由(Ⅰ)及a c <,得cos A =,12sin 22sin cos 13A A A ∴==, 25cos212sin 13A A =-=-.故125sin(2)sin 2cos cos2sin 44413213226A A A πππ+=+=⨯-=.21.(2017•山东)设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<,已知()06f π=.(Ⅰ)求ω;(Ⅱ)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在[4π-,3]4π上的最小值.【解答】解:(Ⅰ)函数()sin()sin()62f x x x ππωω=-+-sin cos cos sin sin()662x x x πππωωω=---3cos 2x x ωω=-)3x πω=-,又()3sin()0663f πππω=-=,∴63k ππωπ-=,k Z ∈,解得62k ω=+, 又03ω<<, 2ω∴=;(Ⅱ)由(Ⅰ)知,())3f x x π-,将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数)3y x π-的图象;再将得到的图象向左平移4π个单位,得到)43y x ππ+-的图象,∴函数())12y g x x π=-;当[4x π∈-,3]4π时,[123x ππ-∈-,2]3π,sin()[12x π∴-∈1],∴当4x π=-时,()g x 取得最小值是32-. 22.(2017•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC ∆的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1B C =,3a =,求ABC ∆的周长. 【解答】解:(1)由三角形的面积公式可得21sin 23sin ABC a S ac B A∆==, 3sin sin 2c B A a ∴=,由正弦定理可得3sin sin sin 2sin C B A A =, sin 0A ≠,2sin sin 3B C ∴=; (2)6cos cos 1B C =, 1cos cos 6B C ∴=, 121cos cos sin sin 632B C B C ∴-=-=-, 1cos()2B C ∴+=-,1cos 2A ∴=, 0A π<<,3A π∴=,2sin sin sin a b c R A B C ===== 2sin sin 22123(23)b c bc B C R R ∴====,8bc ∴=,2222cos a b c bc A =+-, 229b c bc ∴+-=,2()9392433b c cb ∴+=+=+=,b c ∴+=∴周长3a b c ++=23.(2017•新课标Ⅱ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2s i n ()8s i n 2B AC +=.(1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b .【解答】解:(1)2sin()8sin 2BA C +=, sin 4(1cos )B B ∴=-, 22sin cos 1B B +=,2216(1cos )cos 1B B ∴-+=, 2216(1cos )cos 10B B ∴-+-=,216(cos 1)(cos 1)(cos 1)0B B B ∴-+-+=, (17cos 15)(cos 1)0B B ∴--=, 15cos 17B ∴=; (2)由(1)可知8sin 17B =, 1sin 22ABC S ac B ∆==,172ac ∴=, 2222217152cos 2217b ac ac B a c ∴=+-=+-⨯⨯ 22215()2153617154a c a c ac =+-=+--=--=, 2b ∴=.24.(2017•北京)已知函数())2sin cos 3f x x x x π=--.()I 求()f x 的最小正周期; ()II 求证:当[4x π∈-,]4π时,1()2f x -….【解答】解:(Ⅰ)())2sin cos 3f x x x x π=--,13(22)sin 22co x x x =+-,1sin 22x x =+, sin(2)3x π=+,22T ππ∴==, ()f x ∴的最小正周期为π,(Ⅱ)[4x π∈-,]4π, 2[36x ππ∴+∈-,5]6π, 1sin(2)123x π∴-+剟,1()2f x ∴-… 25.(2017•新课标Ⅲ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,已知sin 0A A =,a =,2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积. 【解答】解:(1)sin 0A A +=, tan A ∴=0A π<<,23A π∴=, 由余弦定理可得2222cos a b c bc A =+-, 即2128422()2c c =+-⨯⨯-,即22240c c +-=,解得6c =-(舍去)或4c =, 故4c =.(2)2222cos c b a ab C =+-, 1628422cos C ∴=+-⨯⨯,cos C ∴=22cos AC CD C∴===12CD BC ∴=11sin 4222ABC S AB AC BAC ∆=∠=⨯⨯=,12ABD ABC S S ∆∆∴=26.(2017•江苏)已知向量(cos ,sin )a x x =,(3,3)b =-,[0x ∈,]π. (1)若//a b ,求x 的值;(2)记()f x a b =,求()f x 的最大值和最小值以及对应的x 的值. 【解答】解:(1)(cos ,sin )a x x =,(3,3)b =-,//a b ,3sin x x =,当cos 0x =时,sin 1x =,不合题意,当cos 0x ≠时,tan x =, [0x ∈,]π, 56x π∴=,(2)1()3cos sin ))26f x a b x x x x x π===-=+, [0x ∈,]π, [66x ππ∴+∈,7]6π,1cos()6x π∴-+剟 当0x =时,()f x 有最大值,最大值3,当56x π=时,()f x 有最小值,最小值- 27.(2017•北京)在ABC ∆中,60A ∠=︒,37c a =.(1)求sin C 的值;(2)若7a =,求ABC ∆的面积. 【解答】解:(1)60A ∠=︒,37c a =,由正弦定理可得33sin sin 77C A ==, (2)7a =,则3c =,C A ∴<,22sin cos 1C C +=,又由(1)可得13cos 14C =,131sin sin()sin cos cos sin 142B A C A C A C ∴=+=+=+=11sin 7322ABC S ac B ∆∴==⨯⨯=28.(2017•浙江)已知函数22()sin cos f x x x x =--cos ()x x R ∈. (Ⅰ)求2()3f π的值. (Ⅱ)求()f x 的最小正周期及单调递增区间.【解答】解:函数22()sin cos f x x x x =--7cos 2cos22sin(2)6x x x x π=-=+ (Ⅰ)2275()2sin(2)2sin 23362f ππππ=⨯+==, (Ⅱ)2ω=,故T π=, 即()f x 的最小正周期为π, 由72[262x k πππ+∈-+,2]2k ππ+,k Z ∈得: 5[6x k ππ∈-+,]3k ππ-+,k Z ∈,故()f x 的单调递增区间为5[6k ππ-+,]3k ππ-+或写成[6k ππ+,2]3k ππ+,k Z ∈. 29.(2016•北京)已知函数()2sin cos cos2(0)f x x x x ωωωω=+>的最小正周期为π. (1)求ω的值;(2)求()f x 的单调递增区间.【解答】解:()2sin cos cos2f x x x x ωωω=+, sin2cos2x x ωω=+,)4x πω=+,由于函数的最小正周期为π, 则:22T ππω==, 解得:1ω=.(2)由(1)得:函数())4f x x π=+,令222()242k x k k Z πππππ-+++∈剟,解得:3()88k x k k Z ππππ-++∈剟, 所以函数的单调递增区间为:3[,]()88k k k Z ππππ-++∈. 30.(2016•浙江)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=. (1)证明:2A B =; (2)若2cos 3B =,求cos C 的值. 【解答】(1)证明:2cos b c a B +=, sin sin 2sin cos B C A B ∴+=,sin sin()sin cos cos sin C A B A B A B =+=+,sin sin cos cos sin sin()B A B A B A B ∴=-=-,由A ,(0,)B π∈,0A B π∴<-<,B A B ∴=-,或()B A B π=--,化为2A B =,或A π=(舍去). 2A B ∴=.()II 解:2cos 3B =,sin B ∴=.21cos cos22cos 19A B B ==-=-,sin A =.2122cos cos()cos cos sin sin ()3927C A B A B A B ∴=-+=-+=-⨯-+=. 31.(2016•天津)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2sin a B A=. (1)求B ; (2)已知1cos 3A =,求sin C 的值.【解答】解:(1)sin 2sin a B A =,2sin sin cos sin A B B B A ∴=,cos B ∴=6B π∴=.(2)1cos 3A =,sin A ∴,11sin sin()sin cos cos sin 23C A B A B A B ∴=+=++⨯=.32.(2016•山东)设2())sin (sin cos )f x x x x x π=---. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移3π个单位,得到函数()y g x =的图象,求()6g π的值. 【解答】解:(Ⅰ)221cos2()23sin()sin (sin cos )23sin 1sin 2231sin 22xf x x x x x x x x π-=---=-+=-+sin 212sin(2)13x x x π==-,令222232k x k πππππ--+剟,求得51212k x k ππππ-+剟, 可得函数的增区间为[12k ππ-,5]12k ππ+,k Z ∈. (Ⅱ)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得2sin()13y x π=-+的图象;再把得到的图象向左平移3π个单位,得到函数()2sin 1y g x x ==+的图象,()2sin 166g ππ∴==33.(2016•浙江)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos b c a B +=. (Ⅰ)证明:2A B =;(Ⅱ)若ABC ∆的面积24a S =,求角A 的大小.