高中数学命题的常用方法与技巧
高中数学- 四种命题 四种命题间的相互关系
1.1.2 四种命题1.1.3 四种命题间的相互关系(教师用书独具)●三维目标1.知识与技能初步理解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式;初步理解四种命题间的相互关系并能判断命题的真假.2.过程与方法培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.3.情感、态度与价值观激发学生学习数学的兴趣和积极性,优化学生的思维品质,培养学生勤于思考,勇于探索的创新意识,感受探索的乐趣.●重点、难点重点:四种命题之间相互的关系.难点:正确区分命题的否定形式及否命题.通过一个生活中的场景引出逻辑在生活中必不可少的重要地位,从而引发学生学习四种命题的兴趣,然后主要通过对概念的讲解和分析,并配以适量的课堂练习,让学生掌握四种命题的概念,会写四种命题,并掌握四种命题之间的关系以及通过逆否命题来判断命题的真假;最后运用所学命题知识解决实际生活中的问题,让学生学会用理性的逻辑推理能力思考问题,从而突破重难点.(教师用书独具)●教学建议这节内容是以概念的理解和关系的思辨为主的,因此采用以讲解和练习强化为主要方法,并在讲解过程中引导和启发学生的思维,让学生充分地思考和动手演练.宜采取的教学方法:(1)启发式教学.这能充分调动学生的主动性和积极性,有利于学生对知识进行主动建构,从而发现数学规律;(2)讲练结合法.这样更能突出重点、解决难点,让学生的分析问题和解决问题的能力得到进一步的提高.学习方法:(1)由特殊到一般的化归方法:学习中学生在教师的引导下,通过具体的实例,让学生去观察、讨论、探索、分析、发现、归纳、概括;(2)讲练结合法:让学生知道数学重生在运用,从而检验知识的应用情况,找出未掌握的内容及其差距并及时加以补救.通过本节的学习,了解命题的四种形式及其关系,利用原命题与逆否命题,逆命题与否命题之间的等价性解决有关问题,渗透由特殊到一般的化归数学思想.●教学流程创设问题情境,给出四个命题,引出问题:四个命题的条件与结论有何区别与联系?⇒引导学生观察、比较、分析,得出四种命题的概念与他们之间的相互关系.⇒通过引导学生回答所提问题,层层深入地得出四种命题真假的关系.⇒通过例1及其变式训练,使学生掌握四种命题的概念及相互转化.⇒通过例2及其互动探究,使学生掌握四种命题真假的判断方法.⇒错误!⇒错误!⇒错误!(对应学生用书第4页)给出以下四个命题:(1)对顶角相等;(2)相等的两个角是对顶角;(3)不是对顶角的两个角不相等;(4)不相等的两个角不是对顶角;1.你能说出命题(1)与(2)的条件与结论有什么关系吗?【提示】它们的条件和结论恰好互换了.2.命题(1)与(3)的条件与结论有什么关系?命题(1)与(4)呢?【提示】命题(1)的条件与结论恰好是命题(3)条件的否定和结论的否定.命题(1)的条件和结论恰好是命题(4)结论的否定和条件的否定.一般地,对于两个命题,如果一个命题的条件与结论分别是另一个命题的结论和条件,那么把这两个命题叫做互逆命题,如果是另一个命题条件的否定和结论的否定,那么把两个命题叫做互否命题.如果是另一个命题结论的否定和条件的否定,那么把这样的两个命题叫做互为逆否命题.把第一个叫做原命题时,另三个可分别称为原命题的逆命题、否命题、逆否命题.1.为了书写方便常把p与q的否定分别记作“綈p”和“綈q”,如果原命题是“若p,则q”,那么它的逆命题,否命题,逆否命题该如何表示?【提示】逆命题:若q,则p.否命题:若綈p,则綈q.逆否命题:若綈q,则綈p.2.原命题的否命题与原命题的逆否命题之间是什么关系?原命题的逆命题与其逆否命题之间是什么关系?原命题的逆命题与其否命题呢?【提示】互逆、互否、互为逆否.四种命题的相互关系1.知识1的“问题导思”中四个命题的真假性是怎样的?【提示】(1)真命题,(2)假命题,(3)假命题,(4)真命题.2.如果原命题是真命题,它的逆命题是真命题吗?它的逆否命题呢?【提示】原命题为真,其逆命题不一定为真,但其逆否命题一定为真.1.在原命题的逆命题、否命题、逆否命题中,一定与原命题真假性相同的是逆否命题.2.两个命题互为逆命题或互为否命题时,它们的真假性没有关系.(对应学生用书第5页)把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)全等三角形的对应边相等;(2)当x=2时,x2-3x+2=0.【思路探究】(1)原命题的条件与结论分别是什么?(2)把原命题的条件与结论作怎样的变化就能写出它的逆命题、否命题和逆否命题?【自主解答】(1)原命题:若两个三角形全等,则这两个三角形三边对应相等.逆命题:若两个三角形三边对应相等,则两个三角形全等.否命题:若两个三角形不全等,则两个三角形三边对应不相等.逆否命题:若两个三角形三边对应不相等,则这两个三角形不全等.(2)原命题:若x=2,则x2-3x+2=0,逆命题:若x2-3x+2=0,则x=2,否命题:若x≠2,则x2-3x+2≠0,逆否命题:若x2-3x+2≠0,则x≠2.1.给出一个命题,写出该命题的其他三种命题时,首先考虑弄清所给命题的条件与结论,若给出的命题不是“若p,则q”的形式,应改写成“若p,则q”的形式.2.把原命题的结论作为条件,条件作为结论就得到逆命题;否定条件作为条件,否定结论作为结论便得到否命题;否命题的逆命题就是原命题的逆否命题.分别写出下列命题的逆命题、否命题和逆否命题.(1)负数的平方是正数;(2)若a>b,则ac2>bc2.【解】(1)原命题可以改写成:若一个数是负数,则它的平方是正数;逆命题:若一个数的平方是正数,则它是负数;否命题:若一个数不是负数,则它的平方不是正数;逆否命题:若一个数的平方不是正数,则它不是负数.(2)逆命题:若ac2>bc2,则a>b;否命题:若a≤b,则ac2≤bc2;逆否命题:若ac2≤bc2,则a≤b.写出下列命题的逆命题、否命题、逆否命题,然后判断真假.(1)菱形的对角线互相垂直;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.【思路探究】确定条件与结论→写出三种命题→判断真假【自主解答】(1)逆命题:若一个四边形的对角线互相垂直,则它是菱形,是假命题.否命题:若一个四边形不是菱形,则它的对角线不互相垂直,是假命题.逆否命题:若一个四边形的对角线不互相垂直,则这个四边形不是菱形,是真命题.(2)逆命题:若两个三角形全等,则这两个三角形等高,是真命题.否命题:若两个三角形不等高,则这两个三角形不全等,是真命题.逆否命题:若两个三角形不全等,则这两个三角形不等高,是假命题.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线,是假命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧,是假命题.逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线,是真命题.1.本例题目中命题的条件和结论不明显,为了不出错误,可以先改写成“若p,则q”的形式,再写另外三种命题,进而判断真假.2.要判定四种命题的真假,首先,要正确理解四种命题间的相互关系;其次,正确利用相关知识进行判断推理.若由“p经逻辑推理得出q”,则命题“若p,则q”为真;确定“若p,则q”为假时,则只需举一个反例说明.3.互为逆否命题等价.当一个命题的真假不易判断时,可通过判定其逆否命题的真假来判断.下列命题中正确的是( )①“若x2+y2≠0,则x,y不全为零”的否命题;②“正三角形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题.A.①②③B.①③C .②③D .①【解析】 ①原命题的否命题为“若x 2+y 2=0,则x ,y 全为零”.真命题. ②原命题的逆命题为“若两个三角形相似,则这两个三角形是正三角形.”假命题. ③原命题的逆否命题为“若x 2+x -m =0无实根,则m ≤0”. ∵方程x 2+x -m =0无实根, ∴判别式Δ=1+4m <0,m <-14.故m ≤0,为真命题. 故正确的命题是①,③选B. 【答案】 B若a 2+b 2=c 2,求证:a ,b ,c 不可能都是奇数.【思路探究】 (1)a ,b ,c 不可能都是奇数包含几种情况? (2)它的反面是什么?能否考虑证它的逆否命题?【自主解答】 若a ,b ,c 都是奇数,则a 2,b 2,c 2都是奇数,所以a 2+b 2为偶数,而c 2为奇数,即a 2+b 2≠c 2.即原命题的逆否命题为真命题,故原命题为真,所以若a 2+b 2=c 2,则a 、b 、c 不可能都是奇数.1.因为“a、b、c不可能都是奇数”这一结论包含多种情况,而其否定只有一种情况,即“a、b、c都是奇数,”故应选择证明它的逆否命题为真命题,以使问题简单化.2.当判断一个命题的真假比较困难,或者在判断真假时涉及到分类讨论时,通常转化为判断它的逆否命题的真假,因为互为逆否命题的真假是等价的,也就是我们讲的“正难则反”的一种策略.3.四种命题中,原命题与其逆否命题是等价的,有相同的真假性,原命题的否命题与其逆命题也是互为逆否命题,解题时不要忽视.“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集是空集,则a <2”,判断其逆否命题的真假.【解】∵a,x∈R,且x2+(2a+1)x+a2+2≤0的解集是空集.∴Δ=(2a+1)2-4(a2+2)<0,则4a -7<0,解得a <74.因此a <2,原命题是真命题.又互为逆否命题的命题等价,故逆否命题是真命题.(对应学生用书第6页)因否定错误致误写出命题“若x 2+y 2=0,则x ,y 全为零”的逆命题、否命题,并判断它们的真假.【错解】逆命题:若x,y全为零,则x2+y2=0,是真命题;否命题:若x2+y2≠0,则x,y全不为零,是假命题.【错因分析】本题中的错解主要是对原命题中结论的否定错误.对“x,y全为零”的否定,应为“x,y不全为零”,而不是“x,y全不为零”.【防范措施】要写出一个命题的否命题,需要既否定条件,又否定结论,否定时一定要注意一些词语,如“都是”的否定是“不都是”,而不是“都不是”等等.【正解】逆命题:若x,y全为零,则x2+y2=0,是真命题;否命题:若x2+y2≠0,则x,y不全为零,是真命题.1.写出四种命题的方法:(1)交换原命题的条件和结论,所得的命题是逆命题;(2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.2.四种命题的真假关系:若原命题为真,它的逆命题、否命题不一定为真,它的逆否命题一定为真;互为逆否命题的两个命题的真假性相同.因此,若一个命题的真假不易判断时,我们可借助它的逆否命题进行判断.(对应学生用书第7页)1.(福州检测)已知a ,b ∈R ,命题“若a +b =1,则a 2+b 2≥12”的否命题是( )A .若a 2+b 2<12,则a +b ≠1B .若a +b =1,则a 2+b 2<12C .若a +b ≠1,则a 2+b 2<12D .若a 2+b 2≥12,则a +b =1【解析】 “a +b =1”,“a 2+b 2≥12”的否定分别是“a +b ≠1”,“a 2+b 2<12”,故否命题为:“若a +b ≠1,则a 2+b 2<12”.【答案】 C2.命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的( )A.逆命题B.否命题C.逆否命题D.无关命题【解析】从两种命题的形式来看是条件与结论换位,因此为逆命题.【答案】 A3.命题“当x=2时,x2+x-6=0”的逆否命题是____.【解析】原命题结论的否定作条件,条件的否定作结论,写出逆否命题即可.【答案】当x2+x-6≠0时,x≠2.4.写出下列命题的逆命题、否命题和逆否命题,并判断命题的真假.(1)若mn<0,则方程mx2-x+n=0有实数根;(2)若ab=0,则a=0或b=0.【解】(1)逆命题:若方程mx2-x+n=0有实数根,则mn<0.假命题;否命题:若mn≥0,则方程mx2-x+n=0没有实数根.假命题;逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.真命题.(2)逆命题:若a=0或b=0,则ab=0.真命题;否命题:若ab≠0,则a≠0且b≠0.真命题;逆否命题:若a≠0且b≠0,则ab≠0.真命题.一、选择题1.命题“若綈p,则q”是真命题,则下列命题一定是真命题的是( )A.若p,则綈q B.若q,则綈pC.若綈q,则p D.若綈q,则綈p 【解析】若“綈p,则q”的逆否命题是“若綈q,则p”,又互为逆否命题真假性相同.∴“若綈q,则p”一定是真命题.【答案】 C2.若命题p的否命题为q,命题p的逆否命题为r,则q与r的关系是( )A.互逆命题B.互否命题C.互为逆否命题D.以上都不正确【解析】设p为“若A,则B”,那么q为“若綈A,则綈B”,r为“若綈B,则綈A”,故q与r为互逆命题.【答案】 A3.(台州检测)已知命题p:若a>0,则方程ax2+2x=0有解,则其原命题、否命题、逆命题及逆否命题中真命题的个数为( )A.3 B.2 C.1 D.0【解析】易知原命题和逆否命题都是真命题,否命题和逆命题都是假命题.故选B.【答案】 B4.(大庆检测)下列判断中不正确的是( )A.命题“若A∩B=B,则A∪B=A”的逆否命题为真命题B.“矩形的两条对角线相等”的逆否命题为真命题C.“已知a,b,m∈R,若am2<bm2,则a<b”的逆命题是真命题D.“若x∈N*,则(x-1)2>0”是假命题【解析】若A∩B=B,则有B⊆A,从而有A∪B=A,∴A正确;B中的逆否命题:“若一个四边形两条对角线不相等,则它不是矩形”为真命题∴B正确.C中的逆命题为:“已知a,b,m∈R,若a<b,则am2<bm2为假命题,故C不正确.D中x=1时,(x-1)2=0显然是假命题.