一元一次不等式组(2) 教案1doc

合集下载

湘教版数学八年级上册4.5《一元一次不等式组》教学设计1

湘教版数学八年级上册4.5《一元一次不等式组》教学设计1

湘教版数学八年级上册4.5《一元一次不等式组》教学设计1一. 教材分析《一元一次不等式组》是湘教版数学八年级上册第4.5节的内容,这部分内容是在学生已经掌握了不等式的概念、性质和一元一次不等式的解法的基础上进行学习的。

本节课的主要内容是引导学生理解一元一次不等式组的含义,掌握解一元一次不等式组的方法,并能够应用解决实际问题。

教材通过例题和练习题的形式,使学生能够熟练掌握解题技巧。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,但是对于一元一次不等式组的解法还比较陌生。

学生在学习过程中,需要通过大量的练习来理解和掌握解题方法。

同时,学生对于实际问题的解决还有一定的困难,需要教师在教学中进行引导和启发。

三. 教学目标1.理解一元一次不等式组的含义,掌握解一元一次不等式组的方法。

2.能够应用一元一次不等式组解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重点:一元一次不等式组的解法。

2.难点:如何将实际问题转化为不等式组,并解决问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决实际问题来理解和掌握一元一次不等式组的解法。

2.使用多媒体教学,通过动画和图像的形式,使学生更直观地理解不等式组的概念和解法。

3.采用小组合作学习的方式,让学生在讨论和交流中提高解题能力。

六. 教学准备1.多媒体教学设备。

2.教学PPT。

3.练习题和实际问题。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的内容,引导学生思考如何将实际问题转化为不等式组,并解决问题。

2.呈现(10分钟)教师通过PPT展示一元一次不等式组的定义和解法,让学生直观地理解不等式组的概念和解法。

3.操练(10分钟)教师给出一些练习题,让学生独立完成,巩固所学知识。

4.巩固(5分钟)教师引导学生通过小组合作学习,共同解决问题,提高解题能力。

5.拓展(5分钟)教师给出一些实际问题,让学生尝试解决,并将解决过程和结果进行分享。

2014-2015(下)八年级数学一元一次不等式与一元一次不等式组教案汤恒星

2014-2015(下)八年级数学一元一次不等式与一元一次不等式组教案汤恒星

第一节.不等关系教学目标:1、知识与技能目标①理解不等式的意义。

②能根据条件列出不等式。

③能用实际生活背景和数学背景解释简单不等式的意义。

2、过程与方法目标经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。

3、情感与态度目标感受生活中存在着的大量不等关系,通过用不等式解决实际问题,使学生进一步认识数学与人类生活的密切联系,激发学生学习数学的信心和兴趣。

教学重点:①通过探寻实际问题中的不等式关系,认识不等式。

②根据实际问题建立合理的不等关系。

教学过程一. 创设情景,引入新课展示图片(目的:感受生活中的不等关系):(1)甲乙两名同学升高、体重不相等;(2)汤老师的年龄和体重基本都大于你们的(3)跷跷板二.问题提出师:相等关系是用等式表示的,不等关系呢?生:不等式师:你学过那些不等号呢?生:>,<,≤,≥,≠三.小试牛刀(学生初步感受不等式表示不等关系)1. a是负数2. m与2的和小于33. c的两倍不大于a与b的差4. x的平方是非负数师:不大于,不小于表示的含义四.不等式的定义a<0 m+2<3 2c≤a-b x²≥0五.概念辨析指出下列式子是否为不等式?(概念基本辨析)(1)a+1>3 (2)x²+y²(3)2m≠n-1 (4)x+3=2x六.随堂练习1. x 的3倍与8的和比x的5倍大2. x除以2的商加上2至少为53. a与b两数和的平方不小于34. m与4的和的20%至多为9七.实际运用(1)铁路部门对旅客随身携带的行李有如下规定:每件行李的长、宽、高三边之和不得超过160cm。

设行李的长、宽、高分别为 a cm、b cm、c cm,请你列出行李的长、宽、高满足的关系式(2)通过测量一棵树的树围(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位。

某树栽种时的树围为6cm,以后树围每年增加约3cm。

《一元一次不等式组》 导学案

《一元一次不等式组》 导学案

《一元一次不等式组》导学案一、学习目标1、理解一元一次不等式组的概念。

2、掌握一元一次不等式组的解集的求法。

3、会利用一元一次不等式组解决实际问题。

二、学习重难点1、重点(1)理解一元一次不等式组的有关概念。

(2)会解一元一次不等式组,并会用数轴确定其解集。

2、难点(1)在数轴上正确表示一元一次不等式组的解集。

(2)正确找出实际问题中的不等关系,列出一元一次不等式组。

三、知识回顾1、什么是一元一次不等式?只含有一个未知数,未知数的次数是 1,且不等式的两边都是整式的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(若有分母);(2)去括号(若有括号);(3)移项;(4)合并同类项;(5)系数化为 1。

四、新课导入某班同学准备去公园游玩,门票每人5 元。

如果人数不超过25 人,那么门票费用不超过 125 元;如果人数超过 25 人,那么每增加 1 人,门票费用降低 1 元,但门票费用最低不低于 4 元。

设该班去公园游玩的人数为 x 人,那么 x 应满足怎样的不等式关系呢?五、新课讲解1、一元一次不等式组的概念把几个含有相同未知数的一元一次不等式合起来,就组成了一个一元一次不等式组。

例如:\(\begin{cases}2x 1 > 0 \\ x + 1 < 4\end{cases}\)\(\begin{cases}3x + 5 < 8 \\ 2x 1 \geq 0\end{cases}\)2、一元一次不等式组的解集一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

求不等式组解集的过程,叫做解不等式组。

3、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集。

(2)将各个不等式的解集在数轴上表示出来。

(3)找出它们的公共部分,这个公共部分就是不等式组的解集。

例如:解不等式组\(\begin{cases}x 1 > 2 \\ 2x < 8\end{cases}\)解不等式\(x 1 > 2\),得\(x > 3\)解不等式\(2x < 8\),得\(x < 4\)将两个解集在数轴上表示出来:```-1 0 1 2 3 4 5 6〇───────●──────```所以,不等式组的解集为\(3 < x < 4\)4、用数轴表示不等式组的解集(1)同大取大例如:不等式组\(\begin{cases}x > 2 \\ x > 1\end{cases}\)解集为\(x > 2\)```-1 0 1 2 3 4 5 6〇─────●```(2)同小取小例如:不等式组\(\begin{cases}x < 2 \\ x < 1\end{cases}\)解集为\(x < 1\)```-1 0 1 2 3 4 5 6●─────〇```(3)大小小大中间找例如:不等式组\(\begin{cases}x < 2 \\ x > 1\end{cases}\)解集为\(1 < x < 2\)```-1 0 1 2 3 4 5 6〇─────●```(4)大大小小找不到(无解)例如:不等式组\(\begin{cases}x > 2 \\ x < 1\end{cases}\)解集为空集,即无解```-1 0 1 2 3 4 5 6〇───────●```六、例题讲解例 1:解不等式组\(\begin{cases}3x 1 > 2x + 1 \\ 2x \leq 8\end{cases}\)解:解不等式\(3x 1 > 2x + 1\),得\(x > 2\)解不等式\(2x \leq 8\),得\(x \leq 4\)在数轴上表示解集:```-1 0 1 2 3 4 5 6〇─────●```所以,不等式组的解集为\(2 < x \leq 4\)例 2:某工厂要招聘 A、B 两种工种的工人共 150 人,A、B 两个工种的工人的月工资分别为 600 元和 1000 元。

浙教版数学八年级上册3.3《一元一次不等式》教案(1)

浙教版数学八年级上册3.3《一元一次不等式》教案(1)

浙教版数学八年级上册3.3《一元一次不等式》教案(1)一. 教材分析《一元一次不等式》是浙教版数学八年级上册第三章第三节的内容。

本节内容是在学生已经掌握了不等式的概念和性质的基础上进行教学的。

通过本节课的学习,使学生掌握一元一次不等式的定义、解法及其应用,培养学生解决实际问题的能力。

二. 学情分析学生在七年级时已经学习了不等式的基本概念和性质,对不等式有了一定的认识。

但他们对一元一次不等式的定义、解法和应用还不够了解。

因此,在教学过程中,教师需要引导学生从实际问题中抽象出一元一次不等式,并通过实例让学生掌握一元一次不等式的解法和应用。

三. 教学目标1.知识与技能:使学生掌握一元一次不等式的定义、解法及其应用。

2.过程与方法:通过实际问题引导学生从数学的角度进行分析,提高学生解决实际问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:一元一次不等式的定义、解法及其应用。

