同济高数上册公式大全
同济高等数学公式大全
高等数学公式导数公式:基本积分表:三角函数的有理式积分:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹〔Leibniz 〕公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
同济高数上册公式大全
v1.0 可编辑可修改第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式 公式11sin lim0=→xxx公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3))()(limx F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(limx F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(limx F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;)()(lim)()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→(3))()(limx F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点: (1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限基本公式)()()(lim 0'000x f x x f x x f x =∆-∆+→∆(如果存在)7.利用定积分定义求极限基本格式⎰∑==∞→11)()(1lim dx x f n kf n n k n (如果存在)三.函数的间断点的分类函数的间断点分为两类: (1)第一类间断点设0x 是函数y = f (x )的间断点。
同济高等数学公式大全
同济高等数学公式大全 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】高等数学公式导数公式:基本积分表:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='三角函数的有理式积分:一些初等函数: 两个重要极限:三角函数公式:·诱导公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑∑∑∑∑Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂dsA dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n ndiv )cos cos cos (...,0div ,div )cos cos cos ()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为l 2的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
高等数学(同济第七版)上册-知识点总结
高等数学(同济第七版)上册-知识点总结第一章函数与极限一.函数的概念1.两个无穷小的比拟设lim f(x)=0, lim g(x) =0 且lim f® =l g(x)(1)l = 0 ,称f(x)是比g(x)高阶的无穷小,记以f (x) = 0[ g(x)],称g(x) 是比f(x)低阶的无穷小.(2)l半0 ,称f (x)与g(x)是同阶无穷小.(3)l = 1 ,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小当x 一0时I - COS L X---------- A' sin x ~ x, tan x ~ x, arcsinx ~ x, arccosx ~ x,x1-cos x ~ x A2/2 , e -1 ~ x , ln(1+x) ~ x , (1+x) -1~ a x二.求极限的方法1.两个准那么准那么1.单调有界数列极限一定存在准那么2.(夹逼定理)设g(x) < f (x) < h(x)假设lim g(x) = A, lim h(x) = A ,那么lim f (x) = A2.两个重要公式sin x .公式1 lim ---- =1x 0x公式2呵(1 x)1/x= e3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x,0时,有以下公式,可当做等价无穷小更深层次2 3 nx , X X X , n 、 e =1 x ——…——o(x ) 2! 3! n!35X X sin x = x 一 一 一 ■... (-1) 3! 5!242ncosx =1— ... (—1)n -- o(x 2n ) 2! 4! 2n!23nx x n 1 x, nln(1 x) = x... (-1) o(x )2 3 n(--1) 2 : (- - 1)...(- - (n -1)) n / n\(1 x) ' =1 ;,x - -------------- x … - ------------ -- --- - --- —x o(x )2! n!352n -1x xn 1 x2n 1\arctan x=x 一一 一 -... (-1) ---------------- o(x )3 5 2n 15.洛必达法那么定理1 设函数f (x)、F(x)满足以下条件:(1) lim f(x)=0, lim F(x)=0; X —X 0 x >X)(2) f(x)与F(x)在x o 的某一去心邻域内可导,且 F'(x)#0; (3) limf#存在(或为无穷大),那么im f0=limx 沁 F (x) x 〜F(x) x >x )F (x)这个定理说明:当lim f(X)存在时,lim f(X)也存在且等于lim 半) ;当 x 滋 F (x) x >x0 F (x)x F (x)lim 工3为无穷大时,lim fa 也是无穷大. x 沟 F (x) x AO F (x)这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值 的方法称为洛必达(LH ospital )法那么.三型未定式00定理2设函数f(x)、F(x)满足以下条件:(1) lim f(x) =0° , lim F(x)=°°; x 「Xo ' / XTo(2) f(x)与F(x)在x o 的某一去心邻域内可导,且 F‘(x)#0; (3)lim2尹存在(或为无穷大),那么lim 小凶=limf0 x 木.F (x) x 〜F (x) x 敢 F (x)注:上述关于X T X o 时未定式三型的洛必达法那么,对于X T 结时未定式二型 00 oO 同样适用.