因式分解(培优)
精讲精练:因式分解方法分类总结-培优(含答案)
因式分解·提公因式法【知识精读】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律。
多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。
(2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。
下面我们通过例题进一步学习用提公因式法因式分解 【分类解析】1. 把下列各式因式分解 (1)-+--+++a xabx acx ax m m m m 2213(2)a a b a b a ab b a ()()()-+---32222分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。
解:-+--=--+++++a xabx acx ax ax ax bx c x m m m m m 221323()(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,()()()()a b b a a b b a nn n n -=--=----222121;,是在因式分解过程中常用的因式变换。
解:a a b a b a ab b a ()()()-+---32222)243)((]2)(2))[(()(2)(2)(222223b b ab a b a a b b a a b a b a a b a ab b a a b a a ++--=+-+--=-+-+-=2. 利用提公因式法简化计算过程例:计算1368987521136898745613689872681368987123⨯+⨯+⨯+⨯ 分析:算式中每一项都含有9871368,可以把它看成公因式提取出来,再算出结果。
解:原式)521456268123(1368987+++⨯= =⨯=987136813689873. 在多项式恒等变形中的应用 例:不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x y x y x x y +-++的值。
初中培优竞赛 第4讲 因式分解
7.
(2 、 3) (数学、初中数学竞赛、因式分解、解答题)
若x 3 +3x2 − 3x + k 有一个因式是 x + 1, 求 k 的值 分析:因为x 3 +3x2 − 3x + k有一个因式是x + 1,那么我们分组分解,保证每一个组里都含 有因式x + 1. 详解: x 3 +3x2 − 3x + k = x 3 + x 2 +2x2 + 2x − 5x − 5 + 5 + k = x 2 x + 1 + 2x x + 1 = (x + 1)(x2 + 2x − 5) + (k + 5). 所 以 k = −5. 技巧:原式有一个因式,那么我们保证含有未知数的几组中都含有这个因式,得解.
2 3 n 2
= =
n 2n2 + 3n + 1 2
n(n+1)(2n+1) 2
.因
因为 n, n+l 是连续自然数,必有一个是偶数,所以 N 一定是整数 . (2) 当n = 3k(k 是自然数)时,N 是 3 的倍数;当n = 3k + 1(k 是自然数)时, 2n + 1 = 3(2k + 1),N 是 3 的倍数;当n = 3k + 2(k 是自然数)时, n + 1 = 3(k + 1),N 是 3 倍 数. 综上所述,对任何自然数 n , N 都是 3 的倍数 . 技巧:我们把原式因式分解,再分情况讨论,能很简便解题.
答案:B 技巧:此题我们可以先移项,再通过合并同类项从而因式分解,然后根据题意分析. 易错点:得到结果后,x、y 的结果可以互换,所以答案不能为 A.
人教版八年级数学上册14.3因式分解 (培优) 专练(含答案解析)
人教版八年级数学上册:14.3因式分解(培优)专练习题一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或112.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.103.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.05.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.66.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,647.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.39.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.9712.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 .14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= .15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 .17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 .18.已知a2+a﹣1=0,则a3+2a2+2019= .三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.人教版八年级数学上册14.3因式分解培优专练习题参考答案与试题解析一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或11【解答】解:a2﹣ab﹣ac+bc=11(a2﹣ab)﹣(ac﹣bc)=11a(a﹣b)﹣c(a﹣b)=11(a﹣b)(a﹣c)=11∵a>b,∴a﹣b>0,a,b,c是正整数,∴a﹣b=1或11,a﹣c=11或1.故选:D.2.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.10【解答】解法一:∵x2﹣2x﹣5=0,∴x2=2x+5,∴d=x4﹣2x3+x2﹣12x﹣5,=(2x+5)2﹣2x(2x+5)+x2﹣12x﹣5=4x2+20x+25﹣4x2﹣10x+x2﹣12x﹣5=x2﹣2x﹣5+25=25.解法二:∵x2﹣2x﹣5=0,∴x2﹣2x=5,∴d=x4﹣2x3+x2﹣12x﹣5=x2(x2﹣2x+1)﹣12x﹣5=6x2﹣12x﹣5=6(x2﹣2x)﹣5=6×5﹣5=25.故选:A.3.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.0【解答】解:∵a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ca======3,故选:A.5.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.6【解答】解:a2b+ab2﹣a﹣b=(a2b﹣a)+(ab2﹣b)=a(ab﹣1)+b(ab﹣1)=(ab﹣1)(a+b)将a+b=3,ab=1代入,得原式=0.故选:B.6.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,64【解答】解:利用平方式公式进行分解该数字:496﹣1=(448+1)(448﹣1)=(448+1)(424+1)(424﹣1)=(448+1)(424+1)(412+1)(46+1)(43+1)(43﹣1)=(448+1)(424+1)(412+1)(46+1)×65×63故选:B.7.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除【解答】解:20183﹣2018=2018(20182﹣1)=2018×(2018+1)(2018﹣1)=2018×2019×20172018×2019×2017能被2017、2018、2019整除,不能被2016整除.故选:A.8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.3【解答】解:∵a=2018x+2018,b=2018x+2019,c=2018x+2020,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,∴a2+b2+c2﹣ab﹣ac﹣bc=====3,故选:D.9.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)【解答】解:b2(x﹣3)+b(x﹣3),=b(x﹣3)(b+1).故选:B.10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)【解答】解:原式=(x﹣2)(x+9).故选:D.11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.97【解答】解:∵993﹣99=99×(992﹣1)=99×(99+1)×(99﹣1)=99×100×98,∴k可能是99、100、98或50,故选:D.12.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个【解答】解:依据新运算可得①2=1×2,则,正确;②24=1×24=2×12=3×8=4×6,则,正确;③若n是一个完全平方数,则F(n)=1,正确;④若n是一个完全立方数(即n=a3,a是正整数),如64=43=8×8,则F(n)不一定等于,故错误.故选:C.二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 6 .【解答】解:a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,2(a2+b2+c2﹣ab﹣bc﹣ac)=2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=(a﹣b)2+(a﹣c)2+(b﹣c)2=(﹣1)2+(﹣4)2+(﹣1)2=1+4+1=6故答案为6.14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= 3 .【解答】解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .【解答】解:∵(a+b+c)2=a2+b2+c2+2(ab+bc+ac),a+b+c=1,a2+b2+c2=3,∴1=3+2(ab+bc+ac),∴ab+bc+ac=﹣1,∵a3+b3+c3﹣3abc=(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac),a3+b3+c3=5∴5﹣3abc=3+1∴abc=,∵(ab+bc+ac)2=a2b2+b2c2+a2c2+2abc(a+b+c)∴1=a2b2+b2c2+a2c2+∴a2b2+b2c2+a2c2=∵(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)∴9=a4+b4+c4+∴a4+b4+c4=.故答案为:.16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 75 .【解答】解:∵a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2又已知ab=3,a+b=5,∴原式=3×52=75故答案为:75.17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 等腰三角形 .【解答】解:∵2xy+x2=2yz+z2,∴2xy+x2﹣2yz﹣z2=0,因式分解得:(x﹣z)(x+z+2y)=0,∵x,y,z是△ABC的三边,∴x+z+2y≠0,∴x﹣z=0,∴x=z,∴△ABC是等腰三角形;故答案为:等腰三角形.18.已知a2+a﹣1=0,则a3+2a2+2019= 2020 .【解答】解:∵a2+a﹣1=0∴a2+a=1∴a3+a2=a又∵a3+2a2+2019=a3+a2+a2+2019=a+a2+2019=1+2019=2020∴a3+2a2+2019=2020三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.【解答】解:a2﹣2ab+b2﹣1,=(a﹣b)2﹣1,=(a﹣b+1)(a﹣b﹣1).20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).【解答】解:(1)原式=(x+y)(a2﹣4b2)=(x+y)(a+2b)(a﹣2b);(2)原式=(a﹣1)(p2﹣p)=p(a﹣1)(p﹣1);(3)原式===.21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.【解答】解:∵a2c2﹣b2c2=a4﹣b4,∴a4﹣b4﹣a2c2+b2c2=0,∴(a4﹣b4)﹣(a2c2﹣b2c2)=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2+b2﹣c2)(a2﹣b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC为直角三角形或等腰三角形或等腰直角三角形.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.【解答】解:(1)根据观察、归纳、发现的规律,得到4×2016×2017+1=(2016+2017)2=40332;(2)猜想第n个等式为4n(n+1)+1=(2n+1)2,理由如下:∵左边=4n(n+1)+1=4n2+4n+1,右边=(2n+1)2=4n2+4n+1,∴左边=右边,∴4n(n+1)+1=(2n+1)2;(3)利用前面的规律,可知4(x2+x)(x2+x+1)+1=(x2+x+x2+x+1)2=(x2+2x+1)2=(x+1)4.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.【解答】解:(1)∵0=02+02×0,1=12+02﹣1×0,3=22+11﹣2×1,4=22+02﹣2×0,7=22+32﹣2×3,9=32+02﹣3×0,∴10以内的“希尔伯特”数有0,1,3,4,7,9;(2)设“希尔伯特”数为(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(n为自然数)∵(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)=4n2+3,∵4n2能被4整除,∴所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)设两个“希尔伯特”数分别为:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)和(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(m,n为自然数).由题意:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)﹣[(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)]=224,∴m2﹣n2=56,∴(m+n)(m﹣n)=56,可得整数解:或,∴这两个“希尔伯特”数分别为:327和103或903和679.。
8年级(下)培优课程【4】因式分解
【4】因式分解考点一:应用因式分解恒等变形求值例1.若多项式x2﹣x+a可分解为(x+1)(x﹣2),则a的值为.例2.已知二次三项式x2+ax﹣1可分解为(x﹣2)(x+b),则a+b的值为.变式1:若x2﹣ax﹣1可以分解为(x﹣2)(x+b),则a=,b=.变式2:若x2+2(m﹣3)x+16=(x+n)2,则m=.考点二:待定系数法、赋值法在因式分解中的运用例1.若多项式x2﹣px+q(p、q是常数)分解因式后,有一个因式是x+3,则3p+q的值为.变式1:已知关于x的二次三项式x2+mx+n有一个因式(x+5),且m+n=17,试求m、n 的值.变式2:因为(x+2)(x﹣1)=x2+x﹣2,所以(x2+x﹣2)÷(x﹣1)=x+2,这说明x2+x﹣2能被x﹣1整除,同时也说明多项式x2+x﹣2有一个因式为x﹣1,另外当x=1时,多项式x2+x﹣2的值为0.利用上述阅读材料求解:(1)已知x﹣2能整除x2+kx﹣16,求k的值;(2)已知(x+2)(x﹣1)能整除2x4﹣4x3+ax2+7x+b,试求a、b的值.考点三:根据完全平方公式求值(配方法)例1.已知x2﹣2(m﹣3)x+25是完全平方式,则m=;若关于x、y的多项式9x2﹣kxy+4y2是一个完全平方式,则常数k的值为.变式:若多项式x2+(m﹣1)x+25是一个完全平方式,那么m=.考点四:根据完全平方公式求值(知二求二)例1.已知(a+b)2=7,(a﹣b)2=4,求a2+b2和ab的值.变式:(1)已知a﹣b=6,a2+b2=10,求ab,(a+b)2的值;(2)x+=3,求x2+.(3)已知(a+b)2=7,(a﹣b)2=3,求a2+b2与ab的值;(4)若a+b=﹣3,ab=2,求a2+b2与(a﹣b)2的值.考点五:运用配方法求最值例1.阅读材料题:我们知道a2≥0,所以代数式a2的最小值为0.学习了多项式乘法中的完全平方公式,可以逆用公式,即用a2±2ab+b2=(a+b)2来求一些多项式的最小值.例如,求x2+6x+3的最小值问题.解:∵x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6,又∵(x+3)2≥0,∴(x+3)2﹣6≥﹣6,∴x2+6x+3的最小值为﹣6.请应用上述思想方法,解决下列问题:(1)求代数式x2+4x+2020最小值.(2)求代数式3x2﹣4xy+4y2+16x+7的最小值,并求出此时xy的值.(3)设a>0,求a2+的最小值,并求出此时a的值.(4)仿照上述方法求代数式﹣x2﹣14x+10的最大(或最小)值,并写出相应的x的值.考点五:几何图形面积中运用因式分解例1.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释a2+2ab+b2=(a+b)2,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)图B可以解释的代数恒等式是;(2)现有足够多的正方形和矩形卡片,如图C:①若要拼出一个面积为(3a+b)(a+2b)的矩形,则需要1号卡片张,2号卡片张,3号卡片张;②试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形,使该矩形的面积为6a2+7ab+2b2,并利用你画的图形面积对6a2+7ab+2b2进行因式分解.变式:我们知道,对于一个图形通过不同的方法计算图形的面积,可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+2b2,请解答下列问题:(1)写出图2所表示的数学等式:;(2)已知a+b+c=12,ab+bc+ac=40,利用(1)中所得结论.求a2+b2+c2的值;(3)图3中给出了若干个边长为a和边长为b的小正方形纸片、若干个长为b宽为a 的长方形纸片,选用这些纸片拼出一个图形,使得它的面积是2a2+7ab+3b2.画出该图形,并利用该图形把多项式2a2+7ab+3b2分解因式.DM AP课堂练习1.