2.难点:一元一次不等式的解法。

五. 教学方法采用情境教学法、问题教学法和小组合作学习法。

通过实际问题引入一元一次不等式,引导学生主动探索、发现问题,并通过小组合作学习,共同解决问题。

六. 教学准备1.准备一些实际问题,用于导入和巩固知识点。

2.准备PPT,用于呈现知识点和示例。

3.准备练习题,用于课后巩固和拓展。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,让学生思考如何用数学的方法来解决这些问题。

例如,小明有2个苹果,小红有3个苹果,问小明和小红谁苹果多?引导学生发现这个问题可以用不等式来表示和解决。

2.呈现(10分钟)通过PPT呈现一元一次不等式的定义、解法及其应用。

讲解一元一次不等式的定义,例如:ax > b(a、b为实数,a≠0)。

讲解一元一次不等式的解法,例如:将不等式两边同除以a,得到x > b/a。

同时,展示一些实例,让学生理解一元一次不等式的应用。

浙教版数学八年级上册3.3《一元一次不等式》教学设计(1)

浙教版数学八年级上册3.3《一元一次不等式》教学设计(1)

浙教版数学八年级上册3.3《一元一次不等式》教学设计(1)一. 教材分析《一元一次不等式》是浙教版数学八年级上册3.3节的内容,本节课的主要内容是一元一次不等式的概念、性质和运算。

学生在学习本节课之前已经掌握了实数、方程等基础知识,具备了一定的逻辑思维能力,但对学生来说,一元一次不等式是一个新的概念,需要通过本节课的学习来掌握。

二. 学情分析学生在学习本节课之前已经掌握了实数、方程等基础知识,具备了一定的逻辑思维能力。

但对学生来说,一元一次不等式是一个新的概念,需要通过本节课的学习来掌握。

同时,学生对于抽象的数学概念的理解和运用还需要进一步的培养和提高。

三. 教学目标1.了解一元一次不等式的概念,掌握一元一次不等式的性质。

2.学会解一元一次不等式,能够运用一元一次不等式解决实际问题。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.重难点:一元一次不等式的概念和性质。

2.难点:解一元一次不等式,运用一元一次不等式解决实际问题。

五. 教学方法1.讲授法:通过讲解一元一次不等式的概念、性质和运算方法,使学生掌握一元一次不等式的基本知识。

2.案例分析法:通过分析实际问题,引导学生运用一元一次不等式解决问题,培养学生的实际应用能力。

3.小组讨论法:学生进行小组讨论,促进学生之间的交流与合作,提高学生的团队协作能力。

六. 教学准备1.教学PPT:制作教学PPT,包括一元一次不等式的概念、性质和运算方法的讲解,以及实际问题的案例分析。

2.教学案例:准备一些实际问题,用于引导学生运用一元一次不等式解决问题。

3.练习题:准备一些练习题,用于巩固学生对一元一次不等式的理解和运用。

七. 教学过程1.导入(5分钟)通过复习实数、方程等基础知识,引导学生进入本节课的学习。

2.呈现(10分钟)讲解一元一次不等式的概念、性质和运算方法,使学生掌握一元一次不等式的基本知识。

3.操练(10分钟)让学生练习解一元一次不等式,巩固学生对一元一次不等式的理解和运用。

甘肃省酒泉市第三中学八年级数学下册第二章一元一次不等式与一元一次不等式组复习教学案1(无答案)(新版

甘肃省酒泉市第三中学八年级数学下册第二章一元一次不等式与一元一次不等式组复习教学案1(无答案)(新版

甘肃省酒泉市第三中学八年级数学下册第二章一元一次不等式与一元一次不等式组复习教学案1(无答案)(新版)北师大版一、引入(问题引入):问题1:本章我们学习的1种关系是?1种式子是? 3条性质?问题2:一元一次不等式的解与解集的区别是?一元一次不等式解集在数轴表示的方法是?二、认定目标(学习目标):1.掌握不等式及其基本性质;2.理解不等式的解及解集的含义;3.会解简单的一元一次不等式,并能在数轴上表示其解集.学习重点:通过梳理本章内容,进一步体会类比的思想方法.教学难点:体会类比的思想方法.三、本章知识结构图四、引导梳理知识点:知识点(1):不等关系:(1)、用 表示不等关系的式子,叫做不等式. 1、x 与y 的差的5倍与2的和是一个非负数,可表示为 。

2、“x 的2倍与3的差不大于8”列出的不等式是( )A.2x -3≤8B.2x -3≥8C.2x -3D.2x -3>8知识点(2):不等式的基本性质(1)不等式两边都加上(或减去)同一个数(或式子),不等号的方向 ;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向 ;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向 .1、指出下面变形根据的是不等式的哪一条基本性质.(1)由5a >4,得a >54; (2)由a+3>0,得a >-3; (3)由-2a <1,得a >-21;(4)由3a >2a+1,得a >1. 2、用“<”“=”“>”号填空.(1)如果a >b ,那么a -b __________0;(2)如果a =b ,那么a -b __________0;(3)如果a <b ,那么a -b _______0.3、若x >y,则ax >ay ,那么a 一定为( )A .a >0B .a<0C .a≥0D .a ≤04、若m <n,则下列各式中正确的是( )A .m -3<n-3 B.3m <3n C.-3m >-3n D.5-2m <5-2n知识点(3):不等式的解集(1)、能使不等式成立的未知数的值,叫做不等式的解.所以大多数不等式的解不唯一,有无数个解.(2)、满足不等式的所有解集合在一起,组成不等式的解集.在数轴上表示不等式的解集时应注意:(有点无圈,大右小左)大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.1、-3x ≤6的解集是( ) 0-1-2 0-1-2 012 012A 、B 、C 、D 、2、用不等式表示图中的解集,其中正确的是( )A. x ≥-2B. x >-2C. x <-2D. x ≤-23、下列说法中,错误的是( )A.不等式x <5的整数解有无数多个B.不等式x >-5的负整数解有4个C.不等式-2x <8的解集是x >-4D. x =-40是不等式2x <-8的解集4、不等式x -3>1的解集是 。

一元一次不等式组教学设计

一元一次不等式组教学设计

一元一次不等式组教学设计一元一次不等式组教学设计(通用10篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

下面是店铺收集整理的一元一次不等式组教学设计,希望大家喜欢。

一元一次不等式组教学设计篇1一、学习目标:1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2、经历知识的拓展过程,感受学习一元一次不等式组的必要性;3、逐步熟悉数形结合的思想方法,感受类比与化归的思想。

二、学习难点:1、重点:一元一次不等式组的解集和解法。

2、难点:一元一次不等式组解集的理解。

三、学习过程:问题情境:现有两根木条a和b,a长10 cm,b长3 cm。

如果再找一根木条。

,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?如果设木条长x cm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x10+3和x10—3。

类似于方程组引出一元一次不等式组的概念和记法。

探究新知:解下列不等式组解:解不等式(1),得x1,解不等式(2),得x—4。

在同一条数轴上表示不等式(1)、(2)的解集如图:所以,原不等式组的解是x1巩固新知:P140,1,P141,1归纳总结:不等式解集取值法则同大取大,同小取小,大小取中,矛盾无解。

若ab:①当时,•则不等式的公共解集为;②当时,不等式的公共解集为;③当时,不等式的公共解集为;④当时,不等式组。

作业:1、P141,22、解不等式组:(1);(2)(3);(4)3、若不等式组无解,求m的取值范围。

4、解不等式组,并将解集在数轴上表示出来。

5、解不等式组:(1);(2)6、解不等式:(1);(2)7、若关于x的不等式组的解集是,则下列结论正确的是()A、B、C、D、8、若方程组的解是负数,则的取值范围是()A、B、C、D、无解9、若,则x为()A、B、C、或 D、10、已知方程组的解为负数,求m的取值范围。

导学案 9.3.1一元一次不等式组(2)

导学案 9.3.1一元一次不等式组(2)

姓名________________ 组别_________________ 评价__________________学习目标: 1.巩固解一元一次不等式组的过程。

