第二章 误差及分析数据处理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总相对误差取决于相对误差大的。
3. 乘方或开方时,结果有效数字位数不 变。 如 6.542 42.8 7.56 2.75
四、数字修约规则
1.四舍六入五成双。如测量值为4.135、 4.125、4.105、4.1251;修约为4.14、4.12、 4.10和4.13。
2.只允许对原测量值一次修约至所需位数, 不能分次修约。如4.1349修约为三位数。 不能先修约成4.135,再修约为4.14,只能 修约成4.13。


5 10 15 20 25
测定次数
3. 选择合适的分析方法
常量组分的分析,常采用化学分析, 而微量和痕量分析常采用灵敏度较高的 仪器分析方法;
4. 减小测量误差
以称量为例:
E r = E / m(s) ×100%
以容量为例:
E r = E /v(ml) ×100%
三 准确度与精密度
一、准确度与误差
二、数字的修约规则 四舍六入五成双
注意: 1、要修约的数值小于等于4则舍;
2、要修约的数值大于等于6则进到前一位
3、要修约的数值为5时:如5后无数或为 零时,5前为奇数则进到前一位; 5前为偶数则 舍弃;但当5后有非零数字时,无论5前为奇数 还是偶数,都要进到前一位;
4、在对数字进行修约时,只能一次修约到 所需的位数,不能分步修约。
a: 基准物:硼砂(Na2B4O7·10H2O)
M=381
碳酸钠 Na2CO3
M=106
选那一个更能使测定结果准确度高?
(不考虑其他原因,只考虑称量)
b:如何确定滴定体积消耗?
0~10ml; 20~25ml; 40~50ml
例1,实验测得过氧化氢溶液的含量 W(H2O2)为0.2898, 若试样中过氧化氢的 真实值W(H2O2)为0.2902, 求绝对误差和 相对误差。
三、有效数字的计算规则
1.数值相加减时,结果保留小数点后位数 应与小数点后位数最少者相同(绝对误 差最大)
0.0121+12.56+7.8432=0.01+12.56+7.84 =20.41
总绝对误差取决于绝对误差大的
2. 数值相乘除时,结果保留位数应与有 效数字位数最少者相同。(相对误差最 大) (0.0142×24.43×305.84)/28.7=(0.0142× 24.4×306) /28.7=3.69
解:δ=0.2898-0.2902=-0.0004 RE=-0.0004/0.2902×100%=-0.14%
精密度与偏差
精密度(precision)是平行测量的各测量 值(实验值)之间互相接近的程度。
精密度的高低用偏差来衡量,用测定 值与平均值之差—偏差来表示.可分为:
1.绝对偏差(d):di=X i-X
滴定管读数:23.26 (ml) (百分之一)
2. 位数确定
(1) 记录测量数据时,只允许保留一位可 疑数字。
(2) 有效数字的位数反映了测量的相对误 差,不能随意舍去或保留最后一位数字 (3) 若第一位数字大于或等于8,其有效数 字位数应多算一位. 如:8.48,按4位算
(4) 数据中的“0”作具体分析,如1.2007g, 0.0012007kg均为五位有效数值,
再现性:由不同实验室的不同分析工作者 和仪器,共同对同一样品的某物理量进行 反复测量,所得结果接近的程度。
三、准确度与精密度的关系
准确度反应的是测定值与真实值的符合 程度。 精密度反应的则是测定值与平均值的偏 离程度; 精密度高是准确度高的先决条件,但精 密度高,准确度不一定高 准确度高精密度一定高;
响。
S
n
2
Xi X
i1
n 1
n
X
2 i
n
X i 2 / n
i1
i1
n 1
5.相对标准偏差(RSD)或称变异系数
n
2
Xi X
i 1
RSD
S
_
100%
X
n 1 100% X
X
实际工作中都用RSD表示分析结果的 精密度。
例如,一组重复测定值为15.67, 15.69, 16.03, 15.89。求15.67这次测量值的绝对偏差和相对 偏差,这组测量值的平均偏差、相对平均偏 差、标准偏差及相对标准偏差。
如用万分之一天平称样1.0000克,则相对误差
为 RE%= ±0.0002 /1.0000 ×100%
=0.02 %
结果 绝对误差 相对误差 有效数字位数
0.51800 ±0.00001 ±0.002%
5
0.5180 ±0.0001 ±0.02%