【解答】(Ⅰ)证明:2cos b c a B +=, sin sin 2sin cos B C A B ∴+=,sin sin()2sin cos B A B A B ∴++=sin sin cos cos sin 2sin cos B A B A B A B ∴++=sin sin cos cos sin sin()B A B A B A B ∴=-=-A ,B 是三角形中的角, B A B ∴=-, 2A B ∴=;(Ⅱ)解:ABC ∆的面积24a S =,∴21sin 24a bc A =, 22sin bc A a ∴=,2sin sin sin sin2B C A B ∴==, sin cos C B ∴=,90B C ∴+=︒,或90C B =+︒, 90A ∴=︒或45A =︒.34.(2016•江苏)在ABC ∆中,6AC =,4cos 5B =,4C π=.(1)求AB 的长; (2)求cos()6A π-的值.【解答】解:(1)ABC ∆中,4cos 5B =,(0,)B π∈, 3sin 5B ∴=, sin sin AB ACC B=,6235AB ∴==;(2)cos cos()cos()sin sin cos cos A A C B B C B C π==--=-+=-= A 为三角形的内角,sin A ∴=,1cos()sin 62A A A π∴-=+=35.(2016•北京)在ABC ∆中,222a c b +=+. (Ⅰ)求B ∠的大小;cos A C +的最大值.【解答】解:(Ⅰ)在ABC ∆中,222a c b +=.222a c b ∴+-=.222cos 2a c b B ac +-∴==, 4B π∴=(Ⅱ)由()I 得:34C A π=-,∴3cos cos()4A C A A π++-A A A =A A =+ sin()4A π=+.3(0,)4A π∈, (44A ππ∴+∈,)π,故当42A ππ+=时,sin()4A π+取最大值1,cos A C +的最大值为1.36.(2016•四川)在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且c o s c o ss i n A B Cab c+=.(Ⅰ)证明:sin sin sin A B C =; (Ⅱ)若22265b c a bc +-=,求tan B .【解答】(Ⅰ)证明:在ABC ∆中,cos cos sin A B Ca b c+=, ∴由正弦定理得:cos cos sin sin sin sin A B C A B C+=, ∴cos sin cos sin sin()1sin sin sin sin A B B A A B A B A B++==,sin()sin A B C +=.∴整理可得:sin sin sin A B C =,(Ⅱ)解:22265b c a bc +-=,由余弦定理可得3cos 5A =.4sin 5A =,cos 3sin 4A A = cos cos sin 1sin sin sin AB CA B C +==,cos 1sin 4B B =, tan 4B =.37.(2016•天津)已知函数()4tan sin()cos()23f x x x x ππ=--(1)求()f x 的定义域与最小正周期; (2)讨论()f x 在区间[4π-,]4π上的单调性.【解答】解:(1)()4tan sin()cos()23f x x x x ππ=--.2x k ππ∴≠+,即函数的定义域为{|2x x k ππ≠+,}k Z ∈,则1()4tan cos (cos )2f x x x x x =14sin (cos )2x x x =22sin cos x x x =+sin 2cos 2)x x =+--sin 2x x =2sin(2)3x π=-, 则函数的周期22T ππ==; (2)由222232k x k πππππ-<-<+,k Z ∈,得51212k x k ππππ-<<+,k Z ∈,即函数的增区间为(12k ππ-,5)12k ππ+,k Z ∈, 当0k =时,增区间为(12π-,5)12π,k Z ∈, [4x π∈-,]4π,∴此时(12x π∈-,]4π, 由3222232k x k πππππ+<-<+,k Z ∈, 得5111212k x k ππππ+<<+,k Z ∈,即函数的减区间为5(12k ππ+,11)12k ππ+,k Z ∈,当1k =-时,减区间为7(12π-,)12π-,k Z ∈, [4x π∈-,]4π,∴此时[4x π∈-,)12π-,即在区间[4π-,]4π上,函数的减区间为[4π∈-,)12π-,增区间为(12π-,]4π.38.(2016•新课标Ⅰ)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=.(Ⅰ)求C ;(Ⅱ)若c =ABC ∆,求ABC ∆的周长. 【解答】解:(Ⅰ)在ABC ∆中,0C π<<,sin 0C ∴≠已知等式利用正弦定理化简得:2cos (sin cos sin cos )sin C A B B A C +=, 整理得:2cos sin()sin C A B C +=, 即2cos sin(())sin C A B C π-+= 2cos sin sin C C C =1cos 2C ∴=, 3C π∴=;(Ⅱ)由余弦定理得221722a b ab=+-, 2()37a b ab ∴+-=,1sin 2S ab C ===6ab ∴=,2()187a b ∴+-=, 5a b ∴+=,ABC ∴∆的周长为5+.39.(2016•山东)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知t a n t a n2(t a n t a n )c o s c o sA B A B B A +=+. (Ⅰ)证明:2a b c +=; (Ⅱ)求cos C 的最小值.【解答】解:(Ⅰ)证明:由tan tan 2(tan tan )cos cos A BA B B A+=+得: sin sin sin sin 2()cos cos cos cos cos cos A B A BA B A B A B+=+; ∴两边同乘以cos cos A B 得,2(sin cos cos sin )sin sin A B A B A B +=+;2sin()sin sin A B A B ∴+=+;即sin sin 2sin A B C +=(1);根据正弦定理,2sin sin sin a b c R A B C ===; ∴sin ,sin ,sin 222a b c A B C R R R ===,带入(1)得:2222a b c R R R +=; 2a b c ∴+=;(Ⅱ)2a b c +=;2222()24a b a b ab c ∴+=++=;22242a b c ab ∴+=-,且244c ab …,当且仅当a b =时取等号; 又a ,0b >; ∴21c ab…; ∴由余弦定理,222223231cos 12222a b c c ab c C ab ab ab +--===-…; cos C ∴的最小值为12. 40.(2016•江苏)如图,在ABC ∆中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 为BC 的中点,求证:EDC ABD ∠=∠.【解答】解:在ABC ∆中,由BD AC ⊥可得90BDC ∠=︒, 因为E 为BC 的中点,所以12DE CE BC ==, 则:EDC C ∠=∠,由90BDC ∠=︒,可得90C DBC ∠+∠=︒,由90ABC ∠=︒,可得90ABD DBC ∠+∠=︒,因此ABD C ∠=∠,而EDC C ∠=∠,所以,EDC ABD ∠=∠.41.(2016•上海)已知函数()sin f x x x =+,求()f x 的最小正周期及最大值,并指出()f x 取得最大值时x 的值.【解答】解:()sin 2sin()3f x x x x π==+,∴函数的周期为2T π=,函数的最大值为2,且函数取得最大值时,232x k πππ+=+,即26x k ππ=+,k Z ∈.。
三角函数历年高考题汇编(附答案)
1、函数22cos 14y x π⎛⎫=-- ⎪⎝⎭是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 2、已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数3.已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是( )4.将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A. 22cos y x = B. 22sin y x = C.)42sin(1π++=x y D. cos 2y x =5.函数()(1)cos f x x x =的最小正周期为( )A .2π B .32π C .π D .2π6.若3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,则φ的最小值为A.6πB.4πC. 3πD. 2π 7.函数()cos 22sin f x x x =+的最小值和最大值分别为( ) A. -3,1 B. -2,2 C. -3,32 D. -2,321、已知函数()sin()(0,0),f x A x a x R ϕϕπ=+><<∈的最大值是1,其图像经过点1(,)32M π。
(1)求()f x 的解析式;(2)已知,(0,)2παβ∈, 且312(),(),513f f αβ==求()f αβ-的值。
8.函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )1.已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫=⎪⎝⎭。
2.函数22cos sin 2y x x =+的最小值是_____________________ .3.已知函数()sin()(0)f x x ωϕω=+>的图象如图所示,则ω =12、已知函数()sin sin(),2f x x x x R π=++∈.I)求()f x 的最小正周期;(II)求()f x 的的最大值和最小值;(III)若3()4f α=,求sin2α的值. 30.已知函数()2sin()cos f x x x π=-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.答案1.A 2.D 3.D 4.A 5.A 6.A 7.C 8.A 二1.0 2. 1 3.32。
高中三角函数历年高考真题_含答案