2.总结解一元一次不等式组的步骤及情形。

3.理解与掌握一元一次不等式组的解集及其应用。

一、复习巩固解下列不等式并在数轴上表示它们的解集:1、⎩⎨⎧-<+->14212x x x x2、⎪⎪⎩⎪⎪⎨⎧-≤-->+814311532x x x x二、自主先学请同学们通过自学课本129页的例2,完成下列习题1、 34125x +-<≤的整数解为 2、若m<n ,则不等式组12x m x n >-⎧⎨<+⎩的解集是 3、已知不等式组2113x x m-⎧>⎪⎨⎪>⎩的解集为2x >,则( ).2.2.2.2Am B m C m D m ><=≤4、关于不等式组x m x m ≥⎧⎨≤⎩的解集是( ) A.任意的有理数 B.无解 C.x=m D.x= -m三、自学总结(1)⎩⎨⎧>>a x x 1的解集是1>x ,则a 的取值范围是______________. (2)⎩⎨⎧<<ax x 1的解集是1<x ,则a 的取值范围是______________.(3)⎩⎨⎧>>a x x 1的解集是1<<x a ,则a 的取值范围是______________. (4)⎩⎨⎧<>a x x 1无解,则a 的取值范围是______________.四、总结分享1、 对于今天的知识你总结出了一些什么结论?2、你还需要老师为你解决哪些问题?3、请你编写一道利用一元一次不等式组的解集的相关性质解决的问题,当然也可以是你在其它参考书上见到过的题目,并请你将这个题目的解答过程写出来。

五、牛刀小试内容见PPT 。

六、自学检测1、求同时满足不等式2116234132x x x x +--≥--<和的整数2、求出不等式组⎩⎨⎧≤-≥-873273x x 的解集中的正整数3、若不等式组⎩⎨⎧-<+<423a x a x 的解集是23+<a x ,求a 的取值范围六、总结提升1、已知不等式组⎩⎨⎧<->a x x 3, (1)若此不等式组无解,求a 的取值范围,并利用数轴说明。

一元一次不等式组(二)1

一元一次不等式组(二)1

§1.6.2 一元一次不等式组(二)教材分析:上节课我们学习了一元一次不等式,知道了一元一次不等式的有关概念,本节主要学习一元一次不等式组及其解集,这是学好利用一元一次不等式组解决实际问题的关键,同时要求学生会用数轴确定解集。

并且本课也通过一元一次不等式,一元一次不等式的解集,解不等式的概念来类推地学习一元一次不等式组的一些概念,尝试对学生类比推理能力进行培养。

在情感态度、价值观方面要培养学生独立思考的习惯,也要培养学生的合作交流意识与创新意识,为学生在今后生活和学习中更好运用数学作准备。

教学目标(一)知识与技能1.进一步巩固解一元一次不等式组的过程.2.总结解一元一次不等式组的步骤及情形.(二)能力训练要求通过总结解一元一次不等式组的步骤,培养学生全面系统的总结概括能力.(三)情感与价值观要求1.加强运算的熟练性与准确性.2.培养思维的全面性.教学重点巩固解一元一次不等式组.教学难点讨论求不等式解集的公共部分中出现的所有情况,并能清晰地阐述自己的观点.教学方法自主与讨论相结合的方法即让学生自己解不等式组,然后讨论解中出现的所有情况.教具准备投影片三张第一张:(记作§1.6.2 A)第二张:(记作§1.6.2 B)第三张:(记作§1.6.2 C)教学方法:1、采用复习法查缺补漏,引导发现法培养学生类比推理能力,尝试指导法逐步培养学生独立思考能力及语言表达能力。

充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识。

2、让学生充分发表自己的见解,给学生一定的时间和空间自主探究每一个问题,而不是急于告诉学生结论。

3、尊重学生的个体差异,注意分层教学,满足学生多样化的学习需要。

教学过程Ⅰ.创设问题情境,导入新课[师]上节课我们已经学习了如何解由两个一元一次不等式组成的不等式组的解法,本节课我们将继续加强解法的熟练性和准确性,同时还要全面地对所有解的情况进行总结.Ⅱ.新课讲授1.例题投影片(§1.6.2 A ) 解下列不等式组(1)⎪⎩⎪⎨⎧<->+x x x 987121(2)⎩⎨⎧+>++<-145123x x x x(3)⎪⎩⎪⎨⎧-≤-+>-xx x x 237121)1(325(4)⎩⎨⎧<>-621113x x[师]在做这组练习题之前,我们先回忆一下求一元一次不等式的解集和一元一次不等式组的解集的步骤.[生]解一元一次不等式的步骤为:去分母,去括号,移项、合并同类项,系数化成1.要注意的是在去分母和系数化成1这两步中不等号方向是否改变.解一元一次不等式组的步骤为:分别求出两个一元一次不等式的解集,在数轴上确定它们的公共部分,从而得出不等式组的解集.[师]好.下面我们先自己独立完成这四个不等式组的求解.(让四个同学在黑板上板书过程).[生甲](1)⎪⎩⎪⎨⎧<->+x x x 987121)2()1(解:解不等式(1),得x >1 解不等式(2),得x >-4.在同一条数轴上表示不等式(1),(2)的解集如图1-33:图1-33所以,原不等式组的解集是x >1 [生乙](2)⎩⎨⎧+>++<-145123x x x x)2()1(解:解不等式(1),得x <23解不等式(2),得x <34在同一条数轴上表示不等式(1),(2)的解集.如图1-34:图1-34所以,原不等式组的解集是x <34[生丙](3)⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(325)2()1( 解:解不等式(1),得x >25解不等式(2),得x ≤4.在同一条数轴上表示不等式(1),(2)的解集,如图1-35:图1-35所以,原不等式组的解集为25<x ≤4. [生丁](4)⎩⎨⎧<>-621113x x)2()1([解]解不等式(1),得x >4. 解不等式(2),得x <3.在同一条数轴上表示不等式(1),(2)的解集如图1-36:图1-36所以,原不等式组的解集为无解.[师]大家做得非常棒,下面大家认真观察一下这四组解,你发现了什么?2.讨论解的情况[师]我们从每个不等式的解集,到这个不等式组的解集,认真观察,互相交流,找出规律.(1)由⎩⎨⎧->>41x x 得x >1;(2)由343423<⎪⎪⎩⎪⎪⎨⎧<<x x x 得;(3)由⎪⎩⎪⎨⎧≤>425x x 得25<x ≤4;(4)由⎩⎨⎧<>34x x 得,无解.[生]由(1)得,两个不等式的解集中不等号的方向都是大于号,在数字1和-4中取大数1,不等号取大于号.由(2)得,两个不等式的解集中不等号的方向都是小于号,在不等式组的解集中不等号的方向取小于,而数字取比较小的数字34.由(3)得,两个不等式的解集中不等号的方向有大于也有小于,数字25<4,并且是x >25,x ≤4,最后的结果中是x 取大于小数小于大数,即25<x ≤4.由(4)得,两个不等式的解集中不等号的方向有大于也有小于,并且是x >4,x <3,因为4>3,即x 应取大于4而小于3的数,而这样的数根本不存在,所以原不等式组的解集为无解.[师]大家分析得非常精彩.基本上说明了情况,下面我再系统地给大家作一总结:投影片(§1.6.2 B )两个一元一次不等式所组成的不等式组的解集有以下四种情形. 设a <b ,那么(1)不等式组⎩⎨⎧>>b x a x 的解集是x >b ; (2)不等式组⎩⎨⎧<<bx a x 的解集是x <a ; (3)不等式组⎩⎨⎧<>b x a x 的解集是a <x <b ; (4)不等式组⎩⎨⎧><bx a x 的解集是无解.[师]这是用式子表示,也可以用语言简单表述为: 同大取大;同小取小; 大于小数小于大数取中间; 大于大数小于小数无解. Ⅲ.课堂练习 1.随堂练习解下列不等式组(1)⎩⎨⎧>-<+81353x x(2)⎪⎪⎩⎪⎪⎨⎧+>-<+523)1(212x x x x[解](1)⎩⎨⎧>-<+81353x x )2()1(解不等式(1),得x <2 解不等式(2),得x >3在同一数轴上表示不等式(1)、(2)的解集,如图1-37:图1-37所以,原不等式组无解.(2)⎪⎪⎩⎪⎪⎨⎧+>-<+523)1(212x x x x)2()1(解:解不等式(1),得x >2 解不等式(2),得x >3在同一数轴上表示不等式(1),(2)的解集,如图1-38:图1-38所以,原不等式组的解集为x >3. 2.补充练习投影片(§1.6.2 C ) 解下列不等式组1.⎪⎩⎪⎨⎧->+≥--13214)2(3x x x x2.⎪⎪⎩⎪⎪⎨⎧+>+<+33221)4(21x x x1.解:⎪⎩⎪⎨⎧->+≥--13214)2(3x x x x )2()1(解不等式(1),得x ≤1 解不等式(2),得x <4在同一条数轴上表示不等式(1)、(2)的解集如图1-39:图1-39所以,原不等式组的解集为x ≤12. ⎪⎪⎩⎪⎪⎨⎧+>+<+33222)4(21x x x)2()1(解:解不等式(1),得x <-2 解不等式(2),得x >0在同一条数轴上表示不等式(1)、(2)的解集,如图1-40:图1-40所以,原不等式组无解. Ⅳ.课时小结本节课我们学习了如下内容. 1.练习了解一元一次不等式组.2.总结了由两个一元一次不等式所组成的不等式组的解集的四种情况. Ⅴ.课后作业 习题1.9 板书设计§1.6.2 一元一次不等式(二)一、1.例题讲解.2.讨论由两个一元一次不等式所组成的不等式组的解集的情形. 二、课堂练习 三、课时小结 四、课后作业 备课资料 参考练习解下列不等式组 1.⎩⎨⎧-<->+xx x x 4109154652.⎪⎪⎩⎪⎪⎨⎧+<-+<21512512x x x x3.⎩⎨⎧>+-+<+xx x x 28)2(35)2(24.⎩⎨⎧+≥--+<-)1(46)1(5)3(62x x x x5.⎪⎪⎩⎪⎪⎨⎧-+>--<+4233225351x x x xx参考答案 1.x >1 2.-7<x <32 3.-2<x <1 4.x ≥15 5.无解教学反思1、通过探究新知的环节鼓励学生自己探究,让学生真正去思考、去尝试,让学生变得更会思考了,解决问题的能力也加强了,真正体现学生的主体地位,效果不错;2、在对整节课的时间把握上有所欠缺,致使拖了堂,当然这也存在着经验不足,在做课件时没预先设计的问题;如果我再上一次这个内容我会把探究活动直接作为学生课后探究的问题,而且在小结后我将让学生利用本节课所学知识解决引例中的问题,让学生领会到数学也是应用于生活的,让学生能体会到所学知识的用处,借此也可引出下一节课,起到抛砖引玉的作用;。

