数学的意义与应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学的意义与应用
一个人,从小学、中学甚至到大学,都得学数学。为什么要学这么多数学呢?其意义究竟何在?
社会公众对于数学与数学教育的意义缺乏足够的了解,甚至存在许多误解。一般地,人们容易看到各种技术的进步及其对社会发展与人类生活带来的好处,而看不到背后的重要支撑——基础科学,尤其是数学。这里也有一个舆论问题,关于数学的意义,数学界缺少面向公众的、正确而简明易懂的解释。在我国,哥德巴赫猜想家喻户晓,人们误认为数学是研究那些古老难题的学科,没有多大实际用途,充其量是为国家争光。相当多的家长与学生认为,数学仅仅是为了升学而不得不学的东西,对于未来就业与工作并没有多大用场。下面就这些问题谈谈我的看法。
什么是数学?数学是一门演绎科学。它的研究对象主要是“数”与“形”。一百多年前,恩格斯就曾给数学下过一个定义:“数学是研究现实世界中的数量关系和空间形式的科学。”一百多年过去了,数学的发展使得数学的研究对象,已经远远超出了“数”与“形”的范畴,于是出现了一些其他定义。但是,我依然认为恩格斯的说法,是对数学的较好概括。这是因为,无论如何,数学首要的和基本的对象是数量关系和空间形式,恩格斯的说法明确地指出了数学与现实世界的联系。
伽利略说过:“大自然,这部伟大的书,是用数学语言写成的。”自然界中的一切事物,都有“数”与“形”两个侧面。因此,数学所描述的数量关系与空间形式,就自然成为物理学、力学、天文学、化学、生物学的重要基础,数学为这些科学提供了描述规律的语言和探索未知世界的一种工具。
回顾科学发展的历史,就会发现,物理学、天文学、力学的任何重大发展无不与数学的进步息息相关。比如,牛顿力学,特别是万有引力定律的发现,依赖于微积分创立;而爱因斯坦的相对论则以黎曼几何为其基础。著名数学家黎曼曾经指出:“只有在微积分创立之后,物理才发展成为一门真正意义下的科学。”
与其他基础科学相比,数学最重要的特征是其研究对象的抽象性,它决定了数学的其他特征,并使它区别于自然科学。
任何数字都是抽象的,它舍弃了观察对象的一切其他属性,而只关注其数量。数字“1”既可以代表一个苹果,也可以代表一只羊,或一座山。数字“1”就是忽略了苹果、羊、山等事物的差异,而只从数量上加以抽象。从具体数字再发展到一个代表量的文字“z”,是进一步的抽象。至于函数x.y.z,则是更进一步的抽象。在几何中的点、直线、圆、平面同样是对现实世界中事物的抽象,同样是人们为描述现实生活中某些事物而创造的一种语言。比如,在世界地图上,北京可以看
成一个点,而在中国地图中,天安门可以看成一点。因此,数学中的“点”实际上就是我们所考察的事物位置的抽象,它没有大小,没有面积,只有位置的不同。
数学研究对象的抽象性决定了它的应用广泛性。1+1=2不仅适用于苹果、羊、山,而且适用于一切事物。一个函数y=Asin c衄可以代表电场的电流或电压的变化规律,也可以代表某种波动的规律。许多完全不同事物提出的问题可以归结为同一个数学模型。
数学研究对象的抽象性又决定了数学的演绎性。在生物学中,要断言麻雀有胃并不难,只要解剖几个麻雀就足够了,而在数学中,要说明勾股定理成立,不能只靠验证几个直角三角形,而需要证明。当然,数学研究中,在其探索阶段或许会用到归纳的办法。但是,归纳出来的结论,不能作为定论,而只能作为一种猜测,有待于将来的证明或者否定。这就是说,数学中要确立一条规律只能依靠严格的逻辑推理,而不能靠经验或实验数据,更不能靠人们的直觉或想当然。比如,许多大于2的偶数都可以表成两个奇素数之和,但是不能因此而说一切偶数皆如此。又如,我们测量了很多三角形的三个内角之和等于180。,但是不能因此而得出所有三角形都如此的结论,需要严格证明。
