钢桁梁桥综述

合集下载

钢桁梁桥综述

钢桁梁桥综述

浅谈铁路钢桁梁桥摘要:本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。

关键字:铁路钢桁梁桥发展情况整体式节点正交异性板一、前言钢桥由于其材料高强度、高弹性模量而构件相对较轻, 施工比预应力混凝土桥轻盈和方便等特点,大量使用在大中跨度的桥梁上。

其中,钢桁梁桥由桁架杆件组成,尽管整体上看钢桁梁桥以受弯和受剪为主,但具体到每根桁架杆件则主要承受轴向力。

与实腹梁相比是用稀疏的腹杆代替整体的腹板,从而节省钢材和减轻结构自重,又由于腹杆钢材用量比实腹梁的腹板有所减少,钢桁梁可做成较大高度,从而具有较大的刚度及更大的跨越能力。

本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。

二、钢桁梁桥的特点钢桁梁桥综合了钢材和桁架结构的特点:(1)跨越能力大。

由于钢材强度大,在相同的承载能力条件下,与混凝土桥梁相比,钢桥构件的截面较小,所以钢桥自重轻,加大桥梁的跨越能力。

(2)易于修复和更换。

(3)钢桁梁的杆件和节点较多,构造较为复杂,制造较为费工。

(4)钢材易锈蚀,需要定期检查和维护,故养护费用高。

(5)造价较高。

(6)抗压能力强,整体性好。

三、钢桁梁桥的发展情况1894年,我国第一次主持修建钢桁梁桥——滦河大桥,由我国工程师詹天佑主持完成。

其上部结构由多孔钢桁梁和钢板梁组成。

建国以前所建的钢桁梁桥跨度较小,所用的钢材都是进口的,结构都采用铆钉,工艺简陋,建国后,钢桁梁桥技术发展很快。

20世纪60年代中期,为加快铁路建设,在成昆铁路修建中,系统地研究了栓焊钢桁梁桥新技术,一举建成各种不同结构型式的栓焊钢桁梁桥四十几座,结束了在我国使用了近100年的铆接钢桁梁桥的历史,这在我国钢桁梁桥发展史上是一个很大的进步。

其中1966年建成的饮水河大桥主跨112米,为中国第一座栓焊钢桥。

我认识的钢桁梁桥

我认识的钢桁梁桥

我认识的钢桁梁桥摘要介绍钢桁梁桥的组成、构造、计算等内容,以及本人对钢桁梁桥的浅见1 概述钢桁梁桥可以看作是将实腹的钢板梁桥按照一定规则空腹化的结构形式,结构整体上为梁的受力方式,即主要承受弯矩和剪力的结构。

1.1基本组成钢桁梁桥可以看作是将实腹的钢板梁桥按照一定规则空腹化的结构形式,结构整体上为梁的受力方式,即主要承受弯矩和剪力的结构。

下图1.1-1为下承式钢桁梁桥的基本组成情况。

图1下承式钢桁梁桥的基本组成情况1.主桁主桁是钢桁梁桥的主要承重结构,最常采用的是平面桁架,在竖向荷载作用下其受力实质是格构式的梁。

主桁由上弦杆、下弦杆和腹杆组成。

2.联结系1)分类:纵向联结系和横向联结系2)作用:联结主桁架,使桥跨结构成为稳定的空间结构,能承受各种横向荷载3)纵向联结系分上部水平纵向联结系和下部水平纵向联结系;主要作用为承受作用于桥跨结构上的横向水平荷载、横向风力、车上横向摇摆力及离心力。

另外是横向支撑弦杆,减少其平面以外的自由长度。

4)横向联结系分桥门架和中横联;主要作用为是增加钢桁梁的抗扭刚度。

适当调节两片主桁或两片纵联的受力不均。

3.桥面系1)组成:由纵梁、横梁及纵梁之间的联结系2)传力途径:荷载先作用于纵梁,再由纵梁传至横梁,然后由横梁传至主桁架节点。

4.制动联结系制动联结系也称为制动撑架,设置在于桥面系相邻的平纵联的中部,通常由四根杆件组成。

作用是将纵梁上的纵向水平制动力传至主桁,以减小制动力对横梁的不利影响。

5.桥面、支座及墩台与其它桥梁相似。

1.2 主桁架的图式及特点1.主桁架的常用类型2)节间长度铁路钢桥:中、小跨径的桁架,上承式桁架的节间长度一般为3~6m,下承式桁架的节间长度一般为6~10m,跨径较大的下承式桁架节间可达12~15m。

公路钢桥:节间长度可适当增大。

3)斜杆倾角斜杆倾角由主桁高度与节间长度的比值决定,有竖杆的桁架的合理倾角为50°左右;无竖杆的桁架的合理倾角为60°左右。

钢桥施工技术——钢桁梁桥

钢桥施工技术——钢桁梁桥

钢桥施工技术——钢桁梁桥钢桁梁(图6.3.1)的出现来自钢板梁的演变,人们根据梁的截面在中性轴附近应力最小的理论,研究从板梁的腹板中挖掉若干方格以节省钢料和减轻梁的自重的办法,并逐步演变为用三角形组成的桁架来代替板梁。

钢桁梁和板梁的主要区别是:桁架以腹杆(斜杆和竖杆)代替板梁,在竖向荷载作用下,桁架中的所有杆件都顺着杆件轴向承受压力或拉力,杆件截面上的材料都发挥相同的效能。

与板梁相比,桁梁的主要优点:一是跨越能力较大;二是当跨度较大时,自重也较轻,节省钢材,一般使用跨度都大于30 m。

钢桁梁主要类型有上承式简支钢桁梁、下承式简支钢桁梁、下承式连续钢桁梁等。

其主要由桥面、桥面系、主桁、连接系及支座等 5 个部分组成。

列车作用于钢桁梁的荷载,首先通过桥面的基本轨传送给桥枕,桥枕传给桥面系的纵梁,纵梁传给横梁,横梁传给主桁,主桁传给支座,支座传给墩台。

一、主桁主桁(图6.3.2)是钢桁梁桥的主要承重结构。

钢桁梁桥有两片主桁架,每片桁架一般由上弦杆、下弦杆、斜杆及竖杆等组成,斜杆和竖杆统称为腹杆。

两片主桁架的作用相当于板梁的两片主梁。

铁路钢桁梁桥一般采用下承式。

图6.3.1 钢桁梁图6.3.2 下承式钢桁梁组成示意图1. 主桁形式我国中等跨度(48~80 m)的下承式桁梁桥,其主桁结构常采用图6.3.3(a)中的几何图示,而不采用图6.3.3(b)。