历年高考三角函数专题一,选择题1.(08全国一6)2(sin cos )1y x x =--是 ( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数2.(08全国一9)为得到函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位3.(08全国二1)若sin 0α<且tan 0α>是,则α是 ( ) A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角4.(08全国二10).函数x x x f cos sin )(-=的最大值为 ( ) A .1 B . 2 C .3 D .25.(08安徽卷8)函数sin(2)3y x π=+图像的对称轴方程可能是 ( )A .6x π=-B .12x π=-C .6x π=D .12x π=6.(08福建卷7)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 ( ) A.-sin x B.sin x C.-cos x D.cos x7.(08广东卷5)已知函数2()(1cos2)sin ,f x x x x R =+∈,则()f x 是 ( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数8.(08海南卷11)函数()cos 22sin f x x x =+的最小值和最大值分别为 ( )A. -3,1B. -2,2C. -3,32D. -2,329.(08湖北卷7)将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′,若F ′的一条对称轴是直线,1x π=则θ的一个可能取值是 ( )A.512π B.512π- C.1112π D.1112π-10.(08江西卷6)函数sin ()sin 2sin2x f x xx =+是 ( )A .以4π为周期的偶函数B .以2π为周期的奇函数C .以2π为周期的偶函数D .以4π为周期的奇函数11.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为 ( ) A .1BCD .212.(08山东卷10)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( ) A. BC .45-D .4513.(08陕西卷1)sin 330︒等于 ( ) A.2-B .12-C .12D.214.(08四川卷4)()2tan cot cos x x x += ( ) A.tan x B.sin x C.cos x D.cot x 15.(08天津卷6)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是 ( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 16.(08天津卷9)设5sin 7a π=,2cos 7b π=,2tan 7c π=,则 ( )A .a b c <<B .a c b <<C .b c a <<D .b a c <<17.(08浙江卷2)函数2(sin cos )1y x x =++的最小正周期是 ( ) A.2π B .π C.32πD.2π 18.(08浙江卷7)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是 ( )A.0B.1C.2D.4 二,填空题19.(08北京卷9)若角α的终边经过点(12)P -,,则tan 2α的值为 . 20.(08江苏卷1)()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= . 21.(08辽宁卷16)设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .22.(08浙江卷12)若3sin()25πθ+=,则cos 2θ=_________。
(完整版)近五年浙江三角函数高考真题
近五年浙江三角函数高考真题一、(2013理)4.已知函数()cos()(0,0,R)f x A x A ωφωφ=+>>∈,则“()f x 是奇函数”是“2πφ=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.已知R,sin 2cos ααα∈+=tan2α= A .43B .34 C .34-D .43-16.在△ABC 中,90C ∠=,M 是BC 的中点.若1sin 3BAM ∠=,则sin BAC ∠= .(2013文)3.(与理4姐妹题)若R α∈,则“0α=”是“sin cos αα<”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件6.函数()sin cos f x x x x =+的最小正周期和振幅分别是 A .π,1 B .π,2 C .2π,1 D .2π,218.在锐角△ABC 中,内角,,A B C 的对边分别为,,a b c ,且2sin a B =. (Ⅰ)求角A 的大小;(Ⅱ) 若6,8a b c =+=,求△ABC 的面积.二、(2012理)4.把函数cos21y x =+的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是18.(14分)在△ABC 中,内角,,A B C 的对边分别为,,a b c .已知C B A cos 5sin ,32cos ==. (1)求tan C 的值;(2)若2a =ABC 的面积.(2012文) 6.(同理4)18.( 14分)在△ABC 中,内角,,A B C 的对边分别为,,a b c ,且sin 3cos b A a B =. (Ⅰ)求角B 的大小;(Ⅱ)若3,sin 2sin b C A ==,求,a c 的值.三、(2011理) 6.若0,022ππαβ<<-<<,1cos()43πα+=,3cos()42πβ-=,则cos()2βα+= A 3B .3C 53D .618.(14分)在△ABC 中,角,,A B C 所对的边分别为,,a b c .已知sin sin sin (R)A C pB p +=∈,且214ac b =.(Ⅰ)当5,14p b ==时,求,a c 的值;(Ⅱ)若角B 为锐角,求p 的取值范围.(2011文)5.在ABC ∆中,角C B A ,,所对的边分别是c b a ,,,若B b A a sin cos =,则=+B A A 2cos cos sin(A )21-(B )21 (C )1- (D )118.(14分)已知函数()sin ()3f x A x πϕ=+,x R ∈,0A >,02πϕ<<.()y f x =的部分图像如图所示,P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1,)A .(Ⅰ)求()f x 的最小正周期及ϕ的值; (Ⅱ)若点R 的坐标为(1,0),23PRQ π∠=,求A 的值.三、(2010理) 4.设02x π<<,则“2sin 1x x <”是“sin 1x x <”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件9.设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是 (A )[]4,2-- (B )[]2,0- (C )[]0,2 (D )[]2,4 11.函数2()sin(2)224f x x x π=--的最小正周期是__________________ .18. (l4分)在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知1cos24C =-.(I)求sin C 的值;(Ⅱ)当2,2sin sin a A C ==时,求b 及c 的长. (2010文) 6.(同理4)12.(与理11姐妹题)函数2()sin (2)4f x x π=-的最小正周期是18.(本题满分)在△ABC ,角,,A B C 所对的边分别为,,a b c ,设S 为△ABC 的面积,满足2223()4S a b c =+-. (Ⅰ)求角C 的大小; (Ⅱ)求sin sin A B +的最大值.三、(2009理)8.已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是D 【命题意图】此题是一个考查三角函数图象的问题,但考查的知识点因含有参数而丰富,结合图形考查使得所考查的问题形象而富有深度.18.(14分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足25cos25A =,3=⋅AC AB .(I )求ABC ∆的面积; (II )若6b c +=,求a 的值. (2009文) 10.(同理8) 18.(同理18)。
三角函数(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)
专题09三角函数1.【2022年全国甲卷】将函数op =sin B (>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则的最小值是()A .16B .14C .1D .122.【2022年全国甲卷】设函数op =sin B +(0,π)恰有三个极值点、两个零点,则的取值范围是()A B ,6C D 3.【2022年全国乙卷】函数=cos ++1sin +1在区间0,2π的最小值、最大值分别为()A .−π2,π2B .−3π2,π2C .−π2,π2+2D .−3π2,π2+24.【2022年新高考1卷】记函数op =sin(B +4)+o >0)的最小正周期为T .若23<<,且=op 的图象关于点(32,2)中心对称,则o2)=()A .1B .32C .52D .35.【2022年新高考2卷】若sin(+p +cos(+p =22cos +sin ,则()A .tan(−p =1B .tan(+p =1C .tan(−p =−1D .tan(+p =−16.【2021年甲卷文科】若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A 15B C .3D .37.【2021年乙卷文科】函数()sin cos 33x xf x =+的最小正周期和最大值分别是()A .3πB .3π和2C .6πD .6π和28.【2021年乙卷文科】22π5πcos cos 1212-=()A .12B C .2D 9.【2021年乙卷理科】把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =()A .7sin 212x π⎛⎫- ⎪⎝⎭B .sin 212x π⎛⎫+ ⎪⎝⎭C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+ ⎪⎝⎭10.【2021年新高考1卷】下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是()A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭11.【2021年新高考1卷】若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .6512.【2021年新高考2卷】北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为()A .26%B .34%C .42%D .50%13.