使用洛必达法那么时必须注意以下几点:(4) 洛必达法那么只能适用于“ o 〞和“三〞型的未定式,其它的未定式须o先化简变形成“ o 〞或“型才能运用该法那么;o二学习必备 精品知识点(5) 只要条件具备,可以连续应用洛必达法那么;(6) 洛必达法那么的条件是充分的,但不必要.因此,在该法那么失效时并不 能2n 1n X 2n 1--------- o(x ) (2n 1)!断定原极限不存在.6.利用导数定义求极限f (Xo x) - f(Xo)二f (x)(如果存在)根本公式lim.X-D X7.利用定积分定义求极限1 n k 1根本格式lim -E f(—)= f f (x)dx (如果存在)n-;:-:n k4 n o三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设X o是函数y = f (x)的间断点.如果f (x)在间断点X o处的左、右极限都存在,那么称X.是f (x)的第一类间断点.左右极限存在且相同但不等于该点的函数值为可去间断点.左右极限不存在为跳跃间断点.第一类间断点包括可去间断点和跳跃间断点.(2)第二类间断点第一类间断点以外的其他间断点统称为第二类间断点. 常见的第二类间断点有无穷间断点和振荡间断点.四.闭区间上连续函数的性质在闭区间[a,b]上连续的函数f (x),有以下几个根本性质.这些性质以后都要用至U O定理1.(有界定理)如果函数f (X)在闭区间[a,b]上连续,那么f (X)必在[a,b]上有定理2.(最大值和最小值定理)如果函数f (x)在闭区间[a,b]上连续,那么在这个区间上一定存在最大值M和最小值m o定理3.(介值定理)如果函数f (x)在闭区间[a,b]上连续,且其最大值和最小值分别为M和m,那么对于介于m和M之间的任何实数c,在[a,b]上至少存在一个己使得f (己)=c推论:如果函数f (x)在闭区间[a,b]上连续,且f (a)与f (b)异号,那么在(a,b) 内至少存在一个点己,使得f(E)= 0这个推论也称为零点定理第二章导数与微分1.可微和可导等价,都可以推出连续,但是连续不能推出可微和可导.(cos x)' = - sinl£三.常见求导(ID(13)(15)(tan x)r = sec' x (SEC 到=sec xtan(ar:tanxy =—!-;-1 +x 炉(6) (8) (10)(12)(14)(16)(cot^)r = -csc"(esc x)^ = —cscxcot x 「0n^),=-(arccQ5M)' = _ J .虫-工,wCarccotx)r = -—1 +x +? 设〞火力,吁〞3都可导,珈(1)3±¥)'=靓'土//<2〕 gy=a 是常麴…1.复合函数运算法那么2,由参数方程确定函数的运算法那么设x =4 (t ) ,y =c P (t)确定函数 y = y ( x),其中 4'(t),中'(t)存在,且巾'(t) w 0,那么包=f&2 dx '(t)3,反函数求导法那么设丫 = f (x)的反函数x = g(y),两者皆可导,且f ' (x) w 04,隐函数运算法那么设y = y(x)是由方程F(x, y) = 0所确定,求y'的方法如下:把F(x, y) = 0两边的各项对x 求导,把y 看作中间变量,用复合函数求导公式计 算,然后再解出y'的表达式(允许出现y 变量) 5,对数求导法那么 (指数类型 如y =x sinx )先两边取对数,然后再用隐函数求导方法得出导数 y'.对数求导法主要用于:①幕指函数求导数②多个函数连乘除或开方求导数(注意 定义域.关于幕指函数y = [ f (x)] g (x)常用的一种方法,y = e g(x)lnf(x)这样 就可以直接用复合函数运算法那么进行. 6,求n 阶导数(n>2 ,正整数)先求出y' , y'',……,总结出规律性,然后写出y(n),最后用归纳法证实. 有一些常用的初等函数的n 阶导数公式x (n) x(1) y 二e , y eX (n) Xn(2) y = a , y = a (In a)(3) y = sin x , y (n): sin(x n-) (4) y = cosx, y (n): cos(x n^-) (5) y =ln x , y (n) = (—1)n "(n-1)底H网力函数果松的R 阶导数有莱布尼些公式其中 V 一 工1a /") = "),k! E — * E㈣&)■虫)检出网句用M Y )都是打防“号.那么 g'(y)=1 f'(g(y))(f'(x)=0)第三章微分中值定理与导数应用一.罗尔定理设函数f (x)满足(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3) f (a) = f (b) 那么存在E€ (a,b),使得f '(己)=0拉格朗日中值定理设函数f(x)满足(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;f(b)-f(a)= f-(t)那么存在七€ (a,b),使得b -a推论1.假设f (x)在(a,b)内可导,且f ' (x)三0,那么f(x)在(a,b)内为常数.推论2.假设f(x) ,g(x)在(a,b)内皆可导,且f ' (x)三g' (x),那么在(a,b)内f (x)=g(x)+ c,其中c为一个常数.三.柯西中值定理设函数f(x)和g(x)满足:(1)在闭区间[a,b]上皆连续;(2)在开区间(a,b)内皆可导;且g' (x) #0那么存在士"皿吏得—(a :: ::: b)(注:柯西中值定理为拉格朗日中值定理的推广,特殊情形g(x) = x时,柯西中值定理就是拉格朗日中值定理.)四.泰勒公式(① 估值② 求极限(麦克劳林))定理1.(皮亚诺余项的n阶泰勒公式)设f (x)在0 x处有n阶导数,那么有公式;V|'J?J.X)= O[(A-X O fl1」,称为皮亚诺余项定理2 (拉格朗日余项的n阶泰勒公式)设f(x)在包含0 x的区间(a,b)内有n +1阶导数,在[a,b]上有n阶连续导数,那么对xe [ a,b],有公式1- 就,其中凡(*)=@?(#—丽)2伊+〞,称为拉格朗日余项上面展开式称为以0(x)为中央的n阶泰勒公式.当x0=0时,也称为n阶麦克劳林g 21anfix - y —— 一工十公式常用公式〔前8个〕曲1]9, 三)・二?神 ™ [+了 +■ ■ ■,+--iX* + -W(—9" +9)3!