不等式的基本性质(原梅)doc

不等式的基本性质(原梅)doc

课题1.2不等式的基本性质课型新授课章节第一章一元一次不等式和一元一次不等式组年级八年级教学目标重点难点及策略知识与技能目标:①掌握不等式的基本性质。

②经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。

③能初步运用不等式的基本性质把比较简单的不等式化为"x>a""x<a"的形式(2)过程与方法目标:进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。

(3)情感与态度目标:关注学生对问题的实质性认识与理解。

重点:不等式基本性质难点:根据不等式的基本性质进行化简.策略:互动、生成、内在建构教学法.教学过程设计教学环节教师活动学生活动设计意图规积累第一环节过程推进第二环节第三环节第四环节第五环节组织:复习等式的基本性质一、探究不等式的基本性质1、提出问题:还记得等式的基本性质吗?等式的基本性质1:用字母可以表示为:等式的基本性质2,用字母可以表示为:,其中。

这里的a,b,c都可以表示哪些数呢?2.不等式是否具有和等式一样的基本性质呢?例如:形如a>b这个不等式,a,b可以表示哪些数呢?举例:3>2,这是两个正数之间的比较你能把我们学过的满足a>b的数分类比较吗?看看谁写的类型比较多?(1)验证不等式性质一:我们借助于这几种分类验证一下:在不等式的两边同时加或减同一个数,不等号的方向是否发生改变?学生验证,展示有没有反例?回顾:刚才我们针对形如a>b的不等式做了哪些活动?你发现了什么规律?你能用字母表示这个规律吗?猜想一下,当a<b时,刚才验证的规律是否成立?同伴交流验证完用字母表示规律用文字语言描述规律:在不等式的两边都加上(或减去)同一个整式,不等号的方向不变. 这个环节由学生归纳。

(2)验证不等式性质2借助刚才验证不等式性质1的方法和刚才列举的不等式,看看在不等式两边同时乘以或除以同一个数,不等号的方向是否发生改变?学生验证有没有反例?反例是偶然的还是一定会发生的?比较区别重点突出在不等式两边同时乘以或除以负数,不等号发生的改变。

1 一元一次不等式与一次函数(二)教案 及反思

1 一元一次不等式与一次函数(二)教案 及反思

一元一次不等式与一次函数(二)教案南顿二中:倪娜娜一元一次不等式与一次函数(二)教学设计教学任务分析数学教学由一系列相互联系而又渐次梯进的课堂组成,因而具体的课堂教学也应满足于整个数学教学的远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。

本节课是八下第一章第五节《一元一次不等式与一次函数》第二课时的内容,从属于“数与代数”这一数学学习领域,因而务必服务于数与代数教学的远期目标,同时也应力图在学习中逐步达成学生的有关情感态度目标。

教科书基于学生对一元一次不等式与一次函数的关系认识的基础之上,提出了本课的具体学习任务,本节课的教学目标是:1、掌握一元一次不等式与一次函数的关系,会运用不等式解决函数有关问题。

2、通过具体问题初步体会一次函数的变化规律与一元一次不等式解集的联系。

3、感知不等式、函数、方程的不同作用与内在联系,并渗透“数形结合”思想。

4、训练大家能利用数学知识去解决问题的能力.5、体验数、图形是有效地描述现实世界的重要手段.教学过程分析本节课设计了五个教学环节:第一环节:情境引入;第二环节:探究、合作学习;第三环节:运用巩固、练习提高;第四环节:课堂小结;第五环节:布置作业。

第一环节:情境引入活动内容:放假期间很多人热衷于旅游,而旅行社瞅准了这个商机,会打着各式各样的优惠来吸引你,那么究竟应该选哪一家呢?下面我们一起来探究这里的奥妙。

活动目的:让学生在一个比较熟悉的氛围中接触学习主题,有利于他们启动思维。

活动效果:引发了学生的兴趣。

第二环节:探究、合作学习活动内容:学生在分组讨论的基础上,大胆提出自己解决问题的方法,教师点评。

1.[例1]某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用?其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?请大家先计划一下,你选哪家旅行社?分析:首先我们要根据题意,分别表示出两家旅行社关于人数的费用,然后才能比较.而且比较情况只能有三种,即大于,等于或小于.解:设该单位参加这次旅游的人数是x人,选择甲旅行社时,所需费用为y1元,选择乙旅行社时,所需的费用为y2元,则y1=200×0.75x=150xy2=200×0.8(x-1)=160x-160当y1=y2时,150x=160x-160,解得x=16;当y1>y2时,150x>160x-160,解得x<16;当y1<y2时,150x<160x-160,解得x>16.因为参加旅游的人数为10~25人,所以当x=16时,甲乙两家旅行社的收费相同;当17≤x≤25时,选择甲旅行社费用较少,当10≤x≤15时,选择乙旅行社费用较少.由此看来,选哪家旅行社不仅与旅行社的优惠政策有关,而且还和参加旅游的人数有关,那么在以后的旅行中,大家一定不要想当然,而是要精打细算才能做到合理开支,现在,你学会了吗?活动目的:此处主要是想让学生经历运用不等式解决实际问题的过程。

9.2一元一次不等式(第1课时)教案(新人教版七年级下)

9.2一元一次不等式(第1课时)教案(新人教版七年级下)

9.2一元一次不等式(第1课时)
自主探究
合作交流【问题2】观察下面的不等式:
(1)x-7>26 (2)3x< 2x+1
(3)x > 50 (4)-4x>3
它们有哪些共同特征?
总结:不等式的两边都是整式,只含有一个未知数,并
且未知数最高次数是1,这样的不等式,叫做一元一次不
等式。

【问题3】用不等式的性质解下列不等式,
(1)x-7>26 (2)x > 50
解:(1)不等式的两边都加7,得
x>26+7
x>33
(2)不等式的两边都乘以,得
x >
x >75
【问题4】联系一元一次方程的解法,如何解不等式呢?
同学交流,并试着解答.
总结:解一元一次不等式的一般步骤:
(1)去分母,根据不等式性质3;
教师出示问题2.
学生先观察并独立思考,
然后教师引导从不等式的个数和未
知数的次数两个方面描述不等式的特
点,类比一元一次方程的定义,说出
一元一次不等式的定义。