下列多项式中,能用完全平方公式分解因式的是()A.x2﹣x+1 B.1﹣2xy+x2y2 C.m2﹣2m﹣1 D.2.x2﹣5x+k中,有一个因式为(x﹣2),则k的值为()A.3 B.﹣3 C.6 D.﹣63.不等式组:的解集是x>4,那么m的取值范围是()A.m≥4 B.m≤4 C.m<4 D.m=44.如图7,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.605.如果a<b<0,下列不等式中错误的是()A.ab>0 B.a+b<0 C.<1 D.a﹣b<06.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图9所示,则关于x的不等式k1x+b>k2x的解为()A.x>﹣1 B.x<﹣1 C.x<﹣2 D.无法确定7.如图10,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA,点M是OP的中点,则DM的长是()A.2 B. C. D.8.若x2+mx﹣n能分解成(x﹣1)(x+4),则m= ,n= .9.若x同时满足不等式2x+3>0与x﹣2<0,则x的取值范围是.10.已知:x2﹣y2=8,x ﹣y=4,则x+y= .11.已知21012a b-=,20232024ab=,则2224a b ab-的值为.12. 已知12-=m , 则2023202220212m m m +-的值是 .13.在△ABC 中,AB=AC ,AB 的垂直平分线与AC 所在直线相交所得的锐角为52°,则底角B 的大小为 .14.如图,已知一次函数y kx b =+(k ,b 为常数,且0k ≠)的图象与x 轴相交于点A (3,0).若正比例函数y mx =(m为常数,且0m ≠)的图象与一次函数的图象相交于点P ,且点P 的横坐标为1,则关于x 的不等式()0k m x b -+>的解集为 ,关于x 的不等式组0,0mx kx b <⎧⎨-<⎩的解集为 .15.若关于x 的不等式组的所有整数解的和是﹣9,则m 的取值范围是 .16.已知关于x 的不等式组只有4个整数解,则a 的取值范围是 .17.解不等式组,并把解集在所给数轴上表示出来.253(2)(1)123x x x x 523(1)(2)131522x x x x18. 分解因式.(1)4x 2(y ﹣2)+9(2﹣y ) (2)4﹣m 2+2mn ﹣n 2(3) 321025x x x -+; (4)()()224292m n m n ---.19.我市化工园区一化工厂,组织20辆汽车装运A、B、C三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答下列问题:(1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y.求y与x的函数关系式;(2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费.物资种类 A B C每辆汽车运载量(吨)12 10 8每吨所需运费(元/吨)240 320 20020.如图,直线MN与x轴,y轴正半轴分别交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,已知AC=10,OA=8.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.21.如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P 与点A不重合),连接CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连接QB并延长交直线AD于点E.(1)如图1,猜想∠QEP=°(2)如图2、3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;(3)如图3,若∠DAC=120°,∠ACP=15°,且AC=6,求BQ的长.22.背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图①,当△ABC三个内角均小于120°时,费马点P在△ABC内部,此时∠APB=∠BPC =∠CPA=120°,此时,PA+PB+PC的值最小.解决问题:(1)如图②,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB =;基本运用:(2)请你利用第(1)题的解答思想方法,解答下面问题:如图③,△ABC中,∠CAB=90°,AB=AC,E,F为BC上的点,且∠EAF=45°,判断BE,EF,FC之间的数量关系并证明;能力提升:(3)如图④,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为Rt△ABC的费马点,连接AP,BP,CP,求PA+PB+PC的值.。
因式分解精练(培优)
因式分解精选练习一分解因式 1.2x 4y 2-4x 3y 2+10xy 4 、2. 5x n+1-15x n +60x n —1 、 3.()()431241a b a b ---4. (a+b)2x 2-2(a 2-b 2)xy+(a-b)2y 2 、5. x 4-1、6.-a2-b2+2ab +47. 134+--x x x 、 8.()()422223612y y y y x y y x -++-+9. ()()()()422223612y x y x y x x y x x +-+++-+、10.a 2+b 2+c 2+2ab+2bc+2ac11.x 2-2x-8、 12.3x 2+5x-2 、13. (x+1)(x+2)(x+3)(x+4)+1、14. (x 2+3x+2)(x 2+7x+12)-120.15.把多项式3x 2+11x+10分解因式。
16.把多项式5x 2―6xy ―8y 2分解因式。
因式分解精选练习二、证明题17.求证:32000-4×31999+10×31998能被7整除。
18.设n 为正整数,且64n -7n 能被57整除,证明:21278+++n n 是57的倍数.19.求证:无论x 、y 为何值,3530912422+++-y y x x 的值恒为正。
20.已知x 2+y 2-4x+6y+13=0,求x,y 的值。
三 求值。
21.已知a,b,c 满足a-b=8,ab+c 2+16=0,求a+b+c 的值 .22.已知x 2+3x+6是多项式x 4-6x 3+mx 2+nx+36的一个因式,试确定m,n 的值,并求出它的其它因式。
因式分解精选练习1. 解:原式=2xy 2·x 3-2xy 2·2x 2+2xy 2·5y 2 =2xy 2 (x 3-2x 2+5y 2)。
2.解:原式=5 x n--1·x 2-5x n--1·3x +5x n--1·12=5 x n--1 (x 2-3x +12)3.解:原式=3a(b-1)(1-8a 3) =3a(b-1)(1-2a)(1+2a+4a 2)*4.解:原式= [(a+b)x]2-2(a+b)(a-b)xy+[(a-b)y]2=(ax+bx-ay+by)25.解:原式=(x 2+1)(x 2-1)=(x 2+1)(x+1)(x-1)6.解:原式=-(a 2-2ab +b 2-4)=-(a-b+2)(a-b-2)7. 解: 原式= x 4-x 3-(x-1)= x 3(x-1)-(x-1)=(x-1)(x 3-1)=(x-1)2(x 2+x+1)*提8. 解:原式=y 2[(x+y)2-12(x+y)+36]-y 4=y 2(x+y-6)2-y 4=y 2[(x+y-6)2-y 2]=y 2(x+y-6+y)(x+y-6-y)= y 2(x+2y-6)(x-6)9. 解:原式== (x+y)2(x 2-12x+36)-(x+y)4=(x+y)2[(x-6)2-(x+y)2]=(x+y)2(x-6+x+y)(x-6-x-y)=(x+y)2(2x+y-6)(-6-y)= - (x+y)2(2x+y-6)(y+6)10.解:原式=.(a 2+b 2 +2ab )+2bc+2ac+c 2=(a+b)2+2(a+b)c+c 2 =(a+b+c)211.解:原式=x 2-2x+1-1-8 =(x-1)2-32=(x-1+3)(x-1-3)=(x+2)(x-4)12.解:原式=3(x 2+53x)-2 =3(x 2+53x+2536-2536)-2 =3(x+56)2-3×2536-2=3(x+56)2-4912 =3[(x+56)2-4936]=3(x+56+76)(x+56-76)=3(x+2)(x-13) =(x+2)(3x-1)13.解:原式=[(x+1)(x+4)][(x+2)(x+3)]+1=(x 2+5x+4)(x 2+5x+6)+1令x 2+5x=a,则 原式=(a+4)(a+6)+1=a 2+10a+25=(a+5)2=(x 2+5x+5)14. 解 原式=(x+2)(x+1)(x+4)(x+3)-120=(x+2)(x+3)(x+1)(x+4)-120=(x 2+5x+6)(x 2+5x+4)-120令 x 2+5x=m, 代入上式,得原式=(m+6)(m+4)-120=m 2+10m-96=(m+16)(m-6)=(x 2+5x+16)(x 2+5x-6)=(x 2+5x+16)(x+6)(x-1)15.解:原式=(x+2)(3x+5)提示:把二次项3x 2分解成x 与3x (二次项一般都只分解成正因数),常数项10可分成1×10=-1×(-10)=2×5=-2×(-5),其中只有11x =x ×5+3x ×2。
因式分解培优题(超全面、详细分类)
因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+⋯+ab n-2+b n-1),其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-⋯+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-⋯-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2例题3分解因式:a3+b3+c3-3abc.分解因式:x15+x14+x13+⋯+x2+x+1.对应练习题分解因式:(1)x2n x n1y21;94 (2)x10+x5-2422332232(3)x 2xy4xy 4xy y(4x y)(4)(x5+x4+x3+x2+x+1)2-x52222(5)9(a-b)+12(a-b)+4(a+b)(6)(a-b)2-4(a-b-1)(7)(x+y)3+2xy(1-x-y)-1二、分组分解法(一)分组后能直接提公因式例题1分解因式:am an bm bn分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2分解因式:2ax 10ay 5by bx对应练习题分解因式:1、a2ab ac bc2、xy x y1(二)分组后能直接运用公式例题3分解因式:x2y2ax ay例题4分解因式:a22ab b2c2对应练习题分解因式:3、x2x 9y23y4、x2y2z22yz综合练习题 分解因式:(1)x 3x 2y xy 2 y 3 (2)ax 2 bx 2 bx ax a b(3)x 26xy 9y 2 16a 2 8a 1(4)a 26ab 12b9b 24a(5)a 42a 3 a 2 9 (6)4a 2x 4a 2y b 2x b 2y(7)x 22xy xz yz y 2(8)a 22a b 22b2ab1(9)y(y2) (m 1)(m 1) (10)(a c)(a c) b(b 2a)(11)a 2(bc) b 2(a c) c 2(ab) 2abc(12)a 4 2a 3b 3a 2b 2 2ab 3 b 4.(13)(axby)2 (ay bx)2 (14)xyz(x 3 y 3 z 3) y 3z 3 z 3x 3 x 3y 3(15)x 4ax 2xa2a3 22()x3x(a2)x2a16(17)(x1)3 (x 3)3 4(3x 5)三、十字相乘法1、十字相乘法(一)二次项系数为 1的二次三项式直接利用公式——x 2 (pq)xpq (x p)(x q)进行分解.特点:(1)二次项系数是1;( 2)常数项是两个数的乘积;( 3)一次项系数是常数项的两因数的和.例题1分解因式: x 25x 6例题2分解因式: x 27x 6对应练习题 分解因式:(1)x 214x 24(2)a 215a 36(3)x 24x 5(4)x 2x 2(5)y 22y 15(6)x 210x 24(二)二次项系数不为 1的二次三项式—— ax 2 bx c条件:(1)aa 1a 2a 1 c 1 (2)cc 1c 2a 2 c 2 (3)ba 1c 2a 2c 1ba 1c 2a 2c 1分解结果:ax2bxc=(a 1xc 1)(a 2xc 2)例题3分解因式:3x 211x10对应练习题 分解因式:(1)5x 27x 6(2)3x27x2(3)10 x217 x32()6y11y104(三)二次项系数为1的齐次多项式例题4分解因式:a28ab128b2分析:将b看成常数,把原多项式看成关于a的二次三项式,利用十字相乘法进行分解.18b1-16b8b+(-16b)=-8b对应练习题分解因式:(1)x23xy 2y2(2)m26mn 8n2(3)a2ab6b2(四)二次项系数不为1的齐次多项式例题5分解因式:2x27xy6y2例题6分解因式:x2y23xy2对应练习题分解因式:(1)27xy4y2()22ax6ax82综合练习题分解因式:(1)8x67x31(2)12x211xy15y2(3)(x y)23(x y) 10(4)(a b)24a 4b3(5)x2y25x2y 6x2(6)m24mn 4n23m 6n2(7)x24xy 4y22x 4y 3(8)5(a b)223(a2b2) 10(a b)2(9)4x24xy 6x 3y y210(10)12(x y)211(x2y2) 2(x y)2思考:分解因式:abcx2(a2b2c2)x abc2、双十字相乘法定义:双十字相乘法用于对Ax2Bxy Cy2Dx Ey F型多项式的分解因式.条件:(1)A a1a2,C c1c2,F f1f2(2)a1c2a2c1B,c1f2c2f1E,a1f2a2f1D即:a1c1f1a2c2f2a1c2a2c1B,c1f2c2f1E,a1f2a2f1D则Ax2BxyCy2Dx Ey F(a1x c1y f1)(a2x c2y f2)例题7分解因式:(1)x23xy10y2x9y2(2)x2xy6y2x13y6解:(1)x23xy10y2x9y2应用双十字相乘法:x5y2x2y12xy5xy3xy,5y4y9y,x2x x∴原式=(x5y2)(x2y1)(2)x2xy6y2x13y6应用双十字相乘法:x2y3x3y23xy2xy xy,4y9y13y,2x3x x∴原式=(x2y3)(x3y2)对应练习题分解因式:(1)x2xy 2y2x 7y 6(2)6x27xy 3y2xz 7yz 2z23、十字相乘法进阶例题8分解因式:y(y 1)(x21) x(2y22y1)例题9分解因式:ab(x2y2) (a2b2)(xy 1) (a2b2)(x y)四、主元法例题分解因式:x23xy 10y2x 9y2对应练习题分解因式:(1)x2xy 6y2x 13y 6(2)x2xy 2y2x 7y6 (3)6x27xy 3y2x 7y 2(4)a2ab 6b25a 35b 36五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1分解因式:(x2+x+1)(x2+x+2)-12.例题2分解因式:(x24x 8)23x(x24x 8) 2x2例题3分解因式:(x 1)(x 1)(x 3)(x 5)9分析:型如abcd e的多项式,分解因式时可以把四个因式两两分组相乘.例题4分解因式:(x27x 6)(x2x 6)56.例题5分解因式:(x2+3x+2)(4x2+8x+3)-90.例题62222分解因式:4(3x x1)(x2x3)(4xx4)提示:可设3x2x1A,x22x3B,则4x2x4AB.例题7分解因式:x628x327例题8分解因式:(a b)4(a b)4(a2b2)2例题9分解因式:(y 1)4(y 3)4272例题9对应练习分解因式:a444(a4)4例题10分解因式:(x2+xy+y2)2-4xy(x2+y2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.例题11分解因式:2x4x36x2x2分析:此多项式的特点——是关于x的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习43-36x2-7x+6.分解因式:6x+7x例题11对应练习分解因式:x44x3x24x1对应练习题分解因式:(1)x4+7x3+14x2+7x+1(2)x42x3x2 1 2(x x2)(3)2005x2(200521)x2005(4)(x1)(x 2)(x 3)(x 6)x2(5)(x1)(x3)(x5)(x7)15(6)(a1)(a2)(a3)(a4)24(7)(2a 5)(a29)(2a 7) 91(8)(x+3)(x2-1)(x+5)-20(9)(a21)2(a25)24(a23)2(10)(2x2-3x+1)2-22x2+33x-1(11)(a 2b c)3(a b)3(b c)3(12)xy(xy1)(xy3)2(xy12)(x y1)2(13)(a b 2ab)(a b 2) (1 ab)2六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时, 整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项, 即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、 添项的目的是使多项式能用分组分解法进行因式分解.说明 用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1分解因式:x 3-9x+8.例题2分解因式:(1)x 9+x 6+x 3-3;(2)(m 2-1)(n 2-1)+4mn ; (3)(x+1)4+(x 2-1)2+(x -1)4; (4)a 3b -ab 3+a 2+b 2+1.对应练习题分解因式:(1)x 3 3x 2 4(2)x 22(a b)x 3a 2 10ab 3b 2(3)x 4 7x 2 1(4)x 4x 22ax1a 2(5)4442 22 2 2 2 444xy(xy)()2ab2ac2bcab c6(7)x 3+3x 2-4(8)x 4-11x 2y 2+y 2(9)x 3+9x 2+26x+24 (10)x 4-12x+323(11)x 4+x 2+1;(12)x 3-11x +20;(13)a 5+a +1(14)x 2y 24x6y5(15)(1a 2)(1b 2)4ab七、待定系数法例题1分解因式:x2xy 6y2x 13y6分析:原式的前3项x2xy6y2可以分为(x3y)(x2y),则原多项式必定可分为(x3y m)(x2y n)对应练习题分解因式:(1)6x27xy 3y2x 7y 2(2)2x2+3xy-9y2+14x-3y+20(3)x23xy 10y2x 9y 2(4)x23xy 2y25x 7y6例题2(1)当m为何值时,多项式x2y2mx5y6能分解因式,并分解此多项式.(2)如果x3ax2bx8有两个因式为x1和x2,求a b的值.(3)已知:x22xy3y26x14y p能分解成两个一次因式之积,求常数p并且分解因式.