故D正确.【答案】 C5.下列命题中,不是真命题的为( )A.“若b2-4ac≥0,则关于x的一元二次方程ax2+bx+c=0(a≠0)有实根”的逆否命题B.“四边相等的四边形是正方形”的逆命题C.“若x2=9,则x=3”的否命题D.“对顶角相等”的逆命题【解析】A中命题为真命题,其逆否命题也为真命题;B中命题的逆命题为“正方形的四边相等”,为真命题;C 中命题的否命题为“若x 2≠9,则x ≠3”为真命题;D 中命题的逆命题为“相等的角为对顶角”是假命题.【答案】 D 二、填空题6.命题“若A ∪B =B ,则A ⊆B ”的否命题是________. 【答案】 若A ∪B ≠B ,则A ⃘B .7.已知命题“若m -1<x <m +1,则1<x <2”的逆命题为真命题,则m 的取值范围是________.【解析】 由已知得,若1<x <2成立,则m -1<x <m +1也成立.∴⎩⎪⎨⎪⎧m -1≤1m +1≥2,∴1≤m ≤2.【答案】 [1,2]8.(菏泽检测)给定下列命题: ①若a >0,则方程ax 2+2x =0有解. ②“等腰三角形都相似”的逆命题;③“若x -32是有理数,则x 是无理数”的逆否命题;④“若a >1且b >1,则a +b >2”的否命题. 其中真命题的序号是________.【解析】 显然①为真,②为假.对于③中,原命题“若x -32是有理数,则x 是无理数”为假命题,∴逆否命题为假命题.对于④中,“若a >1且b >1,则a +b >2”的否命题是“若a ≤1或b ≤1,则a +b ≤2”为假命题.【答案】 ① 三、解答题9.设原命题是“当c >0时,若a >b ,则ac >bc ”,写出它的逆命题、否命题、逆否命题,并分别判断它们的真假.【解】 原命题是真命题.逆命题是“当c >0时,若ac >bc ,则a >b ”,是真命题. 否命题是“当c >0时,若a ≤b ,则ac ≤bc ”,是真命题. 逆否命题是“当c >0时,若ac ≤bc ,则a ≤b ”,是真命题.10.已知命题p :“若ac ≥0,则二次方程ax 2+bx +c =0没有实根”. (1)写出命题p 的否命题;(2)判断命题p的否命题的真假,并证明你的结论.【解】(1)命题p的否命题为:“若ac<0,则二次方程ax2+bx+c=0有实根”.(2)命题p的否命题是真命题,证明如下:∵ac<0,∴-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根.∴该命题是真命题.11.已知奇函数f(x)是定义域为R的增函数,a,b∈R,若f(a)+f(b)≥0,求证:a +b≥0.【证明】假设a+b<0,则a<-b.∵f(x)在R上是增函数.∴f(a)<f(-b),又∵f(x)为奇函数.∴f(-b)=-f(b),∴f(a)<-f(b).即f(a)+f(b)<0.∴原命题的逆否命题为真,故原命题为真.(教师用书独具)判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.【解】∵m>0,∴12m>0,∴12m+4>0.∴方程x2+2x-3m=0的判别式Δ=22-4×1×(-3m)=4+12m>0,∴原命题“若m >0,则方程x2+2x-3m=0有实数根”为真.又∵原命题与它的逆否命题等价,∴“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题为真.已知ad-bc=1,求证:a2+b2+c2+d2+ab+cd≠1.【证明】设a2+b2+c2+d2+ab+cd=1,则2a2+2b2+2c2+2d2+2ab+2bc+2cd-2ad -2bc+2ad=2,即(a+b)2+(b+c)2+(c+d)2+(a-d)2+2ad-2bc=2,若(a+b)2+(b+c)2+(c+d)2+(a-d)2=0,则a=b=c=d=0,于是ad-bc<1;若(a+b)2+(b+c)2+(c+d)2+(a-d)2≠0,则(a+b)2+(b+c)2+(c+d)2+(a-d)2为正数,所以必有ad-bc<1.综上,命题“若a2+b2+c2+d2+ab+cd=1,则ad-bc≠1”成立,由原命题与它的逆否命题等价,知原命题也成立,从而原命题得证.21。
高中数学解题方法及步骤
高中数学解题方法及步骤高中数学解题方法及步骤高中数学解题方法及步骤一、配方法配方法是对数学式子进行一种定向变形(配成完全平方)的技巧,通过配方找到已知和未知的联系,从而化繁为简。
何时配方,需要我们适当预测,并且合理运用裂项与添项、配与凑的技巧,从而完成配方。
有时也将其称为凑配法。
最常见的配方是进行恒等变形,使数学式子出现完全平方。
它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。
通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。
或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程。
比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。
四、定义法所谓定义法,就是直接用数学定义解题。
数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。
定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。
定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。
简单地说,定义是基本概念对数学实体的高度抽象。
用定义法解题,是最直接的方法,本讲让我们回到定义中去。
高中数学常用逻辑用语:命题及其关系
常用逻辑用语:命题及其关系要求层次重难点 “若p ,则q ”形式的命题及其逆命题、否命题与逆否命题A 理解四种命题的相互关系;掌握充要条件的判定四种命题的相互关系B 充要条件C(一) 知识内容1.对于“如果p ,则q ”形式的命题,p 称为命题的条件,q 称为命题的结论.定理:经过证明为真的命题.当命题“如果p ,则q ”经过推理证明断定是真命题时,我们就说则p 可以推出q ,记作p q ,读作“p 推出q ”.2.命题的四种形式:命题“如果p ,则q ”是由条件p 和结论q 组成的,对p q ,进行“换位”和“换质(否定)”后,可以构成四种不同形式的命题. ⑴原命题:如果p ,则q ; ⑵原命题的逆命题:如果q ,则p ; ⑶原命题的否命题:如果非p ,则非q ; ⑷原命题的逆否命题:如果非q ,则非p .否逆为互逆为互否互否互逆互否互逆如果非q ,则非p如果非p ,则非q如果 q,则 p如果 p,则 q3.命题“如果p ,则q ”的四种形式之间有如下关系:⑴互为逆否命题的两个命题等价(同真或同假).因此证明原命题,也可以改证它的逆否命题.例题精讲高考要求常用逻辑用语:命题及其关系板块一:命题的四种形式⑵互逆或互否的两个命题不等价.<教师备案>注意命题的否定与否命题之间的区别,前者是命题的反面,且与命题的真假恰好相反;后者是对条件与结论同时进行否定,它的真假与原命题的真假没有绝对的联系.(二)典例分析【例1】 判断下列语句是否是命题:⑴张三是四川人;⑵1010是个很大的数;⑶220x x +=;⑷260x +>;⑸112+>;【例2】 判断下列命题的真假.⑴空间中两条不平行的直线一定相交; ⑵垂直于同一个平面的两个平面互相垂直; ⑶每一个周期函数都有最小正周期; ⑷两个无理数的乘积一定是无理数; ⑸若A B ,则A B B ≠;⑹若1m >,则方程220x x m -+=无实数根. ⑺已知a b c d ∈R ,,,,若a c ≠或b d ≠,则a b c d +≠+; ⑻已知a b c d ∈R ,,,,a b c d +≠+,则a c ≠或b d ≠.【例3】 设语句()p x :πcos()sin 2x x +=-,写出π()3p ,并判断它是不是真命题;【例4】 下面有四个命题:①若a -不属于N ,则a 属于N ;②若a b ∈∈N N ,,则a b +的最小值为2;③212x x +=的解可表示为{}11,.其中真命题的个数为( ) A .0个 B .1个 C .2个 D .3个【例5】 如果两个三角形全等,那么它们的面积相等; ①如果两个三角形的面积相等,那么它们全等; ② 如果两个三角形不全等,那么它们的面积不相等; ③ 如果两个三角形的面积不相等,那么它们不全等; ④ 命题②、③、④与命题①有何关系?【例6】 写出下列命题的否命题,并判断否命题的真假.⑴命题p :“若0,ac ≥则二次方程20ax bx c ++=没有实根”; ⑵命题q :“若x a ≠且x b ≠,则2()0x a b x ab -++≠”; ⑶命题r :“若(1)(2)0x x --=,则1x =或2x =”.⑷命题l :“ABC ∆中,若90C ︒∠=,则A ∠、B ∠都是锐角”; ⑸命题s :“若0abc =,则a b c ,,中至少有一个为零”.【例7】 下列命题中正确的是( )①“若220x y +≠,则x y ,不全为零”的否命题 ②“正多边形都相似”的逆命题③“若0m >,则20x x m +-=有实根”的逆否命题④“若x x 是无理数”的逆否命题A .①②③④B .①③④C .②③④D .①④【例8】 写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假.⑴“负数的平方是正数”;⑵“若a 和b 都是偶数,则a b +是偶数”; ⑶“当0c >时,若a b >,则ac bc >”; ⑷“若5x y +=,则3x =且2y =”;【例9】 ⑴命题:“若220(),a b a b +=∈R ,则“0a b ==”的逆否命题是( ) A .若0(),a b a b ≠≠∈R ,则220a b +≠ B .若0a ≠且0(),b a b ≠∈R ,则220a b +≠ C .若0(),a b a b =≠∈R ,则220a b +≠ D .若0a ≠或0(),b a b ≠∈R ,则220a b +≠ ⑵有下列四个命题:①命题“若1xy =,则x ,y 互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若1≤m ,则220x x m -+=有实根”的逆否命题;④命题“若A B B =,则A B ⊆”的逆否命题.其中是真命题的是 (填上你认为正确的命题的序号).【例10】 ⑴ “在ABC ∆中,若90C ∠=︒,则A ∠、B ∠都是锐角”的否命题为;⑵(2007重庆)命题:“若21x <,则11x -<<”的逆否命题是( ) A .若21≥x ,则1≥x 或1≤x - B .若11x -<<,则21x < C .若1x >或1x <-,则21x > D .若1≥x 或1≤x -,则21≥x【例11】 下列命题中_________为真命题.①“A B A =”成立的必要条件是“A B ”;②“若220x y +=,则x ,y 全为0”的否命题; ③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.【例12】 已知命题“如果1≤a ,那么关于x 的不等式22(4)(2)10≥a x a x -++-的解集为∅”.它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .2个C .3个D .4个【例13】 已知等比数列{}n a 的前n 项和为n S .⑴若m S ,2m S +,1m S +成等差数列,证明m a ,2m a +,1m a +成等差数列; ⑵写出⑴的逆命题,判断它的真伪,并给出证明.【例14】 ⑴命题p :奇函数一定有(0)0f =;命题q :函数1y x x=+的单调递减区间是[10)(01],,-.则下列四个判断中正确的是( )A .p 真q 真B . p 真q 假C . p 假q 真D . p 假q 假 ⑵设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; ②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; ④直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直. 上面命题中,真命题的序号是 ____ .(写出所有真命题的序号)【例15】 设V 是已知平面M 上所有向量的集合,对于映射:,f V V a V →∈,记a 的象为()f a .若映射:f V V →满足:对所有,a b V ∈及任意实数,λμ都有()()()f a b f a f b λμλμ+=+,则f 称为平面M 上的线性变换.现有下列命题: ①设f 是平面M 上的线性变换,则(0)0f =;②对a V ∈,设()2f a a =,则f 是平面M 上的线性变换; ③若e 是平面M 上的单位向量,对a V ∈设()f a a e =-,则f 是平面M 上的线性变换;④设f 是平面M 上的线性变换,,a b V ∈,若,a b 共线,则()(),f a f b 也共线. 其中真命题是 (写出所有真命题的序号)【例16】 对于四面体ABCD ,下列命题正确的是 (写出所有正确命题的编号).①相对棱AB 与CD 所在的直线是异面直线;②由顶点A 作四面体的高,其垂足是BCD ∆的三条高线的交点;③若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在的直线异面; ④分别作三组相对棱中点的连线,所得的三条线段相交于一点;⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.