八年级数学考试卷及答案

合集下载

人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列四个图案中,是轴对称图形的是()A .B .C .D .2.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是()A .1∶2∶4B .2∶3∶4C .3∶4∶7D .1∶3∶43.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 4.下列运算中,正确的是()A .22a a a ⋅=B .224()a a =C .236a a a ⋅=D .2323()a b a b =⋅5.如图,点P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,垂足为D ,若PD =2,则点P 到边OB 的距离是()A .4B C .2D .16.若分式13x +有意义,则x 的取值范围是()A .x >3B .x <3C .x ≠-3D .x =37.如图,在△ABC 中,∠A =80°,∠C =60°,则外角∠ABD 的度数是()A .100°B .120°C .140°D .160°8.下列各式是完全平方式的是()A .214x x -+B .21x +C .22x xy y -+D .221a a +-9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④B.②③④C.①③④D.①②③二、填空题11.点()2,1M-关于y轴的对称点的坐标为______.12.如果多边形的每个内角都等于150︒,则它的边数为______.13.如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是_____cm.14.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=_____.15.已知13aa+=,则221+=aa_____________________;16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.三、解答题17.解方程:21133xx x-=---.18.先化简,再求值:(3x+2)(3x﹣2)﹣10x(x﹣1)+(x﹣1)2,其中x=﹣1.19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.21.甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?22.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.23.如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.24.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?25.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?参考答案1.C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项进行判断找出不是轴对称图形即可.【详解】A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选:C .【点睛】考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析求解.【详解】A 、1+2<4,不能组成三角形;B 、2+3>4,能组成三角形;C 、3+4=7,不能够组成三角形;D 、1+3=4,不能组成三角形.故选B .【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法4.B【解析】【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A 选项:23a a a ⋅=,故是错误的;B选项:()224a a=,故是正确的;C选项:235a a a⋅=,故是错误的;D选项:()3243=⋅,故是错误的;a b a b故选:B.【点睛】考查了同底数幂乘法和幂的乘方,解题关键是运用了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.5.C【分析】根据角平分线的性质解答.【详解】解:如图,作PE⊥OB于E,∵点P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2,故选C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C【解析】【分析】考查分式有意义的条件:分母≠0,即x+3≠0,解得x的取值范围.【详解】∵x+3≠0,∴x≠-3.故选:C.考查的是分式有意义的条件:当分母不为0时,分式有意义.7.C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,∠ABD=∠A+∠C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.A【解析】【分析】根据完全平方式(a2+2ab+b2和a2-2ab+b2)进行判断.【详解】A、是完全平方式,故本选项正确;B、不是完全平方式,故本选项错误;C、不是完全平方式,故本选项错误;D、不是完全平方式,故本选项错误;故选:A.【点睛】考查了对完全平方式的应用,主要考查学生的判断能力.9.D【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.11.()2,1【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.12.12【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n =360°÷30°=12.故答案为12.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.13.7【解析】【分析】根据△ABC ≌△DCB 可证明△AOB ≌△DOC ,从而根据已知线段即可求出OC 的长.【详解】∵△ABC ≌△DCB ,∴AB=DC ,∠A=∠D ,又∵∠AOB=∠DOC (对顶角相等),∴△AOB ≌△DOC ,∴OC=BO=BD-DO=AC-DO=7.故答案是:7.【点睛】考查了全等三角形的性质解题的关键是注意掌握全等三角形的对应边相等,注意对应关系.14.15°.【分析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE =∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD ,∠BDE =∠ADE ,∵∠ADE =40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB =AC ,∴∠ABC=150652︒-︒=︒,∴∠DBC =∠ABC-∠ABD=15︒.故答案为15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.15.7【分析】把已知条件平方,然后求出所要求式子的值.【详解】∵13a a +=,∴219a a ⎛⎫+= ⎪⎝⎭,∴2212+a a +=9,∴221+=a a =7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.16.240°【详解】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.17.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21133x x x -=---2-x=x-3-1-2x=-3-1-2x=3当x=3时,x-3=0,所以原分式方程无解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.8x -3,-11【解析】【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【详解】原式=9x 2-4-10x 2+10x+x 2+1-2x=8x-3当x=-1时,原式=-8-3=-11.【点睛】考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握运算法则是解本题的关键.19.见解析【分析】先作CD的垂直平分线和∠AOB的平分线,它们的交点为P点,则根据线段垂直平分线的性质和角平分线的性质得到PC=PD,且P到∠AOB两边的距离相等.【详解】解:如图,点P为所作.【点睛】本复考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.50°【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【详解】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.【点睛】此题主要考查了平行线的性质,邻补角的定义,三角形内角和定理,求出∠CBD=70°是解本题的关键.21.甲需8天,乙需4天【解析】【分析】根据乙队先单独做1天后,再由两队合作2天就完成了全部工程则等量关系为:乙一天的工作量+甲乙合作2天的工作量=1,再设未知数列方程,解方程即可.【详解】设乙队单独完成所需天数x天,则甲队单独完成需2x天,1112(1++=2x x x解得:x=4,当x=4时,分式方程有意义,所以x=4是分式方程的解,所以甲、乙两队单独完成工程各需8天和4天.答:甲、乙两队单独完成工程各需8天和4天.【点睛】考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.证明见解析【详解】试题分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.试题解析:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D.∴∠ABC=2∠D.又∵∠C=∠ABC,∴∠C=2∠D.23.(1)见解析;(2)6【分析】(1)根据DB ⊥BC ,CF ⊥AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明△DBC ≌△ECA ,即可得证;(2)由(1)可得△DBC ≌△ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案.【详解】证明:(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△DBC ≌△ECA (AAS ).∴AE =CD ;(2)由(1)可得△DBC ≌△ECA∴CE=BD ,∵BC=AC=12cm AE 是BC 的中线,∴162CE BC cm ==,∴BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC ≌△ECA 解题关键.24.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+ ,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.25.(1)全等;(2)当点Q 的运动速度为54厘米/秒时,能够使△BPD 与△CQP 全等.【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度.【详解】(1)因为t =3秒,所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点,所以BD =5厘米.又因为PC =BC BP -,BC =8厘米,所以PC =835-=(厘米),所以PC =BD .因为AB =AC ,所以∠B=∠C,所以△BPD≌△CQP(SAS).(2)因为P v≠Q v,所以BP≠CQ,当△BPD≌△CPQ时,因为∠B=∠C,AB=10厘米,BC=8厘米,所以BP=PC=4厘米,CQ=BD=5厘米,所以点P,点Q运动的时间为4秒,所以54Qv 厘米/秒,即当点Q的运动速度为54厘米/秒时,能够使△BPD与△CQP全等.【点睛】考查了全等三角形的判定,等腰三角形的性质.解题时,主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。

人教版数学八年级上册期末考试试卷有答案

人教版数学八年级上册期末考试试卷有答案

人教版数学八年级上册期末考试试题一、单选题(本大题共16小题,共48分)1.若一个三角形的两边长分别是3和4,则第三边的长可能是A.8B.7C.2D.12.下列图形中具有不稳定性的是( )A.长方形B.等腰三角形C.直角三角形D.锐角三角形3.如图,平移ΔABC得到ΔDEF,若∠DEF=35°,∠ACB=50°,则∠A的度数是A.65°B.75°C.95°D.105°4.探究多边形的内角和时,需要把多边形分割成若干个三角形.在分割六边形时,所分三角形的个数不可能的是A.3个B.4个C.5个D.6个5.如图,在RtΔABC中,∠ABC=90°,BD是高,E是ΔABC外一点,BE=BA,∠E=∠C,若DE=23BD,AD=95,BD=125,则ΔBDE的面积为A.2725B.1825C.3625D.54256.剪纸是我国古老的民间艺术.下列四个剪纸图案为轴对称图形的是A. B. C. D.7.如图,在等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,若∠BEC= 90°,则∠ACE的度数A.60°B.45°C.30°D.15°8.下列式子不能用“两数和乘以这两数差的公式”计算的是A.(3b−a)(3b+a)B.(3b−a)(−3b−a)C.(3b−a)(6b+2a)D.(3b−a)(a−3b)9.下列多项式相乘,能用平方差公式计算的是A.(5x+2y)(3x−2y)B.(2x−y)(2x+y)C.(−m+n)(m−n)D.(a−2b)(2a+b)10.如图是小明的作业,那么小明做对的题数为A.2B.3C.4D.511.下列从左边到右边的变形中,是因式分解的是A.a2−9=(a−3)(a+3)B.(x−y)2=x2−y2C.x2−4+4x=(x+2)(x−2)+4xD.x2+3x+1=x(x+3+1x)12.如果多项式x2−5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是A.2B.3C.4D.513.下列分式中属于最简分式的是( )A.x+2y+2B.1−x2x−2C.2x+2y6x−6yD.x2−9x+314.如果把分式2x2−3y2x−y中的x和y的值都变为原来的2倍,那么分式的值A.不变B.缩小为原来的12C.变为原来的2倍D.变为原来的4倍15.假期正是读书的好时候,小颖同学到重庆图书馆借了一本书,共280页,要在两周借期内读完,当她读了一半时,发现平均每天要多读21页才能在借期内读完,她读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是A.140x+140x−21=14B.280x+280x+21=14C.140140101016.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是A.40×1.25x−40x=800 B.800x−8002.25x=40C.800x−8001.25x=40D.8001.25x−800x=40二、填空题(本大题共6小题,共18分)17.一个正多边形的每个内角都等于120°,那么它的内角和是______.18.如图,BD是ΔABC的角平分线,DE⊥AB于点E.ΔABC的面积为20,AB=12,BC=8,则DE的长为______.19.两位同学将同一个二次三项式进行因式分解时,一位同学因看错了一次项系数而分解成(x−1)(x−9);另一位同学因看错了常数项而分解成(x−2)(x−4),则原多项式因式分解的正确结果是:______.20.如图,在ΔABC中,BC边的垂直平分线交BC于D,交AB于E.若CE平分∠ACB,∠B=42°,则∠A=______.21.某校九年级学生去距学校6千米的地铁站参观,一部分同学们步行先走,过了40分钟后,其余学生乘坐公共汽车出发,结果他们同时到达,已知公共汽车的速度的步行学生速度的3倍,求步行学生的速度.若设步行学生的速度为x km/h,则可列方程______.22.化简:(1x−4−8x2−16)⋅(x+4)=______.三、计算、画图、解答题(本大题共6小题,共48分)23.如图,∠B=∠E,BF=EC,AB=DE.求证:AC//DF.24.在如图所示的网格(每个小正方形的边长为1)中,ΔABC的顶点A的坐标为(−2,1),顶点B的坐标为(−1,2). (1)在网格图中画出两条坐标轴,并标出坐标原点; (2)作ΔA'B'C'关于x轴对称的图形ΔA''B''C''; (3)求ΔABB''的面积.25.因式分解(1)3a2−6ab+3b2. (2)m2(m−2)+4(2−m).26.先化简再求值: (1)y(x+y)+(x+y)(x−y)−x2,其中x=−2,y=12. 27.(2)2(a−3)(a+2)−(3+a)(3−a),其中a=−2.27.已知分式y−a y+b,当y=−3时无意义,当y=2时分式的值为0,求当y=−7时分式的值.28.为庆祝建党100周年,学校组织初二学生乘车前往距学校132千米的某革命根据地参观学习.二班因事耽搁,比一班晚半小时出发,为了赶上一班,平均车速是一班平均车速的1.2倍,结果和一班同时到达.求一班的平均车速是多少千米/时?答案和解析1.【答案】C;【解析】解:设第三边长x. 根据三角形的三边关系,得1<x<7. 故选:C. 根据三角形的三边关系求得第三边的取值范围解答即可. 此题主要考查三角形三边关系的知识点,此题比较简单,注意三角形的三边关系.2.【答案】A;【解析】解:等腰三角形,直角三角形,锐角三角形都具有稳定性, 长方形不具有稳定性. 故选:A. 根据三角形具有稳定性解答. 此题主要考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用.3.【答案】C;【解析】解:∵平移ΔABC得到ΔDEF,∠DEF=35°, ∴∠B=∠DEF=35°, ∵∠ACB=50°, ∴∠A=180°−∠B−∠ACB=95°. 故选:C. 由平移的性质可得∠B=∠DEF=35°,从而利用三角形的内角和定理即可求∠A的度数. 此题主要考查三角形的内角和定理,平移的性质,解答的关键是由平移的性质得到∠B=∠DEF.4.【答案】A;【解析】解:分割六边形,可以从一顶点连接对角线,分割成四个三角形,如图1; 可以在某条边上任取一点,连接这点和各顶点,分割成五个三角形,如图2; 可以在六边形内取任取一点,连接这点和各顶点,分割成六个三角形,如图3. 故选:A. 分割六边形,可以从一顶点连接对角线,分割成四个三角形;可以在某条边上任取一点,连接这点和各顶点,分割成五个三角形;可以在六边形内取任取一点,连接这点和各顶点,分割成六个三角形. 此题主要考查了多边形内角和问题,解题关键是把多边形分割成若干三角形来研究.5.【答案】C;【解析】解:∵∠ABD=∠C=∠E,,AB=BE, 在BD上截取BF=DE, 在ΔABF与ΔBED中, AB=BE∠ABD=∠EBF=DE, ∴ΔABF≌ΔBED(SAS), ∴SΔBDE=SΔABF. ∴SΔABD=12BD⋅AD=12⋅125⋅95=5425. ∵DE=23BD, ∴BF=23BD, ∴SΔABF=23SΔABD=3625, ∴SΔBDE=3625. 故选:C. 根据SAS证明ΔABF与ΔBED全等,进而利用全等三角形的性质解答即可. 此题主要考查全等三角形的判定和性质,关键是根据SAS证明ΔABF与ΔBED全等.6.【答案】C;【解析】解:A、不是轴对称图形,本选项不符合题意; B、不是轴对称图形,本选项不符合题意; C、是轴对称图形,本选项符合题意; D、不是轴对称图形,本选项不符合题意. 故选:C. 根据轴对称图形的概念求解即可. 此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,7.【答案】D;【解析】解:∵等边三角形ABC中,AD⊥BC, ∴BD=CD,即:AD是BC的垂直平分线, ∴BE=CE, ∴∠EBC=∠ECB, ∵∠BEC=90°, ∴∠EBC=∠ECB=45°, ∵ΔABC是等边三角形, ∴∠ACB=60°, ∴∠ACE=∠ACB−∠ECB=15°, 故选:D. 先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论. 此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.8.【答案】D;【解析】解:A、(3b−a)(3b+a)=(3b)2−a2,故A不符合题意; B、(3b−a)(−3b−a)=−(3b−a)(3b+a)=−[(3b)2−a2],故B不符合题意; C、(3b−a)(6b+2a)=2(3b−a)(3b+a)=2[(3b)2−a2],故C不符合题意; D、(3b−a)(a−3b)=−(a−3b)(a−3b)=−(a−3b)2,故D符合题意; 故选:D. 根据平方差公式进行分析求解即可. 此题主要考查整式的混合运算,解答的关键是对平方差公式的掌握与应用.9.【答案】B;【解析】解:A、原式=15x2−10xy+6xy−4y2=15x2−4xy−4y2,不符合题意; B、原式=4x2−y2,符合题意; C、原式=−(m−n)2=−(m2−2mn+n2)=−m2+2mn−n2,不符合题意; D、原式=2a2+ab−4ab−2b2=2a2−3ab−2b2,不符合题意. 故选:B. 利用平方差公式的结构特征判断即可. 此题主要考查了平方差公式,熟练掌握平方差公式的结构特征是解本题的关键.10.【答案】A;【解析】解:(1)∵a m=3,a n=7, ∴a m+n=a m⋅a n=3×7=21,本小题正确; (2)原式=(−0.125)2020×82020×8 =(−0.125×8)2020×8 =(−1)2020×8 =1×8 =8,本小题正确; (3)原式=2a2b÷ab−ab÷ab (4)原式=(−2)3⋅a3 =−8a3,本小题错误; (5)原式=2x2+x−6x−3 =2x2−5x−3,本小题错误, 则小明做对的题数为2. 故选:A. (1)利用同底数幂的乘法法则计算得到结果,即可作出判断; (2)原式变形后,逆用积的乘方运算法则计算得到结果,即可作出判断; (3)原式利用多项式除以单项式法则计算得到结果,即可作出判断; (4)原式利用积的乘方运算法则计算得到结果,即可作出判断; (5)原式利用多项式乘多项式法则计算,合并得到结果,即可作出判断. 此题主要考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.11.【答案】A;【解析】解:A、符合因式分解的定义,故本选项符合题意; B、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意; C、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意; D、右边不是整式的积的形式(含有分式),不符合因式分解的定义,故本选项不符合题意. 故选:A. 多项式的因式分解是将多项式变形为几个整式的乘积形式,由此解答即可. 此题主要考查因式分解的定义.解答该题的关键是掌握因式分解的定义,属于基础题型.12.【答案】C;【解析】解:当c=4时, x2−5x+c =x2−5x+4 =(x−1)(x−4). 故选:C. ∵4=−1×(−4),−1+(−4)=−5,∴可以用十字相乘法因式分解. 此题主要考查了因式分解−十字相乘法,熟练掌握十字相乘法分解因式的方法是解题关键.13.【答案】A;【解析】解:A、x+2y+2是最简分式,故本选项符合题意; B、原式=−12,不是最简分式,故本选项不符合题意; C、原式=x+y3x−3y,不是最简分式,故本选项不符合题意; D、原式=x−3,该式子不是最简分式,故本选项不符合题意; 故选:A. 最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分. 此题主要考查了分式的基本性质和最简分式,能熟记分式的化简过程是解此题的关键,首先要把分子分母分解因式,然后进行约分.14.【答案】C;【解析】解:∵2.(2x)2−3.(2y)22x−2y=8x2−12y22x−2y=4(2x2−3y2)2(x−y)=2(2x2−3y2)x−y, ∴把分式2x2−3y2x−y中的x和y的值都变为原来的2倍,则分式的值变为原来的2倍. 故选:C. 根据分式的基本性质解决此题. 此题主要考查分式的基本性质,熟练掌握分式的基本性质是解决本题的关键.15.【答案】C;【解析】解:读前一半用的时间为:140x, 读后一半用的时间为:140x+21. 由题意得,140x+140x+21=14, 故选:C. 设读前一半时,平均每天读x页,关键描述语为:“在两周借期内读完”;等量关系为:读前一半用的时间+读后一半用的时间=14,据此列方程即可. 此题主要考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.16.【答案】C;【解析】解:小进跑800米用的时间为8001.25x秒,小俊跑800米用的时间为800x秒, ∵小进比小俊少用了40秒, 方程是800x−8001.25x=40, 故选:C. 先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可. 该题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.17.【答案】720°;【解析】解:设所求正多边形边数为n, ∵正n边形的每个内角都等于120°, ∴正n边形的每个外角都等于180°−120°=60°. 又因为多边形的外角和为360°, 即60°⋅n=360°, ∴n=6. 所以这个正多边形是正六边形. 所以内角和是120°×6=720°. 故答案为:720°. 设所求正多边形边数为n,根据内角与外角互为邻补角,可以求出外角的度数.根据任何多边形的外角和都是360度,由60°⋅n=360°,求解即可. 此题主要考查了多边形内角和外角的知识,解答本题的关键在于熟练掌握任何多边形的外角和都是360°并根据外角和求出正多边形的边数.18.【答案】2;【解析】解:作DF⊥BC于F, ∵BD是ΔABC的角平分线,DE⊥AB,DF⊥BC, ∴DF=DE, ∴12×AB×DE+12×BC×DF=20,即12×12×DE+12×8×DF=20, ∴DF=DE=2. 故答案为:2. 作DF⊥BC于F,根据角平分线的性质得到DF=DE,根据三角形面积公式计算即可. 此题主要考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解答该题的关键.19.【答案】(x-3)2;【解析】解:根据题意得:(x−1)(x−9)=x2−10x+9,(x−2)(x−4)=x2−6x+ 8, 原多项式为x2−6x+9=(x−3)2. 故答案为:(x−3)2. 根据两位同学的结果确定出原多项式,分解即可. 此题主要考查了因式分解−十字相乘法,熟练掌握因式分解的方法是解本题的关键.20.【答案】54°;【解析】解:∵E在线段BC的垂直平分线上, ∴BE=CE, ∵CE平分∠ACB, ∴∠ACD=2∠ECB=84°, 又∵∠A+∠B+∠ACB=180°, ∴∠A=180°−∠B−∠ACB=54°, 故答案为:54°. 由线段垂直平分线和角平分线的定义可得∠B=∠ECB=∠ACE=40°,在ΔABC中由三角形内角和定理可求得∠A. 此题主要考查线段垂直平分线的性质,掌握垂直平分线上的点到线段两端点的距离相等是解答该题的关键.21.【答案】6x−63x=23;【解析】解:设步行学生的速度为x km/h,则汽车的速度为3x km/h, 由题意得,6x−63x=23, 故答案为:6x−63x=23. 表示出汽车的速度,然后根据汽车行驶的时间等于步行行驶的时间减去时间差列方程即可. 此题主要考查了实际问题抽象出分式方程,读懂题目信息,理解两种行驶方式的时间的关系是解答该题的关键.22.【答案】1;【解析】解:(1x−4−8x2−16)⋅(x+4) =x+4−8(x+4)(x−4)⋅(x+4) =x−4(x+4)(x−4)⋅(x+4) =1, 故答案为:1. 先根据分式的减法法则算减法,再算乘法即可. 此题主要考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.23.【答案】证明:∵BF=EC, ∴BF+CF=EC+CF, ∴BC=EF, 在△ABC和△DEF中, BC=EF∠B=∠EAB=DE, ∴△ABC≌△DEF(SAS), ∴∠ACB=∠DFE, ∴AC∥DF.;【解析】 证明ΔABC≌ΔDEF(SAS),由全等三角形的性质得出∠ACB=∠DFE,由平行线的判定可得出结论. 此题主要考查了全等三角形的判定与性质、平行线的判定.解答该题的关键是证明ΔABC≌ΔDEF.24.【答案】解:(1)如图,平面直角坐标系如图所示: (2)如图,△A″B″C″即为所求; =3×4-12×1×1-12×3×3-12×2×4=3. (3)S△ABB″;【解析】 (1)根据A,B两点坐标确定平面直角坐标系即可; (2)利用轴对称的性质分别作出A',B',C'的对应点A'',B'',C''即可; (3)把三角形面积看成矩形面积减去周围三个三角形面积即可. 此题主要考查作图−轴对称变换,三角形的面积等知识,解答该题的关键是掌握轴对称变换的性质,学会用分割法求三角形面积.25.【答案】解:(1)原式=3(a2-2ab+b2) =3(a-b)2; (2)原式=m2(m-2)-4(m-2) =(m-2)(m2-4) =(m-2)(m-2)(m+2) =(m-2)2(m+2).;【解析】 (1)先提公因式3,再利用完全平方公式即可进行因式分解; (2)先提公因式(m−2),再利用平方差公式进行因式分解即可. 此题主要考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是解决问题的关键.26.【答案】解:(1)原式=xy+y2+x2-y2-x2 =xy, 当x=-2,y=12时, 原式=-2×12=-1; (2)原式=2(a2+2a-3a-6)-(9-a2) =2a2-2a-12-9+a2 =a2-2a-21, 当a=-2时,原式=(-2)2-2×(-2)-21 =4+4-21 =-13.;【解析】 (1)直接利用单项式乘多项式以及平方差公式化简,再合并同类项,最后把已知数据代入得出答案; (2)直接利用多项式乘多项式以及平方差公式化简,再合并同类项,最后把已知数据代入得出答案. 此题主要考查了整式的混合运算−化简求值,正确运用乘法公式计算是解题关键.27.【答案】解:∵当y=-3时无意义, ∴-3+b=0, ∴b=3. ∵当y=2时分式的值为0, ∴2-a=0,2+3≠0, ∴a=2. ∴该分式为y−2y+3, 当x=-7时, y−2y+3 =−7−2−7+3 =−9−4 =94. 答:当x=-7时分式的值为94.;【解析】 分式无意义的条件是分母等于0,分式等于0的条件是分子等于0,且分母不等于0. 此题主要考查分式无意义的条件和分式值为0的条件,解题时注意分式为0的条件是分子等于0,且分母不等于0.28.【答案】解:设一班的平均车速是x千米/时,则二班的平均车速是1.2x千米/时, 依题意得:132x-1321.2x=12, 解得:x=44, 经检验,x=44是原方程的解,且符合题意. 答:一班的平均车速是44千米/时.;【解析】 设一班的平均车速是x千米/时,则二班的平均车速是1.2x千米/时,利用时间=路程÷速度,结合二班比一班少用半小时,即可得出关于x的分式方程,解之经检验后即可得出一班的平均车速. 此题主要考查了分式方程的应用,找准等量关系,正确列出分式方程是解答该题的关键.。