(4)k为何值时,x22xy ky23x5y2能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、f x 的意义:已知多项式fx ,若把x 用c 带入所得到的值,即称为 fx 在x =c 的多项式值,用 fc 表示.2、被除式、除式、商式、余式之间的关系:设多项式fx 除以gx 所得的商式为 qx ,余式为rx ,则:fx =gx ×qx +rxb3、余式定理:多项式 f (x)除以x b 之余式为 f(b);多项式f(x)除以axb 之余式f( ).a例如:当 f(x)=x 2+x+2除以 (x –1)时,则余数=f(1)=12+1+2=4.当f(x)9x26x 7除以 (3x1)时,则余数=f(1)9( 1)2 6(1)78.3334 a,bR , a0, f(x) 为关于x 的多项式,则 xb为f(x)的因式、因式定理:设f(b)0;axb 为f(x)的因式f(b 0.)a整系数一次因式检验法:设f(x)=c n x n c n 1x n1c 1xc 0 为整系数多项式,若ax –b 为f(x)之因式(其中a,b为整数,a 0,且a,b 互质),则(1)ac n ,bc 0(2)(a –b)f(1), (a b)f( 1)例题1设f(x)3x 32x 2 19x 6,试问下列何者是f(x)的因式?(1)2x –1,(2)x –2,(3)3x –1,(4)4x +1,(5)x –1,(6)3x –4例题2把下列多项式分解因式:(1) x 35x4(2) x 34x 2x 6(3) 3x 35x 2 4x 2(4)x 4 9x 3 25x 227x10(5)x 45x 3 1x 2 1x 16223课后作业分解因式:(1)x4+4(2)4x3-31x+15(3)3x3-7x+10(4)x3-41x+30(5)x3+4x2-9(6)x3+5x2-18(7)x3+6x2+11x+6(8)x3-3x2+3x+7(9)x3-11x2+31x-21(10)x4+1987x2+1986x+1987(11)x41998x21999x1998(12)x41996x21995x1996(13)x3+3x2y+3xy2+2y33223(1412)x-9ax+27ax-26a(15)4(x5)(x6)(x10)(x12)3x2(16)(x26x8)(x214x48)12(17)(x2x4)28x(x2x4)15x2(18)2(x26x1)25(x26x1)(x21)2(x21)2(19)x4+x2y2+y44224(20)x-23xy+y(21)a3+b3+3(a2+b2)+3(a+b)+2(22)a3b312ab64(23)a3bab3a2b21.(24)(ab)2(ab1)1(25)x42(a2b2)x2(a2b2)2(26)(aybx)3(axby)3(a3b3)(x3y3)(27)x619x3y3216y6(28)x2y-y2z+z2x-x2z+y2x+z2y-2xyz(29)3x510x48x33x210x8因式分解的应用1、证明:四个连续整数的的乘积加 1是整数的平方.2、2n -1 和2n+1表示两个连续的奇数(n 是整数),证明这两个连续奇数的平方差能被 8整除.3、已知2 481可以被 60与70之间的两个整数整除,求这两个整数.24可被40 至50之间的两个整数整除,求这两个整数.4、已知7-15、求证: 817279 913能被45整除.66、求证:14+1能被197整除.7、设4x -y 为3的倍数,求证: 4x 2+7xy -2y 2能被9整除.8、已知x 2 xy 2y 2=7,求整数x 、y 的值.9、求方程6xy4x9y 7 0的整数解.10、求方程xy -x -y +1=3的整数解.11、求方程 4x 2-4xy -3y 2=5的整数解.12、两个小朋友的年龄分别为 a 和b ,已知a 2+ab=99,则a=______,b=_______.13、计算下列各题:(1)23×3.14+5.9 ×31.4+180×0.314; 19953-219952-1993(2).19953+19952-1996+ 1+1+ 1+1 +1+1的14、求积(11 )(14)(1)(14 )(1)(1)32 35 698 10099 101整数部分?15、解方程:(x 2+4x)2-2(x 2+4x)-15=02 2 2 216、已知ac +bd=0,则ab(c +d)+cd(a +b)的值等于___________.17、已知a -b=3,a -c=3 26,求(c —b)[(a -b)2+(a -c)(a -b)+(a -c)2]的值.18、已知x 2x 1 0,求x 8x 41的值.19、若x 满足x 5 x 4 x1 ,计算x 1998x 1999x 2004.20、已知三角形的三边a 、b 、c 满足等式a 3b 3c 33abc ,证明这个三角形是等边三角形.。
因式分解培优题(超全面、详细分类)
因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1),其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例题2 分解因式:a 3+b 3+c 3-3abc .例题3 分解因式:x 15+x 14+x 13+…+x 2+x +1.对应练习题 分解因式:2211(1)94n n x x y +-+;(2) x 10+x 5-2422332223(3)244(4)4x x y xy x y y x y --+++(4) (x 5+x 4+x 3+x 2+x +1)2-x 5(5) 9(a -b )2+12(a 2-b 2)+4(a +b )2(6) (a -b )2-4(a -b -1)(7)(x +y )3+2xy (1-x -y )-1二、分组分解法(一)分组后能直接提公因式例题1 分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2 分解因式:bx by ay ax -+-5102对应练习题 分解因式:1、bc ac ab a -+-22、1+--y x xy(二)分组后能直接运用公式例题3 分解因式:ay ax y x ++-22例题4 分解因式:2222c b ab a -+-对应练习题 分解因式:3、y y x x 3922---4、yz z y x 2222---综合练习题 分解因式:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++ (12)432234232.a a b a b ab b ++++(13)22)()(bx ay by ax -++ (14)333333333)(y x x z z y z y x xyz ---++(15)a a x ax x -++-2242 (16)a x a x x 2)2(323-++-(17))53(4)3()1(33+-+++x x x三、十字相乘法1、十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解.特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和. 例题1 分解因式:652++x x例题2 分解因式:672+-x x对应练习题 分解因式:(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x(二)二次项系数不为1的二次三项式——2ax bx c ++条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题3 分解因式:101132+-x x对应练习题 分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例题4 分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解. 1 8b1 -16b8b +(-16b )= -8b对应练习题 分解因式:(1)2223y xy x +- (2)2286n mn m +- (3)226b ab a --(四)二次项系数不为1的齐次多项式例题5 分解因式:22672y xy x +- 例题6 分解因式:2322+-xy y x对应练习题 分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习题 分解因式:(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(22222、双十字相乘法定义:双十字相乘法用于对F Ey Dx Cy Bxy Ax +++++22型多项式的分解因式. 条件:(1)21a a A =,21c c C =,21f f F =(2)B c a c a =+1221,E f c f c =+1221,D f a f a =+1221即: 1a 1c 1f2a 2c 2fB c a c a =+1221,E f c f c =+1221,D f a f a =+1221则=+++++F Ey Dx Cy Bxy Ax 22))((222111f y c x a f y c x a ++++例题7 分解因式: (1)2910322-++--y x y xy x(2)613622-++-+y x y xy x解:(1)2910322-++--y x y xy x应用双十字相乘法: x y 5- 2x y 2 1-xy xy xy 352-=-,y y y 945=+,x x x =+-2∴原式=)12)(25(-++-y x y x(2)613622-++-+y x y xy x应用双十字相乘法: x y 2- 3x y 3 2- xy xy xy =-23,y y y 1394=+,x x x =+-32∴原式=)23)(32(-++-y x y x对应练习题 分解因式:(1)67222-+--+y x y xy x (2)22227376z yz xz y xy x -+---3、十字相乘法进阶例题8 分解因式:)122()1)(1(22+++++y y x x y y例题9 分解因式:))(()1)(()(222222y x b a xy b a y x ab ++-+---四、主元法例题 分解因式:2910322-++--y x y xy x对应练习题 分解因式:(1)613622-++-+y x y xy x (2)67222-+--+y x y xy x(3)2737622--+--y x y xy x (4)36355622-++-+b a b ab a五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例题1 分解因式:(x 2+x +1)(x 2+x +2)-12.例题2 分解因式:22222)84(3)84(x x x x x x ++++++例题3 分解因式:9)5)(3)(1)(1(-+++-x x x x分析:型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘.例题4 分解因式:56)6)(67(22+--+-x x x x .例题5 分解因式:(x 2+3x +2)(4x 2+8x +3)-90.例题6 分解因式:22224(31)(23)(44)x x x x x x --+--+-提示:可设2231,23x x A x x B --=+-=,则244x x A B +-=+.例题7 分解因式:272836+-x x例题8 分解因式:22244)()()(b a b a b a -+++-例题9 分解因式:272)3()1(44-+++y y例题9对应练习 分解因式:444)4(4-++a a例题10 分解因式:(x 2+xy +y 2)2-4xy (x 2+y 2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x +y ,v=xy ,用换元法分解因式.例题11 分解因式:262234+---x x x x分析:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,并且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11对应练习 分解因式:6x 4+7x 3-36x 2-7x +6.例题11对应练习 分解因式:144234+++-x x x x对应练习题 分解因式:(1)x 4+7x 3+14x 2+7x +1 (2))(2122234x x x x x +++++(3)2005)12005(200522---x x (4)2)6)(3)(2)(1(x x x x x +++++(5) (1)(3)(5)(7)15x x x x +++++ (6)(1)(2)(3)(4)24a a a a ----- (7)2(25)(9)(27)91a a a +--- (8)(x +3)(x 2-1)(x +5)-20(9)222222)3(4)5()1(+-+++a a a (10) (2x 2-3x +1)2-22x 2+33x -1(11)()()()a b c a b b c ++-+-+2333(12)21(1)(3)2()(1)2xy xy xy x y x y +++-++-+-(13)2(2)(2)(1)a b ab a b ab +-+-+-六、添项、拆项、配方法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.说明 用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例题1 分解因式:x 3-9x +8.例题2 分解因式:(1)x 9+x 6+x 3-3; (2)(m 2-1)(n 2-1)+4mn ; (3)(x +1)4+(x 2-1)2+(x -1)4; (4)a 3b -ab 3+a 2+b 2+1.对应练习题 分解因式:(1)4323+-x x (2)2223103)(2b ab a x b a x -+-++(3)1724+-x x (4)22412a ax x x -+++(5)444)(y x y x +++ (6)444222222222c b a c b c a b a ---++(7)x 3+3x 2-4 (8)x 4-11x 2y 2+y 2 (9)x 3+9x 2+26x +24 (10)x 4-12x +323 (11)x 4+x 2+1; (12)x 3-11x +20;(13)a 5+a +1 (14)56422-++-y x y x(15)ab b a 4)1)(1(22---七、待定系数法例题1 分解因式:613622-++-+y x y xy x分析:原式的前3项226y xy x -+可以分为)2)(3(y x y x -+,则原多项式必定可分为)2)(3(n y x m y x +-++对应练习题 分解因式:(1)2737622--+--y x y xy x (2)2x 2+3xy -9y 2+14x -3y +20(3)2910322-++--y x y xy x (4)6752322+++++y x y xy x例题2 (1)当m 为何值时,多项式6522-++-y mx y x 能分解因式,并分解此多项式.(2)如果823+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值.(3)已知:p y x y xy x +-+--1463222能分解成两个一次因式之积,求常数p 并且分解因式.(4)k 为何值时,253222+-++-y x ky xy x 能分解成两个一次因式的乘积,并分解此多项式.八、余式定理(试根法)1、()x f 的意义:已知多项式()x f ,若把x 用c 带入所得到的值,即称为()x f 在x =c 的多项式值,用()c f 表示.2、被除式、除式、商式、余式之间的关系:设多项式()x f 除以()x g 所得的商式为()x q ,余式为()x r ,则:()x f =()x g ×()x q +()x r3、余式定理:多项式)(x f 除以b x -之余式为)(b f ;多项式)(x f 除以b ax -之余式)(ab f . 例如:当 f(x )=x 2+x +2 除以 (x – 1) 时,则余数=f(1)=12+1+2=4.当2()967f x x x =+-除以(31)x +时,则余数=2111()9()6()78333f -=⨯-+⨯--=-.4、因式定理:设R b a ∈,,0≠a ,)(x f 为关于x 的多项式,则b x -为)(x f 的因式⇔0)(=b f ;b ax -为)(x f 的因式⇔0)(=abf .整系数一次因式检验法:设f(x)=0111c x c x c x c n n n n ++++-- 为整系数多项式,若ax –b 为f(x)之因式(其中a , b为整数 , a ≠0 , 且a , b 互质),则 (1)0,c b c a n(2)( a –b ))1()(,)1(-+f b a f例题1 设61923)(23+-+=x x x x f ,试问下列何者是f (x )的因式?(1)2x –1 ,(2) x –2,(3) 3x –1,(4) 4x +1,(5) x –1,(6) 3x –4例题2 把下列多项式分解因式:(1)453+-x x(2) 6423++-x x x (3) 245323-++x x x (4)1027259234++++x x x x (5)31212165234--++x x x x课后作业分解因式: (1)x 4+4(2)4x 3-31x +15 (3)3x 3-7x +10 (4)x 3-41x +30 (5)x 3+4x 2-9 (6)x 3+5x 2-18 (7)x 3+6x 2+11x +6 (8)x 3-3x 2+3x +7 (9)x 3-11x 2+31x -21(10)x 4+1987x 2+1986x +1987 (11)19981999199824-+-x x x (12)19961995199624+++x x x (13)x 3+3x 2y +3xy 2+2y 3 (1412)x 3-9ax 2+27a 2x -26a 3(15)23)12)(10)(6)(5(4x x x x x -++++ (16)12)4814)(86(22+++++x x x x (17)222215)4(8)4(xx x x x x ++++++(18)222222)1(2)1)(16(5)16(2++++++++x x x x x x (19)x 4+x 2y 2+y 4 (20)x 4-23x 2y 2+y 4(21)a 3+b 3+3(a 2+b 2)+3(a +b )+2 (22)641233-++ab b a (23)12233+++-b a ab b a .(24)1)1()2+-+ab b a ( (25)2222224)()(2b a x b a x -++-(26)))(()()(333333y x b a by ax bx ay ++-+++ (27)633621619y y x x --(28)x 2y -y 2z +z 2x -x 2z +y 2x +z 2y -2xyz (29)810381032345++---x x x x x因式分解的应用1、证明:四个连续整数的的乘积加1是整数的平方.2、2n -1和2n +1表示两个连续的奇数(n 是整数),证明这两个连续奇数的平方差能被8整除.3、已知1248-可以被60与70之间的两个整数整除,求这两个整数.4、已知724-1可被40至50之间的两个整数整除,求这两个整数.5、求证:139792781--能被45整除.6、求证:146+1能被197整除.7、设4x -y 为3的倍数,求证:4x 2+7xy -2y 2能被9整除. 8、已知222y xy x -+=7,求整数x 、y 的值. 9、求方程07946=--+y x xy 的整数解. 10、求方程xy -x -y +1=3的整数解. 11、求方程4x 2-4xy -3y 2=5的整数解.12、两个小朋友的年龄分别为a 和b ,已知a 2+ab =99,则a =______,b =_______ . 13、 计算下列各题: (1)23×3.14+5.9×31.4+180×0.314;(2)19952199519931995199519963232--+-⨯.14、求积()()()()()11131124113511461198100+++++⨯⨯⨯⨯⨯ ()1199101+⨯的整数部分?15、解方程:(x 2+4x )2-2(x 2+4x )-15=016、已知ac +bd =0,则ab (c 2+d 2)+cd (a 2+b 2)的值等于___________.17、已知a -b =3, a -c =326, 求(c —b )[(a -b )2+(a -c )(a -b )+(a -c )2]的值.18、已知012=++x x ,求148++x x 的值.19、若x 满足145-=++x x x ,计算200419991998x x x +++ .20、已知三角形的三边a 、b 、c 满足等式abc c b a 3333=++,证明这个三角形是等边三角形.。