4
0.518 ±0.001 ±0.2%
3
第二个结果更能反应仪器的精密程度
54
0.0040
二位有效数字
0.05
2×105
一位有效数字
PH=11.20对应于[H+]=6.3×10-12 二位有效数字
3.实验过程中常遇到的两类数字
(1)数目:如测定次数;倍数;系数 ;分数
(2)测量值或计算值。数据的位数与 测定准确度有关。
记录的数字不仅表示数量的大小, 而且要正确地反映测量的精确程度。
4.数据中零的作用
数字零在数据中具有双重作用: (1)作普通数字用,如 0.5180 4位有效数字 5.10810-3 (2)作定位用:如 0.0518 3位有效数字 5.1810-2
5.改变单位,不改变有效数字的位数
如: 24.01mL
24.0110-3 L
6.注意点
(1)容量器皿;滴定管;移液管;容量瓶;
第二章 误差及分析数据处理
概述 测量误差 有效数字及运算法则 正态分布
置信度和置信区间 数据的统计处理
§1 概述
误差客观上难以避免。 在一定条件下,测量结果只能接 近于真实值,而不能达到真实值。
§2 测量误差
误差(error):测量值与真实值的差值 根据误差产生的原因及性质,可以将 误差分为系统误差和随机误差。
1. 准确度(accuracy) 测量值与真实值的 接近程度,用绝对误差或相对误差表 示。
准确度的高低用误差的大小来衡量
2. 表示方法
(1)绝对误差:(δ) δ=X-μ
(2) 相对误差(RE): R E= δ / μ× 100%
例2 用分析天平称量两 个样品,一个是0.0021 克,另一个是0.5432克。 两个测量值的绝对误差 都是0.0001克,但相对 误差却差别很大。
3. 减免方法:增加平行测定次数
4.产生原因: 偶然因素 随机变化因素(环
境温度、湿度和气压 的微小波动)
三、误差的减免
1. 系统误差的减免 与标准试样的标准结果对照
(1) 对照实验: 与标准方法比较 回收实验 “内检”与“外检”
(2) 空白实验 (3) 校准仪器 (4)定期培训
•分析化学常用试验的方法检查系统误差的存在, 并对测定值加以校正,使之更接近真实值。常有 以下试验方法:
n=8 d1=0.28 s1=0.38 (2) X-X:0.18,0.26,-0.25,-0.37,0.32 , -0.28, 0.31, -0.27
n=8 d2=0.28 s2=0.29 d1=d2, s1>s2
5) 重复性与再现性
重复性:一个分析工作者,在一个指定的 实验室中,用同一套给定的仪器,在短时 间内,对同一样品的某物理量进行反复测 量,所得测量值接近的程度。
2.平均偏差 ( d )
为各次测定值的偏差的绝对值的平均值
特点:简单;
n
Xi X
d i1 n
缺点:大偏差得不到应有反映。
3.相对平均偏差:为平均偏差与平均值之 比,常用百分率表示:
Rd d 100 % X
4.标准偏差(standard deviation; S)
使用标准偏差是为了突出较大偏差的影
3.大量数据运算时,可先多保留一位有 效数字,运算后,再修约。
4. 修约标准偏差。修约的结果应使准确 度变得更差些。如S=0.213,取两位有效 数字,修约为0.22,取一位为0.3。
正态分布
偶然误差服从正态分布曲线:
特点: 1、单峰性 2、对称性(正,负误差的概率 相等) 3、小误差出现的概率大,大 误差出现的概率小
四、置信度 与 置信区间
置信度——真 实值在置信区 间出现的几率 置信区间—以平 均值为中心,真 实值出现的范围
置信度与置信区间
对于有限次测定,平均值 与总体平均 值 关系为 : X t s
n
S
Rd i 1
X id X
X1200 %
0.152
0.132
0.212
0.072
=0.17
n 1
3
RSD S 100% 0.17 100% 1.1%
X
15.82
用标准偏差比用平均偏差更科学更准确。 例: 两组数据 (1)X-X:0.11, -0.73, 0.24, 0.51, -0.14, 0.00, 0.30, -0.21,
溶液体积
绝对误差 相对误差
滴定管每次读数误差为 ±0.01mL。一次滴定中, 需读数两次,最大绝对误 差为±0.02mL,若要求 相对误差<0.1%。计算消 耗溶液的最小体积。
思考题:
如果要求分析误差小于0.2%,问至少应 称取试样多少克?滴定时所用溶液体积 至少应为多少毫升?