【例17】 设直线系:cos (2)sin 1(02π)M x y θθθ+-=≤≤,对于下列四个命题:A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数(3)n n ≥,存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).【例18】 关于x 的方程()222110x x k ---+=,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是( ) A .0 B .1C .2D .3【例19】 命题“若x y =,则||||x y =”,写出它的逆命题、否命题、逆否命题,并判断它们的真假【例20】 有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤,则220x x q ++=有实根”的逆否命题; ④“等边三角形的三个内角相等”逆命题;其中真命题的个数为( ) A .1 B .2 C .3 D .4【例21】 原命题:“设a b c ∈R ,,,若a b >,则22ac bc >”以及它的逆命题、否命题、逆否命题中,真命题共有( )个.A .0B .1C .2D .4【例22】 下面有五个命题:①函数44sin cos y x x =-的最小正周期是π. ②终边在y 轴上的角的集合是π|2k a a k ⎧⎫=∈⎨⎬⎩⎭Z ,. ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有三个公共点.④把函数π3sin 23y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π6得到3sin 2y x =的图象.⑤函数πsin 2y x ⎛⎫=- ⎪⎝⎭在()0π,上是减函数. 其中真命题的序号是 .【例23】 设a ,b 是两条直线,α,β是两个平面,则a b ⊥的一个充分条件是( )A .a α⊥,b β∥,αβ⊥B .a α⊥,b β⊥,αβ∥C .a α⊂,b β⊥,αβ∥D .a α⊂,b β∥,αβ⊥【例24】 命题“若ABC ∆不是等腰三角形,则它的任何两个内角不相等”的逆否命题是 .【例25】 给出以下四个命题:①“若0x y +=,则x y ,互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q -≤,则20x x q ++=有实根”的逆否命题;④“不等边三角形的三内角相等”的逆否命题.其中真命题是( )A .①②B .②③C .①③D .③④【例26】 对于直角坐标平面内的任意两点11(),A x y 、22(),B x y ,定义它们之间的一种“距离”: 1212AB x x y y =-+-.给出下列三个命题:①若点C 在线段AB 上,则AC CB AB +=; ②在ABC ∆中,若90C ∠=︒,则222AC CB AB +=; ③在ABC ∆中,AC CB AB +>. 其中真命题的个数为( )A .1个B .2个C .3个D .4个【例27】 有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1≤q ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题.其中真命题为( )A .①②B .②③C .①③D .③④【例28】 已知三个不等式:000,,c dab bc ad a b>->->(其中,,,a b c d 均为实数).用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成真命题的个数是( ) A .0 B .1 C .2 D .3【例29】 命题:“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则1x ≥或1x -≤B .若11x -<<,则21x <C .若1x >或1x <-,则21x >D .若1x ≥或1x -≤,则21x ≥【例30】 已知m n ,是两条不同直线,αβγ,,是三个不同平面,下列命题中正确的是( ) A .若m n αα∥,∥,则m n ∥ B .若αγβγ⊥⊥,,则αβ∥ C .若m m αβ∥,∥,则αβ∥D .若m n αα⊥⊥,,则m n ∥【例31】 已知直线m 、n 与平面α、β,给出下列三个命题:①若m α∥,n α∥,则m n ∥;②若m α∥,n α⊥,则n m ⊥;③若m α⊥,m β∥,则αβ⊥. 其中真命题的个数是( )A .0B .1C .2D .3。
高中数学命题知识点总结
高中数学命题知识点总结
四种命题形式:原命题、逆命题、否命题和逆否命题。
其中,原命题和逆命题是互逆的,逆命题与逆否命题是互否的,逆否命题与否命题是互逆的,否命题与原命题是互否的,原命题与逆否命题是相互逆否的,逆命题与否命题是相互逆否的。
命题的真假关系:两个命题如果互为逆否命题,那么它们的真假性是相同的。
而两个命题如果互为逆命题或互否命题,它们的真假性则没有直接关系。
代数与函数:包括一次函数、二次函数、指数函数、对数函数、幂函数等,以及函数的复合和反函数等知识点。
数学推理与证明:运用数学推理、逻辑思维和证明方法解决问题,包括数学归纳法和反证法等。
在解题方面,高中数学命题知识点还涉及到选择题和填空题的解题技巧。
选择题注重多个知识点的小型综合,渗透各种数学思想和方法,需要仔细审题、深入分析、正确推演、谨防疏漏,初选后还需认真检验。
填空题和选择题同属客观性试题,它们形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确。
此外,命题的基本要求也是高中数学命题知识点的一部分,包括试卷命题的严格、科学、合理、适度原则,题型要尽可能符合高考类型,试题内容应以考核基础知识为主,不出现怪题、难题、偏题,同一套试卷的各个试题之间必须彼此独立等。
以上是高中数学命题知识点的总结,掌握这些知识点有助于更好地理解数学概念和解决实际问题。
高中数学:常用逻辑用语
常用逻辑用语一、知识框架1.命题定义:用语言、符号或式子表达的、可以判断正误的陈述语句,叫做命题。
其中,判断为真的即为真命题,为假的即为假命题。
2.命题的判断以及命题真假的判断(1)命题的判断:①判断该语句是否是陈述句;②能否判断真假。
(2)命题真假的判断:首先,分清条件与结论,其次,再判断命题真假。
3.一般地,用p 和q 分别表示原命题的条件和结论,用¬p 和¬q 表示p 与q 的否定,即如下:(四种命题的关系)4.充分条件和必要条件 (1)充分条件:如果A 成立,那么B 成立,则条件A 是B 成立的充分条件。
(2)必要条件:如果A 成立,那么B 成立,这时B 是A 的必然结果,则条件B 是A 成立的必要条件。
(3)充要条件:如果A 既是B 成立的充分条件,又是B 成立的必要条件,则A 是B 成立的充要条件,与此同时,B 也一定是A 成立的重要条件,所以此时,A 、B 互为充要条件。
【注意】充分条件与必要条件是完全等价的,是同一逻辑关系“A =>B ”的不同表达方法。
5.逻辑联结词(1)不含逻辑联结词的命题是简单命题,由简单命题和逻辑联结词“或”“且”“非”构成的命题是复合命题,它们有以下几种形式:p 或q (p ∨q );p 且q (p ∧q );非p (¬p )。
(2)逻辑联结词“或”“且”“非”的含义的理解 在集合中学习的“并集”“交集”“补集”与逻辑联结词中的“或”“且”“非”关系十分密切。
6.量词与命题量词名称 常见量词表示符号全称量词 所有、一切、任意、全部、每一个、任给等 ∀存在量词 存在一个、至少有一个、某个、有些、某些等∃命 题 表述形式 原命题 若p 则q 逆命题 若q 则p 否命题 若¬p 则¬q 逆否命题若¬q 则¬p(2)全称命题与特称命题 命题全称命题“()x p M x ,∈∀”特称命题“()00,x p M x ∈∃”定义短语“对所有的”“对任意一个”等,在逻辑中通常叫做全称量词,用符号“∀”表示。
高中数学 第一章 常用逻辑用语 1.1 命题及其关系 1.1.2 四种命题 1.1.3 四种命题间的
1.1.2 四种命题1.1.3 四种命题间的相互关系学习目标:1.了解四种命题的概念,能写出某命题的逆命题、否命题和逆否命题.(重点)2.知道四种命题之间的相互关系以及真假性之间的联系.(易混点)3.会利用命题的等价性解决问题.(难点)[自主预习·探新知]1.四种命题的概念及表示形式名称定义表示形式互逆命题对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题.原命题为“若p,则q”;逆命题为“若q,则p”互否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题原命题为“若p,则q”;否命题为“若p,则q”互为逆否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题原命题为“若p,则q”;逆否命题为“若q,则p”2.四种命题间的相互关系(1)四种命题之间的关系(2)四种命题间的真假关系原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假由上表可知四种命题的真假性之间有如下关系:①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.思考:(1)“a=b=c=0”的否定是什么?(2)在原命题,逆命题、否命题和逆否命题四个命题中.真命题的个数会是奇数吗?[提示](1)“a=b=c=0”的否定是“a,b,c至少有一个不等于0”.(2)真命题的个数只能是0,2,4,不会是奇数.[基础自测]1.思考辨析(1)命题“若p,则q”的否命题为“若p,则q”.( )(2)同时否定原命题的条件和结论,所得的命题是否命题.( )(3)命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.[答案](1)×(2)√(3)√2.命题“若一个数是负数,则它的相反数是正数”的逆命题是( )A.“若一个数是负数,则它的相反数不是正数”B.“若一个数的相反数是正数,则它是负数”C.“若一个数不是负数,则它的相反数不是正数”D.“若一个数的相反数不是正数,则它不是负数”B[根据逆命题的定义知,选B.]3.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )【导学号:97792008】A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题C[原命题正确,则逆否命题正确,逆命题不正确,从而否命题不正确.故选C.][合作探究·攻重难]四种命题把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题和逆否命题.(1)相似三角形对应的角相等;(2)当x>3时,x2-4x+3>0;(3)正方形的对角线互相平分.[解](1)原命题:若两个三角形相似,则这两个三角形的三个角对应相等;逆命题:若两个三角形的三个角对应相等,则这两个三角形相似;否命题:若两个三角形不相似,则这两个三角形的三个角对应不相等;逆否命题:若两个三角形的三个角对应不相等,则这两个三角形不相似.(2)原命题:若x>3,则x2-4x+3>0;逆命题:若x2-4x+3>0,则x>3;否命题:若x≤3,则x2-4x+3≤0;逆否命题:若x2-4x+3≤0,则x≤3.(3)原命题:若一个四边形是正方形,则它的对角线互相平分;逆命题:若一个四边形对角线互相平分,则它是正方形;否命题:若一个四边形不是正方形,则它的对角线不互相平分;逆否命题:若一个四边形对角线不互相平分,则它不是正方形.[规律方法] 1.写出一个命题的逆命题,否命题,逆否命题的方法(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.(2)在写命题时,为了使句子更通顺,可以适当地添加一些词语,但不能改变条件和结论.2.写否命题时应注意一些否定词语,列表如下:原词语等于(=)大于(>)小于(<)是都是至多有一个否定词语不等于(≠)不大于(≤)不小于(≥)不是不都是至少有两个原词语至少有一个至多有n个任意的任意两个所有的能否定词语一个也没有至少有(n+1)个某一个(确定的)某两个某些不能1.(1)命题“若y =kx ,则x 与y 成正比例关系”的否命题是( )【导学号:97792009】A .若y ≠kx ,则x 与y 成正比例关系B .若y ≠kx ,则x 与y 成反比例关系C .若x 与y 不成正比例关系,则y ≠kxD .若y ≠kx ,则x 与y 不成正比例关系D [条件的否定为y ≠kx ,结论的否定为x 与y 不成比例关系,故选D.] (2)命题“若ab ≠0,则a ,b 都不为零”的逆否命题是________.若a ,b 至少有一个为零,则ab =0 [“ab ≠0”的否定是“ab =0”,“a ,b 都不为零”的否定是“a ,b 中至少有一个为零”,因此逆否命题为“若a ,b 至少有一个为零,则ab =0”.]四种命题的关系及真假判断(1)对于原命题:“已知a 、b 、c ∈R ,若a >b ,则ac 2>bc 2”,以及它的逆命题、否命题、逆否命题,在这4个命题中,真命题的个数为( )A .0个B .1个C .2个D .4个(2)判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假. [思路探究] (1)只需判断原命题和逆命题的真假即可. (2)思路一 写出原命题的逆否命题→判断其真假 思路二 原命题与逆否命题同真同假即等价关系→判断原命题的真假→得到逆否命题的真假[解析] (1)当c =0时,ac 2>bc 2不成立,故原命题是假命题,从而其逆否命题也是假命题;原命题的逆命题为“若ac 2>bc 2,则a >b ”是真命题,从而否命题也是真命题,故选C.