二者的斜杆方向不同,基于此,在竖向荷载作用下,图式6.3.3(a)的竖杆较图式(b)受力较小,受压斜杆的数量也较少,而且图式6.3.3(a)的弦杆内力不像图式6.3.3(b)那样在每个节间都得变化一次,因而图式 6.3.3(a)的弦杆截面,易于选择得较为经济合理。

由于这些原因,使图式6.3.3(a)比图式6.3.3(b)更为节省钢料。

具有图6.3.3(a)这种形式的桁梁桥,其构造简单,部件类型较少,适应设计定型化,有利于制造与安装,宜于选作标准设计桁梁桥的主桁图式。

钢桁架整体节点研究综述

钢桁架整体节点研究综述
dr wn, whih pr i s s intfc r f r n e f r lt r a lc ton ofi e r lp i t t e r sgid r a c ovde c e ii e e e c o a e pp ia i nt g a o n s ofse ltus r e .
si n s .B o a ig t e rltd r s ac e ut r u d t e wo l t f e s y c mp rn h eae e e rh rs l a o n h rd,a Chn s u u eo n e r ljit cn b f s ie e ft r fitg a on a e
( c o fCi i En n e i g, l n Un v r iy o c n l g S ho lo vl gi e rn Da i i e st fTe h o o y,Da in 1 6 2 Ch n ) a la 1 0 3, i a
AB TRACT: n e r l a e p i t f s e ltu s g r e r d l p l d t o h d me t n n e n t n lb i g S I tg a n l o n s o t e r s i r a e wie y a p i O b t o s i a d i t r a i a rd e p d e c o c n tu t n wih t e ra v n a e fsm pe i s a l t n a d o t t n i g e o o c b n f .To p e e tt e t o o g o s r c i t h i d a t g s o i l n t l i n u s a dn c n mi e e i o a o t r s n h h r u h u d r t n i g o h h r c e itc n e f r n eo n e r lp n 1 on s t sa ay e n u n e s a d n ft e c a a t rs is a d p ro ma c f t g a a e i t ,i i n l z d a d s mma ie ee a t i p r drlv n z

钢桁梁桥综述

钢桁梁桥综述

钢桁梁桥综述浅谈铁路钢桁梁桥摘要:本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。

关键字:铁路钢桁梁桥发展情况整体式节点正交异性板一、前言钢桥由于其材料高强度、高弹性模量而构件相对较轻, 施工比预应力混凝土桥轻盈和方便等特点,大量使用在大中跨度的桥梁上。

其中,钢桁梁桥由桁架杆件组成,尽管整体上看钢桁梁桥以受弯和受剪为主,但具体到每根桁架杆件则主要承受轴向力。

与实腹梁相比是用稀疏的腹杆代替整体的腹板,从而节省钢材和减轻结构自重,又由于腹杆钢材用量比实腹梁的腹板有所减少,钢桁梁可做成较大高度,从而具有较大的刚度及更大的跨越能力。

本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。

二、钢桁梁桥的特点钢桁梁桥综合了钢材和桁架结构的特点:(1)跨越能力大。

由于钢材强度大,在相同的承载能力条件下,与混凝土桥梁相比,钢桥构件的截面较小,所以钢桥自重轻,加大桥梁的跨越能力。

(2)易于修复和更换。

(3)钢桁梁的杆件和节点较多,构造较为复杂,制造较为费工。

(4)钢材易锈蚀,需要定期检查和维护,故养护费用高。

(5)造价较高。

(6)抗压能力强,整体性好。

三、钢桁梁桥的发展情况1894年,我国第一次主持修建钢桁梁桥——滦河大桥,由我国工程师詹天佑主持完成。

其上部结构由多孔钢桁梁和钢板梁组成。

建国以前所建的钢桁梁桥跨度较小,所用的钢材都是进口的,结构都采用铆钉,工艺简陋,建国后,钢桁梁桥技术发展很快。

20世纪60年代中期,为加快铁路建设,在成昆铁路修建中,系统地研究了栓焊钢桁梁桥新技术,一举建成各种不同结构型式的栓焊钢桁梁桥四十几座,结束了在我国使用了近100年的铆接钢桁梁桥的历史,这在我国钢桁梁桥发展史上是一个很大的进步。

其中1966年建成的饮水河大桥主跨112米,为中国第一座栓焊钢桥。

综述维义大桥大跨度钢桁拱梁膺架法半悬臂架设施工

综述维义大桥大跨度钢桁拱梁膺架法半悬臂架设施工

( 1 ) 架梁设备 维义大桥钢梁架设选用WD 5 5 型架梁起重机 , 该起重机 能够在钢桁梁 上弦行走 ,底座覆盖钢梁二 片主桁 ,可完成边跨平直梁和 主跨 拱梁的架 设, 具有提升 、 变 幅、 全 回转 、 底盘调平 、 整机前移及锚 固的功能。起重机在 钢桁拱上架梁时 , 起重机 的上底盘能够 随拱顶坡度变化保持水平状 态 , 并
架设 安装 占用时间长 , 延误钢梁架设的缺点 北岸预拼场配合用。
( 3 ) 塔 吊
( 1 ) 工程施工参考 了国 内钢梁成熟的施工技术并进 行了创新 , 放弃 了 南 、北岸 E 0~E 2 节 间钢梁杆件及WD 5 5 型架 梁起重机 均采用塔 吊安 传统 的吊索塔架 法, 采用膺架 法半悬臂架设 , 即设置临时支墩作为承载钢 装, 北岸塔 吊起 吊力矩为4 1 6 . 5 t . m, 大臂长 度为5 0 m, 塔 身高度5 5 m; 南岸 塔 梁 的支点 , 在 临时支墩 墩顶设 置坚 向千斤顶 , 通过采用千斤顶起落梁代替 吊起 吊力矩为 1 0 0 0 t . n l , 大臂长度为4 0 m, 塔身高度6 0 m。 ( 4 ) 提升站 南 、北岸提升站 吊机选用 Q L Y 5  ̄1 6 全液压架梁起重机 和WD1 2 0 固定 桅杆式起重机配合施工。 ( 5 ) 运梁设备
三、 钢 梁 的安装 架设
1 、 钢 梁 架设 施 工特 点
( 1 ) 膺架设及安装 的工艺简单 , 施工安全 ; 减少 了高空作业 的不安全
因素 。
( 2 ) 钢梁架设采用从两侧往跨 中双 向架设的方案。两边跨及 中跨钢梁
均采用 临时支墩搭设膺架拼装 , 临时支墩受力大 , 墩顶 离河床面较高 , 自 由长度 大。通 过膺架与桥墩支点多点 调整 , 安全性强 , 调整措施 简单 、 明