教师引导学生回顾用不等式的性质
解不等式的方法,类比解一元一次方
程的步骤,发现解一元一次不等式与
解一元一次方程的步骤类似
学生归纳:
不等式的两边都加7,事实上就是移
项;
不等式的两边都乘以,事实上就是系
数化为1.
仿照解一元一次方程的步骤解不等
式,学生独立完成,找学生板演,教
师巡视指导。

教师适当引导,帮助学生理解过程,。

2015-1-7一元一次不等式(组)基础讲义含答案

2015-1-7一元一次不等式(组)基础讲义含答案

一元一次不等式(组)(讲义)一、知识点睛1. 不等式的概念:用符号>,<,≥,≤,≠连接的式子叫做不等式.“≥”叫大于或等于,也叫不小于;“≤”叫小于或等于,也叫不大于.2.不等式的基本性质:..4.①不等式的两边都加上(或减去)同一个代数式,不等号的方向不变; ②不等式的两边都乘以(或除以)同一个正数,不等号的方向不变; ③不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变.3.不等式的解与不等式的解集:使不等式成立的未知数的值;,叫做不等式的解;含有未知数的不等式的所有解,组成这个不等式的解集,通常用“xa >”或“x a <”的形式表示.不等式的解集可以在数轴上表示,需要注意实心圆点和空心圆圈的区别.4.求不等式解集的过程叫做解不等式.5. 一元一次不等式:不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式.6.一元一次不等式组及其解法.一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组.一元一次不等式组中各个不等式的解集的公共部分,叫做这个不等式组的解集.求不等式组解集的过程,叫做解不等式组. 二、精讲精练.1. a 的5倍与3的差不小于10,用不等式表示为____________.2. 某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.已知小明在这次竞赛中的成绩超过90分,设他答对了n 道题,则根据题意可列不等式_______________.3.判断正误. (1)2≤3;( ) (2)由2x >-6,得3x <-; ( )(3)由ac bc >,且c ≠0,得a b >;( ) (4)如果0a b <<,则1ab<.( ) 4.已知ab >,c ≠0,则下列关系一定成立的是( )A .ac bc >B .a bc c> C .c a c b ->- D .c a c b +>+5. 若x a =是不等式5x +125≤0的解,则a 的取值范围是_________________.6. 不等式10x +<的解集在数轴上表示正确的是( )A .B .C .D .7.若关于x的不等式0x a -≤的解集如图所示,则a =_______.8. 若关于x 的不等式325m x -<的解集是2x >,则m =______.9. 不等式x ≤1的非负整数解是____________;不等式1x >-的最小整数解是___________. 10. 解下列不等式,并把它们的解集分别表示在数轴上.(1)2125x x --<; (2)53432x x ++-≤; (3)69251332x x x +-+-≤; (4)532122x x ++->.11. 在不等式0ax b +>中,a ,b 是常数,且a ≠0,当______时,不等式的解集是bx a>-;当_______时,不等式的解集是b xa<-. 12. 不等式84632x x x+->+的非负整数解为________________.13. 若不等式x a <只有4个正整数解,则a 的取值范围是________________. 14. 若不等式x a ≥只有2个负整数解,则a 的取值范围是________________. 15. 解下列不等式组,并把它们的解集分别表示在数轴上.(1)213821x x x +>-⎧⎨--⎩≤; (2)239253x x x x+<-⎧⎨-<⎩; (3)211132x +-<-<; (4)513(1)2151132x x x x ->+⎧⎪-+⎨-⎪⎩≥;(5)273(1)234425533x x x x x x ⎧⎪-<-⎪+⎪<⎨⎪⎪--+⎪⎩≤.16. 若不等式组420x a x >⎧⎨->⎩的解集是12x -<<,则a =________.17. 如果不等式组2123x a x b -<⎧⎨->⎩的解集是11x -<<,那么(1)(1)a b +-=_____________.18. 如果一元一次不等式组>2>x x a ⎧⎨⎩的解集是2x >,那么a 的取值范围是( )A .2a >B .2a ≥C .2a ≤D .2a <19. 如果不等式组8>41x x x m+-⎧⎨⎩≤的解集是3x <,那么m 的取值范围是( )A .3m ≥B .3m ≤C .3m =D .3m <一元一次不等式(组(随堂测试)1. 解不等式组240312123x x x +⎧⎪+-⎨<⎪⎩≥,并把它的解集表示在数轴上.2. 不等式351222x x -++≤的最小整数解为_________. 3. 如果不等式组2223x a x b ⎧--⎪⎨⎪-⎩≤≤的解集是01x ≤≤,那么a b +的值为____________.一元一次不等式(组)基础(作业)20. 下列说法中,错误的是( )A .不等式2x <的正整数解有一个B .2-是不等式210x -<的一个解C .不等式39x ->的解集是3x >-D .不等式10x <的整数解有无数个 21. 若0a b >>,c ≠0,则下列式子一定成立的是( )A .a c b c -<-B .1a b <C .22a b ->-D .22a bc c>22. 已知点M (12m -,1m -)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )A .B . C, D,23. 若一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组3050x x -⎧⎨->⎩≥的整数,则这组数据的平均数是___________.24. 若不等式22x a -+≥的解集是1x ≤,则a 的值是_________.25. 若不等式20x a -≤只有4个正整数解,则a 的取值范围是________________.26. 若不等式组2>31<1x n x m +⎧⎨+-⎩的解集是12x -<<,则m n -=____.27. 若关于x 的不等式组8236x x x a +>+⎧⎨⎩≤的解集是2x <,则a 的取值范围是_________.28. 篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2013~2014赛季全部32场比赛中至少得到48分,才有希望进入季后赛.若设这个队在将要举行的比赛中胜x 场,则x 应满足的关系式是_____________.29. 解下列不等式,并把它们的解集分别表示在数轴上.(1)521293x x --≤; (2)3221145x x --+≤; (3)321132x x -+<-;(4)326381236x x x -----≤.30. 解下列不等式组,并把它们的解集分别表示在数轴上.(1)73(1)5213122x x x x -+<-⎧⎪⎨-⎪⎩≥;(2)3(2)412>13x x x x --⎧⎪+⎨-⎪⎩≥;(3)4513777x -<--≤; (4)63315x xxx -⎧⎪-⎨<--⎪⎩≤.一元一次不等式(组)应用(讲义) 一、知识点睛1. 解一元一次不等式组的口诀:大大取大、小小取小、大小小大中间找、大大小小找不着.2.不等式应用题的三种常见类型①关键词型:不超过,至少,不低于,多于等;②不空不满型:不空也不满等;③方案设计型:原材料供应,容器容量. 二、精讲精练1.解下列不等式组.(1)42313(1)x x x x +⎧+⎪⎨⎪+<-⎩≥;(2)3(2)81213x x x x --⎧⎪+⎨>-⎪⎩≥; (3)523132x x x +⎧⎪+⎨>⎪⎩≥;(4)12(1)2235xx x x ⎧+>-⎪⎪⎨+⎪⎪⎩≥.2.如果一元一次不等式组213(1)x x x m->-⎧⎨⎩≤的解集是2x <,那么m 的取值范围是( )A .2m =B .2m >C .2m <D .2m ≥3.若关于x 的一元一次不等式组712x ax x >⎧⎨+<-⎩有解,则a 的取值范围是( )A .2a -≤B .2a >-C .12a<-D .12a -≤ 4.若关于x 的一元一次不等式组122x ax x <⎧⎨-<-⎩无解,则a 的取值范围是( )A .1a -≥B .1a >-C .1a ≤D .1a <5.若关于x 的一元一次不等式组721x mx <⎧⎨-<⎩的整数解共有3个,则m 的取值范围是( )A .67m <<B .67m <≤C .67m ≤≤D .67m <≤6.为鼓励学生参加体育锻炼,学校计划购买一批篮球和排球,已知篮球的单价为96元,排球的单价为64元,若用不超过 3 200元去购买篮球和排球共36个,且要求购买的篮球多于25个,则至少购买排球_______________个.7. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空.那么汽车共有___________辆.8.“亚洲足球俱乐部冠军联赛”期间,河南球迷一行56人从旅馆乘车到天河球场为广州恒大加油.现有A ,B 两个车队,A 队比B 队少3辆车.若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B 队的车,每辆坐4人,车不够,每辆坐5人,有的车未坐满.则A 队有车___________辆.9.某工厂现有甲种原料360kg ,乙种原料290kg ,计划利用这两种原料生产A ,B 两种产品共50件.已知生产一件A ,B 产品所需原料如下表所示.(1)设生产x 件A 种产品,写出x 应满足的不等式组; (2)有哪几种符合题意的生产方案?请你帮助设计.10. 某工厂现有甲种布料70米,乙种布料52米,计划利用这两种布料生产A ,B 两种型号的时装共80套..利用现有布料,工厂能否完成任务?若能,请设计出所有可能的生产方案;若不能,请说明理由.11. 某仓库有甲种货物360吨,乙种货物290吨,计划用A ,B 两种货车共50辆将这批货物运往外地.若一辆A种货车能装载甲种货物9吨和乙种货物3吨;一辆B 种货车能装载甲种货物6吨和乙种货物8吨.则有哪几种运输方案?请设计出来.12. 在家电下乡活动中,某厂家计划将100台冰箱和54台电视机送到乡下.现租用甲、乙两种货车共8辆将这批家电全部运走,已知一辆甲种货车可同时装冰箱20台,电视机6台,一辆乙种货车可同时装冰箱8台,电视机8台.则将这批家电一次性运到目的地,有几种租用货车的方案?一元一次不等式(组)应用(随堂测试)4. 若关于x 的不等式组3352x x x a++⎧>⎪⎨⎪⎩≤的解集为3x <-,则a 的取值范围是( )A .3a =-B .3a >-C .3a <-D .3a -≥5. 某工厂现有甲种原料280kg ,乙种原料190kg ,计划利用这两种原料生产A ,B 两种产品50件.已知生产一件A 产品需甲种原料7kg ,乙种原料3kg ;生产一件B 产品需甲种原料3kg ,乙种原料5kg .则该工厂有哪几种生产方案?请你设计出来.一元一次不等式(组)应用(作业)31. 小美将某服饰店的促销活动内容告诉小明后,小明假设某件商品的定价为x元,并列出关系式0.3(2100) 1 000x -<,则下列哪个选项可能是小美告诉小明的内容?( )A 买两件相同价格的商品可减100元,再打3折,最后不到1 000元!B 买两件相同价格的商品可减100元,再打7折,最后不到1 000元!C 买两件相同价格的商品可打3折,再减100元,最后不到1 000元!D 买两件相同价格的商品可打7折,再减100元,最后不到1 000元!32. 把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.则共有学生( ) A .4人B .5人C .6人D .5人或6人33. 若一元一次不等式组9551x x x m +<+⎧⎨>+⎩的解集是1x >,则m 的取值范围是_______________.34. 若关于x 的一元一次不等式组4132x xx m+⎧>+⎪⎨⎪>⎩有解,则m 的取值范围是_______________.35. 若关于x 的一元一次不等式组2113x x a -⎧>⎪⎨⎪<⎩无解,则化简32a a -+-的结果为_________________.36. 若关于x 的一元一次等式组0321x a x ->⎧⎨->⎩的整数解共有4个,则a 的取值范围是___________.37. “3·12”植树节,市团委组织部分中学的团员去郊区植树.某校八年级(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,最后一人有树植,但不足3棵.则这批树苗共有___________棵.38. 解下列不等式组:(1)201211233x x x -⎧⎪--⎨-<⎪⎩≤;(2)3(2)41213x x x x --⎧⎪+⎨>-⎪⎩≥; (3)331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩≥; (4)311224(1)x x x +⎧-⎪⎨⎪->+⎩≥.39. 某工厂现有甲种原料400千克,乙种原料450千克,计划利用这两种原料生产A ,B 两种产品共60件.已知生产一件A 种产品,需用甲种原料9千克、乙种原料5千克;生产一件B 种产品,需用甲种原料4千克、乙种原料10千克.则有哪几种生产方案?请你设计出来.40. 某校组织学生到外地进行社会实践活动,共有680名学生参加,并携带300件行李,学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.则如何安排甲、乙两种汽车,可一次性地将学生和行李全部运走?请你设计方案.1、【参考答案】 知识点睛1.>,<,≥,≤,≠.大于或等于,不小于;小于或等于,不大于. 2.①代数式,不变;②正数,不变;③负数,改变.3.使不等式成立的未知数的值;含有未知数的不等式的所有解.实心圆点和空心圆圈.4.求不等式解集的过程. 5.整式,未知数.6.关于同一未知数的几个一元一次不等式合在一起.一元一次不等式组中各个不等式的解集的公共部分.求不等式组解集的过程. 精讲精练1.5310a -≥ 2.105(20)90n n --> 3.(1)√;(2)×;(3)×;(4)×. 4.D5.25a -≤6.A7.1- 8.3 9.0,1;0. 10.(1)2x <; (2)2x -≤; (3)1x -≥; (4)12x <.解集在数轴上的表示略. 11.0a>;0a <.12.0,1,2,3. 13.45a <≤ 14.32a -<-≤ 15.(1)3x ≥; (2)52x -<<;(3)514x -<<; (4)无解; (5)46x -<<. 解集在数轴上的表示略. 16.1- 17.6-18.C 19.A2、【参考答案】1.21x -<-≤,解集在数轴上的表示略.2.2- 3.3-3、【参考答案1.C2.D3.A 4.55.46.810a <≤7.1-8.2a ≥9.23248x x +-≥10.(1)13x ≥; (2)2x -≤; (3)34x >-;(4)15x -≥. 解集在数轴上的表示略.11.(1)4x ≥;(2)1x ≤;(3)2255x <≤;(4)无解.解集在数轴上的表示略. 4、【参考答案知识点睛1.大大取大、小小取小、大小小大中间找、大大小小找不着. 2.①关键词型;②不空不满型;③方案设计型. 精讲精练1.(1)2x >;(2)1x -≤;(3)12x -<≤;(4)无解. 2.D 3.C 4.C 5.D 6.8 7.6 8.109.(1)94(50)360310(50)290x x x x +-⎧⎨+-⎩≤≤;(2)共有3种生产方案.方案一,生产A 种产品30件,B 种产品20件;方案二,生产A 种产品31件,B 种产品19件;方案三,生产A 种产品32件,B 种产品18件. 10.工厂能完成任务,共有5种生产方案.方案一,生产A 型号时装36套,B 型号时装44套;方案二,生产A 型号时装37套,B 型号时装43套;方案三,生产A 型号时装38套,B 型号时装42套; 方案四,生产A 型号时装39套,B 型号时装41套;方案五,生产A 型号时装40套,B 型号时装40套. 11.共有3种运输方案.方案一,A 种货车20辆,B 种货车30辆;方案二,A 种货车21辆,B 种货车29辆;方案三,A 种货车22辆,B 种货车28辆.12.共有3种租车方案.方案一,租用甲种货车3辆,乙种货车5辆;方案二,租用甲种货车4辆,乙种货车4辆;方案三,租用甲种货车5辆,乙种货车3辆. 5、【参考答案】1.D 2.共有3种生产方案.方案一,生产A 种产品30件,B 种产品20件;方案二,生产A 种产品31件,B 种产品19件;方案三,生产A 种产品32件,B 种产品18件. 6、【参考答案】1.A 2.C 3.0m ≤ 4.2m < 5.25a -+ 6.43a -<-≤7.1218.(1)2x ≥;(2)1x ≤;(3)21x -<≤;(4)无解.9.共有3种生产方案.方案一,生产A 种产品30件,B 种产品30件;方案二,生产A 种产品31件,B 种产品29件;方案三,生产A 种产品32件,B 种产品28件.10.共有3种方案.方案一,安排甲型汽车8辆,乙型汽车12辆;方案二,安排甲型汽车9辆,乙型汽车11辆; 方案三,安排甲型汽车10辆,乙型汽车10辆.。