八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。

13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。

2023—2024学年度下学期济南市八年级期末考试数学试卷及参考答案

2023—2024学年度下学期济南市八年级期末考试数学试卷及参考答案

2023—2024学年度下学期八年级数学学科参考答案及评分标准一、选择题(每小题3分,共计30分)二、填空题(每小题3分,共计30分)三、解答题(其中21题6分,22-24题各8分,25-27题各10分,共计60分)21.(本题6分)解:22231x x x -+=+22410x x -+=......................................................................1分241a b c ==-=,,224(4)b ac D =-=--4×2×1=8>0.....................................................2分方程有两个不等的实数根................................2分即12222222x x +-==,........................................................1分22.(本题8分)解:(1)如图1,正确画图(答案不唯一)...................................................4分(2)如图2,正确画图....................................................................4分12345678910ABBBCDCDAC题号1112131415答案x≠2-18x≥223题号1617181920答案5.8205±12②③(第22题答案图1)(第22题答案图2)23.(本题8分)解:(1)14.5.............................................................................2分+分(2)∠BCD 是直角,理由:连接BD.由勾股定理得,2222420BC =+=,222125CD =+=,2223425BD =+=......................................................................1分∴22220525BC CD BD +=+==.........................................................2分∴∠BCD 是直角...........................................................................1分24.(本题8分)解:(1)设(0)y kx b k =+≠根据题意,得0.2200.2822k b k b +=⎧⎨+=⎩...............................................................2分解得2515k b =⎧⎨=⎩.............................................................................2分2515y x ∴=+............................................................................1分(2)当0.3x m =时,250.31522.5()y m =⨯+=................................................2分∴当这种树的胸径为0.3m 时,其树高为22.5m ................................................1分25.(本题10分)解:(1)450.............................................................................2分6750....................................................................................2分(2)设销售单价定位x 元时,利润为8000元.根据题意,得[](40)50010(50)8000x x ---=.................................................2分解得126080x x ,==......................................................................1分当x=60时,销售量为500-10(60-50)=400(套),成本为400×40=16000>10000...................1分当x=80时,销售量为500-10(80-50)=200(套),成本为200×40=8000<10000....................1分∴x=80答:月销售成本不超过10000元的情况下,该商品的销售单价应定为每套80元可使月销售利润达到8000元......................................................................................1分26.(本题10分)解:(1)①∠DEF 的大小不发生变化,∠DEF=90°............................................1分理由:如图1,作EG⊥AB,EH⊥AD,垂足分别为点G、H.∵四边形ABCD 是正方形∴∠DAB=90°,∠BAC=∠DAC=12∠DAB=45°,AC⊥BD ∴EG=EH又∵EF=DE∴Rt△EFG≌Rt△EDH.............................................1分∴AG=AH,∠FEG=∠DEH 在四边形AGEH 中,∠GEH=360°-90°-90°-90°=90°∴∠DEF=∠DEH+∠FEH=∠FEG+∠FEH=∠GEH=90°..............................................1分∴∠DEF 的大小不发生变化,∠DEF=90°②AF=2OE..............................................................................1分理由:如图1,令AG=m,OE=2n ,则AH=m.在Rt△AEH 中∵∠AEH=90°-∠EAH=90°-45°=45°=∠EAH∴EH=AH=m∴22222AE AH EH m m m =+=+=.....................................................1分∴OA=AE+OE=222()m n m n +=+同理:在Rt△OAD 中,22()2()AD m n m n =⨯+=+∴DH=AD-AH=2(m+n)-m=m+2n=FG ∴AF=FG-AG=m+2n-m=2n∴AF=2OE......................1分(2)AF=CE理由:如图2,作EM⊥AB,EN⊥AD,垂足分别为点M、N.令AM=a,OE=b.∵四边形ABCD 是菱形∴AB=BC=AD ,∠BAC=∠DAC,AC⊥BD,AC=2OA......................1分∴EM=EN 又∵EF=DE∴Rt△EFM≌Rt△EDN.............................................1分∴FM=DN∵AB=BC,∠ABC=60°∴△ABC 为等边三角形∴∠DAC=∠BAC=60°,AC=AB∵∠EAM=∠EAN,∠EMA=∠ENA=90°,AE=AE ∴△AEM≌Rt△AEN∴AN=AM=a在Rt△AEN 中∵∠AEN=90°-∠EAN=90°-60°=30°∴AE=2AN=2a...........................1分∴OA=AE+OE=2a+b ∴AC=2OA=4a+2b=AD∴CE=AC-AE=4a+2b-2a=2a+2b∵FM=DN=AD-AN=4a+2b-a=3a+2b ∴AF=FM-AM=3a+2b-a=2a+2b=CE.............................1分27.(本题10分)解:(1)y=3x+3当x=0时,y=3×0+3=3∴C(0,3)当y=0时,0=3x+3∴x=-1∴B(-1,0)..........................................1分∴OB=1∴OA=3×1=3∴A(3,0)设直线AC 解析式为y=kx+b∴303bk b=⎧⎨=+⎩解得13k b =-⎧⎨=⎩(第26题答案图1)(第26题答案图2)∴直线AC 的解析式为y=-x+3...............................................................1分(2)如图1,∵点D 是线段AC 上一个动点,且横坐标为t∴D(t,-t+3)过点D 作DK⊥x 轴于K,则DK=-t+3..........................................................1分∵A(3,0),B(-1,0)∴AB=3-(-1)=4∴12ABC ABD S S S △△=-=×AB×OC-12×AB×DK=12×4×3-12×4×(-t+3)=2t.....................2分(3)过点D 作DR⊥x 轴于R,过点G 作GP⊥AE 于P,过点G 作直线l∥x 轴交y 轴于T,过点A 作AN⊥l于N,过点E 作EM⊥l 于M,交x 轴于L.∵AE∥BD,BF//AC ∴四边形ADBF 是平行四边形,∠DAR=∠FBO ∴AD=BF又∵∠ARD=∠BOF=90°∴△ADR≌△BFO∴AR=OB=1,OF=DR∴t=OR=OA-AR=3-1=2∴OF=DR=-t+3=1,S=2t=4∴F(0,-1).................................................1分设直线AF 的解析式为y=mx+n∴103n m n -=⎧⎨=+⎩解得131m n ⎧=⎪⎨⎪=-⎩∴直线AF 的解析式为113y x =-由33113y x y x =+⎧⎪⎨=-⎪⎩解得3232x y ⎧=-⎪⎪⎨⎪=-⎪⎩∴E(32-,32-)∵MN∥AL ∴∠ALE+∠M=180°∴∠ALE=180°-90°=90°=∠M=∠N ∴四边形ALMN 为矩形∴AN=ML,MN=AL=3+32=92在Rt△AEL 中,2222333()(3)10222AE EL AL =+=++=∵454545432328AEG S S ==´=△∴12×3102×GP=458∴GP=3104...................1分∵GE=GA,GP⊥AE∴AP=EP=12AE=3104=GP ∴∠PEG=∠PGE,∠PAG=∠PGA,2222333(10)(10)5442EG EP GP =+=+=又∵∠PEG+∠PGE=90°,∠PAG+∠PGA=90°∴∠PGE=∠PGA=45°∴∠EGA=90°(第27题答案图1)(第27题答案图2)∴∠AGN+∠EGM=90°又∵∠GEM+∠EGM=90°∴∠AGN=∠GEM 又∵∠N=∠M=90°,AG=EG∴△AGN≌△GEM∴GN=EM,AN=MG 令EM=c,则GN=c,MG=AN=ML=c+32∵MG+GN=MN ∴c+32+c=92∴c=32∴MG=3=AN=ML ∴GT=MG-MT=3-32=32∵∠OLM=∠M=∠LOT=90°∴四边形OLMT 为矩形∴OT=ML=3∴G(32,-3)..............1分当点G,E,H 在同一条直线时,GH EH EG-=当点G,E,H 不在同一条直线时,在△EGH 中,GH EH EG -<综上所述:GH EH EG -£=,GH EH -...........................1分此时点H 是直线EG 与x 轴的交点设直线EG 的解析式为y=ex+f∴3322332e f e f ⎧-=-+⎪⎪⎨⎪-=+⎪⎩解得1294e f ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线EG 的解析式为1924y x =--当y=0时,19024x =--∴x=92-∴H(92-,0)....................................1分(以上各解答题如有不同解法并且正确,请按相应步骤给分)。

2023-2024学年湖北省荆州市监利市八年级上学期期末数学试卷及参考答案

2023-2024学年湖北省荆州市监利市八年级上学期期末数学试卷及参考答案

监利市2023-2024学年度上学期期末考试八年级数学试题本卷满分120分,考试时间120分钟,共三大题,24个小题. 一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.数学中有许多精美的曲线,以下是“笛卡尔叶形线”“阿基米德螺线”“三叶玫瑰线”和“星形线”.其中一定不.是.轴对称图形的是() A . B . C . D .2.在下列运算中,正确的是() A .236a a a ⋅=B .22(3)6a a =C .()325aa =D .32a a a ÷=3.如图,DAC BAC ∠=∠,再添加下列条件,仍不能判定ABC ADC △≌△的是()A .DC BC =B .AB AD =C .D B ∠=∠D .DCA BCA ∠=∠4.下列各式与aa b−相等的是() A .22()a a b −B .22()a ab a b −−C .33aa b− D .aa b−+ 5.一个三角形的两边长为3和8,且第三边长为奇数,则第三边长为() A .7B .9C .5或7D .7或96.将下列多项式分解因式,结果中不含因式1x −的是() A .21x −B .(2)(2)x x x −+−C .221x x −+D .221x x ++7.边长分别为a 和2a 的两个正方形按如下图的样式摆放并连线,则图中阴影部分的面积为()A .23aB .274a C .22aD .232a 8.某校学生暑假乘汽车到外地参加夏令营活动,目的地距学校120km ,一部分学生乘慢车先行,出发1h 后,另一部分学生乘快车前往,结果他们同时到达目的地.已知快车速度是慢车速度的1.5倍,如果设慢车的速度为km/h x ,那么可列方程为()A .12012011.5x x −= B .12012011.5x x −=+ C .12012011.5x x −= D .12012011.5x x−=+9.等腰Rt ABC △中,90BAC ∠=︒,D 是AC 的中点,EC BD ⊥于E ,交BA 的延长线于F ,若12BF =,则FBC △的面积为()A .40B .46C .48D .5010.如图,在ABC △中,9AB =,13AC =,点M 是BC 的中点,AD 是BAC ∠的平分线,//MF AD ,则CF 的长为()A .12B .11C .10D .9二、填一填,看看谁仔细(本大题共6小题,每小题3分,共18分)11.分式11x x +−的值为0,则x 的值为______.12.一个多边形的内角和是外角和的2倍,这个多边形的边数为______. 13.若3m n +=,则222426m mn n ++−的值为______.14.如图,在ABC △中,74B ∠=︒,边AC 的垂直平分线交BC 于点D ,交AC 于点E ,若AB BD BC +=,则BAC ∠的度数为______.15.若27193m n =,则23n m −的值是______.16.如图,在ABC △中,AB AC =.点D 为ABC △外一点,AE BD ⊥于E .BDC BAC ∠=∠,3DE =,2CD =,则BE 的长为______.三、解一解,试试谁更棒(本大题共8小题,满分72分) 17.(本题满分8分)计算:(1)()()21a a −+ (2)()()22224ab a b −÷−18.(本题满分8分)分解因式:(1)329a ab −(2)2(2)8x y xy +−19.(本题满分6分)如图AE BD =,AC DF =,BC EF =,求证:A D ∠=∠.20.(本题满分10分)(1)先化简,再求值:524223m m m m −⎛⎫+−⨯⎪−−⎝⎭,其中4m =. (2)若分式方程15102x mx x−=−−无解,求m 的值. 21.(本题满分8分)如图是68⨯的小正方形构成的网格,每个小正方形的边长为1,ABC △的三个顶点A ,B ,C 均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,不写画法,保留作图痕迹,画图过程用虚线表示,画图结果用实线表示.(1)在图1中取格点S ,使得BSC CAB ≌△△(S 不与A 重合);. (2)在图2中AB 上取一点K ,使CK 是ABC △的高; (3)在图3中AC 上取一点G ,使得AGB ABC ∠=∠.22.(本题满分10分)如图1,ABC △中,AB AC =,点D 在AB 上,且AD CD BC ==.(1)求A ∠的大小;(2)如图2,DE AC ⊥于E ,DF BC ⊥于F ,连接EF 交CD 于点H . ①求证:CD 垂直平分EF ;②请求出线段AE ,DB ,BF 之间存在的数量关系并说明理由.23.(本题满分10分)某商店用1000元人民币购进某种水果销售,过了一周时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的价格贵了2元. (1)该商店第一次购进这种水果多少千克?(2)假设该商店两次购进的这种水果按相同的标价销售,最后剩下的20千克按标价的五折优恵销售.若两次购进的这种水果全部售完,利润不低于950元,则每千克这种水果的标价至少是多少元?24.(本题满分12分)平面直角坐标系中,点B 在x 轴正半轴,点C 在y 轴正半轴,ABC △是等腰直角三角形,CA CB =,90ACB ∠=︒,AB 交y 轴负半轴于点D .(1)如图1,点C 的坐标是(0,4),点B 的坐标是(8,0),求点A 的坐标;(2)如图2,AE AB ⊥交x 轴的负半轴于点E ,连接CE ,CF CE ⊥交AB 于F . ①求证:CE CF =; ②求证:点D 是AF 的中点; ③求证:1=2ACD BCE S S △△.2023-2024学年度上学期八年级数学期末考试参考答案一、选一选,比比谁细心11.=-1x 12. 6 13. 1214.69° 15. 1 16. 5三、解一解,试试谁更棒17.(1)22a a −−(2)-3b18.(1)(3)(3)a a b a b +−(2)2(2)x y − 19.证明:∵AE =BD ,∴AE +BE =DB +BE ,即AB =DE , 在△ABC 和△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A =∠D . 20.(1)原式化简得:2(m +3) 当m =4时,原式=2×(4+3)=14 (2)m =-821.解:(1)如图1中,点S 即为所求;(2)如图2中,线段CK 即为所求; (3)如图,点G 即为所求.22.(1)解:设∠A =x , ∵AD =CD ,∴∠ACD =∠A =x ,∵CD =BC ,∴∠CBD =∠CDB =∠ACD +∠A =2x ; ∵AC =AB ,∴∠ACB =∠B =2x ,则∠DCB =x , ∵x +2x +2x =180°, ∴x =36°,即∠A =36°;(2)①证明:由(1)得:∠ACD =∠A =x ,∠DCB =x , ∴∠ACD =∠DCB ,∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,∵CD=CD,∴△DEC≌△DFC(AAS),∴DE=DF,CE=CF,∴CD垂直平分EF;②解:三条线段AE,DB,BF之间的数量关系为:AE=DB+BF,理由如下:在CA上截取CG=CB,连接DG,如图2所示:由①已得:DE=DF,CE=CF,且CG=CB,∴CG﹣CE=CB﹣CF,即GE=BF,∵DE⊥AC,DF⊥BC,∴∠DEG=∠DFB=90°,∴△DEG≌△DFB(SAS),∴DG=DB,∠DGE=∠B,由(1)得:∠B=2x,∠A=x,∴∠DGE=2∠A,∵∠DGE=∠A+∠GDA,∴∠A=∠GDA,∴AG=DG,∴AE=AG+GE=DG+BF=DB+BF.23.解:(1)设该商店第一次购进水果x千克,则第二次购进这种水果2x千克.由题意,得1000240022x x+=,解得x=100.经检验,x=100是所列方程的解且符合题意.答:该商店第一次购进水果100千克.(2)设每千克这种水果的标价是y元,则(100+100×2﹣20)•y+20×0.5 y≥1000+2400+950,解得y≥15.答:每千克这种水果的标价至少是15元.24.(1)解:如图1中,过点A作AH⊥y轴于点H.∵点C的坐标是(0,4),点B的坐标是(8,0),∴OC=4,OB=8,∵∠AHC=∠COB=∠ACB=90°,∴∠ACH+∠BCO=90°,∠BCO+∠CBO=90°,∴∠ACH=∠CBO,在△AHC 和△COB 中,AHC COB ACH CBO CA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AHC ≌△COB (AAS ), ∴AH =OC =4,CH =OB =8, ∴OH =CH ﹣CO =8﹣4=4, ∴A (﹣4,﹣4);(2)证明:①如图2中,∵CA =CB ,∠ACB =90°,∴∠CAB =∠CBF =45°, ∵AE ⊥AB ,∴∠EAC =∠CAB =∠CBF =45°,∴CE ⊥CF ,∴∠ECF =∠ACB =90°,∴∠ECA =∠FCB , 在△ECA 和△FCB 中,ECA FCB CA BCEAC FBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ECA ≌△FCB (ASA ),∴CE =CF ;②如图2中,过点F 作FN ⊥CD 于点N ,过点A 作AM ⊥CD 于点M . ∵∠ECF =∠EOC =∠CNF =90°,∴∠ECO +∠FCN =90°,∠FCN +∠CFN =90°, ∴∠ECO =∠CFN , 在△EOC 和△CNF 中,EOC CNF ECO CFN CE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EOC ≌△CNF (AAS ), ∴OC =FN ,同法可证,△BOC ≌△CMA (AAS ),∴OC =AM , 在△FND 和△AMD 中,90FDN ADM FND AMD FN AM ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△FND ≌△AMD ,∴DF =AD ;③设OE =a ,OB =b ,OC =c , ∵△EOC ≌△CNF ,△BOC ≌△CMA , ∴CN =OE =a ,CM =OB =b ,OC =AM =c , ∴MN =b ﹣a ,∵△FND ≌△AMD ,∴DN =DM =12(b ﹣a ), ∴CD =DN +CN =12(a +b ), ∵S △ACD=12•CD •AM =12•=12(a +b )•AM =14(a +b )•c ,S △BCE=12•EB •CO =12(a +b )•OC =12(a +b )•c ,∴S △ACD=12S △ECB .。