(-1 j+ --2 -- JfL +…、M 三(一2,十如)«5pV ^y金 O)! 2t 4r (如|!即〕4吟1工443 ——+ ^—+- -,J[E (-1,11 2 3 Fi +1-- 二工工〞= 1 + 工,+/- +F +…+ …,工 W1-K 期1 «--- =( 1) x fl = 1 X+Jt' -^/T 3 + *4- + (-1) x" 11-'- -X 门、口 1 " fl (tf -1)- (ff - 1)0 (1 +工)- 14 工—:--- 、 ----- - - l + ffX +里空D/+,,,十如〔一—.…〔口—元+,产十 M-l g(T / anctan.T =,-———A 士2U 41? 伽)!nFarcmin x =g secx = V⑵)!(一1『E/⑵|!1工3//+…+( I)上旭1 j\主Ef-ijl 35力HI' 1Jfc+I I=x + —6401121132★必 4〞 〔龙!F4—八匹/ 3152833 1J592561720d +…m七〔一』.五〕」闺十…/E 〔-1山21M4J36081075 "929369 115 T公851招75,…工 w (- 1,1)RCDtK = Z'i-O㈤!@)!B 国2“ 1 1 ,H = -+-,r 6 3fi0 31 15120l£UM77_x n60im ^,121 PIO 6^38371SW0・十i2——— - X 5 ---- r# E (0,需) X+l国]X = \ '- -H (2JI +0!31 5! F由工八,二--1十三+二十土 + .,叶 口〔2犀〕! 2! ■!! 6! -7 --------- 丁十・一]芯匕1一g,十8〕〔2对十1〕!iif—:--h …,A £,一事+^1J山 .:=v3—d> n=]X I 3 2 5-- =X- -X 十一J -9151T 了 62 1:T82 315 招 35155925 w 依=hi 以-刘〔T 〕向昨-in——=In 2H1卜…・|8arsh - y⑶)!1 m ? 5 3 7 35 中 =1 j + ^-= x - x + —K6401121152五.导数的应用一.根本知识设函数f (x)在X o处可导,且X.为f (x)的一个极值点,那么f'(X o) = 0.我们称X满足f'(X o)=0的X.称为f(X)的驻点,可导函数的极值点一定是驻点, 反之不然.极值点只能是驻点或不可导点,所以只要从这两种点中进一步去判断. 极值点判断方法1,第一充分条件f(X)在X.的邻域内可导,且f〈X o) = O,那么①假设当X<X o时, f '(X) > 0 ,当X A X.时,f '(X) < o ,那么X o为极大值点;②假设当X < X o时, f(X) < o ,当X > X o时,f '(X) > o ,那么X o为极小值点;③假设在X o的两侧f '(X)不变号,那么X o不是极值点.2.第二充分条件f (X)在X o 处二阶可导,且f '(Xo) = o, f 〞(X o)丰o,那么①假设f "(X o)< o ,那么X o为极大值点;②假设f 〞(X o) A o ,那么X o为极小值点.3.泰勒公式判别法(用的比拟少,可以自行百度) 二,凹凸性与拐点1.凹凸的定义设f (X)在区间I上连续,假设对任意不同的两点1 2 X , X,包有f ;% 3M巧〕+ 小/〔. '夏卜![/〔^〕+ /& 〕]]那么称f (X)在I上是凸(凹)的.在几何上,曲线y = f (X)上任意两点的割线在曲线下(上)面,那么y = f (X)是凸(凹)的.如果曲线y = f (x)有切线的话,每一点的切线都在曲线之上(下) 那么丫= f (x) 是凸(凹)的.2.拐点的定义曲线上凹与凸的分界点,称为曲线的拐点.3.凹凸性的判别和拐点的求法设函数f (x)在(a,b)内具有二阶导数f''(x),如果在(a,b)内的每一点x,包有f''(x) > o,那么曲线y= f (x)在(a,b)内是凹的;学习必备精品知识点如果在〔a,b〕内的每一点x,包有f''〔x〕< 0,那么曲线y = f 〔x〕在〔a,b〕内是凸的求曲线y = f 〔x〕的拐点的方法步骤是:第一步:求出二阶导数f''〔x〕;第二步:求出使二阶导数等于零或二阶导数不存在的点x i,x2,...x k;第三步:对于以上的连续点,检验各点两边二阶导数的符号,如果符号不同,该点就是拐点的横坐标;第四步:求出拐点的纵坐标..渐近线的求法1.垂直渐近线假设lim /〔工〕=X 或lim = 0 工—^一那么# =.为曲线V = 的一条垂直渐近域2.水平淅近线假设lim = i,或= b那么p = 5是曲线J = /〔工〕的一条水平渐近线03.斜渐近线假设lim = zi 0 +,./〔V〕Imi = b或liin - = 口壬0 +J-3工那么尸二6+3是曲线了 =/〔幻的一条斜渐近域.四.曲率学习必备精品知识点设曲线了二.它在点加民了〕处的曲率,假设k#0.那么称R =,为点处的曲率半径.在M点的法线上,凹向这一边取一点Q.使性由卜夫.那么称Q为曲率中央,以0为留心, J?为半筐的圜周称为曲率时第四章不定积分.根本积分表:[tgxdx = -ln cosx +C fctgxdx = lnsinx +C [secxdx = ln secx +tgx +Cdx. 2-cos xdx「一2sinx2=sec xdx = tgx C2= csc xdx = -ctgx Cfcscxdx = In cscx -ctgx + C secx tgxdx = secx Cdx .~ 2 a x dx .-2 2 x -a dx .~ 2 a -x dx 二一arctg- Ca ax -a2aLncscx ctgxdx = -cscx Cxaxdx =-^— C ln ashxdx = chx Ca2-x22a a -x.x _=arcsin- C achxdx = shx Cdx= ln( x + Jx2±a2)+C,x2-a2I nn2=sin n xdxcos0 n2—ln(x . x2a2) C2! O x22■ x2 -a2 -- ln x +*p x2-a2+C2 222 2 . x 2 2 . a . xa - x dx = . a - x ——arcsin - C2 2 a学习必备 精品知识点.换元积分法和分部积分法换元积分法分部积分法udv 二uv - vdu使用分部积分法时被积函数中谁看作 u(x)谁看作v'(x)有一定规律. 记住口诀,反对幕指三为 u(x),靠前就为u(x),例如[arcsin x 为u(x),由于反三角函数排在指数函数之前,同理可以推出其他.