【教案一】9[1].2一元一次不等式

【教案一】9[1].2一元一次不等式

金,问参加旅游的学生有多少人?
(2)某单位要制作一批宣传资料.甲公司提出:
每份材料收费 20 元,另收设计费 3 000 元;乙公司 提出:每份材料收费 30 元,不收设计费.
①什么情况下,选择甲公司比较合算? ②什么情况下,选择乙公司比较合算? ③什么情况下,两公司收费相同? (3)某移动通讯公司开设两种业务:“全球通” 月租费 30 元,每分钟通话费 o.2 元;“神州行”没 有月租费,每分钟通话费 0.4 元(两种通话均指市 内通话).如果一个月内通话 x 分钟,选择哪种通讯 业务比较合算? (4)某商场画夹每个定价 20 元,水彩每盒定价 5 元.为了促销,商场制定了两种优惠办法:一是买 一个画夹送一盒水彩;一是画夹和水彩均按九折付 款.章老师要买画夹 4 个,水彩若干盒(不少于 4 盒).问:哪种方法更优惠? 本课教育评注(课堂设计理念,实际教学效果及改进设想) 本课设置了丰富的实际情境,比如跷跷板游戏、爆破问题等,研究这些问题,可以 使学生体会到现实生活中存在着大量的不等关系,不等式是现实世界中不等关系的一种 数学表示形式,它也是刻画现实世界中量与量之间关系的有效模型. 教学中要突出知识之间的内在联系.不等式与方程一样,都是反映客观事物变化规 律及其关系的模型.在教学中,类比已经学过的方程知识,引导学生自己去探索、发现、 甄别,从而得出一元一次不等式、不等式的解与解集的意义. 教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效 果.因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形 成过程.这种教学方法以“生动探索”为基础,先“引导发现”,后“讲评点拨”,让学 生在克服困难与障碍的过程中充分发挥自己的观察力、想像力和思维力,再加上多媒体 的运用,使学生真正成为学习的主体.