新人教版八年级数学下册期末考试卷【加答案】

新人教版八年级数学下册期末考试卷【加答案】

新人教版八年级数学下册期末考试卷【加答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-6 3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形715 )A.点P B.点Q C.点M D.点N8.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC ⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A.102B.104C.105D.510.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD 二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+2()a b+的结果是________.21273=___________.3.若m+1m =3,则m 2+21m=________. 4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知关于x 的分式方程311(1)(2)x k x x x -+=++-的解为非负数,求k 的取值范围.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P (x ,y )是该直线上的一个动点,且在第二象限内运动,试写出△OPA 的面积S 关于x 的函数解析式,并写出自变量x 的取值范围.(3)探究:当点P 运动到什么位置时,△OPA 的面积为,并说明理由.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、B5、A6、B7、C8、B9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、8333、74、x >3.5、706、20 三、解答题(本大题共6小题,共72分) 1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、11a -,1.3、8k ≥-且0k ≠.4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、CD 的长为3cm.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.下列计算正确的是()A .a 2•a 3=a 6B .2ab+3ab =5a 2b 2C .a 8÷a 4=a 2D .(a 3)2=a 62.到三角形三条边距离相等的点是此三角形()A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边中垂线的交点3.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC 的大小为()A .140°B .160°C .170°D .150°4.如图,在△ABC 中,已知点D ,E ,F 分别为BC ,AD ,AE 的中点,且S △ABC =12cm 2,则阴影部分面积S =()cm 2.A .1B .2C .3D .45.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是()A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22(2)()2a b a b a ab b +-=+-6.202020214(0.25)-⨯的值为()A .4B .4-C .0.25D .0.25-7.若2x y +=,1xy =-,则()()1212x y --的值是()A .7-B .3-C .1D .98.如图,在△ABC 中,BC=10,CD 是∠ACB 的平分线.若P ,Q 分别是CD 和AC 上的动点,且△ABC 的面积为24,则PA+PQ 的最小值是()A .125B .4C .245D .59.已知,,a b c 满足22227,-21,617a b b c c a +==--=-,则a b c +-的值为()A .1B .-5C .-6D .-710.如图,△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S ,若AQ=PQ ,PR=PS ,下面四个结论:①AS=AR ;②QP ∥AR ;③△BRP ≌△QSP ;④AP 垂直平分RS ,其中正确结论的序号是()A .①②B .①②③C .①②④D .①②③④二、填空题11.因式分解:225x y y -=______.12.am =6,an =3,则am﹣2n =__.13.如图,△ABC ≌△DBC ,∠A =45°,∠DCB =43°,则∠ABC =______.14.如图,ABC 的三边AB BC CA 、、的长分别为405060、、,其三条角平分线交于点O ,则::ABOBCO CAOS S S =______.15.一位工人师傅加工1500个零件后,把工作效率提高到原来的2.5倍,因此再加工1500个零件时,较前提早了18个小时完工,问这位工人师傅提高工作效率的前后每小时各加工多少个零件?设提高工作效率前每小时加工x 个零件,则根据题意可列方程为________.16.若x 4y 1+=,则xy 的最大值为_____.17.如图,已知△ABC 的面积为1,分别倍长(延长一倍)边AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长边A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2…按此规律,倍长2021次后得到的△A 2021B 2021C 2021的面积为_________.18.如图,△ABC ≌△ADE ,∠B=70°,∠C=30°,∠DAC=20°,则∠EAC 的度数为______.19.如图,在ABC ∆中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD .若4AC cm =,ADC ∆的周长为11cm ,则BC 的长为__________cm .三、解答题20.解分式方程:21133x x+=--21.化简求值:2(2)(1)(1)a a a +-+-,其中3=2a 22.先化简,再求值:22241---÷+a a a a a请从-2,-1,0,1,2中选择一个合适的数,求此分式的值.23.如图所示,在△ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 交于点F ,且AD=CD ,(1)求证:△ABD ≌△CFD ;(2)已知BC=7,AD=5,求AF 的长.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y )2+2(x+y )+1.解:将“x+y”看成整体,令x+y=A ,则原式=A 2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x-3y )+(2x-3y )2.(2)因式分解:(a+b )(a+b-4)+4;25.在汕头市“创文”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了a 天完成,乙做另一部分用了y 天完成.若乙工程队还有其它工作任务,最多只能做52天.求甲工程队至少应做多少天?26.如图,在ABC 中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.27.已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与点B ,点C 重合).以AD 为边作等边三角形ADE ,连接CE .(1)如图1,当点D 在边BC 上时.①求证:△ABD ≌△ACE ;②直接判断结论BC=DC+CE 是否成立(不需证明);(2)如图2,当点D 在边BC 的延长线上时,其他条件不变,请写出BC ,DC ,CE 之间存在的数量关系,并写出证明过程.28.如图1,射线OP平分∠MON,在射线OM,ON上分别截取线段OA,OB,使OA=OB,在射线OP上任取一点D,连接AD,BD.易得:AD=BD.(1)如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求证:BC=AC+AD;(2)如图3,在四边形ABDE中,AB=10,DE=2,BD=6,C为BD边中点.若AC平分∠BAE,EC平分∠AED,∠ACE=120°,求AE的值.参考答案1.D【分析】利用合并同类项的法则,幂的乘方的法则,同底数幂的乘法的法则,同底数幂的除法的法则对各项进行运算即可.【详解】解:A、a2•a3=a5,故该选项不符合题意;B、2ab+3ab=5ab,故该选项不符合题意;C、a8÷a4=a4,故该选项不符合题意;D、(a3)2=a6,故该选项符合题意;故选:D.【点睛】本题主要考查了合并同类项,幂的乘方,同底数幂的乘法,同底数幂的除法,解答的关键对相应的运算法则的掌握.2.A【分析】根据角平分线的性质进行解答即可.【详解】解: 角平分线上任意一点,到角两边的距离相等,到三角形三条边距离相等的点是三角形三个内角的平分线的交点,故选:A.3.B【详解】解:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.故选B.4.C【分析】根据三角形面积公式由点D为BC的中点得到S△ABD=S△ADC=12S△ABC=6,同理得到S△EBD=S△EDC=12S△ABD=3,则S△BEC=6,然后再由点F为EC的中点得到S△BEF=12S△BEC=3.【详解】解:∵点D为BC的中点,∴S△ABD=S△ADC=12S△ABC=6,∵点E为AD的中点,∴S△EBD =S△EDC=12S△ABD=3,∴S△EBC=S△EBD+S△EDC=6,∵点F为EC的中点,∴S△BEF =12S△BEC=3,即阴影部分的面积为3cm2.故选:C.【点睛】本题考查三角形的中线有关的面积计算问题.三角形的一条中线把原三角形分成两个等底同高的三角形,因此分得的两个三角形面积相等,利用这一特点可以求解有关的面积问题.5.A【分析】左图中阴影部分的面积=a2−b2,右图中矩形面积=(a+b)(a−b),根据二者面积相等,即可解答.【详解】解:由题意可得:a2−b2=(a−b)(a+b).故选:A.【点睛】此题主要考查了乘法的平方差公式,属于基础题型.6.D【分析】直接利用积的乘方把式子变形计算即可.【详解】202020214(0.25)-⨯=202020204(0.25)(0.25)⨯⨯--=20202020[4(0.25)2)](0.5--⨯⨯=2020[4(0.25)(0.25)]⨯⨯--=2020(1)(0.25)⨯--=1(0.25)-⨯=0.25-故选:D 7.A【分析】利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】解:∵x+y=2,xy=-1,∴(1-2x )(1-2y )=1-2y-2x+4xy=1-2(x+y )+4xy=1-2×2-4=-7;故选:A .【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8.C【分析】过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,当A 、P 、G 三点共线时,AP+PQ 的值最小,求出AG 的长即为所求.【详解】解:过点A 作AG ⊥BC 交于G ,交CD 于P 点,过点P 作PQ ⊥AC 交于Q 点,∵CD 是∠ACB 的平分线,∴PG=PQ ,∴PA+PQ=AP+PG≥AG ,∴当A 、P 、G 三点共线时,AP+PQ 的值最小,∵BC=10,△ABC 的面积为24,∴AG=245,∴AP+PQ 的最小值为245,故选:C .9.A【详解】解:∵22227,-21,617a b b c c a +==--=-,∴(a 2+2b )+(b 2-2c )+(c 2-6a )=7+(-1)+(-17),∴a 2+2b+b 2-2c+c 2-6a=-11∴(a 2-6a+9)+(b 2+2b+1)+(c 2-2c+1)=0,∴(a-3)2+(b+1)2+(c-1)2=0∴a-3=0,b+1=0,c-1=0,∴a+b-c=3-1-1=1.故选:A .10.C【分析】连接AP ,RS ,证明Rt APR ≌Rt APS ,即可判断①,根据等边对等角可得QAP QPA ∠=∠,根据角平分线的性质可得BAP CAP ∠=∠,等量代换可得QPA BAP ∠=∠,进而即可判定QP ∥AR ,即可判断②,假设③成立,可得到BC AC =,与已知矛盾,进而可判断③,根据垂直平分线的判定定理即可判断④.【详解】连接AP ,RS ,如图,PR ⊥AB ,PS ⊥AC ,PR=PS ,AP ∴是BAC ∠的角平分线,BAP CAP∴∠=∠在Rt APR 与Rt APSPS PR PA PA=⎧⎨=⎩∴Rt APR ≌Rt APSAS AR∴=故①正确;AQ PQ= QAP QPA ∴∠=∠QPA BAP ∴∠=∠AR QP∴∥故②正确;假设△BRP ≌△QSP ;则SQ RB =,PBR PQS∠=∠ AR QP∥PQS BAC∠∠∴=BC AC∴=而题中没有说明BC AC =,故③不正确;,AR AS PR PS== ∴AP 是RS 是垂直平分线,故④正确故正确的有①②④故选C11.()()55y x x -+【详解】先提取公因式y ,再利用平方差公式,可得()()22555x y y y x x -=-+.故答案是()()55y x x -+.12.23【分析】直接利用同底数幂的除法运算法则结合幂的乘方运算法则进而将原式变形得出答案.【详解】∵am =6,an =3,∴am﹣2n=am÷(an)2=6÷32=23.故答案为:2 3.13.92°【分析】根据全等三角形的性质和三角形的内角和定理即可得到结论.【详解】解:∵△ABC≌△DBC,∴∠ACB=∠DCB=43°,∵∠A=45°,∴∠ABC=180°﹣∠A﹣∠ACB=92°,故答案为:92°.14.4:5:6【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC 的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【详解】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO :S△BCO:S△CAO=(12AB•OD):(12BC•OF):(12AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.15.1500x−18=15002.5x【分析】关键描述语为:“较前提早了18个小时完工”;本题的等量关系为:原来加工1500个零件所用时间-18=现在加工1500个零件所用时间,把相应数值代入即可求解.【详解】解:原来加工1500个零件所用时间为:1500x,现在加工1500个零件所用时间为:15002.5x ,∴根据题意可列方程为1500x −18=15002.5x 故答案为:1500x −18=15002.5x .16.116【分析】利用完全平方公式列出关于xy 的不等式.求不等式的解,根据不等式的解,即可求得xy 的最大值.【详解】解:22(4)(4)160x y x y xy -=+-≥.41x y += ,1160xy ∴-≥,116xy ∴≤.故答案为:116.17.20217【分析】根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A 1B 1C 1的面积是△ABC 的面积的7倍,依此规律可得结论.【详解】解:连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,1117A B C ABC S S = ,同理222111277A B C A B C ABC S S S == ,依此类推,△A 2021B 2021C 2021的面积为=72021S △ABC ,∵△ABC 的面积为1,∴△A 2021B 2021C 2021的面积=72021.故答案为:72021.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.18.60°【分析】根据三角形内角和定理求出∠BAC ,根据全等三角形的性质计算即可.【详解】解:∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵△ABC ≌△ADE ,∴∠DAE=∠BAC=80°,∴∠EAC=∠DAE-∠DAC=60°,故答案为60°.19.7【分析】由AB 的垂直平分线交AB 于E ,交BC 于D ,根据线段垂直平分线的性质,可得AD=BD ,又由△ADC 的周长为11cm ,即可求得AC +BC=11cm ,然后由AC=4cm ,即可求得BC 的长.【详解】解:∵AB 的垂直平分线交AB 于E ,交BC 于D ,∴AD=BD ,∵△ADC 的周长为11cm ,∴AC +CD +AD=AC +CD +BD=AC +BC=11cm ,∵AC=4cm ,∴BC=7cm .故答案为:7.20.x=4【分析】两边都乘以x-3化为整式方程求解,然后验根即可.【详解】解:两边都乘以x-3,得2-1=x-3,解得x=4,检验:当x=4时,x-3≠0,∴x=4是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.21.45a +,11【分析】先利用完全平方公式和平方差公式进行化简,再代值运算即可.【详解】解:2(2)(1)(1)a a a +-+-22441a a a =++-+45a =+把3=2a 代入得:345112⨯+=【点睛】本题主要考查了整式的化简求值,熟悉掌握完全平方公式和平方差公式是解题的关键.22.12a +,13【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的a 的值代入计算可得.【详解】解:22241---÷+a a a a a2(1)1(2)(2)a a a a a a -+=-⨯+-112a a +=-+12a =+,∵a≠0且a≠±2,a≠-1,∴a=1,则原式=11123=+.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.23.(1)证明见解析;(2)3.【分析】(1)利用ASA ,可证△ABD ≌△CFD ;(2)由△ABD ≌△CFD ,得BD=DF ,所以BD=BC ﹣CD=2,所以AF=AD ﹣DF=5﹣2.【详解】(1)证明:∵AD ⊥BC ,CE ⊥AB ,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠ECD ,在△ABD 和CFD 中,ADB CDF BAD DCF AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CFD (AAS ),(2)∵△ABD ≌△CFD ,∴BD=DF ,∵BC=7,AD=DC=5,∴BD=BC ﹣CD=2,∴AF=AD ﹣DF=5﹣2=3.24.(1)(1+2x-3y )2;(2)(a+b-2)2.【分析】(1)将(2x-3y )看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b ,代入后因式分解,再代入即可将原式因式分解.【详解】解:(1)原式=(1+2x-3y )2.(2)令A=a+b ,则原式变为A (A-4)+4=A 2-4A+4=(A-2)2,故:(a+b )(a+b-4)+4=(a+b-2)2.故答案为(1)(1+2x-3y )2;(2)(a+b-2)2.25.(1)乙工程队单独做需要80天完成(2)甲工程队至少应做42天.【分析】(1)设乙工程队单独完成这项工作需要x 天,由题意列出分式方程,求出x 的值即可;(2)首先根据题意列出a 和y 的关系式,进而求出a 的取值范围,结合a 和y 都是正整数,即可求出a 的值.【详解】(1)设乙工程队单独完成这项工作需要x 天,由题意得:3011361120120x ⎛⎫++⨯= ⎪⎝⎭解得:x=80,经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.(2)因为甲工程队做其中一部分用了a 天,乙工程队做另一部分用了y 天,依题意得:112080a y +=,∴2803y a =-.∵52y ≤,∴280523a -≤,解得:42a ≥.答:甲工程队至少应做42天.26.∠B =77°,∠C =38.5︒【分析】根据等腰三角形的性质及三角形内角和定理可求出∠B 和∠ADB 的度数,利用三角形外角性质即可求出∠C 的度数.【详解】解:∵AB =AD ,26BAD ∠=︒∴∠B =∠ADB =12×(180°﹣26°)=77°,∵AD =DC ,∴∠C=∠DAC ,∴∠C =12∠ADB =12×77°=38.5︒.27.(1)①见解析;②成立;(2)BC+CD=CE【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ;②由△ABD ≌△ACE 就可以得出BC=DC+CE ;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC ,AD=DE=AE ,进而就可以得出△ABD ≌△ACE ,就可以得出BC+CD=CE .【详解】解:(1)①证明:∵△ABC 是等边三角形∴AB=AC ∠BAC=60°∵△ADE 是等边三角形∴AD=AE ∠DAE=60°∴∠BAC -∠DAC=∠DAE -∠DAC ∴∠BAD=∠CAE ∴△ABD ≌△ACE②成立∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC是等边三角形∴AB=AC∠BAC=60°∵△ADE是等边三角形∴AD=AE∠DAE=60°∴∠BAC+∠DAC=∠DAE+∠DAC∴∠BAD=∠CAE∴△ABD≌△ACE∴BD=CE∵BC=BD-CD∴BC=CE-CD.28.(1)见解析;(2)15.【分析】(1)证△ECD≌△ACD(SAS),得EC=AC,DE=AD,∠CED=∠A=60°,再证BE=DE,则BE=AD,即可得出结论;(2)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,证△ACB≌△ACF(SAS),得CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证△CGE≌△CDE (SAS),得CG=CD=3,GE=DE=2,∠DCE=∠GCE,再证△CFG是等边三角形,得FG=CG=3,即可求解.【详解】(1)证明:在CB上截取CE=AE,连接DE,如图所示:∵CD平分∠ACB,∴∠BCD=∠ACD,又∵CD=CD,∴△ECD≌△ACD(SAS),∴EC=AC,DE=AD,∠CED=∠A=60°,∵∠ACB=90°,∠A=60°,∴∠B=30°,又∵∠CED=∠EDB+∠B,∴∠EDB=60°-30°=30°,∴∠EDB=∠B,∴BE=DE,∴BE=AD,∵BC=EC+BE,∴BC=AC+AD;(2)解:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG,如图所示:∵C是BD边的中点,BD=6,∴CB=CD=12BD=3,∵AC平分∠BAE,∴∠BAC=∠FAC,又∵AC=AC,∴△ACB≌△ACF(SAS),∴CB=CF=3,AF=AB=10,∠BCA=∠FCA.同理可证:△CGE≌△CDE(SAS),∴CG=CD=3,GE=DE=2,∠DCE=∠GCE,∵CB=CD,∴CG=CF,∵∠ACE=120°,∴∠BCA+∠DCE=180°-120°=60°,∴∠FCA+∠GCE=60°,∴∠FCG=180°-60°-60°=60°,∴△FGC是等边三角形,∴FG=FC=3,∴AE=AF+GE+FG=10+2+3=15.。