三.有理函数积分P(x)有理函数:f(x)=,其中P(x)和Q(x)是多项式.Q(x)简单有理函数:1、“拆〞;2、变量代换(三角代换、倒代换、根式代换等)(1)第一类换元法(凑微分): :f 「(x)] (x)dx = L f (u)du,u= (x)(2)第二类换元法(变量代换):f(x)dx= L f[ (t)] (t)dt]te x arcsin xdx ,应该是f(x)=f(x) =P(x)1 x, P(x)P(x) f(x)=rv f (x)=(x a)(x b) P(x) (x a)2b第五章定积分一.概念与性质f (x)dx = lim ' f ( i ) xa' '°i=if k/卜〕+^AWkv=?『/i 〔x 人十七r八卜依JsJ - - *£7(4)= p/(x)rfx+( c 也可以在 J 口 Ji Jc 之外)(5)<b f /{x" g("(□ E ?K 3),那么(6) Ken < b, m < /(x) <3/(6? < x < b),那么m(b — a)< J y(x)rfr < M(b — a ) (7)设那么£/(工日丫小1、 定义:2、 性质:〔10条〕〔8〕定积分中值定理设〃鬲在除引上连续,那么存在〔9〕奇偶函数的积分性质[f 〔x\ix = 0 〔 /奇函数〕J 一扰'[/dx = 2 f f 〔x 〕dx 〔/偶函数〕J —nJ0 ~'〔10〕周期函数的枳分性质设/〔*〕以T 为周期,〞为常数,那么 广=C/〔x*x3 .根本定理x变上限积分:设G (x) = 1 f (t)dt ,那么①'(x) = f (x)推广: af(t)dt = f 「(x)] : (x) - f [: (x)]: (x) bNH L 公式:假设F(x)为f (x)的一个原函数,那么[f (x)dx = F (b) - F (a) a4 .定积分的换元积分法和分部积分法学习必备 精品知识点定义: 分平均值我们称f 为f 〔x 〕在卜间上的枳d :(x) -f dx - (x)1.定积分的换元积分法设/Q)在[aM上连续,假设变呆替换A■=满足(1)犷⑺在[«用(或上连续:22) =门,/(/?) = 且当仪<7<尸时,a <^{t]<b r那么£/(xVx = £/[^(z)]^VW;2.定积分的分部积分法设/(1).,(l)在a司上连续,那么工小卜心协="(x)v(“;一工"(内}(K 监或C"WMx) = "(x KG);—£ V(K H"(X)二.定积分的特殊性质1.对称区向上的函数的定枳分性质iSf (x)在卜a. a]上连续,那么「/(X)dx=J [y (x) +f (-x)]dx2.三的函数定积分性质:件n⑴设.式)在[0,1]上连续,那么f(WnQ /(cosx) dx工⑵设fix)在[0J上连续, 那么]:〃城11、)dx-2£v(sinx) dx⑶设账应[0,1]上连续.j/(sinx) dx=|J o /(sinx) dxr= nj^/(sinx) dx(4)点火公式3.周期函数定积分的性质⑴「7(.dx=j^/(x) dx(l)J&T/(x) dx=nj(/(x) dx第六章 定积分的应用平面图形的面积b)曲边梯形y = f (x), x = a, x = b, x 轴,绕y 轴旋转而成的旋转体积,旋转体体积:a)曲边梯形y=f (x), x = a, x = b, x 轴,绕x 轴旋转而成的旋转体的体积:b - 2V x = a f 2(x)dxbab体的体积:V y = 2二xf (x)dxa三.弧长1.直角坐标:s=[b,1 + f (x) ] 2dxa 、p 2.参数方程:S= 1C£1(t) 1 2।(t) 1 2dt〔柱壳法〕极坐标:s = ._ \」:〔.〕12[:〔.〕12d.学习必备 精品知识点第七章微分方程一.概念1 .微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程.阶:微分方程中所出现的未知函数的最高阶导数的阶数 .2 .解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常 数的个数与微分方程的阶数相同.特解:确定了通解中的任意常数后得到的解.(1) .变量可别离的方程g(y)dy= f(x)dx,两边积分』g(y)dy= f f (x)dx(2) .齐次型方程.吗),设U =[那么奢U +嘤;(3) . 一阶线性微分方程%时 (x)- P(x)dx P(x)dxy = e Q(x)e(4) .可降阶的高阶微分方程1、y (n) = f (x),两边积分n 次;2、y"= f (x, y)(不显含有 y),令 y'= p,那么 y"= p';「 dp3、y"= f (y,y)(不显含有 x),令 y' = p,贝u y — P而(一)线性微分方程解的结构1、y i ,y 2是齐次线性方程的解,那么C i y 〔 + C 2y 2也是;2、y 1,V2是齐次线性方程的线性无关的特解,那么 a 乂 + C 2 y 2是方程的 通解;*3、y = C 1y + C 2 y 2 + y 为非齐次万程的通解,其中 y 1, y 2为对应齐学习必备 精品知识点dx 成一= x dy/x 、 *㈠,设・yxdx一,那么丁 = v *y dydvy . dy用常数变易法或用公式:dx C J* ^次方程的线性无关的解,y非齐次方程的特解.(二)常系数齐次线性微分方程二阶常系数齐次线性方程:y py qy = 02特征方程:特征根:1口(三)常系数非齐次线性微分方程y py qy 二f (x)1、f(x)=e"P m(x)0,正是特征根|设特解y* = x k e"Q m(x),其中k =也提一个单根2, 遑重根2、f (x) = e"(P (x)cos w x + P n(x)sin® x)设特解y* \ x k e x iM)(x)co s x R:)(x)sin x10,儿+ ^i不是特征根其中m = max{l, n} , k =U,九十" i是特征根。
同济高等数学公式大全
270°+α -cosα sinα -ctgα -tgα
360°-α -sinα cosα -tgα -ctgα
360°+α sinα cosα tgα ctgα
sin( ) sin cos cos sin
cos( ) cos cos sin sin
tg (
)
tg 1 tg
2
2
高阶导数公式——莱布尼兹(Leibniz)公式:
n
(uv)(n)
C
k n
u
(nk
)
v
(
k
)
k 0
u (n)v nu (n1)v n(n 1) u (n2)v n(n 1)(n k 1) u v (nk ) (k ) uv(n)
2!