初中数学因式分解综合训练培优练习2(附答案详解)
初中数学因式分解综合训练培优练习2(附答案详解)1.下列各式分解因式正确的是A .()()2228244a b a b a b -=+- B .()22693x x x -+=-C .()22224923m mn n m n -+=-D .()()()()x x y y y x x y x y -+-=-+2.因式分解:a (n -1)2-2a (n -1)+a.3.分解因式:412x 3y xy -+4.因式分解:(1)316x x - (2)221218x x -+5.因式分解:(1)﹣3x 3+6x 2y ﹣3xy 2; (2)a 3-4ab 2.6.2221x x y ++-7.(x 2+2x)2+2(x 2+2x)+18.分解因式:(1) 3a 3-6a 2+3a .(2) a 2(x -y)+b 2(y -x).9.因式分解:(1)3349x y xy - (2)222(6)6(6)9x x ---+10.因式分解: (1) x 2﹣36;(2) xy 2﹣x ;(3) ab 4﹣4ab 3+4ab 2;(4) (m +1)(m ﹣9)+8m .11.已知ab =-3,a +b =2.求下列各式的值: (1)a 2+b 2; (2)a 3b +2a 2b 2 +ab 3; (3)a -b .12.(1)因式分解:3a 3+12a 2+12a ;2016+20162-20172(2)解不等式组:()263125x x x -<⎧⎨+≤+⎩,并将解集在数轴上表示出来.(3)解分式方程:2236x 1x 1x 1+=+--.13.观察下列式子:23(1)(1)1x x x x +-+=+;23(2)(24)8x x x x +-+=+;2233(2)(42)8m n m mn n m n +-+=+;……(1)上面的整式乘法计算结果比较简洁,类比学习过的平方差公式,完全平方公式的推导过程,请你写出一个新的乘法公式(用含a 、b 的字母表示),并加以证明;(2)直接用你发现的公式写出计算结果:(2a +3b )(4a 2﹣6ab +9b 2)= ;(3)分解因式:m 3 + n 3 + 3mn (m + n ).14.分解因式:4322221x x x x ++++15.因式分解:(1)x 2y -2xy +xy 2; (2)422x -+.16.222---x xy y =__________17.分解因式212x 123y xy y -+-=___________18.将22363ax axy ay -+分解因式是__________.19.在实数范围内分解因式:4244x x -+=_____________.20.因式分解:m 3n ﹣9mn =______.21.分解因式:339a b ab -=_____________.22.分解因式:x 3y ﹣2x 2y+xy=______.23.分解因式:3x 2﹣3y 2=_____.24.因式分解:2328x y y -=_________.25.分解因式:am 2﹣9a=_________________.26. 分解因式:(p+1)(p ﹣4)+3p =_____.27.因式分解:x 3﹣6x 2y +9xy 2=____.28.分解因式:222x 2y -= ______.29.分解因式:22xy xy x -+-=__________.30.分解因式:a 3b +2a 2b 2+ab 3=_____.31.分解因式:3a 2+6ab+3b 2=________________.32.分解因式:29y x y -=_____________.33.分解因式:4a 2b ﹣b =_____.34.分解因式:222m -=_________________________.35.分解因式:2a 2﹣18=________.36.分解因式:x 3﹣2x 2+x=______.37.因式分解:34x x -=____________________.参考答案1.B【解析】【分析】利用完全平方公式a 2-2ab+b 2=(a-b )2和平方差公式以及提公因式法分别进行分解即可.【详解】A. ()()2222282(4)222a b a b a b a b -=-=+-,故该选项错误; B. ()22693x x x -+=-,分解正确;C. ()22224923m mn n m n -+≠-,故原选项错误;D. ()()()()2()x x y y y x x y x y x y -+-=--=-,故原选项错误. 故选B.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.2.a(n-2)2【解析】试题分析:根据题意,先提公因式a ,然后把n-1看做一个整体,利用完全平方公式分解即可.试题解析:原式=a[(n-1)2-2(n-1)+1]=a[(n-1)-1]2=a(n-2)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 3.()()32121xy x x -+-【解析】试题分析:根据因式分解的方法,先提公因式-3xy ,然后根据平方差公式因式分解即可. 试题解析:()()()4212x 334132121y xy xy x xy x x -+=--=-+- 4.(1)(4)(4)x x x +-;(2)22(3)x -【解析】试题分析:根据因式分解的方法步骤,一提(公因式)二套(平方差公式,完全平方公式)三检查(是否分解彻底),可直接进行因式分解.试题解析:(1)原式=()216x x -=()()44x x x +-(2)原式=()2269x x -+=()223x -5.(1)-3x (x-y )2;(2) a (a+2b )(a-2b ).【解析】试题分析:根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),可以直接接计算即可.试题解析:(1)﹣3x 3+6x 2y ﹣3xy 2=-3x (x 2-2xy+y 2)=-3x (x-y )2(2)a 3-4ab 2=a (a 2-4b 2)=a (a+2b )(a-2b )点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 6.(1)(1)x y x y +++-【解析】解:原式=()221x y +-=()()11x y x y +++- 7.4(1)x +【解析】解:原式=()2221x x ++=()41x +8.(1) 3 a (a -1)2;(2) (x -y)(a -b)(a+b );(3)(a+7b )(7a+b )【解析】试题分析:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 试题解析:(1) 原式=3 a (a 2-2a+3)=3 a (a -1)2;(2) 原式= (x -y)(a 2-b 2)= (x -y)(a -b)(a+b );(3) 原式=[4(a+b)-3(a -b)] [4(a+b)+3(a -b)]=(a+7b )(7a+b ).9.(1)(2)22(3)(3)x x +- 【解析】试题分析:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解). 试题解析:(1)3349x y xy -=xy (2x-3y )(2x+3y )(2)()()2226669x x ---+ =(x 2-6-3)2=(x+3)2(x-3)210.(1)(x +6)(x ﹣6).(2)x (y ﹣1)(y +1).(3)ab 2(b ﹣2)2. (4)(m +3)(m ﹣3).【解析】试题分析:(1)利用平方差公式进行因式分解即可;(2)先提公因式,再根据平方差公式分解即可;(3)先提公因式,再根据完全平方公式分解即可;(4)先根据乘法公式计算,再合并同类项,最后根据平方差公式分解即可.试题解析:(1)x 2﹣36=(x +6)(x ﹣6).(2)xy2﹣x=x(y2﹣1)=x(y﹣1)(y+1).(3)ab4﹣4ab3+4ab2=ab2(b2﹣4b+4)=ab2(b﹣2)2.(4)(m+1)(m﹣9)+8m=m2﹣9m+m﹣9+8m=m2﹣9=(m+3)(m﹣3).点睛:此题主要考查了因式分解,解题的关键是灵活选用适当的方法进行饮食费解。
因式分解培优训练试题
因式分解培优训练试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.下列等式从左到右的变形,属于因式分解的是( ) A .()()y x y x y x +-=+22422B .()2244aya ya -=-C .()130132-+==-+x x x x D .()222329124y x y xy x --=-+-2.多项式()()()2122+--+x x x 可以因式分解成()()n x m x ++2,则n m -的值是( ) A . 2 B . ﹣2 C . 4 D . ﹣43.下列各式分解因式正确的是( )A. 22269(3)x xy y x y ++=+B. 222249(23)x xy y x y -+=- C. 22282(4)(4)x y x y x y -=+- D. ()()()()x x y y y x x y x y -+-=-+ 4.把a a 43-多项式分解因式,结果正确的是( )A. ()4-a aB.()()22-+a aC. ()()22-+a a aD. ()422--a5.已知0136422=+-++y x y x ,则代数式y x +的值为( ) A . ﹣1 B . 1C . 25D . 366.要在二次三项式62-+kx x 分解成()()b x a x ++的形式,那么k 为( ) A .1,﹣1 B .5,﹣5 C .1,﹣1,5,﹣5 D .以上答案都不对 7.要使二次三项式x 2﹣5x+p 在整数范围内能进行因式分解,那么整数p 的取值可以有( ) A .2个 B .4个 C .6个D .无数个8.已知a 为实数,且0223=+-+a a a ,则()()()1098111+++++a a a 的值是( )A .﹣3B .3C .﹣1D .19.把多项式22344x y xy x --分解因式的结果是( )A .34()xy x y x -- B .2(2)x x y -- C .22(44)x xy y x -- D .22(44)x xy y x --++ 10.已知正数b a ,满足87222233-=+-+ab ab b a ab b a 则=-22b a ( ) A .1B .3C .5D .不能确定二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11.若多项式b ax x ++2分解因式的结果为()()21-+x x ,则b a +的值为12.若4,1a b ab +==,则22a b ab +的值为____________________13.已知0.2,31x y x y +=+=,则代数式2243x xy y ++的值为________________ 14.若关于x 的二次三项式b kx x ++2因式分解为()()31--x x ,则b k +的值为__________15.已知()()520192018=--a a ,则()()_________2019201822=-+-a a16.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如22123-=,223516-=,则3和16是智慧数).已知按从小到大的顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,…则第2 019个“智慧数”是____________三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题12分)因式分解下列各式:(1)()()x y b y x a -+-2249 (2)()()m m m 891+-+(3)411623++-x x x (4)x 2﹣2x ﹣2y 2+4y ﹣xy(5)2232y xy x +- (6)(m 2-2m -1)(m 2-2m +3)+4.18.(本题8分)学习了分解因式的知识后,老师提出了这样一个问题:设n 为整数,则(n +7)2-(n-3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.你能解答这个问题吗?19(本题8分).商贸大楼共有四层,第一层有商品(a +b)2种,第二层有商品a(a +b)种,第三层有商品b(a +b)种,第四层有商品(b +a)2种.若a +b =10,则这座商贸大楼共有商品多少种?20.(本题8分)(1)对于任意自然数n ,(n +7)2-(n -5)2是否能被24整除? (2)已知y x ,都是正实数,且满足012222=-++++y x y xy x ,求()y x -1的最小值21(本题10分)如果一个正整数能表示为两个不相等正整数的平方差,那么称这个正整数为“奇妙 数”.例如:5=32﹣22,16=52﹣32,则5,16都是奇妙数. (1)15和40是奇妙数吗?为什么?(2)如果两个连续奇数的平方差为奇特奇妙数,问奇特奇妙数是8的倍数吗?为什么? (3)如果把所有的“奇妙数”从小到大排列后,请直接写出第12个奇妙数.22(本题10分)观察下列等式:12×231=132×21, 13×341=143×31, 23×352=253×32,34×473=374×43,62×286=682×26,…以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:①52×_________=__________×25;②__________×396=693×_______________a ≤9,写出表示“数字对称(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤ba,),并证明.等式”一般规律的式子(含b23(本题10分).先阅读下面的内容,再解决问题.如果一个整式A等于整式B与整式C之积,则称整式B和整式C为整式A的因式.如:①因为36=4×9,所以4和9是36的因数;因为x2﹣x﹣2=(x+1)(x﹣2),所以x+1和x+2是x2﹣x﹣2的因式.②若x+1是x2+ax﹣2的因式,则求常数a的值的过程如下:解:∵x+1是x2+ax﹣2的因式∴存在一个整式(mx+n),使得x2+ax﹣2=(x+1)(mx+n)∴当x=﹣1时,(x+1)(mx+n)=0∴当x=﹣1时,x2+ax﹣2=0∴1﹣a﹣2=0,∴a=﹣1(1)x+2是x2+x﹣6的因式吗?(填“是”或者“不是”);(2)若整式x2﹣1是3x4﹣ax2+bx+1的因式,求常数a,b的值.因式分解培优训练试题答案三.选择题:1.答案:D解析:A选项不能因式分解,故A错误;B选项是计算,故B错误;C选项右边是多项式,不是因式分解,故C错误;D选项是因式分解,故选择D2.答案:C解析:∵多项式()()()2122+--+x x x 可以因式分解成()()n x m x ++2, ∴()()()()n x m x x x ++=-+2222∴2,2-==n m ,∴422=+=-n m ,故选择C3.答案:A解析:∵22269(3)x xy y x y ++=+ ,故A 选项正确; ∵222(23)4129x y x xy y -=-+,故B 选项错误;∵()()()22222824222x y x y x y x y -=-=-+ ,故C 选项错误; ∵2()()()x x y y y x x y -+-=-,故D 选项错误,故选择A4.答案:C解析:()()()224423+-=-=-a a a a a a a ,故选择C5.答案:B解析:∵0136422=+-++y x y x ∴()()03222=-++y x ,∴3,2=-=y x ,∴132=+-=+y x ,故选择B6.答案:C解析:∵要在二次三项式62-+kx x 分解成()()b x a x ++的形式,∴()616⨯-=-或()616-⨯=-或()326-⨯=-或()326⨯-=-, ∴5=k 或5-=k 或1-=k 或1=k ,故选择C7.答案:D解析:∵要使二次三项式x 2﹣5x+p 在整数范围内能进行因式分解,∴只要找两个数b a ,使5,-=+=b a p ab 即可,于是有无数多个,故选择D8.答案:D解析:∵0223=+-+a a a , ∴()01)1(23=+-++a a a , ∴()()()011122=+-++-+a a a a a∴()()0122=+-+a a a ,∵012≠+-a a ,∴,02=+a ∴11-=+a ,∴()()()()()()111111111110981098=+-=-+-+-=+++++a a a故选择D9.答案:B解析:22344x y xy x --()()222244y x x y xy x x --=+--=故选择B10.答案:B解析:∵87222233-=+-+ab ab b a ab b a ∴()()87222-=--+ab b a ab b a ab∴()()08722222=+---+-+ab b a ab ab ab b a ab ∴()()08722222=+-+---ab b a b a ab b a ab ,∴()()[]()044212222=+-++---ab b a b a b a ab∴()()022122=-+--ab b a ab∵b a ,均为正数,∴ab >0, ∴01=--b a ,02=-ab , 即2,1==-ab b a ,解方程⎩⎨⎧==-21ab b a ,解得1,2==b a 或2,1-=-=b a (不合题意,舍去), ∴31422=-=-b a .故选B .四.填空题:11.答案:3-解析:∵()()2212--=-+x x x x ,∴222--=++x x b ax x ,∴2,1-=-=b a ,∴321-=--=+b a12.答案:4解析:∵4,1a b ab +==, ∴()22144a b ab ab a b +=+=⨯=13.答案:2.0解析:∵0.2,31x y x y +=+=∴()()224330.210.2x xy y x y x y ++=++=⨯=14.答案: 1-解析:∵二次三项式b kx x ++2因式分解为()()31--x x ,∴b kx x x x ++=+-2234,∴3,4=-=b k ,∴134-=+-=+b k15.答案:11解析:∵()()520192018=--a a ,()()()()()()()()20192018220192019201822018201920182222--+-+----=-+-∴a a a a a a a a ()()()11521201920182201920182=⨯+=--++--=a a a a16.答案:2695解析:观察数的变化规律,可知全部“智慧数”从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得,第n 组的第一个数为4n (n ≥2).因为67332019=÷,所以第2 019个“智慧数”是第673组中的第3个数,即为269536734=+⨯.三.解答题:17.解析:(1)()()()()()b a b a y x x y b y x a 23234922-+-=-+-(2)()()()()33998889122-+=-=-+-=+-+m m m m m m m m m(3)4566411622323++--=++-x x x x x x x()()()()()()()()4312145614511622-+-=---=+---=x x x x x x x x x x(4)x 2﹣2x ﹣2y 2+4y ﹣xy ()()()y x y x y x y x y xy x 22242222---+=+---=()()22-+-=y x y x(5)()()y x y x y xy x --=+-23222(6)(m 2-2m -1)(m 2-2m +3)+4()()()()422222112412412-=+-=+--+--=m m m m m m m18.解析:()()()()()()220102237373722+=⨯+=+-+-++=--+n n n n n n n n∴()()2237---n n 能被20整除。