1 钢桁梁桥

1 钢桁梁桥

合理节间长度:(0.6-0.8)h(带竖杆三角形体系)、 (1.0-1.2)h(纯三角形腹杆体系)。

(3)斜杆倾度 影响节点构造及竖杆受力。 根据设计经验,斜杆与竖直线的夹角在30°~ 50° 之间。

(4)主桁架的横向间距 主桁架的横向间距由横向刚度和稳定性决定。 下承式桁架一般不宜小于(1/20~1/17)l;对于上承 式桁梁 桥,主桁间距不宜小于(1/16~1/14)l,l为计 算跨径。
§1-1 钢板梁桥的定义及分类
钢板梁桥的介绍
钢板梁桥是指由钢板焊接、栓接或铆接,形 成工字形的实腹式钢梁作为主要承重结构的桥 梁。



按照行车道系(桥面)位置的不同, 钢板梁桥又分为: 上承式钢板梁桥:桥面位于主梁上翼缘 下承式钢板梁桥:桥面位于主梁下翼缘
§1-2 上承式焊接板梁的构造
焊接板梁(工字形梁)是由上、下翼板和腹板焊接 而成。上承式钢板梁桥上部结构主要有: 主梁:主要承重作用,把荷载传递到支座。
按主桁架的形式分类 • 按照腹杆体系的不同分类:三角形腹杆体系、外倾式斜 杆体系、带竖杆的三角体系、内倾式斜杆体系、再分式腹 杆体系等。 • 按照上下弦杆是否平行分:折线形桁架、平行弦桁架和 分段平行弦桁架。
按支承形式分类
• 简支桁梁桥、连续桁梁桥、悬臂桁梁桥。 按照承受荷载的性质分类


连续桁梁桥的尺寸确定
• (1)连续桁梁桥通常做成2~3跨,不超过3跨。跨径过
大,温度位移过大,伸缩缝构造复杂,为了避免温度影
响过大,使得构造简单,一般一联做成2~3跨。
• (2)3跨连续桁梁可做成不等跨,边跨:中跨=
1:1.15~1:1.25。正负弯矩大致相等,充分利用材料,节 约成本。

大跨度钢桁梁桥和钢桁拱桥架设施工简介 (大跨度 桥梁工程)

大跨度钢桁梁桥和钢桁拱桥架设施工简介 (大跨度 桥梁工程)

中国中铁大桥工程局集团有限公司二00九年十二月目录连续(简支)钢桁梁桥、钢桁梁柔性加劲拱桥、钢桁拱桥、钢桁梁斜拉桥及钢桁梁悬索桥南京长江大桥天兴洲长江大桥芜湖长江大桥九江长江大桥大胜关长江大桥一、典型钢桁梁(拱)桥介绍11.254铁6公Q370qE 20092004.9504天兴洲大桥8.09.605.686.652.14钢材(万t)4铁2地铁2铁4公2铁4公2铁4公2铁4公运营荷载Q370qE Q420qE 14锰铌桥15锰钒氮16锰桥A3桥钢材种类20102000.91996.091968.121957.10通车日期2006.71997.31973.121960.11955.9开工日期336312216160128主跨(m )大胜关大桥芜湖大桥九江大桥南京大桥武汉大桥桥名一、典型钢桁梁(拱)桥介绍二、钢桁梁(拱)桥主要架设施工方法综述膺架法悬臂拼装架设法浮吊架设法顶推架设法拖拉架设法浮运架设法浮运拖拉架设法整体架设法等二、钢桁梁(拱)桥主要架设施工方法综述膺架法全悬臂拼装半悬臂拼装中间合龙悬臂拼装对称悬臂平衡拼装二、钢桁梁(拱)桥主要架设施工方法综述悬臂拼装架设法二、钢桁梁(拱)桥主要架设施工方法综述浮吊架设法二、钢桁梁(拱)桥主要架设施工方法综述顶推架设法二、钢桁梁(拱)桥主要架设施工方法综述拖拉架设法二、钢桁梁(拱)桥主要架设施工方法综述浮运架设法二、钢桁梁(拱)桥主要架设施工方法综述浮运拖拉架设法二、钢桁梁(拱)桥主要架设施工方法综述整体架设法二、钢桁梁(拱)桥主要架设施工方法综述2、支架和临时墩•4、提升站和预拼场龙门吊机•5、吊索塔架•6、墩顶设施1、概述无应力状态下合龙在加力状态下合龙节点铰式合龙节间拉杆式合龙2、跨中合龙的必要条件:3、合龙前的准备工作注:以上位移量中,x为顺桥向位移,以从北往南为正,y为竖直位移,以往上为正;z为横桥向位移,以从上游往下游为正,θ为杆件转角,以顺时针向为正。

讲义总结下承式简支钢桁架桥施工设计总体解析简支钢桁梁1

讲义总结下承式简支钢桁架桥施工设计总体解析简支钢桁梁1

桥梁工程
特别说明 活载发展系数是用在使设计的桥梁各部件在强度检算 时,能承受的活载均匀,对疲劳损伤没关系。所以在疲劳 内力组合中,不考虑活载发展系数。
′ = η (1 + μ )kΩ N k = η (1 + μ )N k
′ = (1 + μ f ) kΩ N k = (1 + μ f )N k
桥梁工程
桥梁工程
⑤当由于将实际结构转化为各个平面计算模型产生的误 差较大时,需要进行必要的校正: a.由于主桁弦杆变形所引起的平纵联杆件的内力。 b.桥面系的纵、横梁和主桁弦杆的共同作用产生的内力 c.由横梁、主桁竖杆和横向联结系的眉杆所构成的横向 框架
桥梁工程
d.节点刚性连接引起的主桁杆件附加应力(次应 力),设计时,主桁杆件截面高度与其长度之比在连续桁 梁中大于1/15时,简支桁梁中大于1/10时,应计算由于节 点刚性所产生的次应力。
桥梁工程 b.桥面重量
p2
明桥面(包括双侧人行道): 当木步行板时,单线=8KN/m,双线=15KN/m; 当为钢筋混凝土或钢步行板时,单线=10KN/m, 双线 =17KN/m。 当采用有砟桥面,桥面重量需进行道砟板、道砟、轨枕和 钢轨等的计算,规范中没有规定。 c.每片主桁计算恒载强度
p = ( p1 + p 2 ) 2
Ω=
2H
1 (n − m − 1) d Ω′ = − 2 n −1 sin θ
2
斜杆:
1 m2d 1 Ω= 2 n − 1 sin θ
竖杆: 支座反力:
Ω=d
l Ω= 2
桥梁工程 (3)恒载作用下主桁杆件内力计算
N p = p∑ Ω
p 其中 ——均布恒载强度(每片主桁的); ∑ Ω ——杆件内力影响线面积的代数和。