八年级上册数学期末考试卷附答案

八年级上册数学期末考试卷附答案

八年级上册数学期末考试卷附答案一、选择题1. 下列哪个数是素数?A. 11B. 15C. 18D. 20答案:A2. 下列哪个数是合数?A. 7B. 13C. 17D. 21答案:D3. 下列哪个数是偶数?A. 5B. 9C. 12D. 15答案:C4. 下列哪个数是奇数?A. 8B. 10C. 14D. 16答案:A5. 下列哪个数是整数?A. 3.5B. 4.8C. 5.6D. 6.7答案:D二、填空题6. 3的平方是_________。

答案:97. 4的立方是_________。

答案:648. 5的平方根是_________。

答案:±√59. 6的立方根是_________。

答案:∛610. 7的平方根是_________。

答案:±√7三、解答题11. 解方程:2x + 3 = 9。

答案:x = 312. 解方程:3x 2 = 8。

答案:x = 313. 解方程:4x + 5 = 17。

答案:x = 314. 解方程:5x 6 = 19。

答案:x = 515. 解方程:6x + 7 = 23。

答案:x = 216. 解方程:7x 8 = 21。

答案:x = 517. 解方程:8x + 9 = 35。

答案:x = 418. 解方程:9x 10 = 29。

答案:x = 519. 解方程:10x + 11 = 41。

答案:x = 320. 解方程:11x 12 = 39。

答案:x = 5八年级上册数学期末考试卷附答案四、应用题21. 小华买了5个苹果,每个苹果重200克,请问小华买的苹果总重量是多少克?答案:1000克22. 小红家有一个长方形花园,长为10米,宽为5米,请问花园的面积是多少平方米?答案:50平方米23. 小刚骑自行车去学校,速度为每小时15公里,请问他从家到学校需要多长时间?答案:30分钟24. 小丽去超市购物,买了3个苹果、2个香蕉和1个橙子,苹果的价格为每个5元,香蕉的价格为每个3元,橙子的价格为每个2元,请问小丽一共花费了多少元?答案:24元五、简答题25. 请简述勾股定理的内容。

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。

2. 3x+5y=10,求y的值。

3. 4x2y=6,求x的值。

4. 5x+3y=15,求y的值。

5. 2x4y=8,求x的值。

6. 3x+5y=10,求y的值。

7. 4x2y=6,求x的值。

8. 5x+3y=15,求y的值。

9. 2x4y=8,求x的值。

10. 3x+5y=10,求y的值。

三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。

人教版数学八年级上册期末考试试卷及答案

人教版数学八年级上册期末考试试卷及答案

人教版数学八年级上册期末考试试题一、选择题(共10小题,每小题3分,共30分)1.已知点M(3,a)和N(b,4)关于x轴对称,则a的值为()A.4B.﹣4C.3D.﹣32.中x的取值范围是()A.x≥0B.x≥﹣1C.x≥1D.x>13.若分式的值为0,则x的值为()A.x=﹣3B.x=2C.x≠﹣3D.x≠24.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab2 5.下列从左到右的变形,是分解因式的为()A.x2﹣x=x(x﹣1)B.a(a﹣b)=a2﹣abC.(a+3)(a﹣3)=a2﹣9D.x2﹣2x+1=x(x﹣2)+16.如果(x+m)与(x+1)的乘积中不含x的一次项,则m的值为()A.1B.﹣1C.±1D.07.如图,△ABC中,AD是高,角平分线BE交AD于点F,若∠BAC=60°,∠C=70°,则∠DFB的度数为()A.75°B.65°C.60°D.55°8.下列计算中,正确的是()A.B.C.D.9.如图,BE,CE分别平分∠ABC,∠ACD,EF∥BC,交AB于点F,交AC于点G,若BF=7,CG=5,则FG长为()A.2B.2.5C.3D.3.510.如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC =9,则BD的长为()A.6B.7C.8D.9二、填空题:(本题有6个小题,每小题3分,共18分)11.三角形的三边长分别为2,x,5,则x的取值范围是12.计算:=.13.已知a m=2,a n=12,则a n﹣m=.14.如图,已知A(1,3),在坐标轴上找点B,使△AOB为等腰三角形,符合条件的点有个.15.化简=.16.如图,点M是等边△ABC的边BC的中点,AB=4,射线CD⊥BC于点C,点P是射线CD上一动点,点N是线段AB上一动点,当MP+NP的值最小时,则AN长为.三、解答题(本题有9个小题,共72分)17.计算:(1);(2).18.分解因式:(1)x3﹣x;(2)x(x﹣4)+4;(3)x2﹣2x﹣15.19.先化简,再求值:,其中.20.如图.在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,BE=CF,AB∥ED.求证:AC=DF.21.(1)已知a2+b2=5,ab=﹣2,求a+b的值;(2)已知,求的值.22.小佳与小灵共同清点一批图书,已知小佳清点完240本图书所用的时间与小灵清点完300本图书所用的时间相同,且小灵平均每分钟比小佳多清点5本,小佳平均每分钟清点图书多少本?23.(1)观察探究:①;②;③.(2)尝试练习:(仿照上面化简过程,写出①的化简过程,直接写出②化简结果)①;②;(3)拓展应用:①化简:;②计算的值.24.如图1,已知△ABC为正三角形,以AC为腰作等腰三角形ACD,使AC=AD.(1)若∠CAD=30°,则∠BDC的度数为;(2)若∠CAD的大小在0°~90°范围内之间任意改变,∠BDC的度数是否随之改变?请说明理由;(3)E是DC延长线上一点,且EB=ED,连接AE,如图2,试探究EA,EB,EC之间的关系.25.如图1,已知A(0,a),B(b,0),a,b满足a 2﹣6a+9+=0.(1)求a,b的值;(2)如图2,以AB为斜边作等腰直角三角形ABC,求证:射线OC是∠AOB的平分线;(3)以(2)中的点C为直角顶点作∠DCE,交x轴于点D,交y轴于点E,设D(m,0),E(0,n),当∠DCE绕点C任意旋转时(角的两边不与x,y轴平行),m+n的值是否改变?若不改变,请求出m+n的值;若改变,请说明理由.答案与解析一、选择题(本题共10小题,每小题3分,共30分)1.已知点M(3,a)和N(b,4)关于x轴对称,则a的值为()A.4B.﹣4C.3D.﹣3【分析】关于x轴对称的点,横坐标相同,纵坐标互为相反数.据此可得a的值.解:∵点M(3,a)和N(b,4)关于x轴对称,∴a=﹣4.故选:B.2.中x的取值范围是()A.x≥0B.x≥﹣1C.x≥1D.x>1【分析】根据二次根式中的被开方数是非负数,进而得出答案.解:有意义,则x﹣1≥0,解得:x≥1.故选:C.3.若分式的值为0,则x的值为()A.x=﹣3B.x=2C.x≠﹣3D.x≠2【分析】直接利用分式的值为零的条件分析得出答案.解:∵分式的值为0,∴x+3=0,解得:x=﹣3.故选:A.4.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab2【分析】根据合并同类项法则,同底数幂的乘法法则、幂的乘方法则、积的乘方法则,对各选项分析判断后得结论.解:因为a2与a3不是同类项,所以选项A不正确;a3•a3=a6≠a9,所以选项B不正确;(a3)2=a3×2=a6,所以选项C正确;(ab)2=a2b2≠ab2,所以选项D不正确.故选:C.5.下列从左到右的变形,是分解因式的为()A.x2﹣x=x(x﹣1)B.a(a﹣b)=a2﹣abC.(a+3)(a﹣3)=a2﹣9D.x2﹣2x+1=x(x﹣2)+1【分析】根据因式分解的意义求解即可.解:A、把一个多项式转化成几个整式积的形式,故A符合题意;B、是整式的乘法,故B不符合题意;C、是整式的乘法,故C不符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选:A.6.如果(x+m)与(x+1)的乘积中不含x的一次项,则m的值为()A.1B.﹣1C.±1D.0【分析】先算乘法,再合并同类项,根据已知条件得出1+m=0,再求出答案即可.解:(x+m)(x+1)=x2+x+mx+m=x2+(1+m)x+m,∵(x+m)与(x+1)的乘积中不含x的一次项,∴1+m=0,解得:m=﹣1,故选:B.7.如图,△ABC中,AD是高,角平分线BE交AD于点F,若∠BAC=60°,∠C=70°,则∠DFB的度数为()A.75°B.65°C.60°D.55°【分析】由三角形的内角和可求得∠ABC=50°,再由角平分线的定义可得∠CBE=25°,结合AD是高,即可求∠DFB的度数.解:∵∠BAC=60°,∠C=70°,∴∠ABC=180°﹣∠BAC﹣∠C=50°,∵角平分线BE交AD于点F,∴∠CBE=25°,∵AD是高,∴∠BDA=90°,∴∠DFB=180°﹣∠BDA﹣∠CBE=65°.故选:B.8.下列计算中,正确的是()A.B.C.D.【分析】根据二次根式的乘法运算法则即可求出答案.解:A、原式=5﹣2+3=8﹣2,故A不符合题意.B、原式=×+×=+,故B不符合题意.C、原式=a﹣+﹣,故C不符合题意.D、原式=3﹣2=1,故D符合题意.故选:D.9.如图,BE,CE分别平分∠ABC,∠ACD,EF∥BC,交AB于点F,交AC于点G,若BF=7,CG=5,则FG长为()A.2B.2.5C.3D.3.5【分析】根据BE,CE分别平分∠ABC,∠ACD及EF∥BC,可得∠ABE=∠FEB,∠FEC =∠DCE,进而得到FB=FE,GC=GE,则FG=EF﹣GE=FB﹣CG,即可解决问题.解:∵BE,CE分别平分∠ABC,∠ACD,∴∠ABE=∠DBE,∠ACE=∠DCE,∵EF∥BC,∴∠ABE=∠FEB,∠FEC=∠DCE,∴FB=FE,GC=GE,∴FG=EF﹣GE=FB﹣CG=7﹣5=2.故选:A.10.如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC =9,则BD的长为()A.6B.7C.8D.9【分析】在AC上截取CE=CB,连接DE,利用已知条件求证△CBD≌△CED,然后可得BD=ED,∠B=∠CED,再利用三角形外角的性质求证CE=DE,然后问题可解.解:如图,在AC上截取CE=CB,连接DE,∵∠ACB的平分线CD交AB于点D,∴∠BCD=∠ECD.在△CBD与△CED中,.∴△CBD≌△CED(SAS),∴BD=ED,∠B=∠CED,∵∠B=2∠C,∠CED=∠A+∠ADE,∴∠CED=2∠A,∴∠A=∠EDA,∴AE=ED,∴AE=BD,∴BD=AC﹣CE=AC﹣BC=16﹣9=7.故选:B.二、填空题:(本题有6个小题,每小题3分,共18分)11.三角形的三边长分别为2,x,5,则x的取值范围是3<x<7【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解:由题意,有5﹣2<x<2+5,解得:3<x<7,故答案为:3<x<712.计算:=3.【分析】直接利用二次根式的性质化简求出答案.解:=3.故答案为:3.13.已知a m=2,a n=12,则a n﹣m=6.【分析】根据同底数幂的除法的逆运算可得答案.解:∵a m=2,a n=12,∴a n﹣m=a n÷a m=12÷2=6.故答案为:6.14.如图,已知A(1,3),在坐标轴上找点B,使△AOB为等腰三角形,符合条件的点有8个.【分析】分OA是底边和腰两种情况进行讨论即可判断.解:当OA是底边时,B在线段OA的中垂线上,与坐标轴有2个交点,则满足条件的有2个;当OA是腰,O是顶角顶点时,B是以O为圆心,以OA为半径的圆与坐标轴的交点,共有4个点;当OA是腰,A是顶角顶点时,B是以A为圆心,以OA为半径的圆与坐标轴的交点,除去原点O以外有2个点.则满足条件的点有:2+4+2=8个.故答案为:8.15.化简=3.【分析】原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.解:原式=﹣===3.故答案为:3.16.如图,点M是等边△ABC的边BC的中点,AB=4,射线CD⊥BC于点C,点P是射线CD上一动点,点N是线段AB上一动点,当MP+NP的值最小时,则AN长为1.【分析】作点M关于直线CD的对称点G,过G作GN⊥AB于N,交CD于P,则此时,MP+PN的值最小,根据直角三角形的性质得到BG=2BN=6,求得BN=3,于是得到结论.解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,如图,作点M关于直线CD的对称点G,过G作GN⊥AB于N,交CD于P,此时,MP+PN 的值最小,∵点M是BC的中点,∴BM=CM=2,∵点M,点G关于CD对称,∴CM=CG=2,∵∠B=60°,∠BNG=90°,∴∠G=30°,∴BG=2BN=BC+CG=4+2=6,∴BN=3,∴AN=1,故答案为:1.三、解答题(本题有9个小题,共72分)17.计算:(1);(2).【分析】(1)直接利用零指数幂的性质以及负整数指数幂的性质、二次根式的性质分别化简,进而利用有理数的加减运算法则计算得出答案;(2)直接化简二次根式,进而合并得出答案.解:(1)=1﹣+5=5;(2)=3﹣2+﹣=4﹣3.18.分解因式:(1)x3﹣x;(2)x(x﹣4)+4;(3)x2﹣2x﹣15.【分析】(1)先提取公因式,再利用平方差公式分解因式即可;(2)先计算单项式乘多项式,再利用完全平方公式计算即可;(3)直接利用十字相乘法分解因式即可.解:(1)原式=x(x2﹣1)=x(x+1)(x﹣1);(2)原式=x2﹣4x+4=(x﹣2)2;(3)原式=(x﹣5)(x+3).19.先化简,再求值:,其中.【分析】先根据分式的除法法则把除法变成乘法,再根据分式的乘法法则进行计算,再根据分式的减法法则进行计算,最后代入求出答案即可.解:原式=﹣•=﹣=﹣====,当a=时,原式====.20.如图.在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,BE=CF,AB∥ED.求证:AC=DF.【分析】由BE=CF,得到BC=EF,根据平行线的性质得到∠B=∠DEC,证得△ABC ≌△DEF,根据全等三角形的性质即可得到结论.【解答】证明:∵BE=CF,∴BE+CE=CF+CE,即BC=EF,∵AB∥DE,∴∠B=∠DEC,在△ABC与△DEF中,,∴△ABC≌△DEF,∴AC=DF.21.(1)已知a2+b2=5,ab=﹣2,求a+b的值;(2)已知,求的值.【分析】(1)先根据完全平方公式求出(a+b)2=a2+b2+2ab=1,再开平方即可;(2)先两边平方得出(a﹣)2=4,再根据完全平方公式展开即可.解:(1)∵a2+b2=5,ab=﹣2,∴(a+b)2=a2+b2+2ab=5+2×(﹣2)=5﹣4=1,∴a+b==±1;(2)∵,∴两边平方得:(a﹣)2=22即a2﹣2a•+=4,∴a2﹣2+=4,∴=4+2=6.22.小佳与小灵共同清点一批图书,已知小佳清点完240本图书所用的时间与小灵清点完300本图书所用的时间相同,且小灵平均每分钟比小佳多清点5本,小佳平均每分钟清点图书多少本?【分析】设小佳平均每分钟清点图书x本,则小灵平均每分钟清点(x+5)本,由题意:小佳清点完240本图书所用的时间与小灵清点完300本图书所用的时间相同,列出分式方程,解方程即可.解:设小佳平均每分钟清点图书x本,则小灵平均每分钟清点(x+5)本,依题意,得:=,解得:x=20.经检验,x=20是原方程的解.答:小佳平均每分钟清点图书20本.23.(1)观察探究:①;②;③.(2)尝试练习:(仿照上面化简过程,写出①的化简过程,直接写出②化简结果)①;②;(3)拓展应用:①化简:;②计算的值.【分析】(2)①类比材料中的化简过程可解答;②根据①找规律可得结论;(3)①类比材料中的化简过程可解答;②根据(1)中的化简找规律可解答.解:(2)①===﹣=﹣;②=﹣=﹣;(3)①化简:===﹣;②=1﹣+﹣+﹣+•••+﹣=1﹣=1﹣=.24.如图1,已知△ABC为正三角形,以AC为腰作等腰三角形ACD,使AC=AD.(1)若∠CAD=30°,则∠BDC的度数为30°;(2)若∠CAD的大小在0°~90°范围内之间任意改变,∠BDC的度数是否随之改变?请说明理由;(3)E是DC延长线上一点,且EB=ED,连接AE,如图2,试探究EA,EB,EC之间的关系.【分析】(1)根据等边三角形的性质得到∠BAC=60°,AB=AC,根据等腰直角三角形的性质、等腰三角形的性质以及三角形内角和定理计算,得到答案;(2)根据等腰三角形的性质、三角形内角和定理计算,得出结论;(3)在线段EA上截取EF=EB,连接BF,证明△ABF≌△CBE,根据全等三角形的性质解答即可.解:(1)∵△ABC为正三角形,∴∠BAC=60°,AB=AC,∵∠CAD=30°,AC=AD,∴∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°,∵AC=AD,∠CAD=30°,∴∠ACD=∠ADC=×(180°﹣30°)=75°,∴∠BDC=75°﹣45°=30°,故答案为:30°;(2)∠BDC的度数不变,理由如下:∵AC=AD,∴∠ACD=∠ADC=×(180°﹣∠CAD)=90°﹣∠CAD,∵AB=AD,∴∠ABD=∠ADB=×(180°﹣60°﹣∠CAD)=60°﹣∠CAD,∴∠BDC=∠ADC﹣∠ADB=(90°﹣∠CAD)﹣(60°﹣∠CAD)=30°;(3)在线段EA上截取EF=EB,连接BF,∵EB=ED,∴∠EBD=∠EDB=30°,∴∠BED=120°,∵AB=AD,EB=ED,∴AE垂直平分BD,∴∠BEF=60°,∴△BEF为等边三角形,∴BE=BF,∠EBF=60°,∴∠EBF=∠ABC,∴∠ABF=∠CBE,在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴AF=EC,∴EA=AF+EF=BE+EC.25.如图1,已知A(0,a),B(b,0),a,b满足a 2﹣6a+9+=0.(1)求a,b的值;(2)如图2,以AB为斜边作等腰直角三角形ABC,求证:射线OC是∠AOB的平分线;(3)以(2)中的点C为直角顶点作∠DCE,交x轴于点D,交y轴于点E,设D(m,0),E(0,n),当∠DCE绕点C任意旋转时(角的两边不与x,y轴平行),m+n的值是否改变?若不改变,请求出m+n的值;若改变,请说明理由.【分析】(1)由非负性可求解;(2)由“AAS”可证△ACF≌△BCN,可得CF=CN,可得结论;(3)分三种情况讨论,由全等三角形的性质可得DG=CH,由线段和差关系可求解.【解答】(1)解:∵a2﹣6a+9+=0.∴(a﹣3)2+=0,∴a=3,b=1;(2)如图2,过点C作CF⊥AO于F,CN⊥x轴于N,∴四边形CNOF是矩形,∵△ACB是等腰直角三角形,∴AC=BC,∠ACB=90°=∠AOB,∴∠OAC+∠OBC=180°,∵∠OBC+∠CBN=180°,∴∠CBN=∠OAC,又∵∠AFC=∠CNB=90°,AC=BC,∴△ACF≌△BCN(AAS),∴CF=CN,又∵CF⊥AO,CN⊥ON,∴射线OC是∠AOB的平分线;(3)m+n的值不会发生改变,理由如下:如图2,∵△ACF≌△BCN,∴CF=CN,AF=BN,∵OC是∠AOB的平分线,∴∠COF=45°,∴∠CON=∠OCN=45°,∴CN=NO,∴四边形CFON是正方形,∴OF=ON,∵A(0,3),B(1,0),∴AO=3,OB=1,∴AO﹣OF=AF,BN=ON﹣OB,∴3﹣OF=OF﹣1,∴OF=2,∴点C(2,2),当点E在y轴正半轴,点D在x轴负半轴时,如图3,过点C作CG⊥x轴于G,过点E 作EH⊥CG于H,∴四边形OGHE是矩形,∴OG=EH,EO=HG,∵OC是∠AOB的平分线,∴∠COG=45°,∵CG⊥x轴,∴∠COG=∠OCG=45°,∴OG=CG=EH,∵∠DCE=90°,∴∠ECH+∠DCG=90°=∠DCG+∠CDG,∴∠CDG=∠ECH,又∵∠EHC=∠CGD=90°,∴△DGC≌△CHE(AAS),∴DG=CH=2﹣m,∵OE=HC+CG,∴m+n=4,当点E在y轴负半轴,点D在x轴正半轴时,如图4,过点C作CG⊥OD于G,过点C 作CH⊥y轴于H,同理可证△CGD≌△CHE(AAS),∴HE=GD=2﹣n,∵OD=OG+GD,∴m=2+2﹣n,∴m+n=4;当点E在y轴正半轴,点D在x轴正半轴时,如图4,过点C作CG⊥OD于G,过点C 作CH⊥y轴于H,同理可证△CGD≌△CHE(AAS),∴HE=GD=2﹣n,∵OD=OG+GD,∴m=2+2﹣n,∴m+n=4;综上所述:m+n=4.21。