因式分解提高题(5篇)
因式分解提高题(5篇)以下是网友分享的关于因式分解提高题的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。
篇一一、填空:1. 若x 2+2(m -3) x +16是完全平方式,则m 的值等于_____。
2. x 2+x +m =(x -n ) 2则m n 若x m -y n =(x +y 2)(x -y 2)(x 2+y 4) ,则m=_______,n=_________。
x 2+(_____)x +2=(x +2)(x +_____)223. 4. 5. 若x +4x -4的值为0,则3x +12x -5的值是________。
22若x +y =4, x +y =6则xy = 6.二、选择题:1、多项式-a (a -x )(x -b ) +ab (a -x )(b -x ) 的公因式是()A 、-a 、B 、-a (a -x )(x -b )C 、a (a -x )D 、-a (x -a ) 222、若mx +kx +9=(2x -3) ,则m ,k 的值分别是()A 、m=—2,k=6,B 、m=2,k=12,C 、m=—4,k=—12、D m=4,k=-12、3、下列名式:x -y , -x +y , -x -y , (-x ) +(-y ) , x -y 中能用平方差公式分解因式的有()A 、1个B 、2个C 、3个D 、4个4、计算(1-[1**********]111)(1-) (1-)(1-) 的值是()232223910A 、11111, C . , D . ,B 、2010202三、分解因式:1 、x -2x -35x2 、3x -3x223 、x -4xy -1+4y 4、x -1 3432625、ax -bx -bx +ax +2b -2a6、x -18x +81四、代数式求值1、2、3、五、计算:22222已知a +b =2,求(a -b ) -8(a +b ) 的值2242已知2x -y =1,xy =2,求2x 4y 3-x 3y 4的值。
浙教版2022-2023学年七下数学第四章 因式分解 培优测试卷1(解析版)
浙教版2022-2023学年七下数学第四章因式分解培优测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列添括号正确的是()A.−b−c=−(b−c)B.−2x+6y=−2(x−6y)C.a−b=+(a−b)D.x−y−1=x−(y−1)【答案】C【解析】A.−b−c=−(b+c),故此选项不合题意;B.−2x+6y=−2(x−3y),故此选项不合题意;C.a−b=+(a−b),故此选项符合题意;D.x−y−1=x−(y+1),故此选项不合题意;故答案为:C.2.下列各式从左到右变形是因式分解,并分解正确的是()A.(a−b)2+(a−b)=(a−b)(a−b+1)B.(x+2)(x+3)=x2+5x+6C.4a2−b2=(4a−b)(4a+b)D.m2−n2+2mn=(m−n)2【答案】A【解析】A、(a−b)2+(a−b)=(a−b)(a−b+1),从左到右的变形属于因式分解,故本选项符合题意;B、(x+2)(x+3)=x2+5x+6,从左到右的变形是整式的乘法,不属于因式分解,故本选项不符合题意;C、4a2−b2=(2a−b)(2a+b),原式从左到右的变形错误,故本选项不符合题意;D、两边不相等,从左到右的变形不属于因式分解,故本选项不符合题意;故答案为:A3.下列各式中,没有公因式的是()A.3x−2与6x2−4x B.ab−ac与ab−bcC.2(a−b)2与3(b−a)3D.mx−my与ny−nx【答案】B【解析】A、∵6x2-4x=2x(3x-2),∴3x-2与6x2-4x的公因式是3x-2,故A不符合题意;B、∵ab-ac=a(b-c),ab-bc=b(a-c),∴ab-ac与ab-bc没有公因式,故B符合题意;C、∵2(a-b)2=(b-a)2,∴2(a-b)2与3(b-a)3的公因式是(b-a)2,故C不符合题意;D、∵mx-my=m(x-y),ny-nx=-n(x-y),∴mx-my与ny-nx的公因式是x-y,故D不符合题意.故答案为:B.4.把(a−b)+m(b−a)提取公因式(a−b)后,则另一个因式是()A.1−m B.1+m C.m D.−m【答案】A【解析】(a−b)+m(b−a)=(a−b)(1−m),∴另一个因式为(1-m),故答案为:A.5.课堂上老师在黑板上布置了如框所示的题目,小聪马上发现了其中有一道题目错了,你知道是哪道题目吗?()道题D.第4道题【答案】C【解析】(1)a2-b2=(a+b)(a-b),可以用平方差公式因式分解,不符合题意;(2)49x2-y2z2=(7x-yz)(7x+yz),可以用平方差公式因式分解,不符合题意;(3)-x2-y2,前后项同号,不符合平方差公式特点,不可以用平方差公式分解,符合题意;(4)16m2n2-25p2=(4mn+5p)(4mn-5p),可以用平方差公式因式分解,不符合题意.故答案为:C.6.已知2x−y=1,xy=2,则4x3y−4x2y2+xy3的俼为()A.-2B.1C.-1D.2【答案】D【解析】原式=xy(4x2−4xy+y2)=xy(2x−y)2,∵2x−y=1,xy=2,∴原式=2×12=2.故答案为:D.7.若要使4x2+mx+164成为一个两数差的完全平方式,则m的值应为()A.±12B.-12C.±14D.-14【答案】A【解析】∵(2x-18)2=4x2-12x+164或[2x−(−18)]2=4x2+12x+164,∴m=-12或12.故答案为:A.8.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x﹣1,a﹣b,3,x2+1,a,x+1分别对应下列六个字:中,爱,我,数,学,五,现将3a(x2﹣1)﹣3b(x2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱五中C.我爱五中D.五中数学【答案】C【解析】∵3a(x2﹣1)﹣3b(x2﹣1)=3(x2﹣1)(a-b)=3(x+1)(x-1)(a-b),∴结果呈现的密码信息可能是:我爱五中.故答案为:C.9.将多项式16m2+1加上一个单项式后,使它能够在我们所学范围内因式分解,则此单项式不能是()A.-2B.−15m2C.8m D.−8m【答案】B【解析】A、16m2+1−2=16m2−1=(4m+1)(4m−1),A不符合题意;B、16m2+1−15m2=m2+1,不能因式分解,B符合题意;C、16m2+1+8m=(4m+1)2,C不符合题意;D、16m2+1−8m=(4m−1)2,D不符合题意.故答案为:B.10.在√0,√1,√2,√3,√4,……,√364,√365中,有理数的个数是()A.18B.19C.20D.21【答案】C【解析】∵192=361<365<202=400,∴19<√365<20∴√0,√1,√2,√3,√4,……,√364,√365中正好有20个完全平方数,即20个有理数.故答案为:C.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.分解因式:3a 2−12= .【答案】3(a +2)(a −2)【解析】3a 2−12=3(a 2−4)=3(a +2)(a −2)故答案为:3(a +2)(a −2).12.因式分解:a 3−6a 2+9a = .【答案】a (a -3)2【解析】原式=a(a 2−6a +9)=a(a −3)2,故答案为:a (a -3)2.13.已知长方形的面积为3a 2−3b 2,如果它的一边长为a +b ,则它的周长为 (结果应化简).【答案】8a −4b【解析】∵3a 2−3b 2=3(a 2−b 2)=3(a +b)(a −b),长方形的一边长为a+b∴长方形的另一边长为3(a -b )=3a -3b∴该长方形的周长为:(3a -3b+a+b )×2=8a −4b ,故答案为:8a −4b .14.若 m −n =8 ,则 m 2−n 2−16n 的值是 .【答案】64【解析】∵m −n =8 ,∴m 2−n 2−16n = (m +n)(m −n)−16n = 8(m +n)−16n = 8m +8n −16n = 8m −8n = 8(m −n) = 8×8=64故答案为:64. 15.设 P =x 2−3xy , Q =3xy −9y 2 ,若 P =Q ,则 x y 的值为 .【答案】3【解析】∵P =Q , P =x 2−3xy , Q =3xy −9y 2 ,∴x 2−3xy =3xy −9y 2 ,即 x 2−6xy +9y 2=(x −3y)2 =0,∴x=3y ∴x y =3.故答案为:316.若a=2018x+2019,b=2018x+2020,c=2018x+ 2021,则多项式a 2+b 2+c 2-ab -ac -bc 的值为【答案】3 【解析】 a 2+b 2+c 2-ab -ac -bc =12(2a 2+2b 2+2c 2-2ab -2ac -2bc ) =12(a 2+b 2-2ab+b 2-2bc+c 2-2ac+a 2-2ac+c 2) =12[(a -b )2+(b -c )2+(a -c )2] =12[(2018x+2019-2018x -2020)2+(2018x+2020-2018x - 2021)2+(2018x+2019-2018x -2021)2] =12[1+1+4]=3, 故答案为:3.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.分解因式:(1)x 2﹣4x(2)﹣2x 2+2(3)4x 5﹣4x 4+x 3(4)4(x+2y )2﹣25(x ﹣y )2.【答案】(1)解:原式=x (x ﹣4)(2)解:原式=﹣2(x+1)(x ﹣1)(3)解:原式=x 3(2x ﹣1)2(4)解:原式=[2(x+2y )+5(x ﹣y )][2(x+2y )﹣5(x ﹣y )]=3(7x ﹣y )(3y ﹣x )18.已知 x 2+x +1=0 ,求 x 3−x 2−x +7 的值.【答案】解:由 x 2+x +1=0 得 x 2+x =−1 ,∴x 3−x 2−x +7=x 3+x 2−2x 2−x +7=x(x 2+x)−2x 2−x +7=−x −2x 2−x +7=−2x 2−2x +7=−2(x 2+x)+7=2+7=919.阅读下列材料,并解答相关问题.对于二次三项式x 2+2ax+a 2这样的完全平方式,我们可以用公式法将它分解因式成(x+a)2的形式,但是,对于二次三项式x 2+2ax -3a 2,就不能直接用完全平方公式进行分解因式了,我们可以在二次三项式x 2+2ax -3a 2中先加上一项a 2,将其配成完全平方式,再减去a 2这项,使整个式子的大小不变,于是有x 2+2ax -3a 2=x 2+2ax+a 2-a 2-3a 2=(x+a)2-4a 2=(x+a+2a)(x+a -2a)=(x+3a)(x -a).利用上述方法把m 2-6m+8分解因式.【答案】解:m 2-6m+8=m 2-6m+9-9+8=(m -3)2-1=(m -3+1)(m -3-1)=(m -2)(m -4)20.若a+b=﹣3,ab=1.求12a 3b+a 2b 2+12ab 3的值. 【答案】解:∵a+b=﹣3,ab=1∴12a 3b+a 2b 2+12ab 3=12ab (a 2+2ab+b 2)=12ab (a+b )2=12×1×(﹣3)2=92.21.(1)学习“完全平方公式”时,小明遇到课本上一道题目“计算(a +b +c)2”,他联系所学过的知识和方法,想到两种解决思路:①可以用“整体思想”把三项式转化为两部分:[(a +b)+c]2或[a +(b +c)]2,然后可以利用完全平方公式解决,请你选择一种变形方法写出计算过程;②可以用“数形结合”的方法,画出表示(a +b +c)2的图形,根据面积关系得到结果.请你在下面正方形中画出图形,并作适当标注;(2)利用(1)的结论分解因式:x 2+y 2+4−2xy +4x −4y = ;(3)小明根据“任意一个实数的平方不小于0”,利用配方法求出了一些二次多项式的最大值或最①x 2+y 2+2xy −6x −6y +20;②2x 2+y 2−2xy −4x +2y +10.【答案】(1)解:①方法一:(a +b +c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2ac+2bc;方法二:(a+b+c)2=[a+(b+c)]2=a2+2a(b+c)+(b+c)2=a2+2ab+2ac+b2+2bc+c2=a2+b2+c2+2ab+2ac+2bc;②如图,(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,(2)(x−y+2)2(3)解:①x2+y2+2xy−6x−6y+20=(x2+2xy+y2)−6(x+y)+20=(x+y)2−6(x+y)+20=(x+y)2−6(x+y)+9+11=(x+y−3)2+11∵(x+y−3)2≥0∴x2+y2+2xy−6x−6y+20≥11即当x+y=3时,x2+y2+2xy−6x−6y+20有最小值为11;②2x2+y2−2xy−4x+2y+10=x2−2xy+y2−2x+2y+x2−2x+1+9=(x−y)2−2(x−y)+(x−1)2+9=(x−y−1)2+(x−1)2+8∵(x−y−1)2≥0,(x−1)2≥0,∴当x−y−1=0,x−1=0,即x=1,y=0时,2x2+y2−2xy−4x+2y+10有最小值,为8.【解析】(2)x2+y2+4−2xy+4x−4y=x2+y2−2xy+4x−4y+4=(x−y)2−4(x−y)+4=(x−y+2)2故答案为:(x−y+2)2.22.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的_______.A.提取公因式;B.平方差公式;C.两数和的完全平方公式;D.两数差的完全平方公式.(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+2)+1进行因式分解.【答案】(1)C(2)不彻底;(x−2)4(3)解:设x2+2x=y,原式= y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2=(x+1)4.【解析】(1)由y2+8y+16=(y+4)2是利用了两数和的完全平方公式,故答案为:C;(2)∵(x2﹣4x+4)2= (x−2)4,∴该同学因式分解的结果不彻底,最后结果为(x−2)4,故答案为:不彻底,(x−2)4;23.如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“和谐数”.(1)36和2020这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?【答案】(1)∵36=102﹣82,2020=5062﹣5042,∴36和2020是“和谐数”;(2)这两个连续偶数构成的“和谐数”是4的倍数.理由如下:∵(2k+2)2−(2k)2=4(2k+1);∴两个连续偶数构成的“和谐数”是4的倍数.24.(1)分解因式:①(1+x)+x(1+x)=()+x()=()2②(1+x)+x(1+x)+x(1+x)2=③(1+x)+x(1+x)+x(1+x)2+x(1+x)3=(2)根据(1)的规律,直接写出多项式:(1+x)+x(1+x)+x(1+x)2+…+x(1+x)2017分解因式的结果:.(3)变式:(1﹣x)(1+x)(1+x2)(1+x4)…(1+x2n)=.【答案】(1)1+x;1+x;1+x;(1+x)3;(1+x)4(2)(1+x)2018(3)1-x4n【解析】(1)①1+x+x(1+x)=(1+x)+x(1+x)=(1+x)2;②1+x+x(1+x)+x(1+x)2=(1+x)+x(1+x)+x(1+x)2=(1+x)[1+x+x(1+x)]=(1+x)3;③1+x+x (1+x)+x(1+x)2+x(1+x)3=(1+x)4;看等号左右的变化,即都是先提公因式,或再运用提公因式,或依次提公因式分解所得;等号右边括号内的数据不变,2,3,4依次增大,故可推理出:( 2 )1+x+x(1+x)+x(1+x)2+…+x(1+x)2017=(1+x)2018;( 3 )(1-x)(1+x)(1+x2)(1+x4)…(1+x2n)=(1-x2)(1+x2)(1+x4)…(1+x2n)=(1-x4)(1+x4)…(1+x2n)=1-x4n.。
培优专题15 因式分解的类型-原卷版