钢桁梁_精品文档

钢桁梁_精品文档

钢桁梁引言钢桁梁是一种常见于桥梁工程中的结构形式。

它的主要组成部分是由钢材制成的桁架结构,通过连接件将其连接在一起形成横跨河道或道路的桥面。

钢桁梁在桥梁工程中广泛使用,其具有优异的强度、刚性和耐久性,使其成为现代桥梁设计的重要组成部分之一。

组成结构钢桁梁由上弦杆、下弦杆和网格构件组成。

其中,上下弦杆是承受桥梁荷载的主要构件,而网格构件则起到加固和支撑的作用。

上下弦杆通常是采用横向排列的钢板或钢桁架构成,而网格构件则由钢材或钢管组成。

材料选择钢桁梁的材料选择是设计中的重要环节,直接影响到钢桁梁的强度和耐久性。

常见的钢材包括普通碳素结构钢、低合金高强度钢和耐候钢等。

在选择材料时,需要考虑桥梁所处环境的气候条件、荷载要求以及使用年限等因素。

设计与计算钢桁梁的设计和计算是桥梁工程中的重要部分。

在设计过程中,需要根据桥梁的跨度、荷载要求和使用要求等因素进行合理的设计。

计算则包括对钢桁梁的自重、荷载和风载等进行力学计算,以确定结构的安全性和合理性。

制造与安装钢桁梁的制造和安装是保证桥梁工程顺利进行的关键环节。

制造过程中,需要对钢材进行加工、焊接和热处理等工艺,以确保钢桁梁的质量和强度。

安装过程中,则需要考虑桥梁的拆解、起吊和连接等步骤,以保证钢桁梁的准确安装和牢固连接。

维护与保养钢桁梁的维护和保养对于延长桥梁的使用寿命和保证交通安全非常重要。

常见的维护工作包括清洁、喷涂防锈剂和检查焊缝等。

另外,还需要定期检测和评估钢桁梁的结构安全性和使用性能,若有损坏或疲劳现象,需要及时修复或更换。

应用范围钢桁梁在桥梁工程中有广泛的应用范围。

它可以用于公路桥、铁路桥、高架桥以及跨越河道、峡谷等特殊地理环境的桥梁。

钢桁梁的设计和制造也常用于各类临时性桥梁和施工工程中,为交通运输和工程建设提供了重要的支持。

结论钢桁梁作为桥梁工程中常见的结构形式,具有优异的强度、刚性和耐久性,成为现代桥梁设计的重要组成部分。

在钢桁梁的设计、制造和安装过程中,需要充分考虑材料选择、力学计算和工艺操作等因素,以确保钢桁梁的质量和安全性。

2015第5章-梁桥-钢桁梁

2015第5章-梁桥-钢桁梁

联结系杆件
纵向联结系、支点处横向联结系、 制动联结系 中间横向联结系
09:04
34
第二节

桁梁桥构造
杆件的外廓尺寸—对主桁的技术经济指标有重要影响
考虑因素:
(1)同一主桁中各杆件宽度b(指辆节点板内壁间距)须一致, 使各杆件在节点处能用节点板相连。
标准设计中跨度相近的主桁,其杆件应采用相同宽度b,便于成 批生产,以简化制造,使不同跨度间尺寸完全相同的杆件可以互 换使用。


主要缺点: 杆件数量多,若种类多会导致互换、制造、安装及修复 8
09:04
第一节
省竖杆
钢桁梁桥分类、组成与特点
增加节点
折线弦杆
09:04
9
第一节


钢桁梁桥分类、组成与特点
斜杆形桁架
其弦杆规格多,每个节间都有变化; 竖杆不仅规格多,而且内力大,所有节点都有斜杆交汇,均 为大节点
09:04
公路桥规比下表宽松些 部件类别 最小厚度 10 部件类别 联结系用钢板或角钢肢 的厚度 最小厚度 8
钢板(除下列 情况外)
挂杆翼板
跨度≥16m的焊 接板梁的腹板
12
12
填板
纵梁与横梁、横梁 与主桁的连接角钢
4
100×100 ×12
09:04
37
第二节


桁梁桥构造
截面分肢
最大尺寸要求
H形截面主桁杆件只有翼板与节点板连接,腹板应力靠翼板间接 传递给节点板,在节点附近,其应力低于整个截面应力,材料 不能充分利用,故杆件截面应尽量集中于翼板,但如翼板很厚 而腹板很薄,腹板临界应力远低于翼板临界应力,则截面也不 能很好地整体工作。故《桥规》还要求: 焊接杆件翼板厚

长跨度钢桁梁桥构造及设计分析

长跨度钢桁梁桥构造及设计分析

长跨度钢桁梁桥构造及设计分析随着城市的不断发展,越来越多的人开始关注城市基础设施建设,而桥梁作为交通基础设施建设的重要组成部分之一,一直得到广泛的关注。

在大跨度桥梁中,钢桁梁桥是一种常见的桥梁构造,以其优秀的技术性能和美观的外观备受瞩目。

本文针对长跨度钢桁梁桥的构造和设计进行了深入的分析。

一、长跨度钢桁梁桥的定义及特点长跨度钢桁梁桥通常是指桥梁跨度大于100米的桥梁,跨越的河流、峡谷、湖泊等地形复杂,要求桥梁承载能力高、抗风能力强,同时还要具备美观、经济、施工方便等特点。

钢桁梁桥是一种结构简单、承载能力大、施工效率高的桥梁构造,因此在长跨度桥梁中得到广泛的应用。

长跨度钢桁梁桥的主要特点有以下几个方面:1、承载能力大长跨度钢桁梁桥的设计目标是满足大跨度、大荷载、高速公路等各种复杂条件下的使用要求,因此其承载能力极强,能够承载大量车辆和行人的负荷,承受自然环境带来的各种荷载。

2、施工效率高长跨度钢桁梁桥采用预制钢梁和钢桁架现场拼装的方式进行施工,通过组装各部分钢构件,快速构建整体结构,缩短了施工时间,减少了施工成本,并且还具有更高的安全性和质量保证。