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中,不是轴对称图形的是()A .B .C .D .2.当1x =时,下列分式没有意义的是()A .1x x +B .1xx -C .1x x-D .1x x +3.下列各组数可能是一个三角形的边长的是()A .4,4,9B .4,5,6C .2,6,8D .1,2,34.某病毒的直径约为80~120纳米,1纳米=91.010-=⨯米,若用科学记数法表示110纳米,则正确的结果是()A .91.110-⨯米B .81.110-⨯米C .71.110-⨯米D .61.110-⨯米5.六边形的外角和是()A .360°B .540°C .720°D .900°6.下列计算正确的是()A .224x x x +=B .()222x y x y -=-C .()326=x yx y D .235()x x x -⋅=7.计算11x x x +-的结果为()A .1B .x C .1x D .2x x +8.已知7a b +=,8a b -=则22a b -的值是()A .11B .15C .56D .609.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是()A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD10.如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,则下列结论:①AD 平分∠CDE ;②∠BAC=∠BDE ;③DE 平分∠ADB ;④若AC=4BE ,则S △ABC =8S △BDE 其中正确的有()A .1个B .2个C .3个D .4个二、填空题11.因式分解:4x 2﹣9=_____.12.点M (-5,3)关于x 轴对称的点N 的坐标是________.13.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=_____.14.如图,小明把一块三角形的玻璃片打碎成三块,现要到玻璃店去配一块完全相同的玻璃片,那么最省事的办法是带_________去.15.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,若CD =8,点E 是AB 上一动点,DE 的最小值为_________.16.分式3232a b c 与246a b a b c-的最简公分母是_____.17.把一副三角板按如图所示的方式放置,则图中钝角α是______o .三、解答题18.计算:2202001()(1)(4)2π----+-.19.解分式方程:3211x x x +=--20.先化简,再求值:1x x +÷(x -1x ),其中x=3.21.如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法).(2)在(1)的条件下,连接AE ,若∠B =45°,求∠AEC 的度数.22.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D ,(1)求证:AB=CD ;(2)若AB=CF ,∠B=30°,求∠D 的度数.23.如图1所示,边长为a 的正方形中有一个边长为b 的小正方形,如图2中阴影部分剪裁后拼成的一个长方形.(1)设如图1中阴影部分面积为S 1,如图2中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1,S 2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+124.如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A 沿AB向B点运动,点Q同时从顶点B沿BC向C点运动,它们的速度都为1cm/s,当到达终点时停止运动,设它们的运动时间为t秒,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP.(2)求证:点P、Q在运动的过程中,∠CMQ的度数不变化,并求出∠CMQ的度数.(3)当t为何值时△PBQ是直角三角形?25.某体育用品商场用32000元购进了一批运动服,上市后很快销售一空.商场又用68000元紧急购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)若两批运动服每套的售价相同,第二批售完后获利比第一批售完后获利多12000元,则每套运动服的售价是元.26.如图,∠DAB=∠CAE,AD=AB,AC=AE.(1)求证△ABE≌△ADC;(2)设BE与CD交于点O,∠DAB=30°,求∠BOC的度数.27.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.参考答案1.D【分析】根据轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)逐项判断即可得.【详解】解:A、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项符合题意;故选:D .【点睛】本题考查了轴对称图形,熟记轴对称图形的定义是解题关键.2.B【分析】由分式有意义的条件分母不能为零判断即可.【详解】1x x ,当x=1时,分母为零,分式无意义.故选B.【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件.3.B【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【详解】解:A 、4+4<9,不能组成三角形,故此选项不符合题意;B 、5+4>6,能组成三角形,故此选项符合题意;C 、2+6=8,不能组成三角形,故此选项不符合题意;D 、1+2=3,不能组成三角形,故此选项不符合题意.故选:B.【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.4.C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:110纳米=110×10-9米=1.1×10-7米.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.A【分析】根据多边形外角和都是360°即可得出答案.【详解】∵多边形的外角和都是360°,∴六边形的外角和是360°.故选:A.【点睛】本题主要考查多边形外角和,掌握多边形外角和都是360°是解题的关键.6.D【分析】根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘方法则计算,判断即可.【详解】x2+x2=2x2,A错误;(x-y)2=x2-2xy+y2,B错误;(x2y)3=x6y3,C错误;(-x)2•x3=x2•x3=x5,D正确;故选:D.【点睛】本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.7.A【分析】根据同分母分式相加减,分母不变,分子相加减计算即可得解.【详解】解:原式=11111 x x xx x x x++--===.故选:A.考点:分式的加减法【点睛】本题主要考查分式的加减运算,掌握运算法则是解题关键.8.C【分析】直接利用平方差公式将a2-b2分解为(a+b)(a-b),代入数据后即可得出结论.【详解】解:∵a+b=7,a-b=8,∴a2-b2=(a+b)(a-b)=7×8=56.故选:C.【点睛】本题考查了平方差公式的应用,公式法因式分解.解题的关键是利用平方差公式将a2-b2分解为(a+b)(a-b).9.D【详解】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.10.B【分析】根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.【详解】解:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE(AAS),∴∠CDA=∠EDA,∴①AD平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC,∵AC=4BE,∴AB=5BE,AE=4BE,∴S△ADB=5S△BDE,S△ADC=4S△BDE,∴S△ABC=9S△BDE,∴④错误;∵∠BDE=90°-∠B,∠BAC=90°-∠B,∴∠BDE=∠BAC,∴②∠BAC=∠BDE正确.故选B.11.(2x+3)(2x﹣3).【分析】根据平方差公式进行分解即可.【详解】原式=22(2)3x -=(2x+3)(2x ﹣3),故答案为(2x+3)(2x ﹣3).12.(-5,-3).【详解】根据平面直角坐标系内关于x 轴对称,纵坐标互为相反数,横坐标不变,点M (-5,3)关于y 轴的对称点为(-5,-3).13.20【详解】∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.14.③【分析】根据全等三角形的判定可即可求解.【详解】解:第①块和第②块都没有保留完整的边,而全等三角形的判定定理中,至少存在一条边,第③块保留了一边边和两个角,则利用ASA 判定定理可得到一个全等三角形,进而可带③去,故答案为:③.【点睛】本题考查了全等三角形的条件,解题的关键是需要注意的是只靠一个角或两条边不能等得到全等.15.8【分析】过点D 作DE ⊥AB 于E ,根据点与直线垂线段最短,则当DE ⊥AB 时有最小值,再根据角平分线的性质即可求解.【详解】解:过点D 作DE ⊥AB 于E ,如图所示:根据点与直线垂线段最短,则当DE ⊥AB 时有最小值,∵∠C =90°,AD 平分∠BAC ,CD =8,∴DE=CD=8,故答案为:8.16.6a 3b 4c【分析】取各分式分母中系数的最小公倍数与各字母因式最高次幂的乘积作公分母,叫最简公分母.【详解】解:先分离出两个分式的分母2a 3b 2c,6a 2b 4c ,其中a 、b 、c 的最高次幂分别为3、4、1故分式3232a b c ,246a b a b c-的最简公分母是6a 3b 4c .故答案为6a 3b 4c.17.105【分析】利用三角形内角和定理计算即可.【详解】解:由三角形的内角和定理可知:α=180°-30°-45°=105°,故答案为105.18.4【分析】原式分别化简21()2=4--,2020(1)=1-,0(=14)π-,然后再进行加减运算即可得到答案.【详解】解:2202001()(1)(4)2π----+-=4﹣1+1=419.1x =-【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:3211x x x +=--去分母得,()321x x +-=,解得,1x =-,经检验,1x =-是原方程的解.所以,原方程的解为:1x =-.20.11x -;12【分析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将x 的值代入计算可得答案.【详解】解:1x x+÷(x -1x )=211x x x x +-÷=()()111x x x x x +⨯+-=11x -当x=3时,原式=131-=12.21.(1)作图见解析(2)90°【分析】(1)依据垂直平分线的作图方法,即可得到边AB 的垂直平分线DE ;(2)依据垂直平分线的性质,即可得到∠BAE=∠B ,再根据三角形外角性质,即可得到∠AEC 的度数.(1)如图所示DE 为所求;(2)∵DE 是AB 的垂直平分线,∴AE =BE ,∴∠EAB =∠B =45°,∵AEC ∠是ABE ∆的外角,∴∠AEC =∠EAB ﹢∠B =90°.【点睛】本题主要考查了线段垂直平分线的的性质以及基本作图,解决问题的关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.22.(1)证明见解析;(2)∠D=75°【分析】(1)易证得ABE DCF△≌△,即可得AB CD=;(2)易证得ABE DCF△≌△,即可得AB CD=,又由AB=CF,∠B=30°,即可证得△ABE 是等腰三角形,解答即可.【详解】证明:(1)∵AB∥CD,∴∠B=∠C.在△ABE和△DCF中,∠A=∠D∠C=∠B AE=DF,∴ABE DCF AAS≌().∴AB=.(2)解:∵ABE DCF△≌△,∴AB=CD,∵AB=CF,∴CD=CF.∴△CDF是等腰三角形,∵∠C=∠B=30°,∴∠D=12×(180°−30°)=75°.【点睛】本题考查全等三角形问题和等腰三角形的性质,关键是根据AAS证明三角形全等,再利用全等三角形的性质解答.23.(1)S1=a2-b2,S2=(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)216.【分析】(1)直接计算两个图形的面积即可;(2)根据两个图形面积相等可得(a+b)(a-b)=a2-b2;(3)从左到右依次利用平方差公式即可求解.【详解】解:(1)S1=a2-b2,S2=(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.24.(1)证明见解析(2)证明见解析;∠CMQ=60°(3)当第43秒或第83秒时,△PBQ为直角三形【分析】(1)利用等边三角形的性质可知AB=AC,∠B=∠CAP=60°,结合AP=BQ即可得证;(2)由△APC≌△BQA知∠BAQ=∠ACP,再利用三角形外角的性质可证得∠CMQ=60°;(3)可用t分别表示出BP和BQ,分∠PQB=90°和∠BPQ=90°两种情况,分别利用直角三角形的性质可得到关于t的方程,则可求得t的值.(1)∵△ABC是等边三角形,∴AB=AC,∠B=∠CAP=60°,又AP=BQ,∴△ABQ≌△CAP(SAS).(2)∵△ABQ≌△CAP,∴∠BAQ=∠ACP,又∠CMQ=∠ACP﹢∠CAM∴∠CMQ=∠BAQ﹢∠CAM=∠BAC=60°.(3)由题意知AP=BQ=t,PB=4﹣t,①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,即4﹣t=2t,解得t=4 3;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,即t=2(4﹣t),解得t=8 3;综上所述,当第43秒或第83秒时,△PBQ为直角三形.25.(1)商场两次共购进这种运动服600套;(2)240【分析】(1)设商场第一次购进x套运动服,则第二次购进2x套运动服,抓住每套进价多了10元列分式方程求解即可.(2)求出两次购进运动服的进价,根据“第二批售完后获利比第一批售完后获利多12000元”可列出一元一次方程得解.【详解】(1)设商场第一次购进x套运动服,由题意得:680003200010 2x x-=.解这个方程,得x=200.经检验,x=200是所列方程的根.2x+x=2×200+200=600.答:商场两次共购进这种运动服600套.(2)第一批运动服的进价为32000200=160(元),第二批运动服的进价为68000400=170(元),设每套运动服的售价是x元,由题意得:400(x﹣170)﹣200(x﹣160)=12000,解得:x=240故答案为240.26.(1)见解析;(2)150°.【分析】(1)先利用角的和差证出∠DAC=∠BAE,再利用SAS证△ABE≌△ADC即可;(2)设AB与OD交于点F,根据(1)中全等可得:∠ABE=∠D,根据三角形的内角和定理可证∠BOF=∠DAB=30°,从而求出∠BOC的度数.【详解】解:(1)∵∠DAB=∠CAE∴∠DAB+∠BAC=∠CAE+∠BAC∴∠DAC=∠BAE在△ABE和△ADC中AB AD BAE DAC AE AC ⎧⎪∠=∠⎨⎪⎩==∴△ABE ≌△ADC ;(2)设AB 与OD 交于点F∵△ABE ≌△ADC∴∠ABE=∠D∵∠BFO=∠DFA∴∠BOF=180°-∠ABE -∠BFO=180°-∠D -∠DFA=∠DAB=30°∴∠BOC=180°-∠BOF=150°27.(1)证明见解析;(2)BE=AF ,证明见解析.【分析】(1)连接AD ,根据等腰三角形的性质可得出AD=BD 、∠EBD=∠FAD ,根据同角的余角相等可得出∠BDE=∠ADF ,由此即可证出△BDE ≌△ADF (ASA ),再根据全等三角形的性质即可证出BE=AF ;(2)连接AD ,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD 、BD=AD ,根据同角的余角相等可得出∠BDE=∠ADF ,由此即可证出△EDB ≌△FDA (ASA ),再根据全等三角形的性质即可得出BE=AF .【详解】(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC ,∴△ABC 为等腰直角三角形,∠EBD=45°.∵点D 为BC 的中点,∴AD=12BC=BD ,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF .在△BDE 和△ADF 中,EBD FADBD AD BDE ADF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△ADF (ASA ),∴BE=AF ;(2)BE=AF ,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA .在△EDB 和△FDA 中,EBD FADBD AD EDB FDA∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EDB ≌△FDA (ASA ),∴BE=AF .。

2024—2025学年最新北师大新版八年级下学期数学期末考试试卷(含答卷和参考答案)

2024—2025学年最新北师大新版八年级下学期数学期末考试试卷(含答卷和参考答案)

2024—2025学年最新北师大新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、二十四节气是中国劳动人民独创的文化遗产,能反映季节的变化,指导农事活动.下面四副图片分别代表“芒种”、“白露”、“立夏”、“大雪”,其中是中心对称图形的是()A.B.C.D.2、若a>b﹣1,则下列结论一定正确的是()A.a+1<b B.a﹣1<b C.a>b D.a+1>b3、若点P(1﹣2a,a)在第二象限,那么a的取值范围是()A.B.C.D.4、将分式中的x,y的值同时扩大2倍,则分式的值()A.扩大2倍B.缩小到原来的C.保持不变D.无法确定5、下列命题中,假命题是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行且另一组对边相等的四边形是平行四边形C.两组对角相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形6、如图,在Rt△ABC中,∠ACB=90°,DE垂直平分AB交BC于点D,若△ACD的周长为50cm,则AC+BC=()A.25cm B.45cm C.50cm D.55cm7、甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件,可列方程为()A.﹣=30B.﹣=30C.﹣=D.﹣=8、如图,在▱ABCD 中,点O 是BD 的中点,EF 过点O ,下列结论:①AB ∥DC ;②EO =ED ;③∠A =∠C ;④S 四边形ABOE =S 四边形CDOF ,其中正确结论的个数为( )A .1个B .2个C .3个D .4个9、如图,在Rt △ABC 中,∠C =90°,∠B =30°,BC =6,AD 平分∠CAB 交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )A .B .C .2D .310、关于x 的不等式组整数解仅有4个,则m 的取值范围是( )A .﹣5≤m <﹣4B .﹣5<m ≤﹣4C .﹣4≤m <﹣3D .﹣4<m ≤﹣3二、填空题(每小题3分,满分18分)11、分解因式:3a 3﹣12a= .12、如果一个多边形的每一个外角都是40°,那么这个多边形的边数为 .13、如图,在△ABC 中,∠DCE =40°,AE =AC ,BC=BD ,则∠ACB 的度数为 .14、使得分式值为零的x 的值是 .15、如图,五边形ABCDE 是正五边形.若l 1∥l 2,则∠1﹣∠2= °.16、若关于x 的方程﹣=1无解,则k 的值为 .2024—2025学年最新北师大新版八年级下学期数学期末考试试卷 第7题图 第8题图 第9题图考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、先化简,再求值:(+1)÷,其中x=﹣3.19、已知不等式组的解集是﹣1<x<1,求(a+b)2024的值20、已知方程组的解为正数.(1)求a的取值范围;(2)化简:.21、如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE∥BC.(1)求证:DE=CE;(2)若∠A=90°,AD=4,BC=12,求△BCD的面积.22、某商场购进A,B两种商品,已知购进3件A商品比购进4件B商品费用多60元;购进5件A商品和2件B商品总费用为620元.(1)求A,B两种商品每件进价各为多少元?(2)该商场计划购进A,B两种商品共60件,且购进B商品的件数不少于A 商品件数的2倍.若A商品按每件150元销售,B商品按每件80元销售,为满足销售完A,B两种商品后获得的总利润不低于1770元,则购进A商品的件数最多为多少?23、如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC.(1)求证:四边形ABCD为平行四边形;(2)点E为BC边的中点,连接AE,过E作EF⊥AE交边CD于点F,连接AF.①求证:AF=AB+CF;②若AF⊥CD,CF=3,DF=4,求AE与CE的值.24、如图,在△ABC中,∠ACB=90°,AB=5,AC<BC.以AC为边向形外作等边△ACD,以BC为边向形外作等边△BCE,以AB为边向上作等边△ABF,连接DF,EF.(1)记△ACD的面积为S1,△BCE的面积为S2,求S1+S2的值(2)求证:四边形CDFE是平行四边形.(3)连接CF,若CF⊥EF,求四边形CDFE的面积.25、如图,在平面直角坐标系中,直线y=﹣x+8与x轴交于点A,与y轴交于点B,直线y=kx+b经过点B,且与x轴交于点C(﹣6,0).(1)求直线BC的表达式;(2)点E为射线BC上一点,过点E作EF∥x轴交AB于点F,且EF=7,设点E的横坐标为m.①求m的值;②在y轴上取点M,在直线BC上取点N,在平面内取点Q,使得点E,M,N,Q构成的四边形是以EN为对角线的正方形,求出此正方形的面积.2024—2025学年最新北师大新版八年级下学期数学期末考试参考答案考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、3a(a+2)(a﹣2)12、9 13、100°14、2 15、7216、2或﹣1三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣<x≤4.18、,19、120、(1)﹣1<a<3;(2)3﹣a.21、(1)证明略(2)24.22、(1)A商品的进价是100元/件,B商品的进价是60元/件;(2)购进A商品的件数最多为20件.23、(1)证明略(2)①证明略②AE的长是5,CE的长是.24、(1);(2)证明略(3)四边形CDFE的面积=S=a2=.△ADC25、(1)直线BC的表达式:y=x+8(2)①m=﹣3②正方形的面积为:或450。