2.相对误差和绝对误差的概念
两者的差别主要是由 于系统误差的存在。
系 统 误 差 ---- 影 响 结 果准确度
偶 然 误 差 ---- 影 响 结 果精密度
§3 有效数字及计算规则
一、有效数字(significant figure) 概念:分析工作中实际上能测量到的数字, 除最后一位为可疑数字,其余的数字都是确 定的。
如:分析天平称量:1.21 23 (g) (万分之一)
(2)单向性; (3) 恒定性; (4)影响准确度,不影响精密度; (5)可以消除。
4.消除系统误差的方法
二、偶然误差
1. 概念:偶然误差(random error)也称 为随机误差。它是由不确定的原因 或某些难以控制原因造成的。
2. 特点 (1) 双向性 (2) 不可测性 (3)服从正态分布(统计规律) (4) 难以校正
(5) 常数π等非测量所得数据,视为无限多位 有效数字;
(6) pH、pM等对数值,有效数字位数仅取 决于小数部分数字的位数。如pH=10.20,应 为两位有效数值
看看下面各数的有效数字的位数:
1.0008
43181
五位有效数字
0.1000
10.98% 四位有效数字
0.0382
1.98×10-10 三位有效数字
0.0002/ 0.0021=9.6% 0.0002/ 0.5432=0.04%
相对误差
绝对误差 试样质量
试样质量
绝对误差 相对误差
分析天平每次称量误差为 ±0.0001克。一份样品需 称量两次,最大绝对误差 为±0.0002克,若要求相 对误差<0.1%。计算试样 的最小质量。
相对误差
绝对误差 溶液体积
记录到小数点后第2位
(2)分析天平(万分之一)记录到小数点后
第4位
(3) 标准溶液的浓度,用4位有效数字表 示: 0.1000 mol/LHCl溶液 (4)注意pH计算,[H+]=5.0210 -3;
pH = 2.299; 对数值,lgX =2.38;小数点后的数字 位数为有效数字位数
(5) 分数;比例系数;实验次数等不记 位数
解:X =(15.67+15.69+16.03+15.89)/4=15.82
d = Xi-X =15.67-15.82=-0.15
RE% =-0.15/15.82×100%=-0.95%
n
Xi X
d i1
=(0.15+0.13+0.21+0.07)/4=0.14
n
Rd %=0.14/15.82×100%=0.89%
(2) 仪器或试剂误差:是由于仪器未经校准或 试剂不合格的原因造成的。如称重时,天 平砝码不够准确;配标液时,容量瓶刻度 不准确;对试剂而言,杂质与水的纯度, 也会造成误差。
(3) 操作误差:是由于分析操作不规范造成。 如标准物干燥不完全进行称量;
3. 特点 :
(1) 重现性(即在同一条件下,重复测 定, 重复出现);
1)对照实验 已知含量的试样与未知试样对照
→ 标准品+试剂
2)回收试验 未知试样+已知量的被测组分,与 另一相同的未知试样平行进行分析,测其回收率
3) 空白试验 不加试样,按试样相同的程序分
析 →溶剂 + 试剂
2. 减小随机误差
减小随机误差的方法是增加测定次数。

实际工作中一般测3~4次


wk.baidu.com



一. 系统误差
1 概念 系统误差(systematic error)又称可 测误差,由某种确定原因造成的。
2. 根据产生的原因 方法误差
系统误差 仪器或试剂误差 操作误差
(1)方法误差:是由于不适当的实验设计或所 选的分析方法不恰当造成的。如重量分析 中,沉淀的溶解,会使分析结果偏低,而 沉淀吸附杂质,又使结果偏高。
相关文档
最新文档