【2020年新课标1卷理科】设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为()A .10π9B .7π6C .4π3D .3π214.【2020年新课标1卷理科】已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=()A B .23C .13D15.【2020年新课标2卷理科】若α为第四象限角,则()A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<016.【2020年新课标3卷理科】已知2tan θ–tan(θ+π4)=7,则tan θ=()A .–2B .–1C .1D .217.【2020年新课标3卷文科】已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A .12B .3C .23D .218.【2020年新课标3卷文科】在△ABC 中,cos C =23,AC =4,BC =3,则tan B =()AB .C .D .19.【2019年新课标1卷理科】函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .20.【2019年新课标1卷理科】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③21.【2019年新课标1卷文科】tan255°=A .-2B .-C .2D .22.【2019年新课标2卷理科】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )=sin│x │23.【2019年新课标2卷理科】已知α∈(0,π2),2sin2α=cos2α+1,则sinα=A .15BC D 24.【2019年新课标2卷文科】若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32C .1D .1225.【2019年新课标3卷理科】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④26.【2019年新课标3卷文科】函数()2sin sin2f x x x =-在[]0,2π的零点个数为A .2B .3C .4D .527.【2018年新课标1卷文科】已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为428.【2018年新课标1卷文科】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -=A .15B .5C .5D .129.【2018年新课标2卷理科】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是A .4πB .2πC .34πD .π30.【2018年新课标3卷理科】若1sin 3α=,则cos2α=A .89B .79C .79-D .89-31.【2018年新课标3卷文科】函数()2tan 1tan xf x x=+的最小正周期为A .4πB .2πC .πD .2π32.【2022年新高考2卷】已知函数op =sin(2+p(0<<π)0中心对称,则()A .op 在区间0,12B .op 在区间−π12C .直线=7π是曲线=op 的对称轴D .直线=是曲线=op 的切线33.【2020年新高考1卷(山东卷)】下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=()A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -34.【2022年全国乙卷】记函数op =cos(B +p(>0,0<<π)的最小正周期为T ,若op ==9为op 的零点,则的最小值为____________.35.【2021年甲卷文科】已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.36.【2021年甲卷理科】已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.37.【2020年新课标2卷文科】若2sin 3x =-,则cos 2x =__________.38.【2020年新高考1卷(山东卷)】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.39.【2019年新课标1卷文科】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________.40.【2018年新课标2卷理科】已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.41.【2018年新课标2卷文科】已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________.42.【2018年新课标3卷理科】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.43.【2019年新课标1卷文科】已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.(1)证明:f′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.。
三角函数历年高考题汇编(附答案)
三角函数历年高考题汇编一.选择题1、(2009)函数22cos 14y x π⎛⎫=-- ⎪⎝⎭是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数 2、(2008)已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数3.(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是( )4.(2009山东卷文)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A. 22cos y x = B. 22sin y x = C.)42sin(1π++=x y D. cos 2y x =5.(2009江西卷文)函数()(13tan )cos f x x x =+的最小正周期为6.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为7.(2008海南、宁夏文科卷)函数()cos 22sin f x x x =+的最小值和最大值分别为( )8.(2009年上海卷)函数22cos sin 2y x x =+的最小值是_____________________ .3.(2009辽宁卷文)已知函数()sin()(0)f x x ωϕω=+>的图象如图所示,则ω =三.解答题1、(2008)已知函数()sin()(0,0),f x A x a x R ϕϕπ=+><<∈的最大值是1,其图像经过点1(,)32M π。
(1)求()f x 的解析式; (2)已知,(0,)2παβ∈,且312(),(),513f f αβ==求()f αβ-的值。
(完整版)高考大题-三角函数题型汇总精华(含答案解释)
【模拟演练】1、[2014·江西卷16] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值; (2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.2、[2014·北京卷16] 函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π6的部分图像如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.3、[2014·福建卷18] 已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝ ⎛⎭⎪⎫5π4的值; (2)求函数f (x )的最小正周期及单调递增区间.4、( 06湖南)如图,D 是直角△ABC 斜边BC 上一点,AB=AD,记∠CAD=α,∠ABC=β.(1)证明 sin cos 20αβ+=; (2)若求β的值.BDCαβ A图5、(07福建)在ABC △中,1tan 4A =,3tan 5B =. (Ⅰ)求角C 的大小; (Ⅱ)若ABC △最大边的边长为17,求最小边的边长.6、(07浙江)已知ABC △的周长为21+,且sin sin 2sin A B C +=.(I )求边AB 的长; (II )若ABC △的面积为1sin 6C ,求角C 的度数.7、(07山东)如图,甲船以每小时302海里的速度向正北 方向航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时, 乙船位于甲船的北偏西105︒的方向1B 处,此时两船相距20 海里.当甲船航行20分钟到达2A 处时,乙船航行到甲船的 北偏西120︒方向的2B 处,此时两船相距102海里, 问乙船每小时航行多少海里?8、(2013年全国新课标2)在ABC ∆中,c b a ,,C B A 所对的边分别为,,角,已知B cC b a sin cos +=(1)求B ;(2)若b=2, 求ABC S ∆的最大值。
(完整版)三角函数高考试题精选(含详细答案)
三角函数高考试题精选一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A. B.C.πD.2π2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f ()=0,且f(x)的最小正周期大于2π,则( )A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为( )A.4πB.2πC.πD.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是( )A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长1度,得到曲线C26.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为( )A.B.1 C.D.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.48.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A. B. C.1 D.9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=()A.﹣B.﹣C.D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z) B.x=+(k∈Z)C.x=﹣(k∈Z) D.x=+(k∈Z)12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为( )A.11 B.9 C.7 D.513.