人教版八年级上册数学期末考试试卷有答案

人教版八年级上册数学期末考试试卷有答案

人教版八年级上册数学期末考试试题一、单选题1.下列长度的三根木条首尾相连,能组成三角形的是()A .3,4,8B .8,7,15C .2,2,3D .5,5,112.下列运算中正确的是()A .2510xx x⋅=B .()428x x -=-C .()224xy xy -=D .532x x x ÷=3.若分式x 1x 2-+的值为零,则x 的值是()A .0B .1C .1-D .2-4.如图将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠3=30°,则∠2=()A .50°B .60°C .30°D .20°5.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是()A .六边形B .八边形C .十二边形D .十六边形6.等腰三角形的顶角为80°,则其底角的度数是()A .100°B .80°C .50°D .40°7.把代数式x 2﹣4x+4分解因式,下列结果中正确的是()A .(x ﹣2)2B .(x+2)2C .x (x ﹣4)+4D .(x ﹣2)(x+2)8.已知实数a 、b 满足a+b =0,且ab≠0,则b aa b+的值为()A .﹣2B .﹣1C .1D .29.如图,把一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D′、C′的位置.若65EFB ∠=︒,则∠AED′的大小是()A .70︒B .65︒C .50︒D .25︒10.如图,△ABC 中AB 边上的高是()A .线段ADB .线段AC C .线段CD D .线段BC二、填空题11.计算:111a a a +=++____________.12.点()3,2A -关于y 轴对称的点的坐标是______.13.若代数式4xx -有意义,则实数x 的取值范围是_____.14.已知x+y =10,xy =1,则代数式x 2y+xy 2的值为_____.15.已知a+b=4,a-b=3,则a 2-b 2=____________.16.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF =CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)17.如图,在ABC 中,AB AC =,36A ∠=︒,AB 的中垂线DE 交AC 于点D ,交AB 于点E ,在下列结论中:①BD 平分ABC ∠;②点D 是线段AC 的中点:③AD BD BC ==;④BDC 的周长等于AB BC +.正确结论的序号是____________.18.如图,已知AE =BE ,DE 是AB 的垂线,F 为DE 上一点,BF =11cm ,CF =3cm ,则AC =_______.19.如图,在△ABC 中,∠A=50°,∠ABC=70°,BD 平分∠ABC ,则∠BDC 的度数是_____.20.如图,点B 、E 、C 、F 在一条直线上,AB ∥DE ,AB=DE ,BE=CF ,AC=6,则DF=________三、解答题21.分解因式:(1)x 2﹣4;(2)2a (b+c )﹣3(b+c ).22.计算:(1)(﹣5y 2)3;(2)43x y •32yx ;(3)4(x+1)2﹣(2x+3)(2x ﹣3).23.(1)解方程:233x x=-;(2)已知23a b =≠0,求代数式22524a b a b --•(a ﹣2b )的值.24.如图,在△ABC 中,AB =AC ,点D 在AB 上,点E 在AC 上,AD =AE .求证:CD =BE .25.如图,在Rt △ABC 中,∠C =90°,∠CAB 的平分线交BC 于点D ,又DE 是AB 的垂直平分线,垂足为E .(1)求∠CAD 的大小;(2)若BC =3,求DE 的长.26.如图所示,△ABC 是等边三角形,D 点是AC 的中点,延长BC 到E ,使CE=CD .(1)用尺规作图的方法,过D 点作DM ⊥BE ,垂足是M (不写作法,保留作图痕迹);(2)求证:BM=EM .27.星期天,小明和小军在同一小区门口同时出发,沿相同路线去离该小区1800米的青少年宫参加羽毛球训练,为响应“节能环保,绿色出行”的号召,两人都步行前往.已知小明的速度是小军的速度的1.2倍,小明比小军提前6分钟到达,求两人的速度.28.如图①,在△ABC中,∠B=45°,∠C=30°,过点A作直线AC的垂线交BC于点D.(1)求∠BAD的度数;(2)若AC=,求AB的长;(3)如图②,过点A作∠DAC的角平分线交BC于点P,点D关于直线AP的对称点为E,试探究线段CE与BD之间的数量关系,并对结论给予证明.参考答案1.C2.D3.B4.A5.B6.C7.A8.A9.C10.C11.1【分析】根据同分母分式相加,分母不变,分子相加,即可求解.【详解】解:111111a a a a a ++==+++.故答案为:1【点睛】本题主要考查了同分母分式的加减运算,熟练掌握同分母分式相加减,分母不变,分子相加减是解题的关键.12.()3,2--【分析】根据点坐标关于y 轴对称的变换规律即可得.【详解】点坐标关于y 轴对称的变换规律:横坐标互为相反数,纵坐标不变,则点()3,2A -关于y 轴对称的点的坐标是()3,2--,故答案为:()3,2--.【点睛】本题考查了点坐标规律探索,熟练掌握点坐标关于y 轴对称的变换规律是解题关键.13.x≠4【分析】分式有意义,分母不能为0,即x-4≠0,x≠4.【详解】解:∵x-4≠0,∴x≠4.故答案为:x≠4.【点睛】本题考查了分式有意义的条件,分式有意义的条件是分母不为0,代入求解即可.14.10【分析】将所求代数式适当变形后整体代入x+y=10,xy=1即可求解.【详解】解:∵x+y=10,xy=1,∴x 2y+xy 2=xy (x+y )=1×10=10,故答案为:10.【点睛】此题考查了代数式求值,因式分解-提公因式法.注意整体思想在解题中的应用.15.12.【详解】a 2-b 2=(a+b )(a-b )=4×3=12.故答案为:12.考点:平方差公式.16.AC=DF (答案不唯一)【详解】∵BF =CE ,∴BF +FC =CE +FC ,即BC=EF ;∵AC ∥DF ,∴∠ACB=∠DFE ,△ABC 和△DEF 中有一角一边对应相等,∴根据全等三角形的判定,添加AC=DF ,可由SAS 得△ABC ≌△DEF ;添加∠B=∠E ,可由ASA 得△ABC ≌△DEF ;添加∠A=∠D ,可由AAS 得△ABC ≌△DEF .故答案为:AC=DF .(答案不唯一)17.①③④【分析】根据AB AC =,36A ∠=︒,可知ABC 为等腰三角形,进而可知72ABC ∠=︒,由DE 为AB 的中垂线,可知36DBC ∠=︒,根据角度可知BD 平分ABC ∠,故①正确,根据36DBC ∠=︒,72C ∠=︒,72BDC ∠=︒,根据等角对等边可知BD BC AD ==,故③正确,则BDC 周长为:BD BC DC AD DC BC AC BC ++=++=+,故④正确;根据角之间的关系,72BDC C ∠=∠=︒,36DBC ∠=︒,可知BD DC ≠,故AD DC ≠,故②错误.【详解】解:∵AB AC =,∴ABC 为等腰三角形,∵36A ∠=︒,∴()18036272ABC C ∠=∠=︒-︒÷=︒,∵DE 为AB 的中垂线,∴AD=BD ,∴36ABD A ∠=∠=︒,∴723636DBC ∠=︒-︒=︒,∴BD 平分ABC ∠,故①正确;∵36DBC ∠=︒,72C ∠=︒,∴180367272BDC ∠=︒-︒-︒=︒,∴BD BC AD ==,故③正确;∴BDC 周长为:BD BC DC AD DC BC AC BC ++=++=+,故④正确;∵72BDC C ∠=∠=︒,36DBC ∠=︒,∴BD DC ≠,故AD DC ≠,故②错误;故答案为:①③④.18.14cm【分析】由AE =BE ,DE 是AB 的垂线得出DE 是AB 的中线,进而可得DE 是AB 的垂直平分线,由此即可得到AF =BF ,再根据线段的和差即可得解.【详解】解:∵AE =BE ,DE 是AB 的垂线,∴DE 是AB 的中线,∴DE 是AB 的垂直平分线,∵F 为DE 上一点,∴AF =BF ,∴AC =AF+CF =BF+CF ,∵BF =11cm ,CF =3cm ,∴AC =14cm ,故答案为:14cm .【点睛】此题考查了等腰三角形的三线合一以及垂直平分线的性质,熟练掌握等腰三角形的三线合一以及垂直平分线的性质是解此题的关键.19.85°【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC 的度数.【详解】∵在△ABC 中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD 平分∠ABC ,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为:85°20.6.【分析】根据题中条件由SAS 可得△ABC ≌△DEF ,根据全等三角形的性质可得AC=DF=6.【详解】∵AB ∥DE ,∴∠B=∠DEF ∵BE=CF ,∴BC=EF ,在△ABC 和△DEF 中,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴AC=DF=6.考点:全等三角形的判定与性质.21.(1)(x+2)(x-2)(2)(b+c )(2a-3)【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式即可得到结果.【小题1】解:原式=x 2-22=(x+2)(x-2);【小题2】原式=(b+c )(2a-3).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.(1)-125y 6(2)223x (3)8x+13【分析】(1)利用积的乘方与幂的乘方运算法则进行计算;(2)利用分式乘法运算法则进行计算;(3)利用完全平方公式,平方差公式计算乘方和乘法,然后去括号,合并同类项进行化简.【小题1】解:原式=(-5)3•(y 2)3=-125y 6;【小题2】原式=346xy x y=223x ;【小题3】原式=4(x 2+2x+1)-(4x 2-9)=4x 2+8x+4-4x 2+9=8x+1323.(1)x=9;(2)58-【分析】(1)根据分式方程的解法即可求出答案.(2)先根据分式的乘法运算进行化简,然后将a=2x ,b=3x 代入原式即可求出答案.【详解】解:(1)∵233x x=-,∴2x=3x-9,∴x=9,经检验,x=9是原方程的解.(2)∵23a b=≠0,设a=2x ,b=3x ,原式=()()()()5222a b a b a b a b -⋅-+-=()52a b a b-+=()52326x x x x-+=58-24.见解析【分析】根据AB=AC 得出∠DBC=∠ECB ,利用SAS 证明△BDC ≌△CEB ,进而利用全等三角形的性质解答即可.【详解】解:证明:∵AB=AC ,∴∠DBC=∠ECB ,∵AD=AE ,∴AB-AD=AC-AE ,即DB=EC ,在△DBC 和△ECB 中,DB ECDBC ECB BC CB=⎧⎪∠=∠⎨⎪=⎩,∴△BDC ≌△CEB (SAS ),∴CD=BE .25.(1)30°(2)1【分析】(1)先说明△ABD 是等腰三角形,再根据三角形的内角和即可得出答案;(2)设DC 的长为y ,根据直角三角形的性质列出关于y 方程,解出y 即可.(1)解:∵DE 是AB 的垂直平分线,∴AD=BD ,∴∠B=∠EAD ,又∵AD 是∠CAB 的平分线,∴∠CAD=∠EAD ,设∠CAD=x ,则3x=90°,∴x=30°,∴∠CAD=30°;(2)∵AD 是∠CAB 的平分线,DC ⊥AC ,DE ⊥AB ,∴DC=DE ,设DC=y ,则DE=y ,BD=3-y ,又∵∠B=30°,∴y=32y-,解得y=1,∴DE=1.26.(1)见解析;(2)见解析.【分析】(1)根据角平分线的作法作图即可;(2)要证BM=EM 可证BD=DE ,根据三线合一得出BM=EM .【详解】(1)解:作图如下;(2)证明:∵△ABC是等边三角形,D是AC的中点∴BD平分∠ABC(三线合一)∴∠ABC=2∠DBE∵CE=CD∴∠CED=∠CDE又∵∠ACB=∠CED+∠CDE∴∠ACB=2∠E又∵∠ABC=∠ACB∴2∠DBC=2∠E∴∠DBC=∠E∴BD=DE又∵DM⊥BE∴BM=EM.27.小军的速度是50米/分,小明的速度是60米/分【分析】设小军的速度是x米/分,则小明速度是1.2x米/分,由题意:沿相同路线去离该小区1800米的青少年宫参加羽毛球训练,小明比小军提前6分钟到达,列出分式方程,解方程即可.【详解】解:设小军的速度是x米/分,则小明速度是1.2x米/分,依题意得:1800180061.2x x-=,解得:x=50,经检验,x=50是原方程的解,且符合题意,则1.2×50=60,答:小军的速度是50米/分,小明的速度是60米/分.28.(1)15°(2)2(3)CE=2BD【分析】(1)利用三角形内角和定理求出∠BAC=105°,再由∠DAC=90°,即可得出答案;(2)作AF ⊥BC 于F ,由含30°角的直角三角形的性质得AF=12角形的性质得AF=BF ,从而求出AB 的长;(3)作AF ⊥BC 于F ,设DF=x ,则AD=2x ,,AC=,则,由点D 关于直线AP 的对称点为E ,得AE=AD=2x ,可表示出CE 的长,从而得出结论.(1)解:∵∠B=45°,∠C=30°,∴∠BAC=180°-∠B-∠C=180°-45°-30°=105°,∵AD ⊥AC ,∴∠DAC=90°,∴∠BAD=∠BAC-∠DAC=105°-90°=15°;(2)作AF ⊥BC 于F ,∵∠C=30°,∴AF=12,∵∠ABF=45°,∴∴=2;(3)CE=2BD ,理由如下:作AF ⊥BC 于F ,∵∠DAF+∠CAF=90°,∠CAF+∠C=90°,∴∠DAF=∠C=30°,设DF=x,则AD=2x,3,AC=23,∵3,∴3,∵点D关于直线AP的对称点为E,∴AE=AD=2x,∴CE=AC-AE=23,∴CE=2BD.。

八年级数学下册期末考试卷(含有答案)

八年级数学下册期末考试卷(含有答案)

八年级数学下册期末考试卷(含有答案)(满分:120分;时间120分钟)一、选择题(本大题共10个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案A超过一个均记零分。

)1. 若式子√2x−4在实数范围内有意义,则x的取值范围是( )A. x≠2B. x≥2C. x≤2D. x≠−22. 下列方程是一元二次方程的是( )=5 D. x2=0A. x2+2y=1B. x3−2x=3C. x2+1x23. 下列说法中正确的有( ) ①四边相等的四边形一定是菱形; ②顺次连接矩形各边中点形成的四边形定是正方形; ③对角线相等的四边形一定是矩形; ④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.A. 4个B. 3个C. 2个D. 1个4. 把代数式(a−1)⋅√1中的a−1移到根号内,那么这个代数式等于( )1−aA. −√1−aB. √a−1C. √1−aD. −√a−15. 陈师傅应客户要求加工4个长为4cm、宽为3cm的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是( )A. B. C. D.6. 已知m是一元二次方程x2−3x+1=0的一个根,则2022−m2+3m的值为( )A. 2023B. 2022C. 2021D. −20207. 对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B′M=1,则CN的长为( )A. 7B. 6C. 5D. 48. 若最简二次根式√7a+b与√6a−bb+3是同类二次根式,则a+b的值为( )A. 2B. −2C. −1D. 19. 关于x的一元二次方程(m−3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为( )A. 0B. ±3C. 3D. −3A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果。

人教版数学八年级上册期末考试试卷带答案

人教版数学八年级上册期末考试试卷带答案

人教版数学八年级上册期末考试试题一、单项选择题(每小题2分,共12分)1.如果一个三角形的两边长分别为2和5,则第三边长可能是(A)2(B)3(C)5(D)82.下列计算中正确的是(A)a2+a3=a5(B)a2⋅a3=a5(C)(a2)3=a5(D)a6÷a3=a23.京剧是我国的国粹,是介绍、传播中国传统艺术文化的重要媒介.在下面的四个京剧脸谱中,不.是.轴对称图形的是(A)(B)(C)(D)4.六边形的内角和是(A)180°(B)360°(C)540°(D)720°5.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为(A)120903535=+-v v(B )120903535=-+v v(C)120903535=+-v v(D)120903535=-+v v6.如图,直线l是线段AB的垂直平分线,点C在直线l外,且与A点在直线l的同一侧,点P是直线l上的任意点,连接AP,BC,CP,则BC与AP+PC的大小关系是(A)>(B)<(C)≥(D)≤二、填空题(每小题3分,共24分)7.计算:02(1)3--⨯=.8.某病毒直径约0.00000008米.将0.00000008这个数用科学记数法表示为.9.当a=2020时,分式293--aa的值是.10.点P(-2,-4)关于y轴对称点的坐标是.(第6题)11.若a+b=5,ab=6,则(a-b)2=.12.如图,若△ABC ≌△DEF ,且∠B=60°,∠F-∠D=56°则∠A=°.(第12题)(第14题)13.如果a c =b ,那么我们规定(a ,b)=c ,例如:因为23=8,所以(2,8)=3.若(3,5)=a ,(3,6)=b ,(3,m)=2a-b ,则m=.14.如图,AD 是△ABC 的平分线,DF ⊥AB 于点F ,DE=DG ,AG=16,AE=8,若S △ADG =64,则△DEF 的面积为.三、解答题(每小题5分,共20分)15.计算:(23ab 2-2ab)⋅12ab.16.计算:(36x 4y 3-24x 3y 2+3x 2y 2)÷(-6x 2y 2).17.因式分解:x 3-25x.18.解方程:34122+=--x x x.四、解答题(每小题7分,共28分)19.如图,在四边形ABCD 中,AB ∥CD ,∠1=∠2,DB=DC.(1)求证:AB+BE=CD.(2)若AD=BC ,在不添加任何补助线的条件下,直接写出图中所有的等腰三角形.(第19题)20.在平面直角坐标系中,△ABC 的位置如图所示.(1)画出△ABC 关于x 轴对称的△A 1B 1C 1.(2)在坐标平面内确定点P ,使△PBC 是以BC 为底边的等腰直角三角形,请直接写出P 点坐标.(第20题)21.先化简,再求值:(2x+4)(2x-3)-4(x+2)(x-2),其中x=12.22.某同学化简分式2221()211x x x x x x+÷--+-出现了错误,解答过程如下:原式=22222121121x x x x x x x x x x++÷-÷-+--+(第一步)=332222(1)(1)x x x x x x -+---(第二步)=22(1)2(1)x x x -+-(第三步)(1)该同学解答过程从第步开始错误的.(2)写出此题正确的解答过程,并从-2<x<3的范围内选取一个你喜欢的x 值代入求值.五、解答题(每小题8分,共16分)23.两个工程队共同参与一项筑路工程,甲队单独施工一个月完成总工程的31,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.问哪个队的施工速度快?24.如图,在△ABC中,AC=BC,∠ACB=90°,延长CA至点D,延长CB至点E,使AD=BE,连接AE,BD,交点为O.(1)求证:OB=OA;(2)连接OC,若AC=OC,则∠D的度数是度.(第24题)六、解答题(每小题10分,共20分)25.【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如:图①可以得到恒等式(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)根据图②,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,求a2+b2+c2的值.(3)小明同学用图③中x张边长为a的正方形,y张边长为b的正方形,z张长、宽分别为a,b的长方形纸片拼出一个面积为(2a+b)(a+2b)的长方形,则x+y+z=.【知识迁移】(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图④表示的是一个边长为m的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图④中图形的变化关系,写出一个代数恒等式:.图①图②图③图④(第25题)26.如图,等边△ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)如图①,点E为AB的中点,求证:AE=DB.(2)如图②,点E在边AB上时,AE DB(填:“>”,“<”或“=”).理由如下:过点E 作EF ∥BC ,交AC 于点F(请你完成以下解答过程).图①图②(第26题)(3)在等边△ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED=EC.若AB=1,AE=2时,直接写出CD 的长.参考答案及评分标准一、单项选择题(每小题2分,共12分)1.C2.B3.A4.D5.A6.D二、填空题(每小题3分,共24分)7.198.8810-⨯9.202310.(2,-4)11.112.3213.25614.16三、解答题(每小题5分,共20分)15.解:原式=23ab 2⋅12ab-2ab ⋅12ab=13a 2b 3-a 2b 2.(5分)16.解:原式=-6x 2y+4x-12.(5分)17.解:原式=x(x 2-25)=x(x+5)(x-5).(5分)18.解:方程两边同时乘(x-2),得3x-4=x-2.解得x=1.(3分)检验:当x=1时,x-2=-1≠0.(4分)所以,原方程的解是x=1.(5分)四、解答题(每小题7分,共28分)19.(1)证明:∵AB ∥CD ,∴∠ABD=∠EDC.∵DB=DC ,∠1=∠2,∴△ABD ≌△EDC.(3分)∴AB=DE ,BD=CD.∴DE+BE=CD ,∴AB+BE=CD.(5分)(2)△BCD ,△BCE.(7分)20.解:(1)如图所示.(3分)(2)所确定的P 点为如图所示.(5分)P(-1,3)或P(2,-2).(7分)21.解:原式=4x 2+2x-12-4(x 2-4)=4x 2+2x-12-4x 2+16=2x+4.(5分)当x=12时,原式=2×12+4=5.(7分)22.解:(1)一(1分)(2)原式=22221(1)(1)21(1)(1)11x x x x x x x x x x x x x x x +++-÷=⋅=-+--+-.(4分)要使原式有意义,x≠1,0,-1,(5分)则当x=2时,原式=2221-=4.(7分)五、解答题(每小题8分,共16分)23.解:设乙队单独完成总工程需要x 个月,根据题意,得(1分)解得:(5分)121)131(31=⨯++x 1=x经检验x=1是原分式方程的解.(6分)∴甲队单独完成总工作需要3个月,乙队单独完成工作需要1个月.∵3>1∴乙队快(7分)答:乙队的施工速度快。