3、美观度高长跨度钢桁梁桥的结构清晰明确,钢材具有良好的自然色彩和近乎完美的表面光洁度,因此该桥梁构造设计美观程度高,能够满足城市建设的美学需要。

二、钢桁梁桥的桥面形式在长跨度钢桁梁桥中,桥面形式多样。

常见的桥面形式有以下几种:1、板梁桥面板梁桥面是钢桁梁桥的常见桥面形式,其采用钢板贯通桁架之间的空隙,构成平面铺装的桥面。

这种设计桥面简单,具有较好的承载能力、防水等性能,但相对美观度来说略逊一筹。

2、空心箱梁桥面空心箱梁桥是由两个面板和若干个纵向和横向分隔墙板组成的具有空心截面的箱形梁,就是将钢桁梁的上下翼缘下沉,面板沿桥坡倾斜连成一个密闭的空膛,以提高钢桁梁的承载力。

这种设计桥面美观度高,施工难度较大,但相对承载能力也稍微优于板梁桥面。

3、桥面板+空心箱梁桥面桥面板+空心箱梁桥是在箱形梁的顶部板面上加装一层钢板作为桥面板的方式,这种桥面设计结构更加复杂,但具有更好的承载能力和美观度。

钢桁架桥分类特点构造及其作用[详细]

钢桁架桥分类特点构造及其作用[详细]
钢桁架桥分类、特点、构造及其作用
分类 特点 构造及其作用 设计计算 制造 架设
钢桥的结构形式
20世纪50~60年代,铁路桥梁多采用上承式简支 钢板梁桥,跨度在20~32m之间。在60年代,从 节约钢材出发,多采用钢筋混凝土与预应力混凝 土梁(跨度不大于32m)
对于较大跨度(l=56~80m),在80年代及其以前, 铁路桥均采用简支或连续钢桁梁桥。所用材料和 连接方式从开始的低碳钢和铆接逐步改为低合金 钢和栓焊连接。有标准设计可供使用。从80年代 中期开始,对于56~96m跨度范围,开始有用混凝 土梁代替钢桁架梁的倾向。
丰富多彩的结构设计
德国莱茵河哈姆大桥
丰富多彩的结构设计
澳大利亚悉尼港大桥(公铁两用)
丰富多彩的结构设计
德国费马海峡大桥
受力特点
桁架的弦杆多受拉,在跨中部分受力比较大,向 支座方向逐步减小;而腹杆的受力主要在支座附 近最大,在跨中部分腹杆的受力比较小,甚至有 理论上的“零杆”。
目前多采用钢桁架配斜拉索的组合结丰富多彩的结构设计丰富多彩的结构设计德国费马海峡大桥德国费马海峡大桥丰富多彩的结构设计丰富多彩的结构设计德国莱茵河哈姆大桥德国莱茵河哈姆大桥丰富多彩的结构设计丰富多彩的结构设计澳大利亚悉尼港大桥公铁两用澳大利亚悉尼港大桥公铁两用丰富多彩的结构设计丰富多彩的结构设计德国费马海峡大桥德国费马海峡大桥受力特点受力特点桁架的弦杆多受拉在跨中部分受力比较大向桁架的弦杆多受拉在跨中部分受力比较大向支座方向逐步减小
钢桥的结构形式和应用
对于更大跨度(l > 96m),目前铁路桥或 公铁两用桥是以连续钢桁架梁为主。
公路钢桥的主要结构型式是悬索桥和斜拉 桥的加劲梁,以及钢拱桥(包括钢管混凝 土拱桥)。
过去公铁两用桥,均采用大跨度钢桁架结 构。目前多采用钢桁架配斜拉索的组合结 合。