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+) B.y=2sin(2x+) C.y=2sin(2x﹣) D.y=2sin(2x﹣)15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣) B.y=2sin(2x﹣) C.y=2sin(x+)D.y=2sin(x+) 18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为( )A.4 B.5 C.6 D.7二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y 轴对称,若sinα=,则sinβ=.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是.22.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.三角函数2017高考试题精选(一)参考答案与试题解析一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为( )A. B.C.πD.2π【解答】解:∵函数y=sin2x+cos2x=2sin(2x+),∵ω=2,∴T=π,故选:C2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ= B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()=,得sin(φ+)=1.∴φ+=,k∈Z.取k=0,得φ=<π.∴,φ=.故选:A.3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.【解答】解:函数f(x)=sin(2x+)的最小正周期为:=π.故选:C.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x+)=cos(+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f(+π)=cos(+π+)=cos=0,则f(x+π)的一个零点为x=,故C 正确,D.当<x<π时,<x+<,此时函数f(x)不是单调函数,故D错误,故选:D5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长B.把C1度,得到曲线C2上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长C.把C1度,得到曲线C2上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长D.把C1度,得到曲线C2上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再【解答】解:把C1把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+),的图象,即曲线C2故选:D.6.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.【解答】解:函数f(x)=sin(x+)+cos(x﹣)=sin(x+)+cos(﹣x+)=sin(x+)+sin(x+)=sin(x+).故选:A.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.4【解答】解:∵对于任意实数x都有sin(3x﹣)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x﹣)=sin(3x+b),此时b=﹣+2π=,若a=﹣3,则方程等价为sin(3x﹣)=sin(﹣3x+b)=﹣sin(3x﹣b)=sin(3x﹣b+π),则﹣=﹣b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(﹣3,),共有2组,故选:B.8.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A. B. C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.9.(2016•新课标Ⅲ)若ta nθ=﹣,则cos2θ=()A.﹣B.﹣C.D.【解答】解:由tanθ=﹣,得cos2θ=cos2θ﹣sin2θ==.故选:D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【解答】解:∵设函数f(x)=sin2x+bsinx+c,∴f(x)图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π,当b≠0时,f(x)=﹣cos2x+bsinx++c,∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π,∴f(x)的最小正周期为2π,故f(x)的最小正周期与b有关,故选:B11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为( )A.x=﹣(k∈Z) B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)【解答】解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=kπ+(k∈Z)得:x=+(k∈Z),即平移后的图象的对称轴方程为x=+(k∈Z),故选:B.12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B13.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x﹣)=sin(2x﹣)的图象,故选:D.14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为( )A.y=2sin(2x+) B.y=2sin(2x+) C.y=2sin(2x﹣) D.y=2sin(2x﹣)【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为【解答】解:将x=代入得:t=sin=,将函数y=sin(2x﹣)图象上的点P向左平移s个单位,得到P′(+s,)点,若P′位于函数y=sin2x的图象上,则sin(+2s)=cos2s=,则2s=+2kπ,k∈Z,则s=+kπ,k∈Z,由s>0得:当k=0时,s的最小值为,故选:A.16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,故选:A17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣) B.y=2sin(2x﹣) C.y=2sin(x+)D.y=2sin(x+)【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2,=,故T=π,ω=2,故y=2sin(2x+φ),将(,2)代入可得:2sin(+φ)=2,则φ=﹣满足要求,故y=2sin(2x﹣),故选:A.18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为( )A.4 B.5 C.6 D.7【解答】解:函数f(x)=cos2x+6cos(﹣x)=1﹣2sin2x+6sinx,令t=sinx(﹣1≤t≤1),可得函数y=﹣2t2+6t+1=﹣2(t﹣)2+,由∉[﹣1,1],可得函数在[﹣1,1]递增,即有t=1即x=2kπ+,k∈Z时,函数取得最大值5.故选:B.二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y 轴对称,若sinα=,则sinβ=.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.20.(2017•上海)设a 1、a 2∈R ,且+=2,则|10π﹣α1﹣α2|的最小值为.【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1], 要使+=2,∴sinα1=﹣1,sin2α2=﹣1. 则:,k 1∈Z . ,即,k 2∈Z . 那么:α1+α2=(2k 1+k 2)π,k 1、k 2∈Z .∴|10π﹣α1﹣α2|=|10π﹣(2k 1+k 2)π|的最小值为.故答案为:.21.(2017•新课标Ⅱ)函数f (x )=sin 2x+cosx ﹣(x ∈[0,])的最大值是 1 .【解答】解:f(x )=sin 2x+cosx ﹣=1﹣cos 2x+cosx ﹣,令cosx=t 且t ∈[0,1], 则y=﹣t 2+t+=﹣(t ﹣)2+1,当t=时,f (t )max =1,即f (x)的最大值为1, 故答案为:122.(2017•新课标Ⅱ)函数f (x )=2cosx+sinx 的最大值为 .【解答】解:函数f(x )=2cosx+sinx=(cosx+sinx )=sin(x+θ),其中tanθ=2,可知函数的最大值为:.故答案为:.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为 4 .【解答】解:∵对于任意实数x都有2sin(3x﹣)=asin(bx+c),∴必有|a|=2,若a=2,则方程等价为sin(3x﹣)=sin(bx+c),则函数的周期相同,若b=3,此时C=,若b=﹣3,则C=,若a=﹣2,则方程等价为sin(3x﹣)=﹣sin(bx+c)=sin(﹣bx﹣c),若b=﹣3,则C=,若b=3,则C=,综上满足条件的有序实数组(a,b,c)为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,),共有4组,故答案为:4.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7 .【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.故答案为:7.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.【解答】解:∵y=sinx﹣cosx=2sin(x﹣),令f(x)=2sinx,则f(x﹣φ)=2in(x﹣φ)(φ>0),依题意可得2sin(x﹣φ)=2sin(x﹣),故﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ+(k∈Z),当k=0时,正数φ=,min故答案为:.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),=,当k=0时,正数φmin故答案为:.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8 .【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C均为锐角.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:(1)f(x)=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx==.由T=,得ω=1;(2)由(1)得,f(x)=.再由,得.∴f(x)的单调递增区间为[](k∈Z).。