[答案] C(2)法一:原命题的逆否命题:若x 2+x -a =0无实根,则a <0. ∵x 2+x -a =0无实根,∴Δ=1+4a <0,解得a <-14<0,∴原命题的逆否命题为真命题.法二:∵a ≥0,∴4a ≥0,∴对于方程x 2+x -a =0,根的判别式Δ=1+4a >0,∴方程x2+x-a=0有实根,故原命题为真命题.∵原命题与其逆否命题等价,∴原命题的逆否命题为真命题.[规律方法]判断命题真假的方法1解决此类问题的关键是牢记四种命题的概念,正确地写出所涉及的命题,判定为真的命题需要简单的证明,判定为假的命题要举出反例加以验证.2原命题与它的逆否命题同真同假,原命题的否命题与它的逆命题同真同假,故二者只判断一个即可.[跟踪训练]2.判断下列四个命题的真假,并说明理由.(1)“若x+y=0,则x,y互为相反数”的否命题;(2)“若x>y,则x2>y2”的逆否命题;(3)“若x≤3,则x2-x-6>0”的否命题;(4)“对顶角相等”的逆命题.[解](1)命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,则逆命题为真命题,因为原命题的逆命题和否命题具有相同的真假性,所以“若x+y=0,则x,y互为相反数”的否命题是真命题.(2)令x=1,y=-2,满足x>y,但x2<y2,所以“若x>y,则x2>y2”是假命题,因为原命题与其逆否命题具有相同的真假性,所以“若x>y,则x2>y2”的逆否命题也是假命题.(3)该命题的否命题为“若x>3,则x2-x-6≤0”,令x=4,满足x>3,但x2-x-6=6>0,不满足x2-x-6≤0,则该否命题是假命题.(4)该命题的逆命题为“相等的角是对顶角”是假命题,如等边三角形的任意两个内角都相等,但它们不是对顶角.等价命题的应用1.当一个命题的条件与结论以否定形式出现时,为了研究方便,我们可以研究哪一个命题?提示:一个命题与其逆否命题等价,我们可研究其逆否命题.2.在证明“若m2+n2=2,则m+n≤2”时,我们也可以证明哪个命题成立.提示:根据一个命题与其逆否命题等价,我们也可以证明“若m+n>2,则m2+n2≠2”成立.(1)命题“对任意x∈R,ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.(2)证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.【导学号:97792010】[思路探究] (1)根据其逆否命题求解.(2)证明其逆否命题成立.[解析](1)∵命题“对任意x∈R,ax2-2ax-3>0不成立”等价于“对任意x∈R,ax2-2ax-3≤0恒成立”,若a=0,则-3≤0恒成立,∴a=0符合题意.若a≠0,由题意知{a<0Δ=4a2+12a≤0,即{a<0-3≤a≤0,∴-3≤a<0综上知,a的取值范围是-3≤a≤0.[答案][-3,0](2)证明原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.若a+b<0,则a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题为真命题.∴原命题为真命题.[规律方法] 1.若一个命题的条件或结论含有否定词时,直接判断命题的真假较为困难,这时可以转化为判断它的逆否命题.2.当证明一个命题有困难时,可尝试证明其逆否命题成立.3.证明:若a2-4b2-2a+1≠0,则a≠2b+1.[证明]“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为“若a=2b+1,则a2-4b2-2a+1=0”.∵a=2b+1,∴a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+1+4b-4b2-4b-2+1=0.∴命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知,原命题得证.[当堂达标·固双基]1.命题“若a∉A,则b∈B”的逆命题是( )A.若a∉A,则b∉B B.若a∈A,则b∉BC.若b∈B,则a∉A D.若b∉B,则a∉AC[“若p,则q”的逆命题是“若q,则p”,所以本题的逆命题是“若b∈B,则a∉A”.]2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3A[同时否定命题的条件与结论,所得命题就是原命题的否命题,故选A.]3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为 ( )A.1 B.2 C.3 D.4B[原命题是真命题,从而其逆否命题是真命题,其逆命题是“若a>-6,则a>-3”,是假命题,从而其否命题也是假命题,故真命题的个数是2.]4.命题“若m>1,则mx2-2x+1=0无实根”的等价命题是________.【导学号:97792011】若mx2-2x+1=0有实根,则m≤1[原命题的等价命题是其逆否命题,由定义可知其逆否命题为:“若mx2-2x+1=0有实根,则m≤1”.]5.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.[解] (1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.。
高中数学讲义:命题形式变化及真假判定
命题形式变化及真假判定一、基础知识:(一)命题结构变换1、四类命题间的互化:设原命题为“若p ,则q ”的形式,则(1)否命题:“若p Ø,则q Ø”(2)逆命题:“若q ,则p ”(3)逆否命题:“若q Ø,则p Ø”2、p q Ú,p qÙ(1)用“或”字连接的两个命题(或条件),表示两个命题(或条件)中至少有一个成立即可,记为p qÚ(2)用“且”字连接的两个命题(或条件),表示两个命题(或条件)要同时成立,记为p q Ù3、命题的否定p Ø:命题的否定并不是简单地在某个地方加一个“不”字,对于不同形式的命题也有不同的方法(1)一些常用词的“否定”:是→不是全是→不全是至少一个→都没有至多n 个→至少1n +个小于→大于等于(2)含有逻辑联结词的否定:逻辑联接词对应改变,同时,p q 均变为,p q ØØ:p 或q →p Ø且q Øp 且q →p Ø或qØ(3)全称命题与存在性命题的否定全称命题:():,:,()p x M p x p x M p x "ήØ$ÎØ存在性命题:():,:,()p x M p x p x M p x $ήØ"ÎØ规律为:两变一不变①两变:量词对应发生变化("Û$),条件()p x 要进行否定()p x ÞØ②一不变:x 所属的原集合M 的不变化(二)命题真假的判断:判断命题真假需要借助所学过的数学知识,但在一组有关系的命题中,真假性也存在一定的关联。
1、四类命题:原命题与逆否命题真假性相同,同理,逆命题与否命题互为逆否命题,所以真假性也相同。
而原命题与逆命题,原命题与否命题真假没有关联2、p q Ú,p q Ù,如下列真值表所示:pqp 或q真真真真假真假真真假假假简而言之“一真则真”简而言之“一假则假”3、p Ø:与命题p 真假相反。
高中数学充分条件、必要条件与命题的四种形式例题解析
§1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件学习目标 1.理解充分条件、必要条件、充要条件的定义.2.会求某些简单问题成立的充分条件、必要条件、充要条件.3.能够利用命题之间的关系判定充要关系或进行充要条件的证明.知识点一充分条件与必要条件1.当命题“如果p,则q”经过推理证明判定为真命题时,我们就说,由p可推出q,记作p⇒q,并且说p是q的充分条件,q是p的必要条件.这几种形式的表达,讲的是同一个逻辑关系,只是说法不同而已.2.若p⇒q,但q⇏p,称p是q的充分不必要条件,若q⇒p,但p⇏q,称p是q的必要不充分条件.知识点二充要条件1.一般地,如果p⇒q,且q⇒p,就记作p⇔q,此时,我们说,p是q的充分且必要条件,简称充要条件.p是q的充要条件,又常说成q当且仅当p,或p与q等价.2.从集合的角度判断充分条件、必要条件和充要条件.若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件若A=B,则p,q互为充要条件若A⊈B且B⊈A,则p既不是q的充分条件,也不是q的必要条件其中p:A={x|p(x)成立},q:B={x|q(x)成立}.1.若p是q的充分条件,则p是唯一的.(×)2.“若p,则q”是真命题,而“若q,则p”是假命题,则p是q的充分不必要条件.(√) 3.q不是p的必要条件时,“p⇏q”成立.(√)4.若p是q的充要条件,则命题p和q是两个相互等价的命题.(√)5.若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.(√)题型一充分、必要、充要条件的判断例1下列各题中,p是q的什么条件?(指充分不必要、必要不充分、充要、既不充分也不必要条件)(1)p:x=1或x=2,q:x-1=x-1;(2)p:m>0,q:x2+x-m=0有实根;(3)p:四边形的对角线相等,q:四边形是平行四边形.考点充要条件的概念及判断题点充要条件的判断解(1)因为x=1或x=2⇒x-1=x-1,x-1=x-1⇒x=1或x=2,所以p是q的充要条件.(2)因为m>0⇒方程x2+x-m=0的判别式Δ=1+4m>0,即方程有实根,方程x2+x-m=0有实根,即Δ=1+4m≥0⇏m>0,所以p是q的充分不必要条件.(3)p是q的既不充分也不必要条件.反思感悟充分条件、必要条件的两种常用的判断方法(1)定义法:①确定谁是条件,谁是结论;②尝试从条件推结论,若条件能推出结论,则条件为充分条件,否则就不是充分条件;③尝试从结论推条件,若结论能推出条件,则条件为必要条件,否则就不是必要条件.(2)命题判断法:①如果命题:“若p,则q”为真命题,那么p是q的充分条件,同时q是p的必要条件;②如果命题:“若p,则q”为假命题,那么p不是q的充分条件,同时q也不是p的必要条件.跟踪训练1下列各题中,试分别指出p是q的什么条件.(1)p :两个三角形相似,q :两个三角形全等; (2)p :f (x )=x ,q :f (x )在(-∞,+∞)上为增函数; (3)p :A ⊆B ,q :A ∩B =A ; (4)p :a >b ,q :ac >bc . 考点 充要条件的概念及判断 题点 充要条件的判断解 (1)∵两个三角形相似⇏两个三角形全等,但两个三角形全等⇒两个三角形相似, ∴p 是q 的必要不充分条件.(2)∵f (x )=x ⇒f (x )在(-∞,+∞)上为增函数,但f (x )在(-∞,+∞)上为增函数⇏f (x )=x ,∴p 是q 的充分不必要条件.(3)∵p ⇒q ,且q ⇒p ,∴p 是q 的充要条件.(4)∵p ⇏q ,且q ⇏p ,∴p 是q 的既不充分也不必要条件.题型二 充分条件、必要条件、充要条件的应用命题角度1 由充分条件、必要条件求参数范围例2 已知p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0),若p 是q 的必要不充分条件,求实数m 的取值范围.考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围解 p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0). 因为p 是q 的必要不充分条件, 所以q 是p 的充分不必要条件,即{x |1-m ≤x ≤1+m }{x |-2≤x ≤10},故有⎩⎪⎨⎪⎧ 1-m ≥-2,1+m <10或⎩⎪⎨⎪⎧1-m >-2,1+m ≤10,解得m ≤3.又m >0,所以实数m 的取值范围为{m |0<m ≤3}. 引申探究1.若本例中“p 是q 的必要不充分条件”改为“p 是q 的充分不必要条件”,其他条件不变,求实数m 的取值范围.解 p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0). 因为p 是q 的充分不必要条件,设p 代表的集合为A ,q 代表的集合为B ,所以A B .所以⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.解不等式组得m >9或m ≥9, 所以m ≥9,即实数m 的取值范围是[9,+∞).2.若本例中p ,q 不变,是否存在实数m 使p 是q 的充要条件?若存在,求出m 的值;若不存在,说明理由.解 因为p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0).若p 是q 的充要条件,则⎩⎪⎨⎪⎧-2=1-m ,10=1+m ,m 不存在.反思感悟 由条件关系求参数的取值(范围)的步骤 (1)根据条件关系建立条件构成的集合之间的关系. (2)根据集合端点或数形结合列方程或不等式(组)求解.跟踪训练2 (1)“不等式(a +x )(1+x )<0成立”的一个充分不必要条件是“-2<x <-1”,则实数a 的取值范围是________. 考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围 答案 (2,+∞)解析 不等式变形为(x +1)(x +a )<0, 因为当-2<x <-1时不等式成立, 所以不等式的解集是-a <x <-1. 由题意有(-2,-1)(-a ,-1), 所以-2>-a ,即a >2.(2)已知P ={x |a -4<x <a +4},Q ={x |1<x <3},“x ∈P ”是“x ∈Q ”的必要条件,则实数a 的取值范围是________.考点 充分、必要条件的综合应用 题点 由充分、必要条件求参数的范围 答案 [-1,5]解析 因为“x ∈P ”是“x ∈Q ”的必要条件,所以Q ⊆P ,所以⎩⎪⎨⎪⎧ a -4≤1,a +4≥3,即⎩⎪⎨⎪⎧a ≤5,a ≥-1,所以-1≤a ≤5.