k!
中值定理与导数应用:
拉格朗日中值定理:f (b) f (a) f ( )(b a) 柯西中值定理:f (b) f (a) f ( )
s0 s ds(1 ຫໍສະໝຸດ y2 )3直线: K 0;
半径为 a的圆: K 1 . a
定积分的近似计算:
b
矩形法:
a
f
(x)
b
n
a
(
y0
y1
yn1 )
b
梯形法:
a
f
(x)
b
n
a
[1 2
(
y0
yn
)
y1
yn1 ]
b
抛物线法:
a
f
(x)
ba 3n
[(
y0
yn
)
2(
y2
y4
yn2
)
4(
y1
y3
同济高等数学公式大全修订稿
同济高等数学公式大全 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-高等数学公式导数公式:基本积分表:三角函数的有理式积分:一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='·诱导公式:·和差角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·半角公式: ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式:空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:多元函数的极值及其求法: 重积分及其应用: 柱面坐标和球面坐标: 曲线积分: 曲面积分: 高斯公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑∑∑∑∑Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂dsA dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n ndiv )cos cos cos (...,0div ,div )cos cos cos ()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系: 常数项级数: 级数审敛法:绝对收敛与条件收敛: 幂级数:函数展开成幂级数:一些函数展开成幂级数: 欧拉公式: 三角级数: 傅立叶级数:周期为l 2的周期函数的傅立叶级数: 微分方程的相关概念: 一阶线性微分方程: 全微分方程: 二阶微分方程:二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
高数_高等数学公式_同济大学 公式
高等数学公式导数公式:基本积分 表:三角函 数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x xxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
同济高等数学公式大全
导数公式:(tgxY = sec 2 x (ctgx\ = -cscr x (secx)/ = secx・tgx (cscx)' = -cscx-ctgx (a x y = a x \na (log “)‘ = -^一 xina(arcsinx)' = ‘ 「,VI-x 2(arccosL¥)'=——.Vl-x 2(^W=T __基本积分表^ 三角函数的有理式积分:j tgxdx = - ln|cosx| + C J ctgxdx = In |s in x| + C jsec xdx = ln|sec x + tg^ + C J c scxdx = ln|cscx- ctgx\ + C \^-^- = -arctg-+C j 。
+JT a a JJ f -a『仝亠4+cJcr -x* 2a a-x f . JA =arcsin^ + C J 7777 G f —— = [sec 2xdx = tgx + C Jcos* x 」f = fcsc 2 xdx = -ctgx+ C J sin ~ x 」 J secx • tgxdx = secx + CJcscx ・c7gM: = -cscx + C [a x dx=— + C J In a ^shxdx = chx + C J chxdx = shx + C jj :" 2 = b(x +±(r ) + CZ/?-2n_2j y/x 2 +a 2dx = — ylx 2 +a 2 + 牛ln(x + y/x 2 +a 2) + C2 2f ^jx 2 -a 2dx = - Jx 2 -a 2 -— J 2 2 j >la 2 -x 2clx = ?-Ju 2 -x 2+ 牛arcsin — + C高等数学公式x-a x + a In *2 "2 I n = J sin" xdx =J cos" xdx =111 X + J + C2・ 2u1一"2sin x = ----- , cosx 二 ----- ?1 + w 21 + w 2双曲正^.thx = — =e ~e chx e x +e r arshx = ln(x + Jx' +1)archx = ±ln(x + y/x 2 一 1) arthx = —In2三角函数公式: •诱导公式:、^数 角卜、sin costgctg ・a・ sina cosa-tga-ctga90°-a cosa sina ctga tga 90°+a cosa ・ sina -ctga -tga 180°-a sina ・ cosa -tga -ctga 180°+a ・ sina ・ cosa tga ctga 270°-a -cosa ・ sina ctga tga 270°+a -cosa sina -ctga-tga 360°-a -sina cosa・tga -ctga 360°+a sina cosa tgactga•倍角公式:dx =2du 1 +w 2一些初等函数: 双曲正弦:曲¥ =X . -x双曲余弦乂加=__—2两个重要极限:v sinx ‘lini ------ = 1lim (1 + 丄)x =e = 2.718281828459045... x X•和差角公式:sin(a±0) = sinacos0 土 cosasin 0 cos((z±/7) = cosacos/7 + sin<zsin 0 fg(a±0) =tga 土 tg 。
同济高等数学公式大全
高等数学公式导数公式:基本积分表:三角函数的有理式积分:一些初等函数: 两个重要极限: 三角函数公式: ·诱导公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='·和差角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式: ·半角公式: ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式:空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:多元函数的极值及其求法: 重积分及其应用:柱面坐标和球面坐标: 曲线积分: 曲面积分: 高斯公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑∑∑∑∑Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂dsA dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n ndiv )cos cos cos (...,0div ,div )cos cos cos ()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系: 常数项级数: 级数审敛法:绝对收敛与条件收敛: 幂级数:函数展开成幂级数: 一些函数展开成幂级数: 欧拉公式: 三角级数: 傅立叶级数:周期为l 2的周期函数的傅立叶级数: 微分方程的相关概念: 一阶线性微分方程: 全微分方程: 二阶微分方程:求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