八下 第一章 1.6.1一元一次不等式组 教学设计(于海峰)

八下 第一章 1.6.1一元一次不等式组 教学设计(于海峰)

第六章一元一次不等式和一元一次不等式组1.6.1一元一次不等式组【复习检测】解下列不等式,并把解集分别在数轴上表示出来x-<x+>4(5)684(5)100【有效学习】学习目标经历通过具体问题抽象出不等式组的过程,理解一元一次不等式组及其解的概念,初步感知利用一元一次不等式解集的数轴表示求不等式组的解和解集的方法,会解由两个一元一次不等式组成的不等式组。

学习重点:一元一次不等式组的解法.学习难点:一元一次不等式的解集和所组成的不等式组的解集之间关系的理解.【预习检测】(1)某校今年冬季烧煤取暖的时间为4个月。

如果每个月比计划多烧5吨,那么用煤总量将超过100吨。

如果每个月比计划少烧5吨,那么用煤总量将不足68吨。

则该校每月计划烧煤多少吨?分析:若设该校每月计划烧煤x吨,你能根据题意列出关于x的不等式吗?___________________________且____________________________。

很显然,未知数x同时满足所列的两个不等式,为此,我们需要把两个不等式结合在一起,就组成一个一元一次不等式组。

(注意:是同一个字母的两个不等式)请将上题的不等式表示成一个不等式组:___________________________________你能尝试找出满足上面所列一元一次不等式组的未知数的值吗?请在同一个数轴上出上面两个一元一次不等式的解集。

观察你画的图形,你找到不等式组的解集了吗?说说每个不等式的解集和不等式解集的有上面关系?【总结提高】1.一元一次不等式组中各个不等式的解集的,叫做这个一元一次不等式组的解集。

求不等式组的的过程,叫做解不等式组。

2.一元一次不等式组的两个步骤:(1)求出这个不等式组中各个;(2)利用找出这些不等式的解集的公共部分,即求出这个不等式组的。

范例学习:解不等式组,并在数轴上表示其解集⎩⎨⎧<->0312x x ⎩⎨⎧<+->-81312x x 解:解不等式○1,得:解不等式○2,得:在同一个数轴上表示出两个不等式解集因此,原不等式组的解集为:自我发现:在数轴上表示其解集,并写出来(1)⎩⎨⎧-≥>12x x (2)⎩⎨⎧-<-<12x x 数轴表示: 数轴表示:不等式组的解集是 不等式组的解集是(3)⎩⎨⎧><14x x (4)⎩⎨⎧-<>45x x数轴表示: 数轴表示:不等式组的解集是 不等式组的解集是分层作业:A 、必做题(限时10钟,实际完成时间:_______分钟)(1)不等式⎩⎨⎧->≤23x x 的解集,在数轴上表示正确的是( )(2)如果不等式组⎩⎨⎧<+>-00b x a x 的解集是3<x <5,那么a 、b 的值分别为( ) A.a =3 b =5B.a =-3 b =-5C.a =-3 b =5D.a =3 b =-5 (3)不等式组230350x x +>⎧⎨-+>⎩的整数解的个数是( )A .1B .2C .3D .4A .B .C .D . 或B.选做题:一台装载机每小时可以装石料50吨,一堆石料的质量大概在1800吨到2000吨之间,那么这台装载机大约要用多长时间才能装完呢?(用不等式组解决)。

9.3.1一元一次不等式组(教案)

9.3.1一元一次不等式组(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次不等式组的基本概念。一元一次不等式组是由几个含有同一个未知数的一元一次不等式组合而成的。它在解决实际问题中起着重要作用,帮助我们确定未知数的取值范围。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过解一元一次不等式组来确定某个学生在数学和英语两门课程中的最低及格分数要求。
其次,在新课讲授环节,我发现学生们对一元一次不等式组的理解还存在一些困难。在讲解重点难点时,我应该更加注意用简洁明了的语言和具体的例子来阐述,让学生更容易理解。此外,我还可以尝试用图表、动画等辅助教学手段,使抽象的知识更加直观。
在实践活动环节,学生们分组讨论和实验操作的积极性很高,但我发现部分学生在讨论过程中还是过于依赖同学,缺乏独立思考。在今后的教学中,我应该鼓励学生们独立思考,培养他们解决问题的能力。
三、教学难点与重点
1.教学重点
(1)理解一元一次不等式组的定义及解的概念;
(2)掌握一元一次不等式组的解法步骤,包括同大取大、同小取小、大小小大中间找、大大小小无解了;
(3)能够将一元一次不等式组应用于解决实际问题;
(4)了解一元一次不等式组的解与方程组的解之间的关系。
举例:对于一元一次不等式组如:x>-2和x<5,学生需要理解其解集为-2<x<5。
3.重点难点解析:在讲授过程中,我会特别强调一元一次不等式组的解法和其在实际问题中的应用这两个重点。对于难点部分,如“同大取大、同小取小”的原则,我会通过具体的例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次不等式组相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过比较不等式组中的不等式来求解。

§8.3.1一元一次不等式组(2)

§8.3.1一元一次不等式组(2)

§8.3.1一元一次不等式组(2)【教学目标】掌握一元一次不等式组的解法,结合数轴数轴确定一元一次不等式组的解集。

【教学重点】掌握一元一次不等式组的解法。

【教学难点】结合数轴数轴确定一元一次不等式组的解集。

【教学过程】一、复习回顾1.不等式组⎩⎨⎧-≥>12xx 的解集是 。

2.不等式组⎩⎨⎧-<-<12x x 的解集是 。

3.不等式组⎩⎨⎧><14x x 的解集是 。

4.不等式组⎩⎨⎧-<>45x x 的解集是 。

答:(1)2x >;(2)2x <-;(3)1<x <4;(4)无解二、自主探究自学课本64页内容,完成下面题目:1.在例2中,两个不等式的解集没有公共部分,说明这个不等式组 。

2.解不等式组:⎪⎩⎪⎨⎧<--+-≥-②①1213124326xx x x ,并把它的解集在数轴上表示出来。

三、合作交流由上表可以找出规律 。

2.解不等式:531x 23≤-<。

四、巩固练习1.不等式组⎩⎨⎧->-≥+3x 1x 3x 2的解集是_________.2.已知关于x 的不等式组⎪⎩⎪⎨⎧>-><a x 1x 2x ,无解,则a 的取值范围是( )A .a ≤-1B .a ≥2C .-1<a<2D .a<-1或a>2五、拓展延伸1、已知不等式3x k x 21384>-(-)+-的解集为x<-6,求关于x 的不等式组 k x 8104x 3≤(+)-(-)x 16x 7<1k 3++- 的非负整数解。