(完整word版)三角函数高考题及答案
1.(上海,15)把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( ) A 。
(1-y )sin x +2y -3=0 B.(y -1)sin x +2y -3=0 C 。
(y +1)sin x +2y +1=0D.-(y +1)sin x +2y +1=02.(北京,3)下列四个函数中,以π为最小正周期,且在区间(2π,π)上为减函数的是( ) A.y =cos 2xB.y =2|sin x |C.y =(31)cos xD.y =-cot x3。
(全国,5)若f (x )sin x 是周期为π的奇函数,则f (x )可以是( ) A 。
sin x B 。
cos x C.sin2x D.cos2x4.(全国,6)已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π]内α的取值范围是( ) A.(2π,43π)∪(π,45π) B.(4π,2π)∪(π,45π) C.(2π,43π)∪(45π,23π)D 。
(4π,2π)∪(43π,π) 5.(全国)若sin 2x >cos 2x ,则x 的取值范围是( )A.{x |2k π-43π〈x 〈2k π+4π,k ∈Z }B 。
{x |2k π+4π<x 〈2k π+45π,k ∈Z } C.{x |k π-4π<x 〈k π+4π,k ∈Z } D.{x |k π+4π<x 〈k π+43π,k ∈Z } 6.(全国,3)函数y =4sin (3x +4π)+3cos (3x +4π)的最小正周期是( )A 。
6πB 。
2π C.32πD 。
3π7。
(全国,9)已知θ是第三象限角,若sin 4θ+cos 4θ=95,那么sin2θ等于( ) A 。
322 B.-322 C 。
32D.-32 8。
(全国,14)如果函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,那么a 等于( ) A.2B.-2C 。
高中数学三角函数历年高考题汇编(附答案)
三角函数历年高考题汇编一.选择题1、(2009)函数22cos 14y x π⎛⎫=-- ⎪⎝⎭是A .最小正周期为πの奇函数B .最小正周期为πの偶函数C .最小正周期为2πの奇函数 D .最小正周期为2πの偶函数 2、(2008)已知函数2()(1cos2)sin ,f x x x x R =+∈,则()f x 是( )A 、最小正周期为πの奇函数B 、最小正周期为2πの奇函数 C 、最小正周期为πの偶函数 D 、最小正周期为2πの偶函数3.(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+の图象不可能...是( )4.(2009山东卷文)将函数sin 2y x =の图象向左平移4π个单位, 再向上平移1个单位,所得图象の函数解析式是 A. 22cos y x = B. 22sin y x = C.)42sin(1π++=x y D. cos 2y x =5.(2009江西卷文)函数()(13tan )cos f x x x =+の最小正周期为A .2πB .32π C .π D .2π 6.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+の图像关于点4(,0)3π中心对称,那么φの最小值为A.6π B.4π C. 3π D. 2π7.(2008海南、宁夏文科卷)函数()cos 22sin f x x x =+の最小值和最大值分别为( )A. -3,1B. -2,2C. -3,32D. -2,328.(2007海南、宁夏)函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,の简图是()二.填空题1.(2009宁夏海南卷文)已知函数()2sin()f x x ωφ=+の图像如图所示,则712f π⎛⎫=⎪⎝⎭。
2.(2009年上海卷)函数22cos sin 2y x x =+の最小值是_____________________ .3.(2009辽宁卷文)已知函数()sin()(0)f x x ωϕω=+>の图象如图所示,则ω =三.解答题1、(2008)已知函数()sin()(0,0),f x A x a x R ϕϕπ=+><<∈の最大值是1,其图像经过点1(,)32M π。
高考真题——三角函数及解三角形真题(加答案)
全国卷历年高考三角函数及解三角形真题归类分析三角函数一、三角恒等变换(3题)1.(2015年1卷2)o o o o sin 20cos10cos160sin10- =( ) (A) (B(C )12- (D )12【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式.2.(2016年3卷)(5)若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .考点:1、同角三角函数间的基本关系;2、倍角公式.3.(2016年2卷9)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=(A )725(B )15(C )15-(D )725-【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .二、三角函数性质(5题)4.(2017年3卷6)设函数π()cos()3f x x =+,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误,故选D.π5.(2017年2卷14)函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 .【解析】()22311cos 3cos cos 3cos 44f x x x x x =-+-=-++ 23cos 12x ⎛⎫=--+ ⎪ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,则[]cos 0,1x ∈,当3cos 2x =时,取得最大值1. 6.(2015年1卷8)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈【解析】由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 考点:三角函数图像与性质7. (2015年2卷10)如图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x .将动点P 到A 、B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B .8.(2016年1卷12)已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5考点:三角函数的性质 三、三角函数图像变换(3题)9.(2016年2卷7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212Z k x k =-∈ (D )()ππ212Z k x k =+∈【解析】平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B . 10.(2016年3卷14)函数sin 3cos y x x =-的图像可由函数sin 3cos y x x =+的图像至少向右平移_____________个单位长度得到.考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.11.(2017年1卷9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】:熟识两种常见的三角函数变换,先变周期和先变相位不一样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历届高考三角函数习题1.(2002春北京、安徽,5)若角α满足条件sin2α<0,cos α-sin α<0,则α在( )A.第一象限B.第二象限C.第三象限D.第四象限 2. (2003上海春,15)把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( )A.(1-y )sin x +2y -3=0B.(y -1)sin x +2y -3=0C.(y +1)sin x +2y +1=0D.-(y +1)sin x +2y +1=03.(2002上海春,14)在△ABC 中,若2cos B sin A =sinC ,则△ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形 4.(2002京皖春文,9)函数y =2sin x 的单调增区间是( )A.[2k π-2π,2k π+2π](k ∈Z ) B.[2k π+2π,2k π+23π](k ∈Z ) C.[2k π-π,2k π](k ∈Z ) D.[2k π,2k π+π](k ∈Z )5.(2002全国文5,理4)在(0,2π)内,使sin x >cos x 成立的x 取值范围为( )A.(4π,2π)∪(π,45π) B.(4π,π)C.(4π,45π)D.(4π,π)∪(45π,23π) 6.(2002北京,11)已知f (x )是定义在(0,3)上的函数,f (x )的图象如图4—1所示,那么不等式f(x )cos x <0的解集是( )A.(0,1)∪(2,3)B.(1,2π)∪(2π,3)C.(0,1)∪(2π,3) D.(0,1)∪(1,3)7.(2002北京理,3)下列四个函数中,以π为最小正周期,且在区间(2π,π)上为减函数的是( )A.y =cos 2xB.y =2|sin x |C.y =(31)cos xD.y =-cot x8.(2002上海,15)函数y =x +sin|x |,x ∈[-π,π]的大致图象是( )图4—19.(2001春季北京、安徽,8)若A 、B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( )A.第一象限B.第二象限C.第三象限D.第四象限 10.(2001全国文,1)tan300°+cot405°的值是( )A.1+3B.1-3C.-1-3D.-1+311.(2000全国,4)已知sin α>sin β,那么下列命题成立的是( )A.若α、β是第一象限角,则cos α>cos βB.若α、β是第二象限角,则tan α>tan βC.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β12.(2000全国,5)函数y =-x cos x 的部分图象是( )13.(1999全国,4)函数f (x )=M sin (ωx +ϕ)(ω>0),在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos (ωx +ϕ)在[a ,b ]上( )A.是增函数B.是减函数C.可以取得最大值mD.