培优专题15 因式分解的类型◎类型一:只提不套型方法技巧:先提公因式,然后整理化简1.(2022·湖南邵阳·七年级期末)把多项式29m m -分解因式,结果正确的是( )A .()9m m -B .()()33m m +-C .()()33m m m +-D .()23m -2.(2022·河北沧州·八年级期末)将多项式22a b b -利用提公因式法分解因式,则提取的公因式为( )A .2a bB .abC .aD .b3.(2022·浙江·杭州市实验外国语学校七年级期中)4a ×______284a a =-.4.(2022·江苏镇江·中考真题)分解因式:36x +=_________.【答案】()32x +##()32x +5.(2022·山东·济南市济阳区创新中学八年级期中)因式分解:(1)2x xy +(2)242b ab+﹣(3)3123ax bx x+-(4)3223624ab a b a b+-6.(2022·宁夏·中宁县第三中学八年级期中)把下列各式因式分解.(1)332462a b a b ab+-(2)2211y x y x +++()()◎类型二:只套不型提方法技巧:直接套用平方差公式或完全平方公式7.(2022·湖南·永州市剑桥学校七年级期中)已知4,5x y x y +=-=,那么22x y -的值为( )A .5B .4C .9D .208.(2021·黑龙江黑河·八年级期末)将多项式481x -分解因式,结果正确的是( )A .()()2299x x +-B .()229x +C .()()()2933x x x ++-D .()229x -9.(2022·四川成都·七年级期末)若3x y -=,2212x y -=,则x y +=__________.10.(2021·浙江·树兰中学七年级期中)直接写出因式分解的结果:x 2﹣y 2=________.11.(2022·浙江·杭州市建兰中学七年级期中)(1)因式分解:①224129a ab b -+ ②22981m n -(2)先化简,再求值:(47)(1)2(23)x x x x ---+,其中217x =.12.(2022·重庆南开中学三模)计算:(1)()()223x y y x y +--(2)2434433a a a a a a --+æö-¸ç÷--èø◎类型三:先提后套型方法技巧:先提公因式,然后运用平方差公式或完全平方公式法分解13.(2022·浙江·杭州市实验外国语学校七年级期中)如果()3642743a a M -=-×,则M 是( )A .216123a a ++B .292416a a ++C .291216a a ++D .291216a a -+14.(2022·山西·右玉县第三中学校八年级期末)把228a -分解因式,结果正确的是( )A .()224a -B .()224a -C .()()222a a +-D .()222a +15.(2022·浙江·杭州市大关中学八年级阶段练习)配方填空:2412x x -+______4=(x -____)2.16.(2022·山东省青岛第六十三中学八年级期中)因式分解:32545x xy -=_________.17.(2022·浙江·杭州市实验外国语学校七年级期中)因式分解(1)3221624x x x-+-(2)222222a b x y ay bx--+-+18.(2022·江苏·南师附中新城初中黄山路分校七年级期中)因式分解:(1)32312a ab -(2)3222x x y xy -+(3)22(3)9(3)a x yb y x -+-◎类型四:先破后立型方法技巧:先按整式乘法运算化简,然后再进行因式分解19.(2022·湖北武汉·八年级期末)下面分解因式正确的是( )A .24414(1)1a a a a -+=-+B .224(4)(4)a b a b a b -=+-C .224129(23)a a a -+=-D .2222()ab a b a b --=-+20.(2022·广东·九年级竞赛)已知22()()2022a b c b a c +=+=,且a b ¹,则abc 的值为()A .2022B .-2022C .4044D .-404421.(2021·浙江杭州·七年级期末)计算.()()()2222x y x y x y +--+22.(2022·湖南·永州市剑桥学校七年级期中)因式分解:()(4)4m n m n ++-+[提示:把m n +看成一个整体]23.(2021·陕西·西安高新第三中学八年级阶段练习)因式分解2162(4)x x -++.24.(2022·山东德州·八年级期末)因式分解:(x +1)(x -3)+4◎类型五:利用分组分解法因式分解方法技巧:先分组使之提公因式或能运用公式法分解方法分类分组方法特点二项、二项①按字母分组②按系数分组③符合公式的两项分组四项三项、一项先完全平方公式后平方差公式五项三项、二项各组之间有公因式三项、三项二项、二项、二项各组之间有公因式分组分解法六项三项、二项、一项可化为二次三项式25.(2021·辽宁丹东·八年级期末)若ABC V 的三边a ,b ,c ,满足222506810a b c a b c +++=++,则ABC V 的面积为( )(补充知识点:如果三角形的两边平方和等于第三边,那么这个三角形是直角三角形)A .6B .C .D .826.(2022·山东滨州·八年级期末)已知a +b =3,ab =1,则多项式a 2b +ab 2﹣a ﹣b 的值为( )A .0B .1C .2D .327.(2022·上海·新中初级中学七年级期末)因式分解:m 2-n 2-2m +1=___ .28.(2021·安徽·郎溪实验一模)因式分解:x 3﹣6x 2+11x ﹣6=_____.29.(2022·山东烟台·八年级期中)(1)分解因式:()()()41a b a b b +-+-(2)分解因式:121x -30.(2022·上海·七年级专题练习)因式分解:222231210x xy y xz yz z +----◎类型六:十字相乘法因式分解方法技巧:先按整式乘法运算化简,然后再进行因式分解在二次三项式(≠0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:2ax bx c ++a a 12a a a =c 12c c c =1212a a c c ,,,按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即.31.(2022·湖南岳阳·七年级期中)已知方程20x px q ++=的两个根分别是2和-3,则2x px q -+可分解为( )A .(2)(3)x x ++B .(2)(3)x x --C .(2)(3)x x -+D .(2)(3)x x +-32.(2022·安徽宿州·八年级期中)如果多项式2x mx n -+能因式分解为()()25x x +-,则m n +的值是( )A .-7B .7C .-13D .1333.(2022·四川内江·中考真题)分解因式:a 4﹣3a 2﹣4=_____.34.(2022·甘肃陇南·一模)把多项式268m n mn n ++分解因式的结果是___.35.(2022·黑龙江·肇东市第十中学八年级期末)分解因式(1)25105x x ++;(2)()()()4434a a a +-++.36.(2022·上海·七年级专题练习)因式分解:21124x y xy y -+1221a c a c +2ax bx c ++b 1221a c a c b +=11a x c +22a x c +()()21122ax bx c a x c a x c ++=++。
七年级下册数学-《因式分解》单元培优试题有答案
《因式分解》单元培优测试题班级_________ 姓名_____________ 得分_____________注意事项:本卷共有三大题23小题,满分120分,考试时间120分钟.一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1﹒下列等式中,从左到右的变形是因式分解的是()A﹒2x2+8x-1=2x(x+4)-1 B﹒(x+5)(x-2)=x2+3x-10C﹒x2-8x+16=(x-4)2D﹒6ab=2a·3b2﹒将下列多项式因式分解,结果中不含有因式a+1的是()A﹒a2-1B﹒a2+a-2C﹒a2+a D﹒(a-2)2-2(a+2)+1 3﹒多项式15m3n2+5m2n-20m2n3的公因式是()A﹒5mn B﹒5m2n2C﹒5m2n D﹒5mn24﹒下列因式分解正确的是()A﹒-a2-b2=(-a+b)(-a-b)B﹒x2+9=(x+3)2C﹒1-4x2=(1+4x)(1-4x)D﹒a3-4a2=a2(a-4)5﹒下列各式中,能用完全平方公式分解的是()A﹒a2-2ab+4b2B﹒4m2-m+14C﹒9-6y+y2D﹒x2-2xy-y26﹒已知x,y为任意有理数,记M=x2+y2,N=2xy,则M与N的大小关系为()A﹒M>N B﹒M≥N C﹒M≤N D﹒不能确定7﹒把多项式x2+ax+b分解因式,得(x+1)(x-3),则a+b的值是()A﹒-5B﹒5C﹒1D﹒-18﹒已知x2-x-1=0,则代数式x3-2x+1的值为()A﹒-1B﹒1 C﹒-2D﹒29﹒如图,边长为a、b的长方形的周长为14,面积为10,则多项式a3b+2a2b2+ab3的值为()A﹒490B﹒245C﹒140D﹒196010.已知:a=2017x+2015,b=2017x+2016,c=2017x+2017,则代数式a2+b2+c2-ab-ac-bc的值为()A﹒0B﹒1C﹒2D﹒3二、填空题(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.请从4a2,(x+y)2,16,9b2四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_________________________________﹒12.用简便方法计算:20172-34×2017+289=_________﹒13.若m-n=2,则多项式2m2-4mn+2n2-1的值为___________﹒14.如果x2-2xy+2y2+4y+4=0,那么y x=___________﹒15.把多项式a2017-4a2016+4a2015分解因式,结果是__________________﹒16.如图是正方形或长方形三类卡片各若干张,若要用这些卡片拼成一个面积为2a2+3ab+b2的长方形(所拼长方形中每类卡片都要有,卡片之间不能重叠),则你所拼长方形的两边长分别是____________,____________(用含a、b字母的代数式表示)﹒三、解答题(本题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.17.(8分)分解因式:(1)-18a3b2-45a2b3+9a2b2﹒(2)5a3b(a-b)3-10a4b2(b-a)2﹒18.(10分)分解因式:(1)(x2+16y2)2-64x2y2﹒(2)9(x-y)2-12x+12y+4﹒19.(10分)分解因式:(1)ac-bc-a2+2ab-b2﹒(2)1-a2-4b2+4ab﹒20.(8分)已知m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,且满足(m+4)2-(n+4)2=16,求代数式m2+n2-mn的值﹒21.(8分)如图所示,将一张长方形纸板按图中虚线裁剪成九块,若图中①②都是剪成边为a的大正方形,③④都是剪成边长为b的小正方形,⑤⑥⑦⑧⑨都是剪成边长分别为a、b的小长方形﹒(1)观察图形,可以发现多项式2a2+5ab+2b2可以因式分解为____________________;(2)若每块小长方形的的面积为10cm2,四个正方形的面积之和为58cm2,试求图中所有裁剪线(虚线部分)长之和﹒22.(10分)设y=kx,是否存在实数k,使得多项式(x-y)(2x-y)-3x(2x-y)能化简5x2若能,请求所有满足条件的k的值;若不能,请说明理由﹒23.(12分)如果一个正整数能表示两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,……因此4,12,20……都是“神秘数”﹒(1)28,2016这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差是“神秘数”吗?为什么?《因式分解》单元培优测试题参考答案Ⅰ﹒答案部分:11﹒答案不唯一,如:4a2-16=4(a+2)(a-2)﹒12﹒4000000﹒13﹒7﹒14﹒14﹒15﹒a2015(a-2)2﹒16﹒2a+b,a+b﹒三、解答题17.(1)解:-18a3b2-45a2b3+9a2b2=-9a2b2(2a+5b-1)﹒(2)解:5a3b(a-b)3-10a4b3(b-a)2=5a3b(a-b)3-10a4b2(a-b)2=5a3b(a-b)2(a-b-2ab)﹒18.(1)解:(x2+16y2)2-64x2y2=(x2+16y2)2-(8xy)2=(x2+16y2+8xy)( x2+16y2-8xy)=(x+4y)2(x-4y)2﹒(2)解:9(x-y)2-12x+12y+4=[3(x-y)]2-12(x-y)+22=[3(x-y)-2]2=(3x-3y-2)2﹒19.(1)解:ac-bc-a2+2ab-b2=c(a-b)-(a2-2ab+b2)=c(a-b)-(a-b)2=(a-b)[c-(a-b)]=(a-b)(c-a+b)﹒(2)解:1-a2-4b2+4ab=1-(a2-4ab+4b2)=1-(a-2b)2=[1+(a-2b)][1-(a-2b)]=(1+a-2b)(1-a+2b)﹒20.解:∵m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,∴m,n互为相反数,即m+n=0①,又∵(m+4)2-(n+4)2=16,∴(m+n+8)(m-n)=16,8(m-n)=16,∴m-n=2②,联立①②得2m nm n+=⎧⎨-=⎩,解得11mn=⎧⎨=-⎩,∴m2+n2-mn=1+1+1=3﹒21.解:(1)观察图形知:九块图形的面积之和等于这张长方形纸板的面积,所以2a2+5ab+2b2可分解为(2a+b)(a+2b),故答案为:(2a+b)(a+2b)﹒(2)由题意,知:2a2+2b2=58,ab=10,则a2+b2=29,∴(a+b)2=a2+2ab+b2=29+20=49,∵a+b>0,∴a+b=7,则6a+6b=6(a+b)=6×7=42,答:图中所有裁剪线(虚线部分)长之和为42﹒22.解:能,假设存在实数k,(x-y)(2x-y)-3x(2x-y)=(2x-y)(-2x-y)=-(2x-y)(2x+y)=-(4x2-y2)=-4x2+y2,把y=kx代入,原式=-4x2+(kx)2=-4x2+k2x2=(k2-4)x2,∵多项式(x-y)(2x-y)-3x(2x-y)能化简5x2,∴(k2-4)x2=5x2,∴k2-4=5,解得k=±3,故满足条件的k的值有3或-3﹒23.解:(1)是,∵28=2×14=(8-6)(8+6)=82-62,2016=2×1008=(505-503)(505+503)=5052-5032,∴28,2016这两个数都是“神秘数”;(2)是,∵(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k+1),∴2k+2和2k这两个连续偶数构造的“神秘数”是4的倍数﹒(3)不是,设两个连续奇数为2k+1和2k-1(k取正整数),则(2k+1)2-(2k-1)2=(2k+1+2k-1)(2k+1-2k+1)=4k×2=8k,此数是8的倍数,由(2)知“神秘数”可表示为4的倍数,但不能表示为8的倍数,所以两个连续奇数的平方差不是“神秘数”﹒Ⅱ﹒解答部分:一、选择题1﹒下列等式中,从左到右的变形是因式分解的是()A﹒2x2+8x-1=2x(x+4)-1 B﹒(x+5)(x-2)=x2+3x-10C﹒x2-8x+16=(x-4)2D﹒6ab=2a·3b解答:A﹒右边2x(x+4)-1不是积的形式,故A项错误;B﹒(x+5)(x-2)=x2+3x-10,是多项式乘法,不是因式分解,故B项错误;C﹒x2-8x+16=(x-4)2,运用了完全平方公式,符合因式分解的定义,故C正确;D﹒6ab=2a·3b,左边不是多项式,故D错误﹒故选:C﹒2﹒将下列多项式因式分解,结果中不含有因式a+1的是()A﹒a2-1B﹒a2+a-2C﹒a2+a D﹒(a-2)2-2(a+2)+1解答:因为A﹒a2-1=(a+1)(a-1);B﹒a2+a-2=(a+2)(a-1);C﹒a2+a=a(a+1);D﹒(a-2)2-2(a+2)+1=(a+2-1)2=(a+1)2,所以结果中不含有因式a+1的选项是B﹒故选:B﹒3﹒多项式15m3n2+5m2n-20m2n3的公因式是()A﹒5mn B﹒5m2n2C﹒5m2n D﹒5mn2解答:多项式15m3n2+5m2n-20m2n3中,各项系数的最大公约数是5,各项都含有相同字母m,n,字母m的指数最低是2,字母n的指数最低是1,所以多项式的公因式是5m2n﹒故选:C﹒4﹒下列因式分解正确的是()A﹒-a2-b2=(-a+b)(-a-b)B﹒x2+9=(x+3)2C﹒1-4x2=(1+4x)(1-4x)D﹒a3-4a2=a2(a-4)解答:A﹒-a2-b2=-(a2+b2),不能进行因式分解,故A项错误;B﹒多项式x2+9不能进行因式分解,故B项错误;C﹒1-4x2=(1+2x)(1-2x),故C项错误;D﹒a3-4a2=a2(a-4),故D项正确﹒故选:D﹒5﹒下列各式中,能用完全平方公式分解的是()A﹒a2-2ab+4b2B﹒4m2-m+14C﹒9-6y+y2D﹒x2-2xy-y2解答:A﹒a2-2ab+4b2中间乘积项不是这两数的2倍,故A项错误;B﹒4m2-m+14中间乘积项不是这两数的2倍,故B项错误;C﹒9-6y+y2=(3-y)2,故C项正确;D﹒x2-2xy-y2不是两数的平方和,不能用完全平方公式,故D项错误﹒故选:C.6﹒已知x,y为任意有理数,记M=x2+y2,N=2xy,则M与N的大小关系为()A﹒M>N B﹒M≥N C﹒M≤N D﹒不能确定解答:∵M=x2+y2,N=2xy,∴M-N=x2+y2-2xy=(x+y)2≥0,则M≥N.故选:B.7﹒把多项式x2+ax+b分解因式,得(x+1)(x-3),则a+b的值是()A﹒-5B﹒5C﹒1D﹒-1解答:∵(x+1)(x-3)=x2-3x+x-3=x2-2x-3,∴x2+ax+b=x2-2x-3,∴a=-2,b=-3,∴a+b=-5,故选:A﹒8﹒已知x2-x-1=0,则代数式x3-2x+1的值为()A﹒-1B﹒1 C﹒-2D﹒2解答:∵x2-x-1=0,∴x2-x=1,∴x3-2x+1=x3-x2+ x2-2x+1=x(x2-x) + x2-2x+1=x+ x2-2x+1=x2-x+1=1+1=2﹒故选:D﹒9﹒如图,边长为a、b的长方形的周长为14,面积为10,则多项式a3b+2a2b2+ab3的值为()A﹒490B﹒245C﹒140D﹒1960解答:由题意,知:a+b=7,ab=10,则a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=10×49=490﹒故选:A.10.已知:a=2017x+2015,b=2017x+2016,c=2017x+2017,则代数式a2+b2+c2-ab-ac-bc的值为()A﹒0B﹒1C﹒2D﹒3解答:∵a=2017x+2015,b=2017x+2016,c=2017x+2017,∴a-b=-1,b-c=-1,a-c=-2,∴a2+b2+c2-ab-ac-bc=12[( a-b)2+( b-c)2+( a-c)2]=12×(1+1+4)=3﹒故选:D.二、填空题11.请从4a2,(x+y)2,16,9b2四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_________________________________﹒解答:答案不唯一,如:4a2-16=4(a+2)(a-2),故答案为:4a2-16=4(a+2)(a-2)﹒12.用简便方法计算:20172-34×2017+289=_________﹒解答:20172-34×2017+289=20172-2×17×2017+172-172+289=(2017-17)2=20002=4000000,故答案为:4000000﹒13.若m-n=2,则多项式2m2-4mn+2n2-1的值为___________﹒解答:∵m-n=2,∴2m2-4mn+2n2-1=2(m2-2mn+n2)-1=2(m-n)2-1=2×4-1=7﹒故答案为:7﹒14.如果x2-2xy+2y2+4y+4=0,那么y x=_______﹒解答:∵x2-2xy+2y2+4y+4=x2-2xy+ y2+y2+4y+4=(x-y)2+(y+2)2=0,∴20x yy-=⎧⎨+=⎩,解得:22xy=-⎧⎨=-⎩,∴y x=(-2)-2=14,故答案为:14﹒15.把多项式a2017-4a2016+4a2015分解因式,结果是__________________﹒解答:a2017-4a2016+4a2015=a2015·a2-a2015·4a+4a2015=a2015(a2-4a+4)=a2015(a-2)2,故答案为:a2015(a-2)2﹒16.