新版高等数学(同济第七版)上册-知识点总结-新版-精选.pdf
高等数学(同济第七版)上册-知识点总结第一章函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim x g x f 且lx g x f )()(lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以 f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以 f (x) ~ g(x) 2.常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1-cos x ~ 2/2^x ,xe -1 ~ x ,)1ln(x ~ x ,1)1(x ~ x二.求极限的方法1.两个准则准则 1.单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤h (x )若A x h A x g )(lim ,)(lim ,则Ax f )(lim 2.两个重要公式公式11sin limx x x公式2ex xx /10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x0时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332n n nnnxxo n xx x xxx o n x x x x e)(!2)1(...!4!21cos 2242nnnx o n xxxx )()1(...32)1ln(132nnn x o n xxxxx )(!))1()...(1(...!2)1(1)1(2nnx o xn n xx x )(12)1( (5)3arctan 1212153n n n xo n xxxxx 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0x f x x,0)(lim 0x F x x;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(x F ;(3))()(limx F x f xx 存在(或为无穷大),则这个定理说明:当)()(limx F x f xx 存在时,)()(limx F x f xx 也存在且等于)()(limx F x f xx ;当)()(limx F x f x x为无穷大时,)()(limx F x f xx 也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L ospital )法则.型未定式定理2 设函数)(x f 、)(x F 满足下列条件:(1))(lim 0x f xx ,)(lim 0x F xx ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(x F ;(3))()(limx F x f xx 存在(或为无穷大),则注:上述关于0x x时未定式型的洛必达法则,对于x 时未定式型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“”型的未定式,其它的未定式须先化简变形成“00”或“”型才能运用该法则;)()(lim)()(limx F x f x F x f x xx x)()(lim)()(lim 0x F x f x F x f x xxx(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限基本公式)()()(lim0'00x f xx f x x f x (如果存在)7.利用定积分定义求极限基本格式11)()(1limdx x f n kf nnk n(如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x)的间断点。
(完整版)同济高等数学公式大全
高等数学公式导数公式:基本积分表:三角函数的有理式积分:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dxCshx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππax x aa a ctgx x x tgx x x x ctgx xtgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , 一些初等函数: 两个重要极限:三角函数公式:·诱导公式:函数角A sincos tg ctg -α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-ctgα180°+α-sinα-cosαtgαctgα270°-α-cosα-sinαctgαtgα270°+α-cosαsinα-ctgα-tgα360°-α-sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.211(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg ·正弦定理:·余弦定理:R CcB b A a 2sin sin sin ===C ab b a c cos 2222-+=·反三角函数性质:arcctgxarctgx x x -=-=2arccos 2arcsin ππ 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ 中值定理与导数应用:拉格朗日中值定理。
同济大学高等数学公式大全共15页文档
高等数学公式导数公式: 基本积分表:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限: 三角函数公式: ·诱导公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ·倍角公式: ·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
《高等数学》公式大全列表【同济五、六版】
《高等数学》公式列表【同济五、六版】导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
同济大学 高等数学公式大全