可以取得最小值-m14.(1999全国,11)若sin α>tan α>cot α(-2π<α<2π),则α∈( ) A.(-2π,-4π) B.(-4π,0) C.(0,4π)D.(4π,2π)15.(1999全国文、理,5)若f (x )sin x 是周期为π的奇函数,则f (x )可以是( )A.sin xB.cos xC.sin2xD.cos2x 16.(1998全国,6)已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π]内α的取值范围是( )A.(2π,43π)∪(π,45π) B.(4π,2π)∪(π,45π) C.(2π,43π)∪(45π,23π) D.(4π,2π)∪(43π,π)17.(1997全国,3)函数y =tan (3121-x π)在一个周期内的图象是( )18.(1996全国)若sin 2x >cos 2x ,则x 的取值范围是( )A.{x |2k π-43π<x <2k π+4π,k ∈Z }B.{x |2k π+4π<x <2k π+45π,k ∈Z }C.{x |k π-4π<x <k π+4π,k ∈Z } D.{x |k π+4π<x <k π+43π,k ∈Z } 19.(1995全国文,7)使sin x ≤cos x 成立的x 的一个变化区间是( )A.[-43π,4π]B.[-2π,2π]C.[-4π,43π] D.[0,π]20.(1995全国,3)函数y =4sin (3x +4π)+3cos (3x +4π)的最小正周期是( )A.6πB.2πC.32πD.3π21.(1995全国,9)已知θ是第三象限角,若sin 4θ+cos 4θ=95,那么sin2θ等于( ) A.322B.-322C.32D.-3222.(1994全国文,14)如果函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,那么a 等于( )A.2B.-2C.1D.-123.(1994全国,4)设θ是第二象限角,则必有( )A.tan2θ>cot 2θ B.tan2θ<cot 2θC.sin2θ>cos 2θ D.sin2θ-cos 2θ24.(2002上海春,9)若f (x )=2sin ωx (0<ω<1)在区间[0,3π]上的最大值是2,则ω= .25.(2002北京文,13)sin52π,cos 56π,tan 57π从小到大的顺序是 . 26.(1997全国,18)︒︒-︒︒︒+︒8sin 15sin 7cos 8sin 15cos 7sin 的值为_____.27.(1996全国,18)tan20°+tan40°+3tan20°·tan40°的值是_____.28.(1995全国理,18)函数y =sin (x -6π)cos x 的最小值是 .29.(1995上海,17)函数y =sin2x +cos 2x在(-2π,2π)内的递增区间是 . 30.(1994全国,18)已知sin θ+cos θ=51,θ∈(0,π),则cot θ的值是 . 31.(2000全国理,17)已知函数y =21cos 2x +23sin x cos x +1,x ∈R . (1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图象可由y =sin x (x ∈R )的图象经过怎样的平移和伸缩变换得到?32.(2000全国文,17)已知函数y =3sin x +cos x ,x ∈R .(1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图象可由y =sin x (x ∈R )的图象经过怎样的平移和伸缩变换得到?33.(1995全国理,22)求sin 220°+cos 250°+sin20°cos50°的值.34.(1994上海,21)已知sin α=53,α∈(2π,π),tan (π-β)=21,求tan (α-2β)的值.35.(1994全国理,22)已知函数f (x )=tan x ,x ∈(0,2π),若x 1、x 2∈(0,2π),且x 1≠x 2,证明:21[f (x 1)+f (x 2)]>f (221x x +).36 . 已知函数12()log (sin cos )f x x x =-⑴求它的定义域和值域; ⑵求它的单调区间;⑶判断它的奇偶性; ⑷判断它的周期性.37. 求函数f (x )=121log cos()34x π+的单调递增区间38. 已知f (x )=5sin x cos x -35cos 2x +325(x ∈R ) ⑴求f (x )的最小正周期; ⑵求f (x )单调区间;⑶求f (x )图象的对称轴,对称中心。
39若关于x 的方程2cos 2(π + x ) - sin x + a = 0 有实根,求实数a 的取值范围。
三角函数习题答案1.答案:C解析:将原方程整理为:y =x cos 21+,因为要将原曲线向右、向下分别移动2π个单位和1个单位,因此可得y =)2cos(21π-+x -1为所求方程.整理得(y +1)sin x +2y +1=0.评述:本题考查了曲线平移的基本方法及三角函数中的诱导公式.如果对平移有深刻理解,可直接化为:(y +1)cos (x -2π)+2(y +1)-1=0,即得C 选项.2.答案:B解析:sin2α=2sin αcos α<0 ∴sin αcos α<0即sin α与cos α异号,∴α在二、四象限, 又cos α-sin α<0 ∴cos α<sin α由图4—5,满足题意的角α应在第二象限3.答案:C解析:2sin A cos B =sin (A +B )+sin (A -B )又∵2sin A cos B =sin C , ∴sin (A -B )=0,∴A =B 4.答案:A解析:函数y =2x 为增函数,因此求函数y =2sin x 的单调增区间即求函数y =sin x 的单调增区间.5.答案:C解法一:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4π和45π,由图4—6可得C 答案.图4—6 图4—7解法二:在单位圆上作出一、三象限的对角线,由正弦线、余弦线知应选C.(如图4—7) 6.答案:C图4—5解析:解不等式f (x )cos x <0⎪⎩⎪⎨⎧<<><⎪⎩⎪⎨⎧<<<>⇒300cos 0)(300cos 0)(x x x f x x x f 或∴⎩⎨⎧<<<<⎪⎩⎪⎨⎧<<<<1010231x x x x 或ππ ∴0<x <1或2π<x <3 7.答案:B解析:A 项:y =cos 2x =22cos 1x+,x =π,但在区间(2π,π)上为增函数.B 项:作其图象4—8,由图象可得T =π且在区间(2π,π)上 为减函数.C 项:函数y =cos x 在(2π,π)区间上为减函数,数y =(31)x 为减函数.因此y =(31)cos x 在(2π,π)区间上为增函数.D 项:函数y =-cot x 在区间(2π,π)上为增函数.8.答案:C解析:由奇偶性定义可知函数y =x +sin|x |,x ∈[-π,π]为非奇非偶函数. 选项A 、D 为奇函数,B 为偶函数,C 为非奇非偶函数. 9.答案:B解析:∵A 、B 是锐角三角形的两个内角,∴A +B >90°, ∴B >90°-A ,∴cos B <sin A ,sin B >cos A ,故选B. 10.答案:B解析:tan300°+cot405°=tan(360°-60°)+cot(360°+45°)=-tan60°+cot45°=1-3.11.答案:D解析:因为在第一、三象限内正弦函数与余弦函数的增减性相反,所以可排除A 、C ,在第二象限内正弦函数与正切函数的增减性也相反,所以排除B.只有在第四象限内,正弦函数与正切函数的增减性相同. 12.答案:D解析:因为函数y =-x cos x 是奇函数,它的图象关于原点对称,所以排除A 、C ,当 x ∈(0,2π)时,y =-x cos x <0.13.答案:C解法一:由已知得M >0,-2π+2k π≤ωx +ϕ≤2π+2k π(k ∈Z ),故有g (x )在[a ,b ]上不是增函数,也不是减函数,且当ωx +ϕ=2k π时g (x )可取到最大值M ,答案为C.图4—8解法二:由题意知,可令ω=1,ϕ=0,区间[a ,b ]为[-2π,2π],M =1,则g (x )为cos x ,由基本余弦函数的性质得答案为C.评述:本题主要考查函数y =A sin (ωx +ϕ)的性质,兼考分析思维能力.要求对基本函数的性质能熟练运用(正用逆用);解法二取特殊值可降低难度,简化命题. 14.答案:B解法一:取α=±3π,±6π代入求出sin α、tan α、cot α之值,易知α=-6π适合,又只有-6π∈(-4π,0),故答案为B.解法二:先由sin α>tan α得:α∈(-2π,0),再由tan α>cot α得:α∈(-4π,0)评述:本题主要考查基本的三角函数的性质及相互关系,1995年、1997年曾出现此类题型,运用特殊值法求解较好. 15.答案:B解析:取f (x )=cos x ,则f (x )·sin x =21sin2x 为奇函数,且T =π. 评述:本题主要考查三角函数的奇偶与倍角公式. 16.答案:B解法一:P (sin α-cos α,tan α)在第一象限,有tan α>0, A 、C 、D 中都存在使tan α<0的α,故答案为B.解法二:取α=3π∈(2,4ππ),验证知P 在第一象限,排除A 、C ,取α=65π∈(43π,π),则P 点不在第一象限,排除D,选B.解法三:画出单位圆如图4—10使sin α-cos α>0是图中阴影部分,又tan α>0可得24παπ<<或π<α<45π,故选B. 评述:本题主要考查三角函数基础知识的灵活运用,突出考查了转化思想和转化方法的选择,采用排除法不失为一个好办法. 17.答案:A 解析:y =tan (3121-x π)=tan 21(x -32π),显然函数周期为T =2π,且x =32π时,y =0,故选A. 评述:本题主要考查正切函数性质及图象变换,抓住周期和特值点是快速解题的关键.18.答案:D解析一:由已知可得cos2x =cos 2x -sin 2x <0,所以2k π+2π<2x <2k π+23π,k ∈Z .解得k π+4π<x <k π+43π,k ∈Z (注:此题也可用降幂公式转化为cos2x <0).解析二:由sin 2x >cos 2x 得sin 2x >1-sin 2x ,sin 2x >21.因此有sin x >22或sin x <-22.由正弦函数的图象(或单位圆)得2k π+4π<x <2k π+43π或2k π+45π<x <2k π+47π(k ∈Z ),2k π+45π<x <2k π+47π可写作(2k +1)π+4π<x <(2k +1)π+43π,2k 为偶数,2k +1为奇数,不等式的解可以写作n π+4π<x <n π+43π,n ∈Z .评述:本题考查三角函数的图象和基本性质,应注意三角公式的逆向使用. 19.答案:A解法一:由已知得:2 sin (x -4π)≤0,所以2k π+π≤x -4π≤2k π+2π,2k π+45π≤x ≤2k π+49π,令k =-1得-43π≤x ≤4π,选A. 解法二:取x =32π,有sin 2132cos ,2332-==ππ,排除C 、D ,取x =3π,有sin3π=213cos ,23=π,排除B ,故选A. 