如图是正方形或长方形三类卡片各若干张,若要用这些卡片拼成一个面积为2a2+3ab+b2的长方形(所拼长方形中每类卡片都要有,卡片之间不能重叠),则你所拼长方形的两边长分别是____________,____________(用含a、b字母的代数式表示)﹒解答:所画示意图如下,∵2a2+3ab+b2=a2+2ab+b2+a2+ab=(a+b)2+a(a+b)=(a+b)(a+b+a)=(a+b)(2a+b),∴所画长方形的长为2a+b,宽为a+b;故答案为:2a+b,a+b﹒三、解答题17.分解因式:(1)-18a3b2-45a2b3+9a2b2(2)5a3b(a-b)3-10a4b2(b-a)2解答:(1)-18a3b2-45a2b3+9a2b2=-9a2b2(2a+5b-1)﹒(2)5a3b(a-b)3-10a4b3(b-a)2=5a3b(a-b)3-10a4b2(a-b)2=5a3b(a-b)2(a-b-2ab)﹒18.分解因式:(1)(x2+16y2)2-64x2y2(2)9(x-y)2-12x+12y+4解答:(1)(x2+16y2)2-64x2y2=(x2+16y2)2-(8xy)2=(x2+16y2+8xy)( x2+16y2-8xy)=(x+4y)2(x-4y)2﹒(2)9(x-y)2-12x+12y+4=[3(x-y)]2-12(x-y)+22=[3(x-y)-2]2=(3x-3y-2)2﹒19.分解因式:(1)ac-bc-a2+2ab-b2(2)1-a2-4b2+4ab解答:(1)ac-bc-a2+2ab-b2=c(a-b)-(a2-2ab+b2)=c(a-b)-(a-b)2=(a-b)[c-(a-b)]=(a-b)(c-a+b)﹒(2)1-a2-4b2+4ab=1-(a2-4ab+4b2)=1-(a-2b)2=[1+(a-2b)][1-(a-2b)]=(1+a-2b)(1-a+2b)﹒20.已知m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,且满足(m+4)2-(n+4)2=16,求代数式m2+n2-mn的值﹒解答:∵m,n为数轴上在原点两侧且到原点距离相等的两个点所表示的数,∴m,n互为相反数,即m+n=0①,又∵(m+4)2-(n+4)2=16,∴(m+n+8)(m-n)=16,8(m-n)=16,∴m-n=2②,联立①②得2m nm n+=⎧⎨-=⎩,解得11mn=⎧⎨=-⎩,∴m2+n2-mn=1+1+1=3﹒21.如图所示,将一张长方形纸板按图中虚线裁剪成九块,若图中①②都是剪成边为a的大正方形,③④都是剪成边长为b的小正方形,⑤⑥⑦⑧⑨都是剪成边长分别为a、b的小长方形﹒(1)观察图形,可以发现多项式2a2+5ab+2b2可以因式分解为____________________;(2)若每块小长方形的的面积为10cm2,四个正方形的面积之和为58cm2,试求图中所有裁剪线(虚线部分)长之和﹒解答:(1)观察图形知:九块图形的面积之和等于这张长方形纸板的面积,所以2a2+5ab+2b2可分解为(2a+b)(a+2b),故答案为:(2a+b)(a+2b)﹒(2)由题意,知:2a2+2b2=58,ab=10,则a2+b2=29,∴(a+b)2=a2+2ab+b2=29+20=49,∵a+b>0,∴a+b=7,则6a+6b=6(a+b)=6×7=42,答:图中所有裁剪线(虚线部分)长之和为42﹒22.设y=kx,是否存在实数k,使得多项式(x-y)(2x-y)-3x(2x-y)能化简5x2?若能,请求所有满足条件的k的值;若不能,请说明理由﹒解答:能,假设存在实数k,(x-y)(2x-y)-3x(2x-y)=(2x-y)(-2x-y)=-(2x-y)(2x+y)=-(4x2-y2)=-4x2+y2,把y=kx代入,原式=-4x2+(kx)2=-4x2+k2x2=(k2-4)x2,∵多项式(x-y)(2x-y)-3x(2x-y)能化简5x2,∴(k2-4)x2=5x2,∴k2-4=5,解得k=±3,故满足条件的k的值有3或-3﹒23.如果一个正整数能表示两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,……因此4,12,20……都是“神秘数”﹒(1)28,2016这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差是“神秘数”吗?为什么?解答:(1)是,∵28=2×14=(8-6)(8+6)=82-62,2016=2×1008=(505-503)(505+503)=5052-5032,∴28,2016这两个数都是“神秘数”;(2)是,∵(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=4(2k+1),∴2k+2和2k这两个连续偶数构造的“神秘数”是4的倍数﹒(3)不是,设两个连续奇数为2k+1和2k-1(k取正整数),则(2k+1)2-(2k-1)2=(2k+1+2k-1)(2k+1-2k+1)=4k×2=8k,此数是8的倍数,由(2)知“神秘数”可表示为4的倍数,但不能表示为8的倍数,所以两个连续奇数的平方差不是“神秘数”﹒。
因式分解的能力提升训练题(培优卷)
因式分解的能力提升训练题(培优卷)1、计算()2013×1.52012×(-1)2014的结果是( )A、B、C、-D、-2、下列多项式乘法中可以用平方差公式计算的是()A、B、C、D、3 把代数式ax²-4ax+4a²分解因式,下列结果中正确的是()A、a(x-2) 2B、a(x+2) 2C、a(x-4)2D、a(x-2) (x+2)4、在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是()。
A、a2+b2=(a+b)(a-b)B、(a+b)2=a2+2ab+b2C、(a-b)2=a2-2ab+b2D、a2-b2=(a-b)25、通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是:()A.B.C.D.6 分解因式(1)(a-b)2+4ab(2) 4xy2-4x2y-y2(3)4a2bc-3a2c2+8abc-6ac2;(4)(y2+3y)-(2y+6)2.(5)a(x-y)+b(y-x)+c(x-y) (6)(7)(m 2+3m )2-8(m 2+3m )-20;7.已知a +b =2,ab =2,求12a 3b +a 2b 2+12ab 3的值.8.先因式分解,然后计算求值:(1)9x 2+12xy +4y 2,其中x =43,y =−12;(2)(a+b 2)2﹣(a−b 2)2,其中a =−18,b =2.9.常用的分解因式的方法有提取公因式法、公式法,但有一部分多项式只单纯用上述方法就无法分解,如x 2﹣2xy +y 2﹣16,我们细心观察这个式子,会发现,前三项符合完全平方公式,进行变形后可以与第四项结合,再应用平方差公式进行分解.过程如下:x 2﹣2xy +y 2﹣16=(x ﹣y )2﹣16=(x ﹣y +4)(x ﹣y ﹣4).这种分解因式的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)9a 2+4b 2﹣25m 2﹣n 2+12ab +10mn ;(2)已知a 、b 、c 分别是△ABC 三边的长且2a 2+b 2+c 2﹣2a (b +c )=0,请判断△ABC 的形状,并说明理由.10.整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y(y+2)+1=y2+2y+1=(y+1)2,再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2.问题:(1)该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;(2)请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解.11.阅读并解决问题.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添﹣适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2﹣6a+8.(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.(3)已知x是实数,试比较x2﹣4x+5与﹣x2+4x﹣4的大小,说明理由.12.我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法等等.①分组分解法:例如:x 2﹣2xy +y 2﹣4=(x 2﹣2xy +y 2)﹣4=(x ﹣y )2﹣22=(x ﹣y ﹣2)(x ﹣y +2). ②拆项法:例如:x 2+2x ﹣3=x 2+2x +1﹣4=(x +1)2﹣22=(x +1﹣2)(x +1+2)=(x ﹣1)(x +3).(1)仿照以上方法,按照要求分解因式:①(分组分解法)4x 2+4x ﹣y 2+1;②(拆项法)x 2﹣6x +8;(2)已知:a 、b 、c 为△ABC 的三条边,a 2+b 2+c 2﹣4a ﹣4b ﹣6c +17=0,求△ABC 的周长.13.阅读材料:利用公式法,可以将一些形如ax 2+bx +c (a ≠0)的多项式变形为a (x +m )2+n 的形式,我们把这样的变形方法叫做多项式ax 2+bx +c (a ≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如x 2+4x ﹣5=x 2+4x +(42)2﹣(42)2﹣5=(x +2)2﹣9=(x +2+3)(x +2﹣3)=(x +5)(x ﹣1).根据以上材料,解答下列问题.(1)分解因式:x 2+2x ﹣8;(2)求多项式x 2+4x ﹣3的最小值;(3)已知a ,b ,c 是△ABC 的三边长,且满足a 2+b 2+c 2+50=6a +8b +10c ,求△ABC 的周长.14.阅读下列材料:材料1:将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n)的形式,如x2+4x+3=(x+1)(x+3);x2﹣4x﹣12=(x﹣6)(x+2).材料2:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2,再将“A”还原,得原式=(x+y+1)2.上述解题方法用到“整体思想”,“整体思想”是数学解题中常见的一种思想方法.请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式;(2)结合材料1和材料2,完成下面小题:分解因式:(x﹣y)2+4(x﹣y)+3.15.如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.(1)观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为.(2)若图中阴影部分的面积为20平方厘米,大长方形纸板的周长为24厘米,求图中空白部分的面积.。
整式的乘法与因式分解(培优篇)(Word版 含解析)
(2)利用配方法,将S配成完美数,可求k的值
(3)根据完全平方公式,可证明mn是“完美数”;
【详解】
(1)
(2)
(3) ,则
即mn也是完美数.
【点睛】
本题考查了因式分解的应用,完全平方公式的运用,阅读理解题目表述的意思是本题的关键.
4.阅读下列解题过程,再解答后面的题目.
例题:已知 ,求 的值.
解:由已知得
即
∵ ,
∴有 ,解得
∴ .
题目:已知 ,求 的值.
【答案】-
【解析】
【分析】
先将左边的式子写成两个完全平方的和的形式,根据非负数的性质求出x、y的值,再代入求出xy的值.
【详解】
解:将 ,
化简得 ,
即 .
∵ , ,且它们的和为0,
∴ , ,
∴ .
【点睛】
本题考查的是完全平方公式的应用,解题的关键是将左边的式子写成两个完全平方的和的形式.
;
.
请你仿照以上方法,探索解决下列问题:
(1)分解因式: ;
(2)分解因式: .
【答案】(1)(x﹣3)(x﹣4);(2)(x﹣1)(3x乘以1,12分成-3乘以-4,交叉相乘的结果为-7,即可得到答案;
(2)将3分成1乘以3,-1分成-1乘以1,由此得到分解因式的结果.
【详解】
(1)y2﹣7y+12=(x﹣3)(x﹣4);
(2)3x2﹣2x﹣1=(x﹣1)(3x+1).
【点睛】
此题考查十字相乘法分解因式,将二次项系数及常数项分解成两个因数相乘,交叉相乘的结果相加得到一次项的系数,能准确分解因数是解题的关键.
3.若一个整数能表示成 ( , 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为 .再如, ( , 是整数),所以 也是“完美数”.
七年级数学期中综合培优测试卷-因式分解+专题配套练习
-因式分解+专题配套练习1、单项式单项式法则⨯(1)系数相 作为积的系数(2)相同字母的因式,利用 ,作为一个因式(3)单独出现的字母,连同它的指数,作为一个因式注意点:单项式与单项式相乘,积仍然是一个单项式2、单项式多项式法则⨯用单项式分别去乘 ;再将所得的积 。
注意:单项式与多项式相乘,积仍是一个多项式,项数与多项式的项数相同3、多项式多项式法则⨯先用一个多项式的每一项分别乘以 ,再把所得的积 。
注意:运算的结果一般按某一字母的指数从低到高或从高到低排列。
练习:计算:(1) (2)abc b a ab 2)31(322⋅-⋅)34432()23(22y xy y x xy +-⋅-(3) (4)(x -4)(x -2)-(x -1)(x +3))7)(3(y x y x +-4、乘法公式:(1)平方差公式: ()()=-+b a b a ;变式:(1); (2) =+-+))((a b b a =++-))((b a b a ;(3)=; (4)= ))((b a b a --+-))((b a b a ---。
(2)完全平方公式:= 。
2)(b a ±公式变形:(1)a 2+b 2=(a+b)2 =(a-b)2(2); (3))(2)()(2222b a b a b a +=-++abb a b a 4)()(22-+=- (4) ; (5)ab b a b a 4)()(22=--+)(2)()(2222b a b a b a +=-++练习:1、(1)(x -ab )(x +ab )= ; (2)(2x +5y )(2x -5y )= ;(3)(-x -y )(-x +y )= ;(4)(12+b 2)(b 2-12)=______ ;2、计算:(1)= (2) = 22)2()2(y x y x -++2)1(xx + (3) = (4)9982== 22)121(-x 3、若是完全平方式,则k= ;若是完全平方式,则k= .k x x +6-292+-kx x (二)、因式分解1.定义:把一个多项式化成 的 形式,像这样的式子变形叫做把这个多项式因式分解。
专题21.5解一元二次方程因式分解法(限时满分培优测试)-【拔尖特训】2024-2025学年九年级数
【拔尖特训】2024-2025学年九年级数学上册尖子生培优必刷题【人教版】专题21.5解一元二次方程:因式分解法(限时满分培优测试)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分100分,建议时间:30分钟.试题共23题,其中选择10道、填空6道、解答7道.试题包含基础题、易错题、培优题、压轴题、创新题等类型,没有标记的为基础过关性题目.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•靖西市期中)解方程2(4x﹣3)2=3(4x﹣3)最适当的方法是()A.直接开方法B.配方法C.公式法D.分解因式法2.(2023•河东区二模)方程x2﹣4x﹣5=0的根是()A.x1=﹣1,x2=5B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=﹣53.(2023•武山县一模)一元二次方程x2=3x的解为()A.x=0B.x=3C.x=0或x=3D.x=0 且x=34.(2023•邯郸模拟)已知一元二次方程的两根分别为x1=3,x2=﹣4;则这个方程为()A.(x﹣3)(x+4)=0B.(x+3)(x﹣4)=0C.(x+3)(x+4)=0D.(x﹣3)(x﹣4)=05.(2023春•蜀山区期末)方程2x2﹣3x+1=0根的符号是()A.两根一正一负B.两根都是负数C.两根都是正数D.无法确定6.(易错题)(2022秋•益阳期末)已知三角形两边的长分别是4和3,第三边的长是一元二次方程x2﹣8x+15=0的一个实数根,则该三角形的面积是()A.12或4√5B.6或2√5C.6D.2√57.(易错题)(2023春•肇源县期中)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰的长,则这个三角形的周长是()A.12B.15C.12或15D.18或98.(培优题)(2021秋•洪湖市校级月考)设m是方程x2+5x=0的一个较大的根,n是方程x2﹣x﹣6=0的一个较小的根,则m+n的值是()A .﹣4B .﹣3C .﹣2D .29.(创新题)(2021•南沙区二模)对于实数m ,n ,先定义一种新运算“⊗”如下:m ⊗n ={m 2+m +n ,当m ≥n 时,n 2+m +n ,当m <n 时,若x ⊗(﹣2)=10,则实数x 等于( ) A .3 B .﹣4 C .8 D .3或810.(创新题)(2021•菏泽二模)给出一种运算:对于函数y =x n ,规定y '=n ×x n ﹣1.若函数y =x 4,则有y '=4×x 3,已知函数y =x 3,则方程y '=9x 的解是( )A .x =3B .x =﹣3C .x 1=0,x 2=3D .x 1=0,x 2=﹣3二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2023•宝鸡二模)方程x (x +4)=0的解是 .12.(2023•利州区一模)若x 2+x =5+√5,则x 的值是 .13.(2023•槐荫区一模)若菱形的两条对角线长是方程x 2﹣7x +12=0的两个根,则该菱形的周长等于 .14.(易错题)(2022秋•林州市期末)对关于x 的一元二次方程:x 2=ax ,下列是小聪的求解过程:解:两边都减a 2,得x 2﹣a 2=ax ﹣a 2;①两边分别分解因式,得(x +a )(x ﹣a )=a (x ﹣a );②两边都除以x ﹣a ,得x +a =a ;③两边都减a ,得x =0.④以上解题过程中,开始出现错误的那一步对应的序号是 .15.(易错题)(2022•杭州模拟)对于实数a ,b ,定义运算“⊗”:a ⊗b ={ab −b 2(a ≥b)a 2−ab(a <b),例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=6.若x 1,x 2是一元二次方程x 2﹣6x +5=0的两个根,则x 1⊗x 2= .16.(压轴题)(2023春•上城区期末)有学者认为,阿拉伯数学家花拉子米的《代数学》关于一元二次方程的几何求解法与中国古代数学的“出入相补原理”相近,可能受到中国传统数学思想的影响.花拉子米关于x 2+10x =39的几何求解方法如图1,在边长为x 的正方形的四个边上向外做边长为x 和52的矩形,再把它补充成一个边长为x +5的大正方形,我们得到大正方形的面积为(x +5)2=x 2+10x +25=39+25=64(因为x 2+10x =39).所以大正方形边长为x +5=8,得到x =3.思考:当我们用这种方法寻找x 2+6x =7的解时,如图2中间小正方形的边长x 为 ;阴影部分每个正方形的边长为.三、解答题(本大题共7小题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.解方程:(1)(x﹣2)(x﹣5)=2;(2)2(x﹣3)2=x2﹣9.18.选用适当的方法,解下列方程:(1)2x2+5x+2=0;(2)(2x+3)2=4(2x+3);(3)x2﹣2x=12.(4)x2+5x+6=0.19.用因式分解法解一元二次方程:(1)x2﹣2x=0;(2)4x2﹣4x+1=0;(3)4(x﹣2)2﹣9=0;(4)(x+1)2﹣4(2x﹣1)2=0.20.(2023•白城模拟)下面是小勇解一元二次方程的过程,请认真阅读并完成相应的任务.解:2x2+4x﹣6=0,二次项系数化为1,得x2+2x﹣3=0.…第一步,移项,得x2+2x=3.…第二步,配方,得x2+2x+4=3+4,即(x+2)2=7.…第三步,由此,可得x+2=±√7⋯第四步,x1=2+√7,x2=2−√7⋯第五步.任务:(1)上面小勇同学的解法中运用“配方法”将该一元二次方程化为两个一元一次方程,体现的数学思想是(填“消元”或“降次”);其中配方法依据的一个数学公式是;(2)“第二步”变形的依据是;(3)上面小勇同学的解题过程中,从第步开始出现错误,直接写出正确的解.21.(易错题)(2023春•滨江区校级期中)下面是小明解一元二次方程2x(x﹣5)=3(5﹣x)的过程:解:原方程可化为2x(x﹣5)=﹣3(x﹣5),……第一步方程两边同除以(x﹣5)得,2x=﹣3,……第二步系数化为1得x=−3 2.小明的解答是否正确?若正确,请说明理由;若不正确,请指出从第几步开始出现错误,分析出现错误的原因,并写出正确的解答过程.22.(培优题)(2023•裕华区校级模拟)在实数范围内定义新运算“△”,其规则为:a△b=a2﹣ab,根据这个规则,解决下列问题:(1)求(x+2)△5=0中x的值;(2)证明:(x+m)△5=0中,无论m为何值,x总有两个不同的值.23.(压轴题)(2023•天元区模拟)定义:如果关于x的方程a1x2+b1x+c1=0(a1≠0,a1、b1、c1是常数)与a2x2+b2x+c2=0(a2≠0,a2、b2、c2是常数),其中方程中的二次项系数、一次项系数、常数项分别满足a1+a2=0,b1=b2,c1+c2=0,则称这两个方程互为“对称方程”.例如:方程2x2﹣3x+1=0的“对称方程”是﹣2x2﹣3x﹣1=0,请根据上述内容,解决以下问题:(1)直接写出方程x2﹣4x+3=0的“对称方程”;(2)若关于x的方程3x2+(m﹣1)x﹣n=0与﹣3x2﹣x=﹣1互为“对称方程”,求m、n的值及3x2+(m ﹣1)x﹣n=0的解.。