特大桥钢桁梁总结汇报

特大桥钢桁梁总结汇报

特大桥钢桁梁总结汇报特大桥钢桁梁是一种用于大型桥梁的结构元件,具有重要的桥梁支撑功能。

本文将总结和汇报特大桥钢桁梁的相关信息,包括其定义、结构特点、应用领域、优缺点以及发展趋势,以期对相关领域的研究和实践提供参考。

特大桥钢桁梁,又称为特大跨径钢结构桥梁,是指跨度大于1000米的桥梁结构。

由于传统的混凝土桥梁在大跨度情况下存在技术难题,特大桥钢桁梁作为一种新型桥梁结构应运而生。

其主要组成部分是桁架结构,由水平和垂直网格构成,通过钢材连接在一起。

桁架结构的设计和施工需要考虑多种因素,如载荷特性、材料强度和桁架梁自身的稳定性等。

特大桥钢桁梁的结构特点主要表现在以下几个方面。

首先,特大桥钢桁梁具有较轻的自重,可以减少对桥基的荷载,从而降低桥梁的建设成本。

其次,桁梁结构的钢材耐腐蚀性能良好,具有长期的使用寿命。

再次,由于桁梁结构的连续性好,具有较高的整体刚度,能够有效地分担荷载,提高桥梁的承载能力。

特大桥钢桁梁的应用领域非常广泛。

首先,它广泛应用于大型公路和铁路桥梁的建设。

特大桥钢桁梁的大跨度特点使得其在跨越宽阔江河和峡谷方面具有独特的优势,可以有效解决传统桥梁结构无法满足的需求。

其次,特大桥钢桁梁也用于建设城市间铁路和城市轨道交通,为城市交通建设提供了可靠的支撑。

此外,特大桥钢桁梁还逐渐应用于一些特殊工程领域,如航空航天和海上大桥等。

然而,特大桥钢桁梁在应用过程中也存在一些问题和挑战。

首先,由于其设计和施工难度较大,需要高水平的技术和工艺支持,增加了桥梁建设的难度和成本。

其次,特大桥钢桁梁需要定期维护和保养,以确保其结构安全和使用寿命。

此外,特大桥钢桁梁的构造形式和尺寸也限制了其在一些特殊环境下的应用,需根据实际情况进行调整和改进。

针对特大桥钢桁梁的发展趋势,可以预测以下几个方向。

首先,随着科学技术和施工工艺的不断发展,特大桥钢桁梁将更加简化和模块化。

其次,钢材的研发和应用将为特大桥钢桁梁提供更多的选择,可以提高结构的强度和稳定性。

钢桁架桥的设计分析与优化综述

钢桁架桥的设计分析与优化综述

桁架桥 … ( T r u s s B i r d g e ) 指的是 以桁架 ( T i l l s S ) 作为 主要承重 叶 , 标 准化钢构桁 架桥 ( s t a n d a r d p l a n t us r s b i r d g e s ) 和大 跨连续 桁
钢桁 架桥开始走进历史舞台。 构件 的 桥 梁。桁 架 桥 是 由 结 构 最 简 单 的桥——梁 式 桥 ( B e a m 架桥陆续 出现 , 桁架桥为空腹结 构 , 因而对 双层 桥面有 很好 的适 应性 , 例如 b i r d g e ) 演 变 而 来 。而 由桁 架 桥 衍 生 出 来 的 桥 梁 类 型 包 括 悬 臂 桥 ( C a n t i l e v e r b i r d g e ) 、 桁架拱桥 ( T r u s s a r c h b i r d g e ) 等, 其在现代桥梁 我 国武汉长江大桥就是双层特 大钢桁梁桥 , 上层 是双 向四车道 的 当渗透 系数 大于 1 . 0×1 0 ~m / s , 小于 1 . 0×1 0 m / s 时, 可选
J 日 J = 6l 2 . 8
4 . 4 施 工 场 地 及 环 境 影 响
土压平衡盾构始发场地 一般 为 3 0 0 0 m ~ 5 0 0 0 m , 始 发需
求空 间相对较小 , 对周边环境影响较小 。 泥水平衡盾构机施 工场地 一般 为 8 0 0 0 m 一1 0 0 0 0 m 。产 生大量泥浆 , 对周边环境影响大 。 泥水平衡盾构需 要较 大的场地 , 且其 产生 的泥浆对 周边 的环 境 污染较大 , 优先选用土压平衡盾构 。
述 了对钢桁架桥进 行结构优 化设 计的一些较为成熟的方法 , 最 后给 出了关于钢桁架桥设计与优化的综合结论 以及展望。

第一章 第二节 钢桁梁桥

第一章 第二节 钢桁梁桥

图11 内插式节点板模型图
c.整体式:该结构形式在节点外拼接,施工方便,受力较 好;但焊接工作量大,且焊接残余变形不易矫正。
图12 整体式节点板
图 13
几 种 典 型 的 整 体 式 节 点
节点构造设计要求:
各杆件重心轴交汇于一点;(避免偏心荷载引起附 加应力)
联结铆钉及高强螺栓数量足够且对称布置,钉群
见下页节点示意图
图6 武汉长江大桥节点构造图
(3)压杆的稳定要求(即板件宽厚比)
压杆中的钢板应该有足够的稳定性,避免板件发生翘曲 而丧失局部稳定。压杆板件的宽厚比在容许值范围内,可 以保证压杆整体失稳前不出现局部失稳现象。
b b
b、δ——分别为板件的宽度和厚度。
(3)
下承式桁架一般不宜小于(1/20~1/17)l;对于上承式桁梁 桥, 主桁间距不宜小于(1/16~1/14)l,l为计算跨径。

我国简支钢桁梁标准设计图式
连续桁梁桥的尺寸确定
• (1)连续桁梁桥通常做成2~3跨,不超过3跨。
∵ 跨径过大,温度位移过大,伸缩缝构造复杂, ∴ 为了避免温度影响过大,使得桥面位置分类
• 上承式、下承式、公铁两用桥
图(c)- (e)为上承式桁架,(d)较少采用,端竖杆要承受较大支承反 力,用料太多。最常用的是(c),小跨径的也可做成(e)。
上承式和下承式钢桁梁桥的选择:
(1)桥下净空不受限制时,采用上承式桁梁桥可以减小桥墩 高度,既经济又安全; (2)当桥下净空受限制时,也常采用下承式桁梁桥。 (3)当建筑高度足够时,中小跨径的桥梁一般都采用上承式 桁梁桥: 上承式桁梁桥在构造方面,尤其是行车部分,要简单; 上承式桁梁桥主桁间距可比下承式的小,从而桥墩和桥台的 宽度可比下承式的小; 上承式美观,行车视野好; 在加固和改建道路时,上承式的要比下承式的容易。

简支钢板梁和钢桁梁桥

简支钢板梁和钢桁梁桥

l 拉伸试验(屈服点、延伸率、抗拉强度)
l 冷弯试验:工艺指标和质量指标
l 冲击试验:夏比(V形缺口)试件,钢桥抗脆断性能
l 疲劳试验 (与构造有关)
On the evening of July 24, 2021
司25
秀0
Courseware template
勇2
:4
桥/ 梁2
力学性能曲线
工/
程5
司21
秀09
Courseware template
勇2
:4 桥/
2、下承式板梁
梁2
工/
程5 概
l 主要承重结构-两片工字截面的板梁
论 第
l 联结系-设下平纵联,无上平纵联和横联,但加设肱板
六 章
l 桥面系-纵梁和横梁
l 桥面-不是搁置在主梁上,而是搁置在纵梁上。
l 特点-建筑高度h(自轨底至梁底)小,用料较多,制造 也费工。
l 钢号-碳素钢(A3,A3q等),现标准:GB700-88
低合金钢(16Mn, 15MnVN 等),现标准:GB/T1591-94
l 钢的工艺要求和使用要求-对钢的化学成分和机械性能的要求
– 化学成分-合金元素:碳、锰、硅等,有害杂质:硫、磷等, 表6-1,对钢的可焊性的一种评估
– 机械(力学)性能
On the evening of July 24, 2021
司2
秀02
Courseware template
勇2
:4
桥/
梁2
公路结合梁桥
工/
程5





On the evening of July 24, 2021

钢桁架桥的结构设计与分析

钢桁架桥的结构设计与分析

钢桁架桥的结构设计与分析1、概述钢桁架桥以其跨越能力强、施工速度快、承载能力强、耐久性好普遍应用于铁路桥梁。

长期以来,由于钢材价格高,材料养护费用高,钢桁架桥梁在公路领域应用较少。

近年来,随着我国炼钢水平的提高,国产的钢材品质已经完全能满足结构安全的需要,同时随着钢结构防腐技术的提高,钢结构桥梁越来越多的在公路工程领域得到应用。

相比较我国当前100m左右中等跨径常用的桥型如连续梁、系杆拱、矮塔斜拉桥等结构,钢桁架桥梁虽然建筑成本高,但刨去成本控制的因素,钢桁架桥具有以下的几点优越性:1.建筑高度低,由于钢桁架结构主桁主要由拉杆和压杆构成,对杆件界面的抗弯刚度要求不大,因此钢桁架的建筑高度由横梁控制,在桥梁宽度不是非常大时可极大的降低桥梁建筑高度,尤其适用于对桥梁建筑高度有严格限制的桥梁;2.施工周期短,速度快。

钢桁架施工可在工厂制作杆件,运到现场拼装成桥,可采用顶推和支架拼装等方法,这使它在很多工期较紧的工程(如重要道路的桥梁改建)和跨越重要道路的跨线桥上成为桥型首选之一;3.随着钢结构防腐技术的提高,钢桁架桥的耐久性大为提高,同时钢材作为延性材料,结构安全性较混凝土桥梁高。

正因为钢桁架桥梁的这几方面的优点,桁架桥梁成为特定条件下的经济而合理的桥型选择。

2、结构设计公路桥位于江苏省境内,正交跨越京杭大运河,河口宽95m,通航净空要求90x7m,桥梁主跨采用97m,由于桥梁中心至桥头平交处距离仅140余米,若采用其他结构纵坡将达到5%以上,经综合考虑,主桥采用97m下承式钢桁架结构。