命题角度2 探求充要条件例3 求关于x 的一元二次不等式ax 2+1>ax 对于一切实数x 都成立的充要条件. 考点 充要条件的概念及判断 题点 寻求充要条件解 由题意可知,关于x 的一元二次不等式ax 2+1>ax 对于一切实数x 都成立,等价于对于方程ax 2-ax +1=0中,⎩⎨⎧a >0,Δ<0⇔0<a <4.反思感悟 求一个问题的充要条件,就是利用等价转化的思想,使得转化前后的两个命题所对应的解集是两个相同的集合,这就要求我们转化的时候思维要缜密.跟踪训练3 直线x +y +m =0与圆(x -1)2+(y -1)2=2相切的充要条件是m =________. 考点 充要条件的概念及判断 题点 寻求充要条件 答案 -4或0解析 由题意知,直线与圆相切等价于圆心(1,1)到直线x +y +m =0的距离等于半径2, 即|2+m |2=2,得m =-4或0.充要条件的证明典例 求证:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0. 证明 充分性(由ac <0推证方程有一正根和一负根),∵ac <0,∴一元二次方程ax 2+bx +c =0的判别式Δ=b 2-4ac >0, ∴原方程一定有两不等实根,不妨设为x 1,x 2,则x 1x 2=ca <0,∴原方程的两根异号,即一元二次方程ax 2+bx +c =0有一正根和一负根. 必要性(由方程有一正根和一负根推证ac <0), ∵一元二次方程ax 2+bx +c =0有一正根和一负根, 不妨设为x 1,x 2,∴由根与系数的关系得x 1x 2=ca <0,即ac <0,此时Δ=b 2-4ac >0,满足原方程有两个不等实根.综上可知,一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.[素养评析] (1)一般地,证明“p 成立的充要条件为q ”时,在证充分性时应以q 为“已知条件”,p 是该步中要证明的“结论”,即q ⇒p ;证明必要性时则是以p 为“已知条件”,q 为该步中要证明的“结论”,即p ⇒q .(2)通过论证数学命题,学会有逻辑地思考问题,探索和表述论证过程,能很好的提升学生的逻辑思维品质.1.“-2<x <1”是“x >1或x <-1”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件 D .充要条件 答案 C解析 ∵-2<x <1⇏x >1或x <-1,且x >1或x <-1⇏-2<x <1,∴“-2<x <1”是“x >1或x <-1”的既不充分也不必要条件.2.设命题p :x 2-3x +2<0,q :x -1x -2≤0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 命题p :1<x <2;命题q :1≤x <2,故p 是q 的充分不必要条件. 3.“θ=0”是“sin θ=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 由于当“θ=0”时,一定有“sin θ=0”成立,反之不成立,所以“θ=0”是“sin θ=0”的充分不必要条件.4.记不等式x 2+x -6<0的解集为集合A ,函数y =lg(x -a )的定义域为集合B .若“x ∈A ”是“x ∈B ”的充分条件,则实数a 的取值范围为________. 答案 (-∞,-3]解析 由于A ={x |x 2+x -6<0}={x |-3<x <2},B ={x |y =lg(x -a )}={x |x >a },而“x ∈A ”是“x ∈B ”的充分条件,则有A ⊆B ,则有a ≤-3.5.“a =0”是“直线l 1:x -2ay -1=0与l 2:2x -2ay -1=0平行”的________条件. 答案 充要解析 (1)∵a =0,∴l 1:x -1=0,l 2:2x -1=0, ∴l 1∥l 2,即a =0⇒l 1∥l 2. (2)若l 1∥l 2,当a ≠0时, l 1:y =12a x -12a ,l 2:y =1a x -12a .令12a =1a,方程无解. 当a =0时,l 1:x -1=0,l 2:2x -1=0,显然l 1∥l 2. ∴a =0是直线l 1与l 2平行的充要条件.充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件反映了条件p 和结论q 之间的因果关系,在结合具体问题进行判断时,常采用如下方法:(1)定义法:分清条件p 和结论q ,然后判断“p ⇒q ”及“q ⇒p ”的真假,根据定义下结论.(2)等价法:将命题转化为另一个与之等价的又便于判断真假的命题.(3)集合法:写出集合A={x|p(x)}及集合B={x|q(x)},利用集合之间的包含关系加以判断.一、选择题1.“ab ≠0”是“直线ax +by +c =0与两坐标轴都相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 ab ≠0,即a ≠0且b ≠0,此时直线ax +by +c =0与两坐标轴都相交;又当ax +by +c =0与两坐标轴都相交时,a ≠0且b ≠0.2.下列“若p ,则q ”形式的命题中,p 是q 的充分条件的命题个数为( ) ①若f (x )是周期函数,则f (x )=sin x ; ②若x >5,则x >2; ③若x 2-9=0,则x =3. A .0 B .1 C .2 D .3 答案 B解析 ①中,周期函数还有很多,如y =cos x ,所以①中p 不是q 的充分条件;很明显②中p 是q 的充分条件;③中,当x 2-9=0时,x =3或x =-3,所以③中p 不是q 的充分条件.所以p 是q 的充分条件的命题的个数为1,故选B.3.已知向量a ,b 为非零向量,则“a ⊥b ”是“|a +b |=|a -b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 C解析 |a +b |2=|a -b |2⇔a 2+b 2+2a ·b =a 2+b 2-2a ·b ⇔a ·b =0.4.已知圆O :x 2+y 2=1,直线l :ax +by +c =0,则a 2+b 2=c 2是圆O 与直线l 相切的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 C解析 由直线与圆相切得|c |a 2+b 2=1,即a 2+b 2=c 2;a 2+b 2=c 2时也有|c |a 2+b 2=1成立,即直线与圆相切.5.若a ,b ,c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,都有ax 2+bx +c >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 当a >0且b 2-4ac <0时,对任意x ∈R ,ax 2+bx +c >0成立,即充分性成立.反之,则不一定成立.如当a =0,b =0,且c >0时,对任意x ∈R ,ax 2+bx +c >0成立.综上,“a >0且b 2-4ac <0”是“对任意x ∈R ,都有ax 2+bx +c >0”的充分不必要条件.6.设函数f (x )=|log 2x |,则f (x )在区间(m,2m +1)(m >0)内不是单调函数的充要条件是( ) A .0<m <12B .0<m <1 C.12<m <1 D .m >1答案 B解析 f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,-log 2x ,0<x <1.f (x )的图象在(0,1)内单调递减, 在(1,+∞)内单调递增.f (x )在(m,2m +1)(m >0)上不是单调函数等价于⎩⎪⎨⎪⎧m <1,2m +1>1⇔0<m <1. 7.已知a ,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b (λ1,λ2∈R ),则A ,B ,C 三点共线的充要条件是( ) A .λ1=λ2=-1 B .λ1=λ2=1 C .λ1λ2=1 D .λ1λ2=-1答案 C解析 依题意,知A ,B ,C 三点共线⇔AB →=λAC →⇔λ1a +b =λa +λλ2b ⇔⎩⎪⎨⎪⎧λ1=λ,λλ2=1,即λ1λ2=1.故选C.8.设a 1,b 1,c 1,a 2,b 2,c 2均为非零实数,不等式a 1x 2+b 1x +c 1>0和a 2x 2+b 2x +c 2>0的解集分别是集合M 和N ,那么“a 1a 2=b 1b 2=c 1c 2”是“M =N ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 若a 1a 2=b 1b 2=c 1c 2<0,则M ≠N , 即a 1a 2=b 1b 2=c 1c 2⇏M =N ; 反之,若M =N =∅,即两个一元二次不等式的解集为空集时,只要求判别式Δ1<0,Δ2<0(a 1<0,a 2<0),而与系数之比无关.二、填空题9.设n ∈N +,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________. 答案 3或4解析 由于方程有整数根,由判别式Δ=16-4n ≥0.得1≤n ≤4,逐个分析,当n =1,2时,方程没有整数解;而当n =3时,方程有正整数解1,3;当n =4时,方程有正整数解2.故n =3或4.10.设p :1≤x <4,q :x <m ,若p 是q 的充分条件,则实数m 的取值范围为________. 答案 [4,+∞)解析 据题意知,p ⇒q ,则m ≥4.11.给出下列三个命题:①“a >b ”是“3a >3b ”的充分不必要条件;②“α>β”是“cos α<cos β”的必要不充分条件;③“a =0”是“函数f (x )=x 3+ax 2(x ∈R )为奇函数”的充要条件.其中真命题的序号为________.答案 ③解析 ①∵函数y =3x 是R 上的增函数,∴“a >b ”是“3a >3b ”的充要条件,故①错误;②∵2π>π2,cos 2π>cos π2,∴α>β⇏cos α<cos β;∵cos π<cos 2π,π<2π,∴cos α<cos β⇏α>β.∴“α>β”是“cos α<cos β”的既不充分也不必要条件,故②错误;③“a =0”是“函数f (x )=x 3+ax 2(x ∈R )为奇函数”的充要条件,正确.三、解答题12.已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0},若p 是q 的充分条件,求实数a 的取值范围.解 化简B ={x |(x -2)[x -(3a +1)]≤0},①当a ≥13时,B ={x |2≤x ≤3a +1}; ②当a <13时,B ={x |3a +1≤x ≤2}. 因为p 是q 的充分条件且A 为非空集合,所以A ⊆B ,于是有⎩⎪⎨⎪⎧ a ≥13,a 2+1≤3a +1,2a ≥2,或⎩⎪⎨⎪⎧ a <13,a 2+1≤2,2a ≥3a +1,解得1≤a ≤3或a =-1.综上,a 的取值范围是{a |1≤a ≤3或a =-1}.13.设a ,b ,c 是△ABC 的三个内角A ,B ,C 所对的边.求证:a 2=b (b +c )的充要条件是A =2B .证明 充分性:∵A =2B ,∴A -B =B ,则sin(A -B )=sin B ,则sin A cos B -cos A sin B =sinB ,结合正弦、余弦定理得a ·a 2+c 2-b 22ac -b ·b 2+c 2-a 22bc=b ,化简整理得a 2=b (b +c ); 必要性:由余弦定理a 2=b 2+c 2-2bc cos A ,且a 2=b (b +c ),得b 2+bc =b 2+c 2-2bc cos A ,∴1+2cos A =c b =sin C sin B, 即sin B +2sin B cos A =sin C =sin(A +B )=sin A cos B +cos A sin B ,∴sin B =sin A cos B -cos A sin B =sin(A -B ),由于A ,B 均为三角形的内角,故必有B =A -B ,即A =2B . 综上,知a 2=b (b +c )的充要条件是A =2B .14.已知p :x 2+2x -3>0,q :x >a (a 为实数).若綈q 的一个充分不必要条件是綈p ,则实数a 的取值范围是________.答案 [1,+∞)解析 将x 2+2x -3>0化为(x -1)(x +3)>0,所以p :x >1或x <-3,所以綈p :-3≤x ≤1.又綈q :x ≤a ,且綈q 的一个充分不必要条件是綈p ,所以a ≥1.15.设x ,y ∈R ,求证:|x +y |=|x |+|y |成立的充要条件是xy ≥0.证明 充分性:如果xy ≥0,则有xy =0和xy >0两种情况,当xy =0时,不妨设x =0,得|x+y|=|y|,|x|+|y|=|y|,∴等式成立.当xy>0,即x>0,y>0或x<0,y<0时,又当x>0,y>0时,|x+y|=x+y,|x|+|y|=x+y,∴等式成立.当x<0,y<0时,|x+y|=-(x+y),|x|+|y|=-x-y=-(x+y),∴等式成立.总之,当xy≥0时,|x+y|=|x|+|y|成立.必要性:若|x+y|=|x|+|y|且x,y∈R,得|x+y|2=(|x|+|y|)2,即x2+2xy+y2=x2+y2+2|x|·|y|,∴|xy|=xy,∴xy≥0.综上可知,xy≥0是等式|x+y|=|x|+|y|成立的充要条件。
2021年高中数学第一章常用逻辑用语1.3.2命题的四种形式课件7新人教B版选修2_1
(4)假设x2+y2=0,那么x,y全为0.