因式分解培优题型归纳总结完美
因式分解题型归纳总结知识梳理一、因式分解得定义:把一个多项式化成几个既约整式的乘积的形式,叫做把这个多项式因式分解,也可称为将这个多项式分解因式.二、因式分解常见形式:三、因式分解基本方法:“一提二代三分解”是因式分解的三种常见基本解法,“提”指的是提取公因式法,“代”指的是公式法(完全平方公式,平方差公式,立方差和立方和公式,三项完全平方公式),“分解”指的是分组分解的方法.①提取公因式法几个整式都含有的因式称为它们的公因式.例如:()2+4+6=2+2+3ma mb mc m a b c把每项的公因式,包括数和字母全部提出,当然有的时候把一个式子看成一个整体.②公式法因为因式分解和整式的乘法是互逆的,所以说常见的乘法公式要特别熟悉.平方差公式:()()a b a b a b 22+-=-完全平方公式:()a b a ab b 222+=+2+;()a b a ab b 222-=-2+ 立方差公式:()()a b a ab b a b 2233-++=- 立方和公式:()()a b a ab b a b 2233+-+=+三项完全平方公式:()a b c a b c ab ac bc 2222++=+++2+2+2完全立方公式:()a b a a b ab b 33223+=+3+3+ ;()a b a a b ab b 33223-=-3+3- 大立方公式:()()a b c abc a b c a b c ab ac bc 333222++-3=++++--- n 次方差公式:1221()()nnn n n n a b a b aa b ab b -----=-++++(n 为正整数) n 次方差差公式:1221()()nnn n n n a b a b a a b ab b ----+=+-+-+(n 为正奇数)③分组分解法一般地,分组分解大致分为三步:i .将原式的项适当分组;ii .对每一组进行处理(“提”或“代”); iii .将经过处理的每一组当作一项,再采用“提”或“代”进行分解. 四、十字相乘法五、双十字相乘法双十字相乘法的本质与十字相乘法是一致的,它一般适用于二元二次六项式或可视为于二元二次六项式的多项式的因式分解,双十字相乘法的步骤:对于形如Ax 2+Bxy +Cy 2+Dx +Ey +F 的多项式的因式分解,基本步骤是: (1)运用十字相乘法分解前三项组成的二次三项式;(2)在这个十字相乘图的右边再画一个十字,把常数项分解为两个因数,填在第二个十字的右端,使这两个因数与含y 的项的交叉之积的和等于原多项式中含y 的一次项Ey ,同时这两个因数与含x 的项的交叉之积的和等于原多项式中含x 的一次项Dx . 六、换元法如果在多项式中某个数或式子多次出现,那么可将这个数或式子用一个字母代替,这样做常常使多项式变得更为简单,结构更加清晰,从而易于发现因式. (1)整体换元(2)和积换元 七、主元法在对含有多个未知数的代数式进行因式分解时,可以选其中的某一个未知数为主元,把其他未知数看成是字母系数进行因式分解. 八、拆项和添项法1、拆项:把代数式中的某项拆成两项或几项的代数和,叫做拆项.2、添项:在代数式中添加两个相反项,叫做添项. 九、待定系数法将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式.然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法,其实质就是对于含有待定系数的恒等式,利用恒等概念和恒等定理,采用系数比较法或数值代入法. 如果两个多项式恒等,则左右两边同类项的系数相等.即,如果n n n n n n n n n n n n a x a x a x a x a b x b x b x b x b -1-21-1-21-1-210-1-210+++++=+++++恒成立,那么n n a b =,n n a b -1-1=,…,a b 11=,a b 00=.待定系数法的使用前提是知道所需要求的代数式的形式,根据代数式的形式把不确定的部分设为未知数,然后通过比较系数得到方程,进而求解. 十、余数定理与因式定理法1、余数定理:多项式f (x )除以x -c ,所得的余数为f (c ).2、因式定理:若多项式f (x )有一个因式x -c ,则f (c )=0;反之,若f (c )=0,则x-a 必为多项式f (x )的一个因式.3、整数系数多项式f (x )=a n x n +a n -1x n -1+…+a 1x +a 0的两个性质:性质1:设整数系数多项式f (x )的首项系数a n =1,且它有因式x -p (p 为整数),那么p 一定是常数项a 0的约数.例如x 2-2x -8的首项系数是1,它有因式x +2和x -1,-2和4都是常数项-8的约数. 性质2:设整数系数多项式f (x )的首项系数a n ≠1,且它有因式p x q -(pq为整数),那么q 一定是首项系数a n 的约数,p 一定是常数项a 0的约数. 例如,6x 3+x 2-1的首项系数a n =6不为1,它有因式12x -,不难看出分母2是a n =6的约数,分子1是常数项-1的约数.例如:分解因式:x x 3-3+2.观察可知,当x =1时,x x 3-3+2=0,则()x x x A 3-3+2=-1,其中A 为整式,即()x -1是多项式x x 3-3+2的一个因式.若要确定整式A ,则可用大除法.x x x x x x x x x x x x x x 2323222+-2-1+0⋅-3+2--3--2+2-2+2∴()()()()()()()x x x x x x x x x x 322-3+2=-1+-2=-1-1+2=-1+2.题型一 因式分解的定义例题1: 下列因式分解正确的是( ) A .()()()a b a b a b a b 2222-4+4=-4-4=-4+2-2 B .()m m m m 323-12=3-4C .()x y x y x y x y 422224-12+7=4-3+7D .()()m m m 24-9=2+32-3解析:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式因式分解。
分解因式(培优材料)
第2讲 分解因式考点综述:分解因式在中考中要求学生了解分解因式的意义及其与整式乘法之间的关系,并体会两者之间可以相互转化的辩证思想,要会用提公因式法以及公式法进行因式分解。
此类考题多以选择、填空方式出现,探究性、开放性的问题也是考查的热点。
考点精析:考点1:因式分解(1)因式公解的概念把一个多项式写成几个整式的积的形式叫做多项式的因式分解。
注意:①分解结果一定是积的形式;②每个因式必须为整式③每个多项式分解到不能再分解为止(2)因式分解的方法①公式法:用乘法公式进行因式分解的方法常用公式:22222)(2),)((b a b ab a b a b a b a ±=+±-+=-。
注意:检验因式分解是否正确,只需把结果用乘法公式计算出来与原式相对照即可。
②提取公因式法:公因式:多项式中每一项都含有的相同的因式公因式的找法:取多项式中各项系数的最大公约数作为公因式中的数字因数。
各项中相同的字母(或相同的多项式)作为公因式中的字母(或多项式),并取它们最低次幂。
提取公因式法:把一个多项式各项的公因式提出来进行因式分解的方法。
注意:平时解题时,应先考虑用提取公因式法,再用公式法。
典型例题:例1:填空:(1)分解因式:2x -9= . (2)分解因式:=+ab a 2 .(3)分解因式:2218x -= .(4)分解因式221218x x -+= .例2:分解因式:(1)2xy 9x - (2)3269x x x -+例3:请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果 .例4:阅读下列题目的解题过程:已知a 、b 、c 为∆ABC 的三边,且满足a c b c a b 222244-=-,试判断∆ABC 的形状。
解: a c b c a b A 222244-=-()2222222222()()()()()ABC c a b a b a b B c a b C ∆∴-=+-∴=+∴是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;(2)错误的原因为: ;(3)本题正确的结论为: .实战演练:1.下列因式分解正确的是( )A .x x x x x 3)2)(2(342++-=+-;B .)1)(4(432-+-=++-x x x x ;C .22)21(41x x x -=+-;D .)(232y x y xy x y x xy y x +-=+-2.下列多项式中,能用公式法分解因式的是( )A .2x xy -B .2x xy +C .22x y -D .22x y +3.把23x x c ++分解因式得:23(1)(2)x x c x x ++=++,则c 的值为( )A .2B .3C .2-D .3-4.下列分解因式正确的是( )A . )1(222--=--y x x x xy xB . )32(322---=-+-x xy y y xy xyC . 2)()()(y x y x y y x x -=---D . 3)1(32--=--x x x x5.把代数式244ax ax a -+分解因式,下列结果中正确的是( )A .2(2)a x -B .2(2)a x +C .2(4)a x -D .(2)(2)a x x +-6.因式分解()219x --的结果是( )A.()()81x x ++B.()()24x x +-C.()()24x x -+D.()()108x x -+7.分解因式:2233ax ay -= .8.因式分解:xy 2–2xy +x = . 9.分解因式33222ax y axy ax y +-= .10.将3214x x x +-分解因式的结果是________.11.分解因式:2363x y xy y -+= .12.如果x+y=-4,x-y=8,那么代数式22x y -的值是13.分解因式:3x 2-27 14.分解因式 :2(2)(4)4x x x +++-15.任何一个正整数n 都可以进行这样的分解:n s t =⨯(s t ,是正整数,且s t ≤),如果p q ⨯在n 的所有这种分解中两因数之差的绝对值最小,我们就称p q ⨯是n 的最佳分解,并规定:()p F n q =.例如18可以分解成118⨯,29⨯,36⨯这三种,这时就有31(18)62F ==.给出下列关于()F n 的说法:(1)1(2)2F =;(2)3(24)8F =;(3)(27)3F =;(4)若n 是一个完全平方数,则()1F n =.其中正确说法的个数是( ) A .1 B .2C .3D .4 16.阅读理解:若m q p 、、为整数,且三次方程023=+++m qx px x 有整数解c ,则将c 代入方程得:023=+++m qc pc c ,移项得:qc pc c m ---=23,即有:()q pc c c m ---⨯=2,由于m c q pc c 及与---2都是整数,所以c 是m 的因数.上述过程说明:整数系数方程023=+++m qx px x 的整数解只可能是m 的因数.例如:方程023423=-++x x x 中-2的因数为±1和±2,将它们分别代入方程023423=-++x x x 验证得:x =-2是该方程的整数解,-1、1、2不是方程的整数解.解决问题:(1)根据上面的学习,请你确定方程07523=+++x x x 的整数解只可能是哪几个整数?(2)方程034223=+--x x x 是否有整数解?若有,请求出其整数解;若没有,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.下列分解因式错误的是( ) (A)15a2+5a=5a(3a+1) (B)-x2-y2= -(x2-y2)= -(x+y)(x-y) (C)k(x+y)+x+y=(k+1)(x+y) (D)a3-2a2+a=a(a-1)2
8.下列多项式中不能用平方差公式分解的 是( ) (A)-a2+b2 (B)-x2-y2 (C)49x2y2-z2 (D)16m4-25n2p2
用配方法分解因 式。请体会配方
(x 1 2)(x 1 2) 法的特点,然后
(x 3)(x 1)
用配方法分解因 式:
4a2 4a 3
28.阅读下列因式分解的过程,再回 答所提出的问题:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]
=(1+x)2(1+x)
=(1+x)3 (1)上述分解因式的方法是 , 共应用了 次. (2)若分解1+x+x(x+1)+x(x+1)2+…+ x(x+1)2004 则需应用上述方法 次,结果是 . (3)分解因式: 1+x+x(x+1)+x(x+1)2+…+ x(x+1)n(n为正整数).
1.下列各式中从左到右的变形,是因式分解的是 () (A)(a+3)(a-3)=a2-9 (B)x2+x-5=(x-2)(x+3)+1
(C)a2b+ab2=ab(a+b) (D)x2+1=x(x+1x)
2.下列各式的因式分解中正确的是( )
(A)-a2+ab-ac= -a(a+b-c)
(B)9xyz-6x2y2=3xyz(3-2xy)
23.试说明:两个连续奇数的平方 差是这两个连续奇数和的2倍。
2纸4.板如四图角,,在各一剪块 去边 一长个为边a长厘为米b的(b正< a方)形 2
厘米的正方形,利用因式分解计算 当a=13.2,b=3.4时,剩余部分的面积。
ab
25.已知(4x-2y-1)2+ xy 2 =0, 求4x3y-4x2y2+xy3的值.
29.阅读下列计算过程: 99×99+199=992+2×99+1=(99+1)2=100 2
=10 4 1.计算: 999×999+1999=____________=
_______________=_____________ =_____________; 9999×9999+19999=__________
26.已知:a=10000,b=9999, 求a2+b2-2ab-6a+6b+9的值。
27、阅读:分解因式
x2 2x 3
此方法是抓住二 次项和一次项的 特点,然后加一
解:原式 x2 2x 3
项,使这三项为 完全平方式,我
(x2 2x 1) 4
们称这种方法为 配方法。此题为
(x 1)2 4
5.下列多项式中,不能用完全平方公式分解 因式的是( )
(A) m 1 m2
4
(C) a2 14ab 49b2
(B) x 2 2xy y 2 (D) n 2 2 n 1
93
6.多项式4x2+1加上一个单项式后, 使它能成为一个整式的完全平方, 则加上的单项式不可以是( ) (A)4x (B)-4x (C)4x4 (D)-4x4
(C)3a2x-6bx+3x=3x(a2-2b)
(D)
1 2
xy2+
1 2
x2y=
1 2
xy(x+y)
3.把多项式m2(a-2)+m(2-a)分解因式等于( ) (A)(a-2)(m2+m) (B)(a-2)(m2-m) (C)m(a-2)(m-1) (D)m(a-2)(m+1)
4.下列多项式能分解因式的是( ) (A)x2-y (B)x2+1 (C)x2+y+y2 (D)x2-4x+4
9.下列多项式:①16x5-x;②(x-1)2-4(x-1)+4; ③(x+1)4-4x(x+1)+4x2;④-4x2-1+4x, 分解因式后,结果含有相同因式的是( ) (A)①② (B)②④ (C)③④ (D)②③
10、下列四个多项式是完全平方式的是( )
A、x 2 xy y 2
C、4m2 2mn 4n2
(5)(x2-6x)2+18(x2-6x)+81
(6) –2x2n-4xn
20、先化简,再求值:
.
(a2b 2ab2 b3) b (a b)(a b) 其中,
a 1,b 1 2
21.设n为整数,试说明 (2n 1)2 25 能被4整除。
22.用简便方法计算: (1)57.6×1.6+28.8×36.8-14.4×80 (2)39×37-13×34
2
2
的值为_______.
18.观察图形,根据图形面积的关系,不需要
连其他的线,便可以得到一个用来分解因式的
公式,这个公式是
.
19.分解因式: (1)-4x3+16x2-26x
1
(2)2
ห้องสมุดไป่ตู้
a2(x-2a)2-
1 4
a(2a-x)3
(3)mn(m-n)-m(n-m)
(4)2a(x a) 4b(a x) 6c(x a)
13.分解因式:m3-4m=
.
14.已知x+y=6,xy=4,则x2y+xy2的值为 .
15.将xn-yn分解因式的结果为(x2+y2)(x+y)(x-y)
,则n的值为 .
16.若ax2+24x+b=(mx-3)2,则a= ,b= ,
m= .
17、已知x+y=1,那么 1 x2 xy 1 y2
B、x 2 2xy y 2
D、1 a2 ab b2 4
11、已知a、b是△ABC的的两边,
且a2 b2 2ab ,则△ABC的形状是( )
A、等腰三角形 B、等边三角形
C、锐角三角形 D、不确定
12.两个连续的奇数的平方差总可以被 k整除, 则k等于( ) (A)4 (B)8 (C)4或-4 (D)8的倍数