人教版数学八年级上册期末考试试卷带答案

人教版数学八年级上册期末考试试卷带答案

人教版数学八年级上册期末考试试题一、选择题(30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.某病毒直径约为0.00012毫米,则这个数字用科学记数法表示正确的是()A.1.2×104B.1.2×10﹣4C.0.12×105D.0.12×10﹣5 3.分式有意义的条件是()A.x=0B.x≠0C.x=﹣1D.x≠﹣14.点P(﹣1,2)关于y轴对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)5.下列计算正确的是()A.a2•a3=a6B.(2a)3=6a3C.(a+b)2=a2+b2D.(﹣a2)3=﹣a66.如图,四边形ABCD中,∠A=80°,BC、CD的垂直平分线交于A点,则∠BCD的度数为()A.150°B.140°C.130°D.120°7.已知a+b=2,则a2﹣b2+4b的值是()A.2B.3C.4D.68.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A.=1B.=1C.=1D.=19.当x分别取2020、2018、2016、…、2、0、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.202010.如图,四边形ABCD中,∠DAB+∠ABC=90°,对角线AC、BD相交于O点,且分别平分∠DAB和∠ABC,若BO=4OD,则的值为()A.B.C.D.二、填空题(18分)11.计算:x2y÷xy2=.12.若x2+6x+m是完全平方式,则m=.13.已知x﹣=3,则x2+=.14.若某三角形两边长为2,4,第三边上的中线为x,则x的取值范围为.15.若关于x的方程=+1无解,则a的值是.16.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,D为BC上一动点,EF垂直平分AD分别交AC于E、交AB于F,则BF的最大值为.三、解答题(72分)17.(8分)计算:(1)(2x+y)(2xy);(2)(4x6y﹣6x3)÷2x3.18.(8分)因式分解:(1)2x2﹣2;(2)x3﹣4x2y+4xy2.19.(8分)解方程:﹣1=.20.(8分)先化简,再求值:(1﹣)÷,其中a=﹣1.21.(8分)如图,是由边长为1的小正方形组成的网格,网格线的交点称为格点,△AOB 的顶点在格点上,以O为原点建立平面直角坐标系.(1)∠OAB=;O点关于直线AB的对称点的坐标为;(2)作A点关于OB的对称点F可按下列操作,要求:仅用无刻度直尺作图(保留作图过程与痕迹);①在网格中取格点C,连接AC,使AC⊥OB,则C的坐标为;②延长AO使OD=OA,则D的坐标为;③在网格中取格点E,连接DE,使DE⊥AC,则E的坐标为,AC与DE的交点F即为A点关于OB的对称点.22.(10分)某道路工程项目,若由甲、乙两工程队合作20天可完工;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲、乙工程队合作施工时对道路交通有影响,独施工时对交通无影响,且要求整个工期不能超过24天,问如何安排两队施工,对道路交通的影响会最小?23.(10分)已知△ABC中,∠BAC=60°,以AB和BC为边向外作等边△ABD和等边△BCE.(1)连接AE、CD,如图1,求证:AE=CD;(2)若N为CD中点,连接AN,如图2,求证:CE=2AN;(3)若AB⊥BC,延长AB交DE于M,DB=,如图3,则BM =.(直接写出结果)24.(12分)已知点A(0,4)、B(﹣4,0)分别为面直角坐标中y、x轴上一点,将线段OA绕O点顺时针旋转至OC,连接AC、BC.(1)如图1,求∠ACB的度数;(2)若∠AOC=60°,∠AOB的平分线OD交BC于D,如图2,求证:OD+BD=CD;(3)若∠AOC=30°,过A作AE⊥AC交BC于E,如图3,求BE的长.参考答案与试题解析一、选择题(30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【解答】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意.故选:A.【点评】此题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.2.目前发现的新冠病毒其直径约为0.00012毫米,则这个数字用科学记数法表示正确的是()A.1.2×104B.1.2×10﹣4C.0.12×105D.0.12×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00012=1.2×10﹣4.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.分式有意义的条件是()A.x=0B.x≠0C.x=﹣1D.x≠﹣1【分析】根据分式的分母不为0列出不等式,解不等式得到答案.【解答】解:分式有意义的条件是x+1≠0,解得x≠﹣1,故选:D.【点评】本题考查的是分式有意义的条件,掌握分式的分母不为0是解题的关键.4.点P(﹣1,2)关于y轴对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【分析】根据关于y轴对称,横坐标互为相反数,纵坐标不变.【解答】解:点P(﹣1,2)关于y轴对称点的坐标为(1,2).故选:A.【点评】本题考查了关于x轴、y轴对称点的坐标,注:关于y轴对称,横坐标互为相反数,纵坐标不变;关于x轴对称,纵坐标互为相反数,横坐标不变;关于原点对称,横纵坐标都互为相反数.5.下列计算正确的是()A.a2•a3=a6B.(2a)3=6a3C.(a+b)2=a2+b2D.(﹣a2)3=﹣a6【分析】分别根据同底数幂的乘法法则,幂的乘方与积的乘方运算法则,完全平方公式逐一判断即可.【解答】解:A、a2•a3=a5,故本选项不合题意;B、(2a)3=8a3,故本选项不合题意;C、(a+b)2=a2+2ab+b2,故本选项不合题意;D、(﹣a2)3=﹣a6,故本选项符合题意.故选:D.【点评】本题主要考查了同底数幂的乘法,完全平方公式以及幂的乘方与积的乘方,熟记相关公式与运算法则是解答本题的关键.6.如图,四边形ABCD中,∠A=80°,BC、CD的垂直平分线交于A点,则∠BCD的度数为()A.150°B.140°C.130°D.120°【分析】根据垂直平分线的性质及等腰三角形的性质求解即可.【解答】解:连接AC,∵BC、CD的垂直平分线交于A点,∴AB=AC,AC=AD,∴∠B=∠ACB,∠D=∠ACD,在△ABC中,∠ACB=(180°﹣∠BAC)=90°﹣∠BAC,同理,∠ACD=90°﹣∠CAD,∴∠BCD=∠ACB+∠ACD=180°﹣(∠BAC+CAD)=180°﹣∠BAD,∵∠BAD=80°,∴∠BCD=140°.故选:B.【点评】此题考查了多边形的内角与外角,熟练掌握多边形内角和公式及等腰三角形的性质是解题的关键.7.已知a+b=2,则a2﹣b2+4b的值是()A.2B.3C.4D.6【分析】把a2﹣b2+4b变形为(a﹣b)(a+b)+4b,代入a+b=2后,再变形为2(a+b)即可求得最后结果.【解答】解:∵a+b=2,∴a2﹣b2+4b=(a﹣b)(a+b)+4b,=2(a﹣b)+4b,=2a﹣2b+4b,=2(a+b),=2×2,=4.故选:C.【点评】本题考查了代数式求值的方法,同时还利用了整体思想.8.小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x本笔记本,则根据题意可列方程()A.=1B.=1C.=1D.=1【分析】由设他上月买了x本笔记本,则这次买了(x+2)本,然后可求得两次每本笔记本的价格,由等量关系:每本比上月便宜1元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:﹣=1,即:﹣=1.故选:B.【点评】此题考查了分式方程的应用.注意准确找到等量关系是关键.9.当x分别取2020、2018、2016、…、2、0、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2020【分析】把互为倒数的两个数代入分式可得它们的和是0,把0代入分式得﹣1,故得出结果为﹣1.【解答】解:当x=a(a≠0)时,=,当x=时,==﹣,即互为倒数的两个数代入分式的和为0,当x=0时,=﹣1,故选:A.【点评】本题考查数字的变化规律,总结出数字的变化规律是解题的关键.10.如图,四边形ABCD中,∠DAB+∠ABC=90°,对角线AC、BD相交于O点,且分别平分∠DAB和∠ABC,若BO=4OD,则的值为()A.B.C.D.【分析】在AB上截取AE=AD,BF=BC,连接OE、OF,根据题意易证△AOD≌△AOE (SAS),△BOC=△BOF(SAS),即得出结论∠AOD=∠AOE,∠BOC=∠BOF,OD =OE,OC=OF.继而求出∠AOD=∠BOC=∠AOE=∠BOF=∠EOF=45°,再由题意可知,==4,即又可推出,AE=AB,BE=AB,由OF平分∠BOE,得===4,可推出BF=×AB=AB,最后由BO平分∠ABC,可得==,即可求出的值.【解答】解:如图,在AB上截取AE=AD,BF=BC,连接OE,OF,∵AC、BD相交于O点,且分别平分∠DAB和∠ABC,∴∠OAB=∠OAD=∠DAB,∠OBC=∠OBA=∠ABC,在△AOD和△AOE中,,∵AD=AE,BC=BF,∴△AOD≌△AOE(SAS),同理,△BOC≌△BOF,∴∠AOD=∠AOE,OD=OE,∠BOC=∠BOF,OC=OF,∵∠DAB+∠ABC=90°,∴∠OAB+∠OBA=45°,∵∠AOD=∠BOC=∠OBA+∠OAB,∴∠AOD=∠BOC=45°,∴∠AOE=∠BOF=45°,∴∠EOF=180°﹣(∠OAB+∠OBA)﹣∠AOE﹣∠BOF=180°﹣45°﹣45°﹣45°=45°,∵AO平分∠BAD,BO=4OD,∴==4,即AB=4AD,∴AE=AB,BE=AB,∵∠EOF=∠BOF=45°,∴OF平分∠BOE,∴===,即EF=BF,∴BF=BE,∴BF=×AB=AB,∵BO平分∠ABC,∴====,故选:B.【点评】此题主要考查全等三角形的判定与性质,角平分线的判定与性质,推理论证过程较难,作出辅助线是解题的关键.二、填空题(18分)11.计算:x2y÷xy2=xy﹣1.【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:x2y÷xy2=xy﹣1.故答案为:xy﹣1.【点评】此题主要考查了整式的除法,正确掌握相关运算法则是解题关键.12.若x2+6x+m是完全平方式,则m=9.【分析】由题意,x2+6x+m是完全平方式,所以,可得x2+6x+m=(x+3)2,展开即可解答.【解答】解:根据题意,x2+6x+m是完全平方式,∴x2+6x+m=(x+3)2,解得,m=9.故答案为9.【点评】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号.13.已知x﹣=3,则x2+=11.【分析】将原式两边平方即可得.【解答】解:∵x﹣=3,∴x2+﹣2=9,∴x2+=11,故答案为:11.【点评】本题主要考查分式的混合运算,解题的关键是掌握完全平方公式和分式的运算法则.14.若某三角形两边长为2,4,第三边上的中线为x,则x的取值范围为1<x<3.【分析】作出图形,延长中线AD到E,使DE=AD,利用“边角边”证明△ACD和△EBD 全等,根据全等三角形对应边相等可得AC=BE,然后根据三角形任意两边之和大于第三边,两边之差小于第三边求出AE的范围,再除以2即可得解.【解答】解:如图,延长中线AD到E,使DE=AD,∵AD是三角形的中线,∴BD=CD,在△ACD和△EBD中,∵,∴△ACD≌△EBD(SAS),∴AC=BE,∵角形两边长为2,4,第三边上的中线为x,∴4﹣2<2x<2+4,即2<2x<6,∴1<x<3.故答案为:1<x<3.【点评】本题考查了三角形的三边关系,全等三角形的判定与性质,根据辅助线的作法,“遇中线加倍延”作出辅助线构造全等三角形是解题的关键.15.若关于x的方程=+1无解,则a的值是2或1.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.16.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,D为BC上一动点,EF垂直平分AD分别交AC于E、交AB于F,则BF的最大值为.【分析】要使BF最大,则AF需要最小,而AF=FD,从而通过圆与BC相切来解决问题.【解答】解:∵Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,∴AB=2AC=4,∵EF垂直平分AD,∴AF=DF,若要使BF最大,则AF需要最小,∴以F为圆心,AF为半径的圆与BC相切即可,∴FD⊥BD,∴AB=AF+2AF=4,∴AF=,∴BF的最大值为4﹣=,故答案为:.【点评】本题主要考查了线段垂直平分线的性质、30°角所对直角边是斜边的一半以及圆与直线的位置关系,将BF的最大值转化为AF最小是解决本题的关键,属于压轴题.三、解答题(72分)17.(8分)计算:(1)(2x+y)(2xy);(2)(4x6y﹣6x3)÷2x3.【分析】(1)直接利用单项式乘多项式运算法则计算得出答案;(2)直接利用整式的除法运算法则计算得出答案.【解答】解:(1)原式=(2x•2xy)+(y•2xy)=4x2y+2xy2;(2)原式=(4x6y)÷(2x3)+(﹣6x3)÷(2x3)=2x3y﹣3.【点评】此题主要考查了整式的除法以及单项式乘多项式,正确掌握相关运算法则是解题关键.18.(8分)因式分解:(1)2x2﹣2;(2)x3﹣4x2y+4xy2.【分析】(1)直接提取公因式2,再利用公式法分解因式即可;(2)直接提取公因式x,再利用公式法分解因式即可.【解答】解:(1)原式=2(x2﹣1)=2(x+1)(x﹣1);(2)原式=x(x2﹣4xy+4y2)=x(x﹣2y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.19.(8分)解方程:﹣1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x﹣1)2﹣(x2﹣1)=2,整理得:﹣2x+2=2,解得:x=0,检验:x=0时,分母x2﹣1≠0,∴原方程的解为x=0.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.(8分)先化简,再求值:(1﹣)÷,其中a=﹣1.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式=•=,当a=﹣1时,原式==.【点评】考查分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.21.(8分)如图,是由边长为1的小正方形组成的网格,网格线的交点称为格点,△AOB 的顶点在格点上,以O为原点建立平面直角坐标系.(1)∠OAB=90°;O点关于直线AB的对称点的坐标为(2,2);(2)作A点关于OB的对称点F可按下列操作,要求:仅用无刻度直尺作图(保留作图过程与痕迹);①在网格中取格点C,连接AC,使AC⊥OB,则C的坐标为(0,﹣2);②延长AO使OD=OA,则D的坐标为(﹣1,﹣1);③在网格中取格点E,连接DE,使DE⊥AC,则E的坐标为(2,﹣2),AC与DE的交点F即为A点关于OB的对称点.【分析】(1)利用图象法解决问题即可.(2)根据步骤要求画出图形即可解决问题.【解答】解:(1)观察图象可知∠OAB=90°,O点关于直线AB的对称点的坐标为(2,2),故答案为:90°,(2,2).(2)图形如图所示:①C(0,﹣2);②D(﹣1,﹣1);③E(2,﹣2).故答案为:(0,﹣2),(﹣1,﹣1),(2,﹣2).【点评】本题考查轴对称变换,坐标与图形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(10分)武汉某道路工程项目,若由甲、乙两工程队合作20天可完工;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲、乙工程队合作施工时对道路交通有影响,独施工时对交通无影响,且要求整个工期不能超过24天,问如何安排两队施工,对道路交通的影响会最小?【分析】(1)设甲工程队单独完成此项工程需要x天,则甲工程队的工作效率为,乙工程队的工作效率为(﹣),根据“甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工”,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲、乙合作了m天,分剩下的工程由甲工程队单独完成和剩下的工程由乙工程队单独完成两种情况考虑,根据整个工期不能超过24天,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再结合要求对道路交通的影响最小即可得出结论.【解答】解:(1)设甲工程队单独完成此项工程需要x天,则甲工程队的工作效率为,乙工程队的工作效率为(﹣),依题意得:+10(﹣)=1,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴1÷(﹣)=30.答:甲工程队单独完成此项工程需要60天,乙工程队单独完成此项工程需要30天.(2)设甲、乙合作了m天.①若剩下的工程由甲工程队单独完成还需=(60﹣3m)天,依题意得:m+60﹣3m≤24,解得:m≥18;②若剩下的工程由乙工程队单独完成还需=(30﹣m)天,依题意得:m+30﹣m≤24,解得:m≥12.由①②可知m的最小值为12,∴应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(10分)已知△ABC中,∠BAC=60°,以AB和BC为边向外作等边△ABD和等边△BCE.(1)连接AE、CD,如图1,求证:AE=CD;(2)若N为CD中点,连接AN,如图2,求证:CE=2AN;(3)若AB⊥BC,延长AB交DE于M,DB=,如图3,则BM=.(直接写出结果)【分析】(1)先判断出∠DBC=∠ABE,进而判断出△DBC≌△ABE,即可得出结论;(2)先判断出△ADN≌△FCN,得出CF=AD,∠NCF=∠AND,进而判断出∠BAC =∠ACF,即可判断出△ABC≌△CFA,即可得出结论;(3)先判断出△ABC≌△HEB(ASA),得出BH=AC=2,AB=EH,再判断出△ADM≌△HEM(AAS),得出AM=HM,即可得出结论.【解答】(1)∵△ABD和△BCE是等边三角形,∴BD=AB,BC=BE,∠ABD=∠CBE=60°,∴∠ABD+∠ABC=∠CBE+∠ABC,∴∠DBC=∠ABE,∴△ABE≌△DBC(SAS),∴AE=CD;(2)如图2,延长AN使NF=AN,连接FC,∵点N是CD中点,∴DN=CN,∵∠AND=∠FNC,∴△ADN≌△FCN(SAS),∴CF=AD,∠NCF=∠AND,∴∠ACF=∠ACD+∠NCF=∠ACD+∠ADN=60°,∴∠BAC=∠ACF,∵△ABD是等边三角形,∴AB=AD,∴AB=CF,∵AC=CA,∴△ABC≌△CFA(SAS),∴BC=AF,∵△BCE是等边三角形,∴CE=BC=AF=2AN;(3)如图3,∵△ABD是等边三角形,∴AB=AD=DB=,∠BAD=60°,在Rt△ABC中,∠ACB=90°﹣∠BAC=30°,∴AC=2AB=2,过点E作EH∥AD交AM的延长线于H,∴∠H=∠BAD=60°,∵△BCE是等边三角形,∴BC=BE,∠CBE=60°,∵∠ABC=90°,∴∠EBH=90°﹣∠CBE=30°=∠ACB,∴∠BEH=180°﹣∠EBH﹣∠H=90°=∠ABC,∴△ABC≌△HEB(ASA),∴BH=AC=2,AB=EH,∴AD=EH,∵∠AMD=∠HME,∴△ADM≌△HEM(AAS),∴AM=HM,∴BM=AM﹣AB=AH﹣AB=(AB+BH)﹣AB=BH﹣AB=(BH﹣AB)=(2﹣)=,故答案为:.【点评】此题是三角形综合题,主要考查了等边三角形的性质,含30度角的直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.24.(12分)已知点A(0,4)、B(﹣4,0)分别为面直角坐标中y、x轴上一点,将线段OA绕O点顺时针旋转至OC,连接AC、BC.(1)如图1,求∠ACB的度数;(2)若∠AOC=60°,∠AOB的平分线OD交BC于D,如图2,求证:OD+BD=CD;(3)若∠AOC=30°,过A作AE⊥AC交BC于E,如图3,求BE的长.【分析】(1)由旋转的性质得出CO=OB=OA,设∠AOC=2α,由等腰三角形的性质得出∠OAC=∠OCA=90°﹣α,可得出答案;(2)在BC上取点H,使∠COH=45°,证明△DOH为等边三角形,由等边三角形的性质得出OD=OH=DH,证明△BOD≌△COH(SAS),由全等三角形的性质得出BD=CH,则可得出结论;(3)过点C作CN⊥AO于点N,过点E作EM⊥AO于点M,连接OE,证明△AEM≌△CAN (AAS),由全等三角形的性质得出AM=CN,由等腰三角形的性质证出∠BOE=∠BEO,则可得出答案.【解答】解:(1)∵A(0,4)、B(﹣4,0),∴OA=OB=4,∵将线段OA绕O点顺时针旋转至OC,∴CO=OB=OA,设∠AOC=2α,∵∠BOC=90°+2α,∴∠OBC=∠OCB=45°﹣α,∵∠AOC=2α,∴∠OAC=∠OCA=90°﹣α,∴∠ACB=∠OCA﹣∠OCB=45°;(2)证明:如图2,在BC上取点H,使∠COH=45°,∵OD平分∠AOB,∠AOB=90°,∴∠BOD=∠AOD=45°,∵∠AOC=60°,∴∠BOC=150°,∵OB=OC,∴∠OBC=∠OCB=15°,∴∠DOH=∠BOC﹣∠BOD﹣∠COH=150°﹣45°﹣45°=60°,∠ODH=∠CBO+∠BOD =15°+45°=60°,∴∠DHO=60°,∴△DOH为等边三角形,∴OD=OH=DH,∴△BOD≌△COH(SAS),∴BD=CH,∴OD+BD=DH+CH=CD;(3)过点C作CN⊥AO于点N,过点E作EM⊥AO于点M,连接OE,由(1)得∠ACB=45°,∵AE⊥AC,∴△AEC为等腰直角三角形,∴AC=AE,∵∠ACN+∠NAC=∠EAM+∠NAC=90°,∴∠ACN=∠EAM,∵∠ANC=∠AME=90°,∴△AEM≌△CAN(AAS),∴AM=CN,∵OB=OA=OC=4,∠AOC=30°,∴CN=CO=2,∴AM=2,∴M为OA的中点,∵EM⊥AO,∴AE=EO,∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°,∴∠CBO=∠OCB=30°,∴∠OAC=∠OCA=75°,∴∠EAO=∠EOA=15°,∴∠BOE=75°,∴∠BEO=180°﹣∠CBO﹣∠BOE=180°﹣30°﹣75°=75°,∴∠BOE=∠BEO,∴BE=BO=4.【点评】本题是几何变换综合题,考查了等边三角形的判定与性质,角平分线的性质,旋转的性质,等腰三角形的判定与性质,等腰直角三角形的性质,坐标与图形的性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质及全等三角形的判定与性质是解题的关键.。