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgxarctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
同济高数上册公式大全
第一章 函数与极限一. 函数的概念1.两个无穷小的比拟设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim〔1〕l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
〔2〕l ≠ 0,称f (x)与g(x)是同阶无穷小。
〔3〕l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二.求极限的方法1.两个准那么准那么 1. 单调有界数列极限一定存在 准那么 2.〔夹逼定理〕设g (x ) ≤ f (x ) ≤ h (x )假设A x h A x g ==)(lim ,)(lim ,那么A x f =)(lim2.两个重要公式 公式11sin lim0=→xxx公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法那么定理1 设函数)(x f 、)(x F 满足以下条件:〔1〕0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;〔2〕)(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;〔3〕)()(lim 0x F x f x x ''→存在〔或为无穷大〕,那么 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达〔H L 'ospital 〕法那么.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足以下条件:〔1〕∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;〔2〕)(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;)()(lim)()(lim 00x F x f x F x f x x x x ''=→→)(lim )(lim x f x f '=〔3〕)()(limx F x f x x ''→存在〔或为无穷大〕,那么 注:上述关于0x x →时未定式∞∞型的洛必达法那么,对于∞→x 时未定式∞∞型同样适用.使用洛必达法那么时必须注意以下几点:〔1〕洛必达法那么只能适用于“00〞和“∞∞〞型的未定式,其它的未定式须先化简变形成“00〞或“∞∞〞型才能运用该法那么; 〔2〕只要条件具备,可以连续应用洛必达法那么;〔3〕洛必达法那么的条件是充分的,但不必要.因此,在该法那么失效时并不能断定原极限不存在. 6.利用导数定义求极限根本公式)()()(lim0'000x f xx f x x f x =∆-∆+→∆(如果存在〕7.利用定积分定义求极限根本格式⎰∑==∞→101)()(1lim dx x f n kf n n k n 〔如果存在〕三.函数的连续点的分类函数的连续点分为两类: (1)第一类连续点设0x 是函数y = f (x )的连续点。
同济高等数学公式大全
高等数学公式导数公式:基本积分表:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππx x arshx e e e e chx shx thx e e chx ee shx x xxx xx xx ++=+-==+=-=----1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:·倍角公式:·半角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章函数与极限一. 函数的概念1. 两个无穷小的比较设 lim f(x) 0, limg(x) 0 且血丄凶 l g(x)(1) l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[ g(x)],称g(x) 是比f(x)低阶的无穷小。
(2) l 工0,称f (x)与g(x)是同阶无穷小。
(3) l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2. 常见的等价无穷小 当x - 0时a1 - cos.L X — sin x ~ x ,tan x~ x , arcsinx ~ x , arccosx ~ x ,x1- cos x ~ x A 2/2 , e -1 ~ x , ln(1 x) ~ x , (1 x) 1~ x求极限的方法1 •两个准则准则1.单调有界数列极限一定存在准则2.(夹逼定理)设g(x) < f (x) < h(x) 若 lim g(x) A,lim h(x) A ,则 lim f(x) A 2 •两个重要公式 sin x 彳 公式1 lim 1 x 0x 公式 2lim (1 x)1/x ex 03 •用无穷小重要性质和等价无穷小代换 4•用泰勒公式当x 0时,有以下公式,可当做等价无穷小更深层次sin xcosx2x3x2! 3!35x x 3!5!24x x2!4!n! OX 〉2n 11)nA/ 2n 1、o(x )2nnx2nx x同样适用.使用洛必达法则时必须注意以下几点:(1) 洛必达法则只能适用于“ 0”和“一”型的未定式,其它的未定式须先化简变形成“”或“一”型才能运用该法则;(2) 只要条件具备,可以连续应用洛必达法则;(3) 洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不 能断In(1 x)3f...(1)n n 1 x/ no(x )n(1 x)(1) 2!x 2 (1)-((n 1))x nn!o(x n )arcta n x2n 1n 1X 2n 11)o(x )2n 15 •洛必达法则 定理1(1) f(x)、F(x)满足下列条件: lim F(x) 0 ;x x o(2) (3) 设函数 lim f (x) 0 , x xf(x)与F(x)在X 。
的某一去心邻域内可导,且 上存在(或为无穷大),则im 丄© -■ ■ x x0 F(x)3存在时,佃出x x0 F(x) limx xoF (x)F (x) 0 ;..f (x) lim x x0 F (x) 这个定理说明:当 匕为无穷大时, limx冷 F (x)lim 卫勺也是无穷大. x X o F(x)也存在且等于lim x x 0F (x)f (x).当lim x xo F (x)这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值 的方法称为洛必达(L H ospital )法则.一型未定式 X o定理2设函数f(x)、lim f(x)x X 0f(x)与F(x)在X 。