2.1主桁主桁采用带竖杆的华伦式三角形腹杆体系,节间长度5.35m,主桁高度8m,高跨比为1/12.04。

两片主桁中心距为8.6m,宽跨比为1/11.2,桥面宽度为8m。

图1主桁一般构造图主桁上下弦杆均采用箱形截面,截面宽度500mm,高度均为540mm,板厚20~24mm,工厂焊接,在工地通过高强度螺栓在节点内拼接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈铁路钢桁梁桥摘要:本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。

关键字:铁路钢桁梁桥发展情况整体式节点正交异性板一、前言钢桥由于其材料高强度、高弹性模量而构件相对较轻, 施工比预应力混凝土桥轻盈和方便等特点,大量使用在大中跨度的桥梁上。

其中,钢桁梁桥由桁架杆件组成,尽管整体上看钢桁梁桥以受弯和受剪为主,但具体到每根桁架杆件则主要承受轴向力。

与实腹梁相比是用稀疏的腹杆代替整体的腹板,从而节省钢材和减轻结构自重,又由于腹杆钢材用量比实腹梁的腹板有所减少,钢桁梁可做成较大高度,从而具有较大的刚度及更大的跨越能力。

本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。

二、钢桁梁桥的特点钢桁梁桥综合了钢材和桁架结构的特点:(1)跨越能力大。

由于钢材强度大,在相同的承载能力条件下,与混凝土桥梁相比,钢桥构件的截面较小,所以钢桥自重轻,加大桥梁的跨越能力。

(2)易于修复和更换。

(3)钢桁梁的杆件和节点较多,构造较为复杂,制造较为费工。

(4)钢材易锈蚀,需要定期检查和维护,故养护费用高。

(5)造价较高。

(6)抗压能力强,整体性好。

三、钢桁梁桥的发展情况1894年,我国第一次主持修建钢桁梁桥——滦河大桥,由我国工程师詹天佑主持完成。

其上部结构由多孔钢桁梁和钢板梁组成。

建国以前所建的钢桁梁桥跨度较小,所用的钢材都是进口的,结构都采用铆钉,工艺简陋,建国后,钢桁梁桥技术发展很快。

20世纪60年代中期,为加快铁路建设,在成昆铁路修建中,系统地研究了栓焊钢桁梁桥新技术,一举建成各种不同结构型式的栓焊钢桁梁桥四十几座,结束了在我国使用了近100年的铆接钢桁梁桥的历史,这在我国钢桁梁桥发展史上是一个很大的进步。

其中1966年建成的饮水河大桥主跨112米,为中国第一座栓焊钢桥。

1995年建成通车的孙口黄河大桥位于京九铁路线上,是一座跨越黄河的双线铁路桥,正桥为下承式连续钢桁梁桥,主桁采用三角形钢桁架,标准节间常12m,桁高13.6m,桁宽10m;上、下弦杆和支点处斜杆采用箱型截面,其余腹杆为工字型截面;主桁与节点板焊接成整体在预制厂进行,该桥系中国首次采用整体节点构造。

在建成孙口黄河大桥的基础上,与1999年在长东铁路一桥上游(南)30m处,平行建成了长东铁路二桥,该桥采用三角桁架整体节点栓焊结构,从设计和建造技术上较一桥都有很大改进。

2000年竣工通车的芜湖长江大桥为公铁两用桁架低塔斜拉桥,其主梁首次大规模采用预应力钢筋混凝土桥面板和钢桁架共同受力的板桁组合结构。

芜湖长江大桥以其大规模,新技术和一流的质量,成为中国桥梁史上继武汉、南京、九江长江大桥之后的第四座里程碑。

以上几座桥在我国的经济建设中发挥着巨大作用,在新中国桥梁建设中具有里程碑式的作用。

近年来,为满足铁路运输的需求,有时要求新建铁路桥梁通行能力从双线发展到四线甚至六线。

在我国一些大跨度钢桁体系中开始应用四线三桁或四线双桁的结构形式。

加之空间有限元分析技术的不断完善和施工水平不断提高,也使设计值对大跨度结构的空间受力特性有了明确的认识。

四、钢桁梁桥的施工方法1、钢桁梁桥的传统施工方法和特点1.1走行吊机施工法将主梁部分在工厂或工地附近整孔拼装, 完成工地连接后, 用走行吊机将主梁逐孔起吊, 架设在桥台桥墩之间, 然后再依次安装桥面系、平纵联等。

这个方法在城市高架桥的架设中得到广泛应用, 而且在高水位的河面上架桥, 使用这种方法也很适宜。

1.2门吊施工法在桥梁上方设置门吊, 将组装好的整孔主梁逐孔起吊, 放置在桥墩、台间, 然后依次安装桥面系和平纵联。

1.3浮吊施工法在工厂岸边或桥梁工地附近岸边将整孔桥梁组拼好, 然后用浮吊将其吊起, 并将浮吊拖曳航运至桥位, 将梁在桥台、桥墩上架设就位。

这是在河上或海上架设长大桥时经常使用的一种施工方法。

1.4悬臂施工法用移动式刚腿转臂起重机, 一面拼装, 一面逐渐向前推进。

悬臂法架设钢梁是在桥位上不用临时脚手架支撑, 而是将杆件依次悬拼至另一墩(台)上。

悬拼一孔中未设临时支墩的叫全悬臂拼装。

若在桥孔中设置一个或一个以上的临时支墩的叫半悬臂拼装。

近年来, 悬臂拼装工艺逐步完善。

其特点是不受桥渡水文条件、通航、流水、墩高和季节的限制, 而且其专用辅助结构和辅助设备费用较少。

在悬臂拼装期间, 桥梁施工人员对桥渡区段自然环境的干扰也较少。

以下情况适宜采用悬臂法架设钢梁:跨径大, 桥高, 通航河流水深流急;有流冰或有较多木排的河流;钢梁的结构图式有利于悬臂架设的, 如连续桁梁、悬臂桁梁以及多孔简支桁梁等。

2、传统钢桁梁架设方法在桥梁施工中的应用改进与发展在实际的钢桁梁架设过程中, 仅仅采用以上所介绍的施工方法中的一种是很少见的, 大多数钢桁梁的架设至少同时采用2 种或2 种以上的施工方法。