八年级数学(下)期末考试试卷含答案

八年级数学(下)期末考试试卷含答案

得分评卷人人八年级数学(下)期末考试试卷(全卷共五个大题,满分150分,考试时间100分钟)题号 一 二 三 四 五总分 总分人 复查人 得分友情提示:答题前先写好自己的学校、姓名、考号等信息;答题时,请你认真审题,做到先易后难;答题后,要注意检查.祝你成功! 一、选择题:(本大题共12个小题,每小题4分,共48分)每小题只有一个答案是正确的,请将正确选项的字母填在下列括号内.1.下列手机屏幕解锁图案中不是轴对称图形的是( )2.以下列各组线段为边,能组成三角形的是( )A .2 cm ,3 cm ,5 cmB .3 cm ,3 cm ,6 cmC .5 cm , 8 cm , 2 cmD .4 cm ,5 cm ,6 cm3.下列运算正确的是( )A . 235=x x x +B .()222=x y x y ++ C . 236=x x x ⋅ D . ()326=x x4.一枚一角硬币的直径约为0.022m ,用科学记数法表示为( )A .32.210m -⨯B .22.210m -⨯C .12.210m -⨯ D .32210m -⨯5.下列各式从左到右的变形是因式分解的是( )A .2)1(3222++=++x x xB .22))((y x y x y x -=-+ C .222()x xy y x y -+=- D .)(222y x y x -=-6.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知∠BAC =60° ,PA=6,则PE长是( )A .3B .4C .5D .67.已知△ABC 的三个内角满足关系:∠A+∠B=∠C ,则此三角形是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形8.“尊老、敬老”是中华民族的传统美德.重阳节当天,我区一中学 “善行文学社”的全体同学租一辆面包车前去“夕阳红”老年公寓看望那里的老年人面包车的租金为180元,出发时又增加了两名同学,结果每个同学比原来少花费了3元车费.若设“善行文学社”有x 人,则所列方程为( )A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=+ D .18018032x x-=-9.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1、P 2、P 3、P 4四个点中找出符合条件的点P ,则点P 有( )A . 1个B .2个C . 3个D . 4个10.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( )A . 90°B . 100°C . 130°D . 180°11. 分式1x mx --中,当x m =时,下列结论正确的是( )A.分式的值为零B .分式无意义C .若1m ≠时,分式的值为零D .若1m =时,分式的值为零 12.如图所示,△ABC 为等边三角形,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,现有①点P 在∠BAC 的平分线上; ②AS=AR ;③QP ∥AR ; ④△BRP ≌△QSP 四个结论.第10题图第12题图得分评卷人人• 则对四个结论判断正确的是( ).A .仅①和②正确B .仅②③正确C .仅①和③正确D .全部都正确二、填空题:(本大题6个小题,每小题4分,共24分)请将答案直接填写在题后的横线上.13.若点A (m ,7)与点B (8,n )关于x 轴对称,则m = . 14.因式分解:23aa -= .15.如图,∠ABC =∠DCB ,请补充一个条件: ,使△ABC ≌△DCB.(只填一个即可)16.如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若 △ABC 的面积为122cm ,则图中阴影部分的面积是____________2cm .17.如图,在△ABC 中,将△ABC 沿DE 折叠,使顶点C 落在△ABC 三边的垂直平分线的交点O 处,若BE=BO ,则∠BOE=____________度.18.如果记22()1x y f x x ==+,并且f (1)表示当1x =时y 的值,即f (1)=2211112=+;得分评卷人人得分评卷人人f (12)表示当12x =时y 的值,即f (12)=221()12151()2=+.那么111(1)(2)()(3)()(4)()234f f f f f f f ++++++1(2017)()2017f f +++= _.三、解答题:(本大题2个小题,19题10分,20题6分,共16分)下列各题解答时必须给出必要的演算过程或推理步骤.19.计算或化简(每小题5分,共10分)。

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试题一、单选题1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A .B .C .D .2.下列长度的三条线段能组成三角形的是()A .2,4,7B .1,3,2C .6,8,10D .3,2,63.下列计算正确的是()A .()235aa =B .()2322a a =C .34a a a ⋅=D .2a-a=24.已知等腰三角形的两边长分别为6和2,则它的周长是()A .10B .14C .10或8D .10或145.若分式211x x --的值为0,则x 的值是()A .1B .0C .1-D .±16.如图,∠AOB 内一点P ,P 1,P 2分别是P 关于OA 、OB 的对称点,P 1P 2交OA 于点M ,交OB 于点N .若△PMN 的周长是5cm ,则P 1P 2的长为()A .6cmB .5cmC .4cmD .3cm7.若23m =,22n =,则22m n +=()A .5B .6C .7D .128.如图,在△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB=10cm ,则△DEB 的周长为()A .4cmB .6cmC .10cmD .不能确定9.如果a+b=3,那么2b aa a ab ⎛⎫-⋅⎪-⎝⎭的值是()A .3B .-3C .13D .13-10.如图,在Rt ABC 中,AD 是BAC ∠的平分线,DE AB ⊥,垂足为E .若8cm,5cm BC BD ==,则DE 的长为()A .23cmB .3cmC .4cmD .5cm二、填空题11.点P (-2,4)关于x 轴对称的点的坐标为________.12.分解因式:3m 2﹣3n 2=_____.13.要使分式13x -有意义,x 需满足的条件是________.14.如果等腰三角形的一个内角为50度,那么这个等腰三角形的底角是____度.15.(﹣8)2019×0.1252020=_________.16.建筑公司修建一条400米长的道路,开工后每天比原计划多修10米,结果提前2天完成了任务.如果设建筑公司实际每天修x 米,那么可得方程是________.17.在一自助夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图),那么,由此可知,B 、C 两地相距_________m .18.如图,将一副直角三角板,按如图所示的方式摆放,则∠α的度数是___________.三、解答题19.(1)计算:212232-⎛⎫--+⎪⎝⎭;(2)分解因式:22363x xy y -+-.20.解方程:(1)31511x x =---;(2)214111x x x +-=--.21.先化简,再求值:221x 4x 41x 1x 1-+⎛⎫-÷ ⎪--⎝⎭,其中x=3.22.如图,在平面直角坐标系中,A (1,2),B (3,1),C (-2,-1).(1)在图中作出△ABC 关于y 轴的对称图形111A B C △;(2)在x 轴上画出点P ,使PA+PB 最小(保留作图痕迹).23.已知:如图所示,点B ,E ,C ,F 在同一直线上,AB ∥DE ,∠ACB=∠F ,AC=DF .求证:BE=CF .24.已知:如图,在△ABC 中,D 为BC 上的一点,AD 平分∠EDC ,且∠E=∠B ,DE=DC ,求证:AB=AC .25.某药店用1000元购进若干医用防护口罩,很快售完,接着又用2500元购进第二批口罩,已知第二批所购口罩的数量是第一批所购口罩数的2倍,且每只口罩的进价比第一批的进价多0.5元.求第一批口罩每只的进价是多少元?26.观察下列等式,用你发现的规律解答问题.111122=-⨯,1112323=-⨯,1113434=-⨯……(1)计算:111111223344556++++⨯⨯⨯⨯⨯的值.(2)求()11111112233445561n n ++++++⨯⨯⨯⨯⨯+ 的值(用含n 的式子表示).27.如图所示,在△ABC 中,AD 平分∠BAC 交BC 于点D ,BE 平分∠ABC 交AD 于点E .(1)若∠C=50°,∠BAC=60°,求∠ADB 的度数;(2)若∠BED=45°,求∠C 的度数;(3)猜想∠BED 与∠C 的关系,并说明理由.参考答案1.A 2.C 3.C 4.B 5.C 6.B 7.D 8.C 9.A 10.B 11.(2,4)--12.()()3m n m n +-13.3x ≠14.50或65【详解】试题解析:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50或65.15.-0.125【详解】解:()()20192019202080.1250.12580.1250.125-⨯=-⨯⨯=-.故答案为:-0.125.【点睛】本题主要考查积的乘方,熟练掌握积的乘方是解题的关键.16.400400210x x-=-【分析】设实际每天修x 米,则原计划每天修(x−10)米,根据实际比原计划提前2天完成了任务,列出方程即可.【详解】解:设建筑公司实际每天修x 米,由题意得:400400210x x-=-,故答案为:400400210x x-=-.【点睛】本题考查分式方程的应用,理解题意,找到合适的等量关系是解决问题的关键.本题的等量关系为原计划用的天数-实际用的天数=2.17.200【详解】解:由已知得:∠ABC=90°+30°=120°,∠BAC=90°﹣60°=30°,∴∠ACB=180°﹣∠ABC ﹣∠BAC=180°﹣120°﹣30°=30°,∴∠ACB=∠BAC ,∴BC=AB=200.18.75︒【分析】根据直角三角板的已知角度以及三角形外角性质即可求解.【详解】如图,304575DCB ABC α∠=∠+∠=︒+︒=︒故答案为:75︒19.(1)1-;(2)()23x y --【分析】(1)先化简绝对值、计算负整数指数幂与零指数幂,再计算加减法即可得;(2)综合利用提取公因式法和完全平方公式分解因式即可得.【详解】解:(1)原式241=-+1=-;(2)原式()2232x xy y=--+()23x y =--.20.(1)95x =(2)无解【分析】(1)先去分母,即方程两边同时乘以(x-1),将方程化成整式方程求解,然后检验即可求解;(2)先去分母,即方程两边同时乘以(x-1)(x+1)将方程化成整式方程求解,然后检验即可求解;(1)解:方程两边同时乘以(1-x),得-3=1-5(x-1)解得:95x =,检验:把95x =代入x-1=45≠0,所以95x =是原分式方程的解,∴95x =;(2)解:方程两边同时乘以(x-1)(x+1),得()()()21114x x x +-+-=222114x x x -+-+=-2x=2x=-1,检验:把x=-1代入(x-1)(x+1)=0,所以x=-1不是原分式方程的解,∴原方程无解.21.x 1x 2+-,4【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x 的值代入计算即可求出值.【详解】解:原式=()()()2x 2x 11x 1x 1x 1---÷-+-()()()2x 1x 1x 2x 1x 2+--=⋅--x 1x 2+=-.当x=3时,原式=31432+=-.【点睛】本题考查分式的化简求值、完全平方公式、平方差公式,熟练掌握分式的混合运算法则是解答的关键.22.(1)见解析(2)见解析【分析】(1)分别作出三个顶点关于y 轴的对称点,再顺次连接即可得;(2)作点A 关于x 轴的对称点A ',连接A B '与x 轴的交点即为所求.(1)解:111A B C △如图所示,(2)如图所示,点P 即为所求.【点睛】本题考查了作图—轴对称变换以及轴对称最短路径问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.【详解】证明:∵AB DE ∥,∴B DEF ∠=∠,在ABC 和DEF 中,B DEF ACB F AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF AAS △≌△,∴BC EF =,∴BE CF =.24.【详解】证明:∵AD 平分∠EDC ,∴∠ADE=∠ADC ,又DE=DC ,AD=AD ,∴△ADE ≌△ADC ,∴∠E=∠C ,又∠E=∠B ,∴∠B=∠C ,∴AB=AC.25.2元.【分析】设第一批口罩每只的进价是x 元,则第二批口罩每只的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购口罩的数量是第一批所购口罩数的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设第一批口罩每只的进价是x 元,则第二批口罩每只的进价是(x+0.5)元,依题意,得:2500100020.5x x=⨯+,解得:x =2,经检验,x =2是原方程的解,且符合题意.答:第一批口罩每只的进价是2元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)56(2)1n n +【分析】(1)根据所给的等式的特点进行求解即可;(2)根据所给的等式得出规律,然后对所求的式子进行拆项即可求解.(1)解:111111223344556++++⨯⨯⨯⨯⨯1111111111223344556=-+-+-+-+-116=-56=;(2)解:∵111122=-⨯,1112323=-⨯,1113434=-⨯,…,∴()11111n n n n =-⨯++,∴()11111112233445561n n ++++++⨯⨯⨯⨯⨯+ 1111111111112233445561n n =-+-+-+-+-++-+ 111n =-+1n n =+.27.(1)80°(2)90°(3)1902BED C ∠=︒-∠,理由见解析【分析】(1)由角平分线的定义可得∠DAC =30°,再由三角形外角性质即可求∠ADB 的度数;(2)由三角形的外角性质可得∠BAD +∠ABE =45°,再由角平分线的定义得∠BAC =2∠BAD ,∠ABC =2∠ABE ,从而得∠BAC +∠ABC =90°,利用三角形的内角和即可求∠C 的度数;(3)由三角形的外角性质得∠BED =∠BAD +∠ABE ,结合角平分线的定义可求得∠BAD +∠ABE =12(∠BAC +∠ABC ),由三角形的内角和可求解.(1)∴1302DAC BAC ∠=∠=︒.∵ADB ∠是ADC 的外角,∴503080ADB C DAC ∠=∠+∠=︒+︒=︒;(2)∵BED ∠是ABE △的外角,45BED ∠=︒,∴45BAD ABE BED ∠+∠=∠=︒.∵AD ,BE 分别是BAC ∠,ABC ∠的角平分线,∴2BAC BAD ∠=∠,2ABC ABE ∠=∠,∴()290BAC ABC BAD ABE ∠+∠=∠+∠=︒.11∵180BAC ABC C ∠+∠+∠=︒,∴()1801809090C BAC ABC ∠=︒-∠+∠=︒-︒=︒;(3)1902BED C ∠=︒-∠.理由:∵BED ∠是ABE △的外角,∴BED BAD ABE ∠=∠+∠.∵AD ,BE 分别是BAC ∠,ABC ∠的角平分线,∴12BAD BAC ∠=∠,12ABE ABC ∠=∠,∴()12BAD ABE BAC ABC ∠+∠=∠+∠.∵180BAC ABC C +=︒-∠∠∠,∴()()11118090222BED BAD ABE BAC ABC C C ∠=∠+∠=∠+∠=︒-∠=︒-∠,即:1902BED C ∠=︒-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016~2017学年度下学期三月月考
八年级数学试题
1..当x 是怎样的实数时,2x -在实数范围内有意义?( ) A. x ≥3 B. x ≥2 C. x ≥1 D.x ≥4
2.下列二次根式中与
2是同类二次根式的是( )
A.12
B.
32 C.23
D.18 3.下列计算错误的是( )
A.14772⨯=
B.60302÷=
C.9258a a a +=
D.3223-=
4.下列命题的逆命题不正确的是( ) A .同旁内角互补,两直线平行 B .如果两个角是直角,那么它们相

C .两个全等三角形的对应边相等
D .如果两个实数的平方相等,那么
它们相等
5.在直角坐标系中,点P (-2,3)到原点的距离是( ) A .
5
B .13
C .11
D .2
6.若1
6x x
+
=,x ≥1,则1
x x
-
= ( ) A. 2+ B. 2- C. 2 D. 2±
7.如图,是一扇高为2 m ,宽为1.5 m 的门框,童师傅有3块薄木板,尺寸如下:① 号木板长3 m ,宽2.7 m ;② 号木板长2.8 m ,宽2.8 m ;③ 号木板长4 m ,宽2.4 m .可以从这扇门通过的木板是( )号 A .②
B .③
C .②③
D .都不能通过
8.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D ′处,则重叠部分△AFC 的面积为( ) A .6 B .8 C .10
D .12
9.如图,点P 是矩形ABCD 的边AD 的一个动点,矩形的两条边AB 、BC 的长分别为3和4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是( ) A . 5
12
B .5
6
C .5
24
D .不确定
10.在直角三角形中,自锐角顶点所引的两条中线长为10和35,那么这个直角三角形的斜边长为( ) A. 6 B. 7 C.
2627二、填空题(每小题3分,共18分) 11.1
8
2()π-22
419-
12.在实数范围内因式分解:
22x -=____________________________.
B
C
A
13.如图,正方形A 、B 、C 的边长分别为直角三角形的三边长,若正方形
A 、
B 的边长分别为3和5,则正方形
C 的面积为______________.
14. 若2963a a a -+=-,则a 与3的大小关系为______________.
15.已知,
3
2
2322
=,
8
3
3833
=,
15
441544
=……,请你
用含n 的式子将其中的规律表示出来
__________________________
16.如图,ABC ∆中,90ACB ∠=,2BC =,4AC =,将ABC ∆绕
C 点
旋转一个角度到DEC ∆,直线AD 、EB 交于F 点,
在旋转过程中,ABF ∆的面积的最大值是______________. 三、解答题:(共72分) 17.(8分)计算:
(1)14735210⨯+⨯ (2)1
21263483
-+ 18.(8分)先化简,再求值:
221
(1)211
x x x x x +÷+-+-,其中231x =+.
19..(本题8分)如图,直角坐标系中的网格由单位正方形构成,△ABC 中,
A 点坐标为(2,3)
C
E
B
D
A
F
(1) AC 的长为_________
(2) 求证:AC ⊥BC
(3) 若以A 、B 、C 及点D 为顶点的四边形为□ABCD , 画出□ABCD ,并写出D 点的坐标_________
20..如图,在等边三角形△ABC 中,射线AD 四等分∠BAC 交BC 于点D ,其中∠BAD >∠CAD ,求BD
CD 的值
21.(10分)如图,正方形ABCD 中,E 、F
分别在
AD 、DC 上,EF 的延长线交BC 的延长线于G 点,
且∠AEB=∠BEG ;
(1)求证:12ABE BGE ∠=∠;
(2)若4,1,AB AE ==求BEG S ∆.
G
C D
B
E
A
F
22.(本题10分)如图,在矩形ABCD中,AD=12,AB=7,DF平分∠ADC,AF ⊥EF
(1) 求EF长
(2) 在平面上是否存在点Q,使得QA=QD=QE=QF?若存在,求出QA的长;若不存在,说明理由
23.(本题10分)已知△ABC中,∠ACB=90°,AC=2BC
(1) 如图1,若AB=BD,AB⊥BD,求证:CD=2AB
(2) 如图2,若AB=AD,AB⊥AD,BC=1,求CD的长
(3) 如图3,若AD=BD,AD⊥BD,AB=5
2,求CD的长
24.(本题12分)已知点A、B分别在x轴和y轴上,OA=OB,点C为AB的中点,AB=2
12
(1) 如图1,求点C的坐标
(2) 如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF2=OE2+AF2
(3) 如图3,点D在y轴正半轴上运动,以AD为腰向下作等腰RT△ADM,∠DAM =90°,T为线段OA的中点,连DT并延长至点N,使DT=TN,连MN,求MN的最小值.
y
x
图3
N
T
M
B
A O
D。

相关文档
最新文档