逆命题:假设x,y全为0,那么x2+y2 =0; 否命题:假设x2+y2≠0,那么x,y不全为0; 逆否命题:假设x,y不全为0,那么x2+y2≠0
(5)假设a+b是偶数,那么a,b都是 偶数
逆命题:假设a,b都是偶数,那么a+b是偶数; 否命题:假设a+b不是偶数,那么a,b不都是偶数; 逆否命题:假设a,b不都是偶数,那么a+b不是偶数.
命题的四种形式
命题的四种形式
命题 原命题 逆命题 否命题 逆否命题
表述形式
若p,则q 若q ,则 p
若p,则 q 若q,则 p
关于原命题的逆命题、否命题和逆否命题的写法: 首先:把原命题整理成“假设p,那么q〞. 其次: (1)“换位〞得到“假设q,那么p〞,即为逆命题; (2)“换质〞(分别否认)得到“假设非p,那么非q
(3)原命题:若 m>14,则 mx2-x+1=0 无实根.(真)
否命题:若 m≤14,则 mx2-x+1=0 有实根.(真)
逆否命题:若 mx2-x+1=0 有实根,则 m≤14.(真)
(4)原命题:假设abc=0,那么a=0或b=0或c= 0.(真)
否命题:假设abc≠0,那么a≠0且b≠0且 c≠0.(真)
A.逆命题 B.逆否命题 D.以上判断都不对
C.否命题
[答案] B
逆否命题:假设a≠0且b≠0且c≠0,那么
(5)原命题:假设x2-2x-3=0,那么x=3或x=-1.(真)
否命题:假设x2-2x-3≠0,那么x≠3且x≠-1.(真)
逆否命题:假设x≠3且x≠-1,那么x2-2x- 3≠0.(真)
▪ 2.写出以下命题的否命题及命题的否认形式,并 判断真假.
高中数学解题方法及技巧分析
高中数学解题方法及技巧分析数学解题方法和技巧对不同类型的数学习题的作答效率和正确率有非常大的影响。
下面是小编为大家整理的关于高中数学解题方法及技巧分析,希望对您有所帮助。
欢迎大家阅读参考学习!1高中数学解题方法及技巧分析构建数学整体数学学习需要高中生具备整体思维,对现有条件等知识进行关联,建立起相关概念和数学知识的密切联系,才能灵活地对不同类型数学问题进行解答,最终将所学知识应用到实际数学问题解决过程中。
构建数学是一个长期的过程,需要不断对已经掌握的旧有数学知识不断理解和深化,才能形成整体数学意识,这样在解题时才能避免仅关注某一个条件,而不能建立条件之间的联系。
从我班实际情况来看,有些同学解题时,错误地认为原有数学知识是不可能解答新数学问题的,因此面对之前没有见过的数学问题,往往不知道从何处下手。
很多数学问题看似“新类型”,其实考察的知识点都是之前学习过的,需要我们整体看待这些问题,将题目中现有的条件及隐含的元素积极联系,以提高解题效率。
例如,我遇到过一个三角函数题,计算出22.5度的三角函数值,惯性思维下,我按照固有思路计算,但是发现计算起来非常麻烦,于是我转换角度,借用44.5度的三角函数值,并利用所学数学定理,即余弦定理、正弦定理,更为简便、快速地计算出题目所要求的22.5度的三角函数值。
解题后我进行了答题反思,发现使用数学整体思路解题比单一元素解题更为便捷高效,不管习题类型如何变化,要记住“万变不离其宗”,应当想办法运用已有知识联系题目,最终可能获得意想不到的收获。
巧妙加减同一个量求解积分等类型数学习题时,经常会使用“加减同一个量”“拼凑”出想要的公式模型或者定理,这样一来可以十分巧妙地解答出高中数学相关习题。
比如,求解积分函数时,应用“加减同一个量”的数学解题方法,可以在被积函数中需要时首先故意加上或者人为减去一个相等的量,为了确保最终答案正确性,还需要在给出答案之前,相应地减去或者加上这一个“相等的量”,这样才算解题完毕,避免答案错误。
新教材高中数学第2章常用逻辑用语1命题定理定义2
判断下列各命题中p是q的什么条件: (1)p:x-2=0,q:(x-2)(x-3)=0; (2)p:t≠2,q:t2≠4; (3)p:0<x<3,q:|x-1|<2.
解析 (1)x-2=0⇒(x-2)(x-3)=0, (x-2)(x-3)=0⇒x-2=0或x-3=0. ∴“x-2=0”是“(x-2)(x-3)=0”的充分不必要条件. (2)t≠2 t2≠4(当t=-2时,t2=4), t2≠4⇒t≠2且t≠-2. ∴“t≠2”是“t2≠4”的必要不充分条件. (3)令A={x|0<x<3},B={x||x-1|<2}={x|-1<x<3}. 易知A⫋B,∴p是q的充分不必要条件.
探求充分条件、必要条件的步骤 (1)分清“条件”和“结论”,明确探求的方向; (2)分析题目中的已知条件和隐含条件,进行等价转化,即可得到使结论成立的充要条 件; (3)将得出的充要条件对应的范围扩大或缩小,即可得到结论成立的必要不充分条件 或充分不必要条件.
求方程x2+kx+1=0与x2+x+k=0有一个公共实数根的充要条件. 思路点拨 设两个方程的公共实数根为x0,列方程组求出k的值,再检验k取此值时两个方程是否有 一个公共实数根,从而解决问题.
1 | 命题、定理、定义的概念 1.命题 在数学中,我们将① 可判断真假 的陈述句叫作命题.许多命题可表示为“如果p, 那么q”或“若p,则q”的形式,其中p叫作命题的② 条件 ,q叫作命题的③ 结论 . 2.定理 在数学中,有些已经被证明为真的命题可以作为推理的依据而直接使用,一般称之为 定理. 3.定义 定义是对某些对象标明符号、指明称谓,或者揭示所研究问题中对象的内涵.
2 | 充分条件、必要条件的证明与探求
高考的数学答题技巧(推荐8篇)
高考的数学答题技巧〔推荐8篇〕篇1:数学高考答题技巧另外,在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约考虑时间。
以下总结高考数学五大解题思想,帮助同学们更好地提分。
1.函数与方程思想函数思想是指运用运动变化的观点,分析^p 和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析^p 问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。
同学们在解题时可利用转化思想进展函数与方程间的互相转化。
2.数形结合思想中学数学研究的对象可分为两大局部,一局部是数,一局部是形,但数与形是有联络的,这个联络称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3.特殊与一般的思想用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。
不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4.极限思想解题步骤极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法那么得出结果或利用图形的极限位置直接计算结果。
5.分类讨论思想同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进展下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法那么、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。
高中数学的解题技巧(三篇)
高中数学的解题技巧(三篇)高中数学的解题技巧 1一、选择题1.选择题是高考数学试卷的三大题型之一,题量一般为10到12个,较大部分选择题属于低中档题,且一般按由易到难排序,主要的数学思想和数学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次、解题方法的优劣选择,解题速度的快慢等),所以选择题已成为具有好区分度的基本题型之一.能否在选择题上获取高分,关系到高考数学成绩高低,解答选择题的基本要求是四个字——准确、迅速.2.选择题具有概括性强、知识覆盖面广、小巧灵活及有一定的综合性和深度等特点.选择题主要考查对基础知识的理解、对基本技能、基本计算、基本方法的熟练运用,以及考查考虑问题的严谨性,解题速度等方面.解答选择题的基本策略是充分利用题设和选项两方面提供的信息作出判断.一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不要采用常规解法;能使用间接法解的,就不选采用直接法解;对于明显可以否定的选项应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选简解法.解题时应仔细审题、深入分析、正确推理、谨防疏漏;初选后认真检验,确保准确.3.由于选择题80%以上的题目都可以用直接法通过思考、分析、运算得出结论.因此直接法是解答选择题基本、常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题方法.解选择题的特殊方法有直接法、特例法、排除法、数形结合法、较限法、估值法等.选择题的解题方法:方法一:直接法所谓直接法,就是直接从题设的条件出发,运用有关的概念、定义、性质、定理、法则和公式等知识,通过严密的推理与计算来得出题目的结论,然后再对照题目所给的四个选项来“对号入座”.其基本策略是由因导果,直接求解.方法二:特例法特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中,所谓特例法,就是用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.注意:在题设条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的较佳策略.近几年高考选择题中可用或结合特例法来解答的约占30%.因此,特例法是求解选择题的好招.方法三:排除法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.注意:排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中占有很大的比重. 方法四:数形结合法数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的__作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.方法五:估算法在选择题中作准确计算不易时,可根据题干提供的信息,估算出结果的大致取值范围,排除错误的'选项.对于客观性试题,合理的估算往往比盲目的准确计算和严谨推理更为有效,可谓“一叶知秋”.方法六:综合法当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.二、解答题1、确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。
高中数学命题热点名师解密专题:集合的解题技巧(有答案)
专题01 集合的解题技巧一、集合的解题技巧及注意事项 1.元素与集合,集合与集合关系混淆问题; 2.造成集合中元素重复问题; 3.隐含条件问题;4.代表元变化问题;5.分类讨论问题; 6.子集中忽视空集问题; 7.新定义问题;8.任意、存在问题中的最值问题; 9.集合的运算问题; 10.集合的综合问题。