解法三:设y =sin x ,y =cos x .在同一坐标系中作出两函数图象如图4—11,观察知答案为A.解法四:画出单位圆,如图4—12,若sin x ≤cos x ,显然应是图中阴影部分,故应选A.评述:本题主要考查正弦函数、余弦函数的性质和图象,属基本求范围题,入手容易,方法较灵活,排除、数形结合皆可运用.20.答案:C解析:y =4sin (3x +4π)+3cos (3x +4π)=5[54sin (3x +4π)+53cos (3x +4π)]=5sin (3x+4π+ϕ)(其中tan ϕ=43) 所以函数y =sin (3x +4π)+3cos (3x +4π)的最小正周期是T =32π.,故应选C. 图4—12图4—11评述:本题考查了a sin α+b cos α=22b a +sin (α+ϕ),其中sin ϕ=22ba b +,cos ϕ=22ba a +,及正弦函数的周期性.21.答案:A解法一:将原式配方得(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=95于是1-21sin 22θ=95,sin 22θ=98,由已知,θ在第三象限, 故2k π+π<θ<2k π+23π从而4k π+2π<2θ<4k π+3π ,故2θ在第一、二象限,所以sin2θ=322,故应选A. 解法二:由2k π+π<θ<2k π+23π,有4k π+2π<4k π+3π(k ∈Z ),知sin2θ>0,应排除B 、D ,验证A 、C ,由sin2θ=322,得2sin 2θcos 2θ=94,并与sin 4θ+cos 4θ=95相加得(sin 2θ+cos 2θ)2=1成立,故选A.评述:本题考查了学生应用正余弦的平方关系配方的能力及正弦函数值在各象限的符号的判别.22.答案:D解析:函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,表明:当x =-8π时,函数取得最大值12+a ,或取得最小值-12+a,所以有[sin (-4π)+a ·cos (-4π)]2=a 2+1,解得a =-1.评述:本题主要考查函数y =a sin x +b cos x 的图象的对称性及其最值公式.23.答案:A解法一:因为θ为第二象限角,则2k π+2π<θ<2k π+π(k ∈Z ),即2θ为第一象限角或第三象限角,从单位圆看是靠近轴的部分如图4—13,所以tan2θ>cot 2θ. 解法二:由已知得:2k π+2π<θ<2k π+π,k π+4π<2θ<k π+2π,k 为奇数时,2n π+45π<2θ<2n π+23π(n ∈Z ); k 为偶数时,2n π+4π<2θ<2n π+2π(n ∈Z ),都有tan 2θ>cot 2θ,选A.评述:本题主要考查象限角的概念和三角函数概念,高于课本. 24.答案:43 解析:∵0<ω<1 ∴T =ωπ2>2π ∴f (x )在[0,3π]区间上为单调递增函数∴f (x )max =f (3π)即2sin23=ωπ又∵0<ω<1 ∴解得ω=4325.答案:cos56π<sin 52π<tan 57π 解析:cos56π<0,tan 57π=tan 52π ∵0<x <2π时,tan x >x >sin x >0 ∴tan52π>sin 52π>0 ∴tan 57π>sin 52π>cos 56π26.答案:2-3解析:︒︒︒︒=︒︒-︒-︒︒︒+︒-︒=︒︒-︒︒︒+︒8cos 15cos 8cos 15sin 8sin 15sin )815cos(8sin 15cos )815sin(8sin 15sin 7cos 8sin 15cos 7sin3230sin 30cos 115tan -=︒︒-=︒=.评述:本题重点考查两角差的三角公式、积化和差公式、半角公式等多个知识点. 27.答案:3解析:tan60°=︒︒-︒+︒40tan 20tan 140tan 20tan ,∴tan20°+tan40°=3-3tan20°tan40°,∴tan20°+tan40°+3tan20°tan40°=3.28.答案:-43解析:y =sin (x -6π)cos x =21[sin (2x -6π)-sin 6π]=21[sin (2x -6π)-21]当sin (2x -6π)=-1时,函数有最小值,y 最小=21(-1-21)=-43. 评述:本题考查了积化和差公式和正弦函数有界性(或值域). 29.答案:[2,23ππ-] 解析:y =sin 2x +cos 2x =2sin (42π+x ),当2k π-2π≤2x +4π≤2k π+2π(k ∈Z )时,函数递增,此时4k π-23π≤x ≤4k π+2π(k ∈Z ),只有k =0时,[-23π,2π](-2π,2π).30.答案:-43解法一:设法求出sin θ和cos θ,cot θ便可求了,为此先求出sin θ-cos θ的值. 将已知等式两边平方得1+2sin θcos θ=251 变形得1-2sin θcos θ=2-251,即(sin θ-cos θ)2=2549 又sin θ+cos θ=51,θ∈(0,π),则2π<θ<43π,如图4—14所以sin θ-cos θ=57,于是sin θ=54,cos θ=-53,cot θ=-43. 解法二:将已知等式平方变形得sin θ·cos θ=-2512,又θ∈(0,π),有cos θ<0<sin θ,且cos θ、sin θ是二次方程x 2-51x -2512=0的两个根,故有cos θ=-53,sin θ=54,得cot θ=-43.评述:本题通过考查三角函数的求值考查思维能力和运算能力,方法较灵活.图4—1431.解:(1)y =21cos 2x +23sin x cos x +1 =41(2cos 2x -1)+41+43(2sin x cos x )+1 =41cos2x +43sin2x +45=21(cos2x ·sin 6π+sin2x ·cos 6π)+45=21sin (2x +6π)+45y 取得最大值必须且只需2x +6π=2π+2k π,k ∈Z ,即x =6π+k π,k ∈Z .所以当函数y 取得最大值时,自变量x 的集合为{x |x =6π+k π,k ∈Z }.(2)将函数y =sin x 依次进行如下变换: ①把函数y =sin x 的图象向左平移6π,得到函数y =sin (x +6π)的图象;②把得到的图象上各点横坐标缩短到原来的21倍(纵坐标不变),得到函数 y =sin (2x +6π)的图象;③把得到的图象上各点纵坐标缩短到原来的21倍(横坐标不变),得到函数 y =21sin (2x +6π)的图象;④把得到的图象向上平移45个单位长度,得到函数y =21sin (2x +6π)+45的图象;综上得到函数y =21cos 2x +23sin x cos x +1的图象. 评述:本题主要考查三角函数的图象和性质,考查利用三角公式进行恒等变形的技能以及运算能力.32.解:(1)y =3sin x +cos x =2(sin x cos6π+cos x sin6π)=2sin (x +6π),x ∈Ry 取得最大值必须且只需x +6π=2π+2k π,k ∈Z ,即x =3π+2k π,k ∈Z .所以,当函数y 取得最大值时,自变量x 的集合为{x |x =3π+2k π,k ∈Z }(2)变换的步骤是:①把函数y =sin x 的图象向左平移6π,得到函数y =sin (x +6π)的图象;②令所得到的图象上各点横坐标不变,把纵坐标伸长到原来的2倍,得到函数 y =2sin (x +6π)的图象;经过这样的变换就得到函数y =3sin x +cos x 的图象.评述:本题主要考查三角函数的图象和性质,利用三角公式进行恒等变形的技能及运算能力. 33.解:原式=21(1-cos40°)+21(1+cos100°)+21(sin70°-sin30°) =1+21(cos100°-cos40°)+21sin70°-41=43-sin70°sin30°+21sin70°=43-21sin70°+21sin70°=43.评述:本题考查三角恒等式和运算能力. 34.解:由题设sin α=53,α∈(2π,π), 可知cos α=-54,tan α=-43 又因tan (π-β)=21,tan β=-21,所以tan2β=34tan 1tan 22-=-ββ tan (α-2β)=2471134432tan tan 12tan tan =++-=+-βαβα35.证明:tan x 1+tan x 2=2121212211cos cos sin cos cos sin cos sin cos sin x x x x x x x x x x +=+ 2121cos cos )sin(x x x x +=)cos()cos()sin(2212121x x x x x x -+++=因为x 1,x 2∈(0,2π),x 1≠x 2,所以2sin (x 1+x 2)>0,cos x 1cos x 2>0,且0<cos (x 1-x 2)<1,从而有0<cos (x 1+x 2)+cos (x 1-x 2)<1+cos (x 1+x 2), 由此得tan x 1+tan x 2>)cos(1)sin(22121x x x x +++,所以21(tan x 1+tan x 2)>tan 221x x +即21[f (x 1)+f (x 2)]>f (221x x +).36解(1)x 必须满足sin x -cos x >0,利用单位圆中的三角函数线及52244k x k ππππ+<<+,k ∈Z ∴ 函数定义域为)45k 2,4k 2(π+ππ+π,k ∈Z ∵sin cos )4x x x π--∴当x ∈5(2,2)44k k ππππ++时,0sin()14x π<-≤∴0sin cos x x <-121log 2y -≥∴ 函数值域为[+∞-,21) (3)∵()f x 定义域在数轴上对应的点关于原点不对称,∴()f x 不具备奇偶性(4)∵ f(x+2π)=f(x)∴ 函数f(x)最小正周期为2π注;利用单位圆中的三角函数线可知,以Ⅰ、Ⅱ象限角平分线为标准,可区分sin x -cos x 的符号;以Ⅱ、Ⅲ象限角平分线为标准,可区分sin x +cos x 的符号 37解:∵f (x )=121log cos()34x π+令431π+=x t ,∴y=t cos log 21,t 是x 的增函数,又∵0<21<1,∴当y=tcos log 21为单调递增时,cost 为单调递减 且cost>0,∴2k π≤t<2k π+2π (k ∈Z),∴2k π≤431π+x <2k π+2π (k ∈Z) ,6k π-43π≤x<6k π+43π (k ∈Z),∴f (x )=)431cos(log 21π+x 的单调递减区间是[6k π-43π,6k π+43π) (k ∈Z)38解:(1)T=π (2)增区间[k π-12π,k π+125π],减区间[k π+]1211k ,125π+ππ (3)对称中心(62k π+π,0),对称轴π+π=1252k x ,k ∈Z 39解:原方程变形为:2cos 2x - sin x + a = 0 即 2 - 2sin 2x - sin x + a = 0,∴817)41(sin 22sin sin 222-+=-+=x x x a ,∵- 1≤sin x ≤1 ,∴81741sin m in-=-=a x 时,当; 11sin m ax ==a x 时,当, ∴a 的取值范围是[1,817-]。