并且在施工工艺上进行了更符合实际情况的创新与改进, 进而使得社会、经济效益显著。

2.1悬臂施工法目前, 悬臂拼装、半悬臂拼装和双向对称平衡拼装仍是钢桁桥建造的主要方法之一。

近几十年来,国内外许多特大桥都采用这种方法建造。

随着钢桥结构的发展, 悬臂拼装工艺也在逐步完善。

钢桁梁在悬臂架设中, 随着悬臂长度的增大, 伸臂端的下挠度和悬臂支撑处附近的杆件应力将达到最大值, 甚至超过允许范围, 所以降低钢梁架设应力和伸臂端挠度, 保证钢梁架设时的稳定性, 是悬臂架设法中的主要问题。

为了减少桁架内力和伸臂端挠度, 在伸臂前方桥墩处伸出支撑托架(或称墩旁托架),使伸臂接近前方桥墩时, 提前得到支撑。

2.2浮托施工法半浮半拖的架设方法, 此法取浮运施工法和纵向拖拉施工法2 种施工方法的优点, 针对工程实际情况, 经过变通的行之有效的施工方法。

半浮半拖施工法是在浮船上建立临时支墩, 用卷扬机和导链牵引拖拉架梁, 主要适合水深速缓、通航情况一般的情形, 并且可以避免钢梁悬臂太长和危险性大。

与拖拉架设相比, 浮拖架设只需增加1 个浮墩, 使钢梁两支点受力既保证钢梁的稳定性, 又易控制挠度和应力变化, 而浮拖所用的器材易拼装、易控制、占用河道面积小、时间短、操作起来安全便捷。

在钢桁梁桥架设过程中, 越来越多的架设方法可供人们选择。

通过查阅参考国内外有关文献, 对钢桁梁架设施工方法及其发展情况做以总结, 可以预见,现代钢桁梁桥的施工, 在传统施工方法的基础上, 力求新工艺和新技术, 不断进行优化改进, 使得钢桁梁桥的架设施工方法不断进步发展。

五、整体节点5.1整体节点在钢桥中的应用钢桥整体节点作为近年来出现的新型构造,在大跨度桥梁中得到了广泛的应用。

整体节点是以栓为主向以焊为主,继而向全焊接发展的重要技术过渡,它一改从前利用大量螺栓连接钢梁的做法,而是改用焊接技术来连接钢节点,提高了钢梁工业化制造过程,方便了工地安装,改善了工地工作条件。

它有整体性好,节省钢材和高强度、造型美观、方便工地安装、提高钢梁工厂化制造程度等优点,在我国近年来修建的很多大桥中得到了应用。

据统计,采用整体节点较普通栓焊结构钢梁节省高强度螺栓达34%,从而获得了较好的经济效益,使我国的钢桥建造技术提高到一个新的水平。

因此,采用整体节点已成为大跨度钢桁梁桥的发展趋势。

5.2钢桥整体节点的强度问题钢桥的整体节点汇交的杆件众多、构造复杂、受力很大,处于典型的空间复杂受力状态,节点的承载安全性是桥梁结构整体安全性的关键。

目前常规的钢桥节点设计规范对于这种大型复杂的整体节点并不适用,对于这种大型节点的疲劳和静力承载力分析设计规范也没有规定。

更重要的是,钢桥的整体节点为焊接结构,焊缝密集,既有对接焊缝,又有棱角焊缝和角焊缝。

对于采用整体节点的大跨度钢桁梁桥,因其承受较大的动荷载作用,与整体节点密切相关的焊接材料、焊接工艺、各种焊接接头、交叉焊缝、杆件节点外拼接接头等细节的疲劳强度,以及整体节点的疲劳强度控制结构设计。

对于它的疲劳性能的研究目前还处于起步阶段,由于引起节点疲劳破坏的因素很多,而空间有限元等理论分析难以准确把握节点的实际受力情况和它的疲劳承载力。

故目前在工程中,为了保证大桥运营安全可靠,结构设计经济合理,对于这种整体节点大多都要结合实际情况进行验证性的静载和疲劳性能的试验研究。

此外,对这一新型构造的静载和疲劳性能也有必要做深入的研究。

5.3整体节点的静力承载力和疲劳承载力国内对整体节点的静力和疲劳承载力正处于发展阶段,从目前的试验研究来看,只要整体节点的构造设计地合理,一般能满足静力和疲劳承载力要求。

六、正交异性板6.1正交异性板的发展近年来,由于高速铁路发展的需要,出现了多种新桥型,如斜拉桥、钢桁拱桥、钢箱系杆拱桥,出于减震、降噪、结构受力和耐久性的需要,钢桥桥面系也开始采用混凝土面板、正交异性板方案。

其中,正交异性板钢桥面具有整体性能好、结构高度低、自重轻、承载能力大、施工周期短、行车舒适性能好等优点,半个多世纪以来渐渐地被广泛地应用于日本、欧洲各国及美国等国家中大跨度及超大跨度钢结构桥梁的建设。

6.2正交异性板的受力问题正交异性板越来越多地应用于我国高速铁路桥梁上,一系列的问题也渐渐涌现出来。

正交异性板纵梁的设置及其与横梁的连接构造细节目前业界有较大的争议。

部分设计人员认为轨下设置纵梁对桥面整体受力有帮助。

部分专家认为纵梁宜小不宜大,甚至可不设纵梁,以免纵、横梁交界处横梁腹板产生应力集中,引起疲劳开裂。

国内为许多科研机构和学者都对正交性板的受力特点、计算方法、结构形式等做了许多的研究,但绝大多都集中在公路桥梁上了。

高速铁路桥梁不管是行驶速度、列车荷载,还是对桥梁桥面的冲击力等均远远超过了公路桥梁。

因此,对于正交异性板的各种性能,高速铁路桥梁有了更多更高的要求。

尽管今年来已建和在建或正在设计中的正交异性板整体桥面的铁路桥梁较多,但总体来说,还缺少系统的研究,缺少时间的考研,桥面系的结构体系总类较多,构造细节差异较大,目前尚无标准。

七、结语钢桁梁桥结合了钢材和桁架结构的优点,广泛应用于大中跨桥梁及超大跨桥梁中。

且在钢桁梁桥架设过程中, 越来越多的架设方法可供人们选择。

通过查阅参考国内外有关文献, 对钢桁梁架设施工方法及其发展情况做以总结, 可以预见, 现代钢桁梁桥的施工, 在传统施工方法的基础上, 力求新工艺和新技术, 不断进行优化改进, 使得钢桁梁桥的架设施工方法不断进步发展。

并且,整体节点和正交异性板整体桥面的应用,提高了钢桁梁桥整体性、承载能力,减轻了桥梁自重。

然而整体节点和正交异性板的研究正处于发展阶段,对于它们的受力特点、计算方法等尚无统一标准。

相关文档
最新文档