数学的这种精神,早在2500多年之前就确定了——这是古希腊人的功劳。它一直被作为数学的基本精神沿承至今。古希腊人对数学的最大贡献在于,他们认为数学中的每一个命题,都要根据明白无误的假定和事先给定的公理与公设,由形式逻辑推演出来。正是由于有了这种精神,古希腊人才发现了无理数,并导致欧几里得《几何原本》的诞生,使得古希腊的数学成就远远超过了同时代的其他文明古国。后来在欧洲文艺复兴时期,古希腊的这种精神在欧洲发扬光大,并带动了数学与自然科学的发展。比如,微积分的创立、万有引力定律的发现等。
反映这种科学精神巨大成功的一个典型事例是非欧几何的诞生。欧几里得《几何原本》刚一诞生,人们就试图用其他公设来证明欧几里得第五公设即平行公设。相当多的数学家投入这种努力,然而统统都失败了。两千多年的失败,迫使人们放弃这种努力,并从另一个角度考虑问题:放弃平行公设,并把一个与平行相反的命题作为新的公设,这就产生了非欧几何。它从此打破了两千多年来欧几里得几何的“一统天下”,是人类对空间认识的一场革命。它的发展进一步导致了黎曼几何,而黎曼几何成为爱因斯坦的广义相对论的数学基础。
从试图证明平行公设开始,到非欧几何的诞生,再到广义相对论,充分说明了古希腊人所确立的数学精神的巨大意义。数学的这种精神,使人类摆脱了狭隘经验的束缚,促使人们理性地思考与认识世界,并顽强地追求理性的完美。作为数学教育工作者,我们应当全面认识数学科学,反对实用主义。把数学分成“有用的数学”与“无用的数学”的提法,是完全错误的。
中国的古代在数学上有重要贡献,但并没有形成一个演绎系统。在我国,人们认识到科学以及科学精神的重要性,是很晚的事——五四时期。那是在屡遭失败并付出巨大代价之后得出的结论。
由于数学的结论是逻辑演绎的结果,所以数学的结论是永恒的,不会随时代变迁而改变。数学是这样一门科学,它的发展不是对于旧有理论的否定。非欧几何并不是对欧氏几何的否定.两者都成立,只不过是在不同的公理体系下而已。
人们或许会认为,在历史上数学是重要的,但今天是高科技时代,抽象数学已经没有那么重要了。恰恰相反,高科技的发展的基石是数学,而且高科技的发展才使得数学的应用达到空前的广泛。
在高科技时代,自然科学的各个研究领域都已进入更深的层次和更广的范畴,这时就更加需要数学。在这种情况下,一度被认为没有应用价值的某些抽象的数学概念和理论,出人意料地在其他领域中找到了它们的原型与应用。数学与自然科学的关系从来没有像今天这样密切,恩格斯过去所说“数学在化学中的应用是线性方程组,而在生物学中的应用是零”的状况早已成为历史,数学中的许多高深理论与方法正在广泛而深
人地渗透到自然科学研究的各个领域中去。例如,分子生物学中DNA结构的研究与数学中的扭结理论有关,而理论物理中的规范场论与微分几何中的纤维丛理论紧密相关。至于现代理论物理则用到了许多当代纯数学理论。20世纪80年代,美国自然科学基金会曾经指出,当代自然科学的研究正在日益呈现出数学化的趋势。
现在,我们要进一步指出,数学是今天高科技的基础。
20世纪最伟大的技术成就首推电子计算机的发明与应用,它改变了人们的日常生活的方方面面,并使人类进入信息时代。然而,大家公认电子计算机的发明应归功于数学家:图灵和冯·诺依曼。在电子计算机出现之前,数理逻辑中就有一种理想机(后来人称图灵机),它实际上是电子计算机的雏形。
今天,IT技术已被广泛地应用于人类生活,使我们无处不感到它的存在。然而,享用这些成果的人们却往往只看到技术成果,而看不到这些技术背后起到关键作用的数学。
这样的例子很多。医学上的CT技术,中文印刷排版的自动化,波音777的计算机模拟设计,指纹的识别,石油地震勘探的数据处理,网络系统安全技术等,在这些形形色色的成就背后,数学都扮演着十分重要的不可缺少的角色。数学在这些领域内不是一种可有可无的参考,而常常是问题的关键。
1985年,美国国家研究委员会在一份报告中指出:数学是推动计算机技术发展和促进这种技术在其他领域应用的基础科学,还强调指出,数学是一个大有潜力的资源,有待人们去大力开发。该委员会把数学与能源、材料等并列为必须优先发展的基础研究领域。