2、某城市平均每天产生生活垃圾700吨,全部由甲、乙两个垃圾厂处理.已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元.如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少处理垃圾需要多少小时?。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.3 一元一次不等式组(2)
课程目标
一、知识与技能目标
1.通过由学生动手操作:用各种不同长度的木棒去拼三角形,归纳出能拼出三角形的各边长之间的关系和不能拼成三角形的三边的特征,•目的是归纳出同时符合几不同条件的不等式的公共范围,即不等式组的解集.
2.通过确定不等式组的解集与确定方程组的解集进行比较,•抽象出这二者中的异同,由此理解不等式组的公共解集.
二、过程与方法目标
通过由一元一次不等式,一元一次不等式的解集、•解不等式的概念来类推学习一元一次不等式组,一元一次不等式组的解集,解不等式组这些概念,•发展学生的类比推理能力.
三、情感态度与价值观目标
通过培养学生的动手能力发展学生的感性认识与理性认识,•培养学生独立思考的习惯.
教材解读
本节内容是在学习了不等式的解集之后的知识内容,•在此基础上提出若某数同时满足几个不等式时,如何去确定这个数的取值范围,这就是不等式组的公共解集的确定,在实际生活中同样会遇到一个数所能满足的条件不止一个的问题,这就要用到不等式去确定其解.
学情分析
不等式的解集已经在前一节中学习并运用其解决实际问题,•若由多个不等式构成的不等式组的解集如何确定呢?不等式的解集可类比方程的解进行求解,是否不等式组的解与方程组的解也类似呢?因此学生就会进行类比,进而可得出其解集的公共部分.
一、创设情境,导入新课
在上课之前,老师请大家来帮一个忙,帮老师来解决一道难题:•老师有一个熟人姓王,他有一个哥哥和一个弟弟,哥哥的年龄是20岁,小王的年龄的2倍加上他弟弟年龄的5倍等于97.现在小王要老师猜猜他和他弟弟的年龄各是多少?•俗话说三个臭皮匠,可抵一个诸葛亮,现在我们全班同学可抵得上很多诸葛亮,•所以老师相信大家一定有办法的.
在上述已知条件中只有一个等量关系式:小王年龄的2倍+弟弟年龄的5倍=97,而小王及弟弟的年龄是未知的,他们年龄之间的等量关系也没有说出,在一个等式中有两个未知数是无法确定未知数的值,还必须再找出另一个关系式,还有已知条件即是哥哥的年龄为20岁,如何利用这个已知条件呢?只有利用一个隐含的条件哥哥、小王、弟弟三者的年龄是逐渐减小的,即是20>小王的年龄>弟弟的年龄,若设小王有x岁,弟弟为y岁,则有y<x<20,这是一个不等量,在等式中可知
x=975
2
y
-
,代入不等式中得y<
975
2
y
-
<20,怎么样?得到一个不等式组了!从而得出
115
2
<y<13
6
7
,而x、y为正整数,故y=13,x=16,•也就是说不等式组也是解决实际问题的一种工
具.•所以学习解不等式组是为了更好地解决实际问题.
二、师生互动,课堂探究
(一)提出问题,引发讨论
当一个未知数同时满足几个不等关系时,我们就按这些关系分别列几个不等式,这样就得到不等式组,用不等式组解决实际问题时,•其公共解是否一定为实际问题的解呢?请举例说明.
例:甲以5km/时的速度进行跑步锻炼,2小时后,乙骑自行车从同地出发沿同一条路追赶甲.但他们两人约定,乙最快不早于1小时追上甲,最慢不晚于1小时15•分追上甲.你能确定乙骑车的速度应当控制在什么范围吗?
分析:甲以5km/时的速度前进,2小时后,甲前进了10km,此时,乙再开始骑自行车追赶甲,但乙追上甲的时间不早于1小时即是不能比1小时少,故乙追上甲的最少时间应多于1小时,而这段时间甲仍在前进,乙追上甲时所走的路程不止他1小时的路程,•故有不等式:v2·1≤(2+1)×5,由此得
v2≤15;又因为乙追上甲的时间不晚于1小时15分(11
4
小时),也就是乙追上甲的时间不能超过
11
4
小时,即比1
1
4
小时要少,•实际上乙追上甲所走的路程要比他在1
1
4
小时所走的路程少,在乙
开始追甲时,•甲也在以原来的速度继续前进,实际上甲走的总时间应比(2+11
4
)小时少,故又有不
等式:v2·11
4
≥(2+1
1
4
)×5即
5
4
v2≥
13
4
×5,故v2≥13.同一个人的速度,既要比13大又要比15
小,故它的速度就是不等式组
2
21(21)5
11
1(21)5 44
v v ≤+⨯



≥+⨯
⎪⎩
的公共解集:13≤v2≤15.由于速度是一个正
数,既可以是整数,也可以是分数,因此,乙的速度就是根据题意所列不等式组的公共解集.
但由此一例,不能代表全体,实际上也有方程的解不全是不等式组的解的时候.
(二)导入知识,解释疑难
1.教材内容讲解
如课本例2(P145)(请同学自己阅读,动手列不等式组进行求解,再将自己答案与课本答案进
行比较)不等式组的解集为152
3
<x<16
2
3
,但x表示的是生产的产品件数,•不能为分数,故需取整,
即x=16.
又如:将若干只鸡放入若干个笼,若每个笼里放4只,则有1只鸡无笼可放;若每个笼里放5只,则有1笼无鸡可放,那么至少有多少只鸡,多少个笼?
分析:根据若每个笼里放4只鸡,则有1•只鸡无笼可放这句话可得“鸡的数量为4×笼的数量+1”,若每个笼里放5只,则有一笼无鸡可放,•是否有鸡可放的笼里都放满了呢?这就有两种可能,可能最后一笼没有5只,也可能最后一笼恰好也有5只,因此可知“4×笼的数量+1”小于或等于“5×(笼的数量-1)”,但“4•×笼的数量+1”肯定比“5×(笼的数量-2)”要多,于是:
设有x只鸡,y个笼,根据题意
41
5(2)5(1)
y x
y x y
+=


-<≤-⎩
∴5(y-2)<4y+1≤5(y-1)
解此不等式组得:y≥6,x<11 故6≤y<11
此不等式组的解中包括整数和分数,但y表示鸡的笼子不可能为分数,故y只能取6、7、8、9、10这五个数.而题中问至少有多少只鸡,多少个笼子,故y只能为6,允的只数为4×6+1=25只
2.探究活动
把16根火柴首尾相接,围成一个长方形(不包括正方形),怎样找到围出不同形状的长方形个数最多的办法呢?最多个数又是多少呢?
分析:不妨假设每根火柴长为1,则16根火柴长为16,围成长方形,•则相邻两边的和为8,如果一边长为x,另一边长则为8-x,且8-x 必须大于x.又x 必须为大于1•的数最小等于1,于是得不等
式组18x x x ≥⎧⎨->⎩
,解不等式组得1≤x<4,因为x 为正整数,所以x 所取的值为1,2,3.由此只要分别取1根火柴,2根火柴,3根火柴作相邻两边中较短的一条边,对应的邻边也分别取7根火柴,6根火柴,5根火柴,就能围成所有不同形状的长方形,•这样的长方形一共有3个.
(三)归纳总结,知识回顾
应用不等式组解决实际问题的步骤:1.审清题意;2.设未知数,•根据所设未知数列出不等式组;3.解不等式组;4.由不等式组的解确立实际问题的解;5.作答.(•与列方程组解应用题进行比较)
作业设计
(一)双基练习
1.已知方程组2420
x ky x y +=⎧⎨-=⎩有正整数解,则k 的取值范围是_________.
2.若不等式组2113
x a x <⎧⎪-⎨>⎪⎩无解,求a 的取值范围. 3.当2(m-3)< 103m -时,求关于x 的不等式(5)4
m x ->x-m 的解集. 4.某学校为学生安排宿舍,现有住房若干间,若每间5人还有14人安排不下,若每间7人,则有一间还余一些床位,问学校有几间房可以安排学生住宿?可以安排住宿的学生多少人?
(二)创新提升
5.某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,•在一次活动中,如果每人送5件,则还余8件,如果每人送7件,则最后一人还不足3件.•设该商场准备了m 件礼品,有x 名顾客获赠,请回答下列问题:
(1)用含x 的代数式表示m.
(2)求出该次活动中获赠顾客人数及所准备的礼品数.
(三)探究拓展
6.乘某城市的一种出租汽车起价是10元(即行驶路程在5km 以内都需付10元车费),达成或超过5km 后,每增加1km,加价1.2元(不足1km 部分按1km 计).现在某人乘这种出租汽车从甲地到乙地,支付车费1
7.2元,从甲地到乙地的路程大约是多少?
参考答案
1.k>-4
2.a ≤2
3.x<4
m m - 4.学校准备了8,9和10间房,可供54,59或64•位学生住.
5.(1)m=5x+8 (2)有7人获礼品赠送,共有礼品43件
6.•从甲地到乙地的路程大于10km,小于或等于11km.
课后习题答案
习题9.3
1.(1)x<2 (2)x>4 (3)2<x<4 (4)无解
2.(1) 1
2
<x<2 (2)无解 (3)x<-
1
4
(4)x≤1 (5)x<-7 (6)无集
3.略
4.125元~137元
5.多抽0.4至0.55吨水
6.15mg~40mg
7.x>2
8.x为3和4
9.学生有6人,书有26本.。

相关文档
最新文档