的某一去心邻域内可导,且 F(x) 0 ;..f (x) limxxF (x) (1) (2) F(x)满足下列条件:,lim F(x) ;x x o存在(或为无穷大),则叫鵲注:上述关于x x 0时未定式一型的洛必达法则,对于x(3) ..f (x) lim x xo F (x)时未定式一型定原极限不存在.6. 利用导数定义求极限基本公式lim f(X0—X) f(X0) f'(X0)(如果存在)0xX7. 利用定积分定义求极限三. 函数的间断点的分类函数的间断点分为两类: (1)第一类间断点设X o 是函数y = f (x)的间断点。
如果f (x)在间断点X o 处的左、右极限都存在, 则称x o 是f (x)的第一类间断点。
左右极限存在且相同但不等于该点的函数值为 可去间断点。
左右极限不存在为跳跃间断点。
第一类间断点包括可去间断点和跳 跃间断点。
(2)第二类间断点第一类间断点以外的其他间断点统称为第二类间断点。
常见的第二类间断点有无 穷间断点和振荡间断点。
四. 闭区间上连续函数的性质在闭区间[a,b ]上连续的函数f (x),有以下几个基本性质。
这些性质以后都 要用至V 。
定理1.(有界定理)如果函数f (x)在闭区间[a,b ]上连续,则f (x)必在[a,b ]上有 界。
定理2.(最大值和最小值定理)如果函数f (x)在闭区间[a,b ]上连续,则在这个 区间上一定存在最大值M 和最小值m 。
定理3.(介值定理)如果函数f (x)在闭区间[a,b ]上连续,且其最大值和最小值 分别为M 和m ,则对于介于m 和M 之间的任何实数c,在[a,b ]上至少存在一个E 使得f ( E ) = c推论:如果函数f (x)在闭区间[a,b ]上连续,且f (a)与f (b)异号,则在(a,b) 内至少存在一个点E ,使得f (E ) = 0这个推论也称为零点定理1 n k基本格式lim -f(—) nn k i n1f(x)dx (如果存在)第二章导数与微分一.基本概念1 •可微和可导等价,都可以推出连续,但是连续不能推出可微和可导.求导公式⑴⑵(才丫二弊旧卫⑶ (sin 功'=ws x 』⑷ (cos 剪‘ =「sin⑸ (tan x)r = sec* x⑹(cot x)r = - CSC X ⑺ (sec^' = sec xtan(8)(esc= —cscxcot⑼(10)•WOog fl ^),=-Onxy = -⑴)xln a(12)fitrcstfi —―.-(arcccs x)1 - --y=L=(13)(14)(ar:tan x)r = ―!-n-(arccotx)r = ------ 1(15)1 +x 中(16)1 +x* +、设—町“心>都可导,则4⑴5土*"±*口<2) ©rW 是當数心三.常见求导1. 复合函数运算法则2. 由参数方程确定函数的运算法则设x = (t) , - (t)确定函数y = y(x),其中'(t), '(t)存在,且'(t)工0,则3 ―包dx '(t) 3. 反函数求导法则设y = f (x)的反函数x = g(y),两者皆可导,且f ' (x)工04. 隐函数运算法则设y = y(x)是由方程F(x, y) = 0所确定,求y '的方法如下:把F(x, y) = 0两边的各项对x求导,把y看作中间变量,用复合函数求导公式计算,然后再解出y的表达式(允许出现y变量)5. 对数求导法则(指数类型如y x sinx) 先两边取对数,然后再用隐函数求导方法得出导数 y '。
对数求导法主要用于:①幕指函数求导数②多个函数连乘除或开方求导数(注意定义域。
关于幕指函数y = [ f (x)] g (x)常用的一种方法,y = e g(x)lnf(x)这样就可以直接用复合函数运算法则进行。
6. 求n阶导数(n》2,正整数)先求出y' , y,……,总结出规律性,然后写出y(n),最后用归纳法证明。
有一些常用的初等函数的n阶导数公式(1) y x (n)e , y xe(2) y x (n)a , y x a (ln a)n(3) ysinx ,y(n)sin(x J(4) y cosx, y(n)cos(x⑸y In x, y(n)( n 11) (nn1)! x肆牡)皿)则g'(y)f'(g(y))(f'(x) 0) H屮第三章微分中值定理与导数应用一.罗尔定理设函数f (x)满足(1)在闭区间[a,b ]上连续;(2)在开区间(a,b)内可导;(3) f (a) = f (b) 则存在E € (a,b),使得f ' ( E ) = 0拉格朗日中值定理设函数f (x)满足(1)在闭区间[a,b ]上连续;(2)在开区间(a,b)内可导;则存在E € (a,b),使得丄辺血 f'()b a推论1 •若f (x)在(a,b)内可导,且f ' (x) = 0,则f (x)在(a,b)内为常数。
推论2.若f(x) , g(x)在(a,b)内皆可导,且f ' (x) = g' (x),则在(a,b)内f (x) =g(x)+ c ,其中c 为一个常数。
三.柯西中值定理设函数f (x)和g(x)满足:(1)在闭区间[a,b ]上皆连续;(2)在开区间(a,b)内皆可 导;且g'(x)’0则存在E €(a,b)使得册詈(注:柯西中值定理为拉格朗日中值定理的推广,特殊情形 g( x) = x 时,柯西中值定理就是拉格朗日中值定理。
)四.泰勒公式(① 估值 ② 求极限(麦克劳林))定理1.(皮亚诺余项的n 阶泰勒公式)设f (x)在0 x 处有n 阶导数,则有公式,称为皮亚诺余项定理2 (拉格朗日余项的n 阶泰勒公式)设f (x)在包含0 x 的区间(a,b)内有n+1阶导数,在[a,b ]上有n 阶连续导数,则对x/(j)»/li D-r J--xj 1+A 丄一二2|—珀°&闵€ [ a,b ],有公式,b)其'I 1称为拉格朗日余项上面展开式称为以0(x)为中心的n阶泰勒公式。
当x°=0时,也称为n阶麦克劳林+…十— +:' +養)「-w +-.*J 3l j如舛r:■Ba _4i命龍W 0V 7:杆嵋nM—2 25IIN ;嘗1^禺(1—^)1问qv Z J nT KrEr ; 雀戏时累g=」1)111耳”:十 Y二申會u p z E rr E 002209二和占一0當 中 H7 * •亠\.<■-0」卞 7 - XT:TA 貲0509弱我二 巾S E巴 E%] I + S K I 1+K K— »+-K —I+SM -I +^K I+H H !K ^ : 岂二諾皙 d爼 z LIm 3二 2 (缶|卩(对|)血H n疋启師QJe〈H ITUE4」JRm)比-IK+ :4V +s + ^ M V '/ ”. •门十;(x+一) E(1-|—孝)社 =十£?—乜):u—迖)0 町 实*It w +■I(二厶3工iK h —r …?X —K 丈?r u m "-;-s ■KX丄v +:i \+^+^+^t K k M J I0 L『tu 02 ”- 工屈j -1-品M A qi n刁:t二工q才* i -'再)科 祐 n - ?s l ^n : +養…—K -I十入-I —: jTY屯:朿 一c >s R # —『ri 耳衆+ : +^ + 7f t 4k n ^= f l玉丄胃・;K龍十*x £1 d ik1— I- I -s -;]— w :-+丁i九十丘〔53+了|)d ^:”+v -(J8症)旺遊五.导数的应用设函数f (x)在x0处可导,且x0为f (x)的一个极值点,贝U f' (x0) 0我们称X满足f'(X o)0的X o称为f (x)的驻点,可导函数的极值点一定是驻点, 反之不然。