二.知识点 【学习目标】1.了解集合的含义、元素与集合的“属于”关系,能用自然语言、图形语言、集合语言(列举法或描述法)来描述不同的具体问题,理解集合中元素的互异性;2.理解集合之间包含和相等的含义,能识别给定集合的子集,了解在具体情境中全集与空集的含义; 3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集,理解在给定集合中一个子集的补集的含义,会求给定子集的补集;4.能使用韦恩(Venn )图表达集合间的关系与运算. 【知识要点】 1.集合的含义与表示(1)一般地,我们把研究对象统称为元素,把一些元素组成的总体叫集合,简称集. (2)集合中的元素的三个特征:确定性、互异性、无序性 (3)集合的表示方法有:描述法、列举法、区间法、图示法(4)集合中元素与集合的关系分为属于与不属于两种,分别用“∈”或“∉”来表示. (5)常用的数集:自然数集N ;正整数集N *(或N +);整数集Z ;有理数集Q ;实数集R. 2.集合之间的关系(1)一般地,对于两个集合A ,B .如果集合A 的任何一个元素都是集合B 的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作A B ⊆;若A ⊆B ,且A ≠B ,则A B ⊂,我们就说A 是B 的真子集. (2)不含任何元素的集合叫做空集,记作Φ,它是任何集合的子集,即∅⊆A . 3.集合的基本运算(1)并集:A ∪B ={x |x ∈A 或x ∈B }; (2)交集:A ∩B ={x |x ∈A 且x ∈B }; (3)补集:∁U A =.4.集合的运算性质(1)A∩B=A⇔A⊆B,A∩A=A,A∩∅=∅;(2)A∪B=A⇔A⊇B,A∪A=A,A∪∅=A;(3)A⊆B,B⊆C,则A⊆C;【点评】:注意两个集合代表元的条件,容易忽视集合中元素属于整数的条件.练习2.【江西省九江市2019届高三第一次联考】已知集合,集合,则图中的阴影部分表示的集合是()A.B.C.D.【答案】C【分析】图中阴影部分表示的集合为,所以先求出集合A,B后可得结论.【解析】由题意得,所以,即图中阴影部分表示的集合为.故选C.【点评】本题考查集合的元素、韦恩图和集合的补集运算,解题的关键是认清图中阴影部分表示的集合以及所给集合中元素的特征,属于基础题.(四)代表元变化问题例4.【内蒙古鄂尔多斯市一中2018-2019模拟】已知A={y|y=log2x,x>1},B=,则() A.B.C.D.【答案】C【分析】利用对数性质和交集定义求解.【解析】∵A={y|y=log2x,x>1}={y|y>0},B=,∴A∩B={x|0x≤1}= .故选C.【点评】本题考查交集的求法,是基础题,解题时要注意对数函数的性质的灵活运用.练习1.【华东师范大学附中2018-2019学年试题】集合,的元素只有1个,则的取值范围是__________.【答案】【分析】由中有且仅有一个元素,可知两个方程联立得到方程是一次方程或二次方程有两个相等的根;利用分类讨论思想,可求出的范围.【解析】联立即,是单元素集,分两种情况考虑:,方程有两个相等的实数根,即,可得,解得,方程只有一个根,符合题意,综上,的范围为故答案为.【点评】本题主要考查集合交集的定义与性质以及一元二次方程根与系数的关系,意在考查综合应用所学知识解答问题的能力,属于中档题.练习2.同时满足:①M ⊆{1,2,3,4,5};②a∈M且6-a∈M的非空集合M有()A.9个B.8个C.7个D.6个【答案】C共有7个集合满足条件,故选C.【点评】本题主要考查了元素与集合的关系,以及集合与集合的关系的判定与应用,其中熟记元素与集合的关系,以及集合与集合的包含关系是解答的关键,着重考查了推理与运算能力,属于基础题.(五)分类讨论问题例5. 【九江市2019届高三第一次十校联考】(1)求解高次不等式的解集A;(2)若的值域为B,A B=B求实数的取值范围.【答案】(1);(2)【分析】(1)利用讨论的方法求得不等式的解集A;(2)根据函数的单调性求出值域B,由得,转化为不式等组求解,可得所求范围.【解析】(1)①当时,原不等式成立.②当时,原不等式等价于,解得.,综上可得原不等式的解集为,∴.(2)由题意得函数在区间上单调递减,∴,∴,∴.∵,∴,∴,解得,∴实数的取值范围是.【点评】解答本题时注意转化思想方法的运用,已知集合的包含关系求参数的取值范围时,可根据数轴将问题转化为不等式(组)求解,转化时要注意不等式中的等号能否成立,解题的关键是深刻理解集合包含关系的含义.练习1.设集合,,若,求实数a的取值范围;若,求实数a的取值范围.【答案】(1)(2)【分析】(1)由题意得,,根据可得,从而可解出的取值范围;(2)先求出,根据可得到,解出的取值范围即可.【解析】由题意得,;(1)∵,∴,解得,又,∴,∴实数的取值范围为.(2)由题意得,∵,∴,解得.∴实数的取值范围为.【点评】本题考查集合表示中描述法的定义,一元二次不等式的解法,子集的概念,以及交集的运算.根据集合间的包含关系求参数的取值范围时,注意转化方法的运用,特别要注意不等式中的等号能否成立.(六)子集中忽视空集问题例6【云南省2018-2019学年期中考试】已知集合,若,则的取值集合是()A.B.C.D.【答案】C【分析】本题考查集合间的包含关系,先将集合,化简,然后再根据分类讨论.【解析】∵集合∴若,即时,满足条件;若,则.∵∴或∴或综上,或或.故选C.【点评】本题主要考查利用集合子集关系确定参数问题,易错点是化简集合时没有注意时的特殊情况.练习1.已知集合,.(1)若,求;(2)若,求实数的取值范围.【答案】(1) (2) 或【点评】由集合间的关系求参数时,常借助数轴来建立不等关系求解,此时应注意端点处是实点还是虚点(七)新定义问题例7.【清华附属中2018-2019学年试题】集合A,B的并集A∪B={1,2},当且仅当A≠B时,(A,B)与(B,A)视为不同的对,则这样的(A,B)对的个数有__________.【答案】8【分析】根据条件列举,即得结果.【解析】由题意得满足题意的(A,B)为:A=,B={1,2};A={1},B={2};A={1},B={1,2};A={2},B ={1};A={2},B={1,2};A={1,2},B=;A={1,2},B={1};A={1,2},B={2};共8个.【点评】本题考查集合子集与并集,考查基本分析求解能力.练习1.【华东师范大学附中2019届高三数学试卷】已知集合M=,集合M的所有非空子集依次记为:M1,M2,...,M15,设m1,m2,...,m15分别是上述每一个子集内元素的乘积,规定:如果子集中只有一个元素,乘积即为该元素本身,则m1+m2+...+m15=_____【答案】【分析】根据二项式定理的推导过程构造出函数,当时,函数的值就是所有子集的乘积。
高考数学必考题型及答题技巧
高考数学必考题型及答题技巧高考数学必考题型及答题技巧高考数学必考题型是什么题型一运用同三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。
题型二运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。
题型三解三角函数问题、判断三角形形状、正余弦定理的应用。
题型四数列的通向公式的求法。
高考数学答题技巧有哪些1、函数或方程或不等式的题目,先直接思考后建立三者的联系。
首先考虑定义域,其次使用“三合一定理”。
2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4、选择与填空中出现不等式的题目,优选特殊值法;5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;高考数学考试大纲①单项选择考试范围。
集合的基本运算、复数的基本运算、统计与概率-排列组合、立体几何、概率事件、指数与对数函数、平面向量与平面几何、函数的与导数。
②多项选择考试范围。
解析几何(双曲线)、三角函数、不等式应用、对数运算及不等式基本性质。
③填空题考试范围。
解析几何(抛物线)、数列(等差或等比)、三角函数、立体几何轨迹计算。
④解答题考试范围。
三角函数(正弦余弦定理)、等比数列及其求和、统计与概率、立体几何、解析几何、函数与导数。
高考数学不及格影响院校录取吗?高考有科目不及格,不会影响太大,只要总分足够高,还是能上好的大学,只是在同等分数下,你的分数不及格,学校可能会优先选择及格的学生。
高中数学各题型命题规律和解题方法
高中数学各题型命题趋势和解题方法高中数学是很多同学高考道路上的拦路虎。
想不想数学成绩也提到130以上?今天带来了高中数学各题型命题趋势和解题方法,希望同学们能认真看完!高考数学各题型答题策略1.选择题——“不择手段”。
解题策略如下:(1) 注意审题。
把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。
(2) 答题顺序不一定按题号进行。
可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。
若有时间,再去拼那些把握不大或无从下手的题。
这样也许能超水平发挥。
(3) 挖掘隐含条件,注意易错易混点,例如集合中的空集、函数的定义域、应用性问题的限制条件等。
(4) 方法多样,不择手段。
高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。
不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。
(5) 控制时间。
一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。
2.填空题——“直扑结果”。
解题策略如下:填空题和选择题有相似之处,有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:(1) 作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;(2) 解答填空题要做到“正确、合理、迅速”。
解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
3.解答题——“步步为营”数学高考阅卷评分实行懂多少知识给多少分的评分办法,叫做“分段评分”。
数学如何命题
一、衡量试卷质量的指标衡量试卷的优劣,通常我们用试卷的信度、效度、难度和区分度等指标来衡量数学试卷的质量.因此,要编制一份高质量的数学试卷,我们必须先了解这些指标的含义,并掌握它们之间的关系。
1.信度试卷的信度是表示试卷作为测试工具的可靠程度的指标.试卷的信度高说明考生分数不易受偶然因素的影响,考生分数可以比较真实地反映考生的实际水平。
影响试卷信度的因素有:①试题的难度.过难或过易的试题都会降低试卷的信度.②题目的数量.试卷题目数量越多,信度越高,因为题目数量增多,尤其是同质题目增多,在每道题目上的随机误差将会互相抵消.虽然测评受到内容和时间的限制,题目数量不能太多,但可尽量把大题化小,增加题目数量,以提高信度.③题目用语的准确性.题目用语不标准、不准确也会降低试卷的信度.试卷的信度值必须在考后才能计算出来,而且计算过程比较复杂,因此为提高试卷的信度,教师在命题时应尽量排除上述因素的干扰,使试卷的信度值尽可能高.2.效度试卷的效度是衡量考试结果与预定要达到的考试目标相符合的程度,效度反映了试卷的有效程度.如果测试的结果与学生平时学习的情况基本一致,这样的试卷有较高的效度,说明试卷内容恰恰是需要考查的内容;如果试卷的效度低,则说明所要考查的内容没有完全考查到.初学者数学学业考试中主要关注试卷的内容效度和结构效度,内容效度反映的是试卷是否按《数学课程标准》的要求,使各部分内容特别是教学重点内容得到合理的分配;结构效度反映的是试卷中的图文结构、题型结构和试卷的排版印刷质量是否合理等.提高试卷的效度要注意三个方面的问题:一是考试的目标要明确,明确是要考查学生对基础知识的掌握,还是要考查学生应用数学知识进行推理判断的能力,或是两者兼而有之;二是试题的设计要有效地体现考试目标,填空题、选择题一般用来考查学生对基础知识的掌握,解答题则用来考查学生的数学运用能力;三是试卷的要求与《数学课程标准》的要求要一致,试卷内容要涉及数学教科书中的重点部分,排除与考试无关的内容,试卷中不要出现偏题、怪题,试卷内容要兼顾知识与能力两个方面.3.难度难度是指试题或试卷的难易程度,是试题或试卷考查学生知识和能力水平适合程度的指标.1.试题的难度数学试题一般分为三种形式:选择题、填空题和解答题.计算试题难度的方法有两种:①选择题、填空题的难度计算公式为P=R/N .(P为某试题的难度,R 为做对该题的人数,N为参加考试的总人数.)②解答题难度的简易计算公式为P=W/X.(P为某试题的难度,W为参加考试的学生对该题的平均得分,X为该题的满分数.)从上述的计算公式可以知道,试题难度过大或过小,都不能区分学生的学习水平,所以掌握试题的难易程度。
高中数学命题及其关系_充分条件与必要条件
3.反证法证明命题的一般步骤 (1)否定结论,(2)从假设出发,经过推理论证得出矛盾,(3)断定
假设错误,肯定结论成立. 反证法属于间接证法,当证明一个结论成立,已知条件较少,或
结论的情况较多,或结论是以否定形式出现,如某些结论中 含有“至多”、“至少”、“惟一”、“不可能”、“不都” 等指示性词语时往往考虑采用反证法证明结论成立.
四种命题的结构不明致误
【典例2】 写出命题“若a,b都是偶数,则a+b是偶数”的逆 命题,否命题,逆否命题,并判断它们的真假.
[剖析] 解本题易出现的错误有两个:一是对一个命题的逆命 题、否命题、逆否命题的结构认识模糊出错;二是在否定一 个结论时出错,如对“a,b都是偶数”的否定应该是“a,b 不都是偶数”,而不应该是“a,b都是奇数”.
[正解] 逆命题:“若a+b是偶数,则a,b都是偶数.”它是假命 题;
否命题:“若a,b不都是偶数,则a+b不是偶数.”它是假命题; 逆否命题:“若a+b不是偶数,则a,b不都是偶数.”它是真命题.
[评析]四种命题的结构与等价关系
如果原命题是“若A,则B”,则这个命题的逆命题是“若B,则 A”,否命题是“若¬A,则¬B”,逆否命题是“若¬B,则¬A”. 这里面有两组等价的命题,即“原命题和它的逆否命题等 价,否命题与逆命题等价”.在解答由一个命题写出该命题 的其他形式的命题时,一定要明确四种命题的结构以及它 们之间的等价关系.
x2
x2
1,
2,
m m
2, 3
1,
m
2;
又≥0,即: m2 4m 12≥0;解之得m 6或m≤ 2;
高考数学命题点及答题技巧
高考数学命题点及答题技巧1、选择题高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查三基为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大。
选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面。
解答选择题的基本策略是:要充分利用题设和选择支两方面提供的信息作出判断。
一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接解;对于明显可以否定的选择支应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。
解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
从考试的角度来看,解选择题只要选对就行,至于用什么策略手段都是无关紧要的,所以人称可以不择手段。
但平时做题时要尽量弄清每一个选择支正确的理由与错误的原因。
另外,在解答一道选择题时,往往需要同时采用几种方法进行分析、推理,只有这样,才会在高考时充分利用题目自身提供的信息,化常规为特殊,避免小题大作,真正做到准确和快速。
总之,解答选择题既要看到各类常规题的解题思想原则上都可以指导选择题的解答,但更应该充分挖掘题目的个性,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。
这样不但可以迅速、准确地获取正确答案,还可以提高解题速度,为后续解题节省时间。
2、填空题填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。
不过填空题和选择题也有质的区别。
首先,表现为填空题没有备选项。
因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些,长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学命题的常用方法与技巧通过高考数学的典型试题,分析高中数学考试的特点,研究新课程新理念下高中数学命题技术。
一、高中数学考试及其价值取向的变化新课程下的高中数学考试的变化突出体现为价值取向的变化。
与传统的数学考试价值取向相比,新课程下的高中数学考试更加注重发展性、整体性、实践性、开放性、教育性等五个方面的价值取向。
1.考试目的注重发展性:从考试的目标上看,考试命题要“一切为了学生的全面、健康、持续发展”,从考试对象的实际状况出发,遵循课程标准但不面面俱到人为追求“知识技能”考点的覆盖面,注意数学能力、数学兴趣、态度、价值观和理性精神方面的教育目标达标测评,有所体现对过程性目标(经历、体验、探索)的测评。
要有利于实现知识、能力与态度等方面的融合与平衡,坚持以发展性为主的指导思想。
这就要求考试内容的选择要以知识为基础,以能力为重点,以发展为目标,三者有机融合,而不是简单划分比例,既有效地检测出学生的发展水平,又有效地促进学生的发展。
从考试的导向看,高考指挥棒作用体现在为教与学的方式的改进服务,通过高考抑制将数学能力技能化的过分训练,使探索性与接受性学习并行,为动手实践、主动探索、使用交流的学习方式提供活跃的生存空间。
在推进课程改革实验前期和中期,要注意三个层面:一是控制计算技能技巧层面的难度和容量,将计算器引入考试中;二是试题中减少课本和资料上的“变式题”。
一度在数学教学中盛行的“变式题”训练,其实质是机械训练追求考试中的现实利益(得分),这种变式训练将活的数学训练成僵化的数学,使学生的数学能力退化成“解题熟练工”,要从源头上堵住这种做法使变式训练让位于真正的培养学生的数学能力;三是试卷容量不要过大,让学生有充足的思考和答题时间,让单纯提高解题速度的机械训练不能奏效。
从考试的激励功能看,考试命题要体现对学生的人文关怀,摒弃考试就是甄别学业和成绩排队的错误观念,给学生创造能够展示自我所学数学内容的更多机会,这样才能真正做到让学生认识自我,建立数学自信心和争取更大的发展。
2.命题构思注意整体性:考试的数学期望一般用及格、高分率、均分三项指标反映。
随着考试性质的不同这三项期望值有所不同,如“高考”的高分率期望值与高校招生率高度相关,随着近年来大学招生规模的扩大,高分率期望值逐渐加大。
命题构思对考试的及格率、高分率、平均分的期望值应有整体性考虑,这三项指标定的过低,将会明显加大学习竞争并引发过度的机械性解题训练。
考试的“区分度”是一把双刃剑,一方面考试内在的甄别功能决定了任何考试都存在“区分学生”,有些考试(如高考)更是“区分选拔”的要求较强;另一方面过度的“区分”,如强调“一分之差”的准确无误等,必然会降低数学教学的活力,将教与学从重数学过程引向重数学解题过程。
高中阶段的各种考试(包括高考),都应起点不高、难度为平台式上升,“区分选拔性”题目的个数适当、分数要少。
从一个群体来说,略为降低一点区分度,可以为教与学带来生机与活力,提升整个群体的学习数学的兴趣,给创新型人才提供了发展的空间。
当然,理想的数学考试应当是“平均分高,同时,区分度好”。
3.编拟试题注重开放性考试的开放性体现在两个方面,一是考试方式;二是考试试题。
考试方式的改革已有很多作法,如将长周期作业、研究性学习课题纳入到考试范畴和记分,这些无疑是很有价值的,但还难为一般人(社会)的普遍赞同。
4.试题的内容注重实践性新课程下的数学教科书的突出特点之一在于数学的生活化、情境化、现实化和大众化,这使得教与学都对数学的认识更全面,看到了现实世界中的数学,这对绝大多数不会终身从事数学工作的学生来说,无疑是好的。
高中生数学考试应与之相适应,使考试试题的特征突出实践性。
这里的实践性与那些需要长时间完成的课题学习不同:一是避免涉及实际的问题全部过难或者过易,应高、中、低档题目都有;二是尽量不超过已学知识的范畴,或是能用已学知识在短时间解答;三是除题目的背景来源于实际生活使学生感受到“处处有数学”外,还可以用所学数学知识去解释或观察生活中的某种情景,构思试题。
5.试题的内涵注重教育性一套试题的内涵,包含了对数学和数学教育的价值判断,不同时期的试题对数学的教育性有不同要求,新数学课程下的数学试题应与时俱进体现出时代特征,陈旧与僵化的技能技巧和与实际相背离的一些数学应用问题,都不应当再纳入试题范围。
在设置与实际相联系的数学问题中:一要注重真实性,使学生受到怎样“用数学”的教育;二是试题的背景,应以正面的教育影响为主,特别是选取学生能感受到的有影响的题材,这样通过考试可以加倍放大其思想教育价值,如可以利用“恩格尔系数”构造有关分段函数等类的试题。
6.试题的选材更加注重生活性、现实性新的普通高中数学课程强调让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。
其实,在生活中,会应用数学是现代数学教育发展趋向,从各种形式的情景中获取信息,也是学生适应现代社会必须具备的能力。
为此,选拔性试题的选材要从突出数学化的目标出发,题目应来源于社会现实问题数据真实可信,而所涉及到的数学知识和方法在今后的实际生活和继续学习中十分重要。
二、出卷步骤1、了解测试的性质什么级别的测试测试对象是谁(哪个年级,学生水平)测试范围是什么测试时间是多少试卷大体的组成结构(题型、分值)难度系数预控制在多少2、重温课程标准和教材充分了解教学目标(三维)充分把握教学重难点充分理清知识脉络,融会贯通3、制定“命题双向细目表”双向细目表是一种考查目标(能力)和考查内容之间的列表。
三个要素:考查目标考查内容考查目标与考查内容的比例。
4、按照“命题双向细目表”命题①、科学性原则②、明确性原则③、全面性原则④、层次性原则⑤、以生为本原则⑥、创新性原则5、试答全部试题命题人必须对试题进行试答,并记录答题时间。
一般情况下,用于实际考试的时间,为命题教师试答试卷时间的3倍。
6、调整完善①、根据答题实际时间的需要,对试题内容进行适当调整。
②、根据答题估计试卷难度,对试题内容进行适当调整。
7、制定评分标准参考答案给分尺度评分标准(分步)三、命题质量的检测衡量考试的质量通常有四个重要的指标:效度、信度、难度、区分度。
自己先做一遍,然后请同科不同级教师做一遍给出评估,然后修改。
四、命题方法1.通解命题法:每一道题都有对应的算法,在算法不变的情况下对题目做一些更新是最简单的命题方法。
常见的技巧有:(1)改变数据:将原题中的数据作一些相应的改动,当然这在一个浅尝的过程,不能随意, 应使结果简洁明了。
例1:设集合U ={3,4,5,6},M ={x ∈U|x 2-9x +p =0},若 U M ={3,6},则实数p 的值为( )A.-20B.20C.-18D.18若把 U M ={3,6}改为 U M ={4,5},答案由B 变为D.(2) 改变题型:将选择题、填空题、解答题在题型加以变化。
例2:设函数f(x)= ⎩⎨⎧x x ≥0-x x <0,若f(a)+f(-1)=2,则a= ( ) A.3 B.±3 C.-1 D.±1若将选项去掉就变为填空题了。
(3)改变设问方式:在不改变本质要求的情况下,对设问的形式作一些变化。
例3:设函数f(x)= 2x + lnx,则( ) A.x= 12 为f(x)的极大值点 B.x= 12为f(x)的极小值点 C.x= 2为f(x)的极大值点 D.x= 2为f(x)的极小值点 将对极值的考察变为对函数单调性和极值的考察:A.在(-∞,12 )上,f(x)单调递增B.x= 12为f(x)的极小值点 C.在(0,2)上,f(x)单调递增 D.x= 2为f(x)的极小值点2.同解命题法(1)改变条件:将原题的意境加以变动,使人看不见其本来面目。
例4:设OA →=(1,-2),OB→=(a,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A,B,C 三点共线,则1a + 2b的最小值是 ( ) A.4 B.6 C.8 D.10该题条件是由直线y=ax+b 过点(2,1)改编的,原题的意境发生大变化而结果不变。
(2) 改变结论:将原来题中的结论或者条件进行强化或弱化变成新题。
例5:tan15°+tan30°+ tan15°·tan30°的值是____________.将题目中的角一般化,变为tan α+tan(45°-α)+ tan α·tan(45°-α)的值是_______.(3) 改变计算难度:将一道“难题”通过计算层面的降低达到降低难度的目的。
例6:若函数f(x)= x (2x+1)(x+a) 为奇函数,则a=________.将题目改为:若函数f(x)=a-2x 2x+1+b 为奇函数,则a=____,b=______. 计算量大大增加。
3.类比创新法 (1) 拓展思维广度:将原来的题目的思维方式提升,考查对知识点的理解广度。
例7: 如果函数g(x)=⎩⎪⎨⎪⎧2x-3 x >0f(x) x <0是奇函数,则f(x)=________. 此题的设计是在学生对函数奇偶性理解的基础上,增加对分段函数奇偶性的认识,从而在更广的层面理解奇函数和偶函数。
例8:(2011年安徽卷)设f(x)= e x 1+ax 2,其中a 为正实数. (1)当a= 43时,求f(x)的极值点; (2)若f(x)为R 上的单调函数,求a 的取值范围.对于第一问可改为:设a >0,讨论函数的单调性;第二问改为:若f(x)在R 上的不是单调函数,求a 的取值范围.从而在更广的层面对不等式,导数,函数的单调性和极值全面考察。
(2) 拓展思维深度:从数学研究或高一级数学各科中寻找新题。
常常包含一些初等的结论,如恒等式,不等式等。
如:利用微分基本道理设计函数的有关命题;利用柯西不等式或排序不等式设计不等式的有关命题.总之,改编和创作数学题目既要遵循一定的规律,也要有创新精神。
要探索解题规律,研究高考试题,把握命题方向。
在教学中要搞探究式教学、变式教学等研究性教学活动。
只有在全面深刻理解基本知识和基本数学方法的基础上,才能有所作为,才能大有作为!。