搅拌摩擦焊工艺研究
铜及铜合金搅拌摩擦焊接工艺研究
铜及铜合金搅拌摩擦焊接工艺研究铜和铜合金搅拌摩擦焊接工艺,听起来是不是有点高深莫测?别怕,我保证这篇文章绝对让你看得明白,也能感受到一丝轻松幽默的气氛。
咱们就从这个“搅拌摩擦焊接”说起,这可不是啥魔法,而是现代焊接技术中的一项大杀器。
简单来说,就是利用摩擦热把金属搅拌得像粥一样,接着在高温下“粘”在一起,搞得好,连工件本身都能化学“手牵手”,像结婚那样牢牢结合。
别看这玩意儿名字听着有点高大上,实际操作起来也是可以“手到擒来”的,只不过得掌握一些窍门,知道什么时候加劲,什么时候轻轻松松就好。
铜这东西,咱们平时的日常生活里可是随处可见。
从家里的水管到电线、甚至一些装饰品,铜的身影几乎无处不在。
铜不仅外形好看,耐腐蚀,导电性好,而且加工起来也相对容易。
但有一点,铜的焊接可没那么简单。
它的高导热性,让焊接的过程中热量一下子就“跑”了,导致很多时候焊点没办法充分熔化。
所以传统的焊接方法,经常会让人愁眉苦脸:明明焊了,结果一碰就裂,简直让人抓狂。
这个时候,搅拌摩擦焊接就显得尤为重要了。
你可以想象,铜和铜合金的焊接过程就像是在厨房里搅拌一锅热乎乎的粥。
首先需要有个“搅拌工具”,这就是搅拌摩擦焊接中的“工具头”了。
这个工具头就像是一个超级能干的小助手,靠高速旋转和工件表面摩擦,产生大量的热量,把金属熔化,再通过“搅拌”把两块金属牢牢地粘合在一起。
操作的时候,需要小心翼翼,不能太猛,也不能太轻松。
因为太猛的话,就容易让温度过高,反而把铜合金弄得“烤焦”了;而如果太轻,金属又没有充分的接触,也就不能达到预期的效果。
搅拌摩擦焊接技术最妙的地方就是,它不像传统焊接那样需要填充金属或者焊丝,简直是“纯粹”!两个工件直接“亲密接触”,通过机械力和摩擦热自我融合。
是不是听起来特别浪漫?不过,要想把这浪漫实现,工艺的控制就得精准。
温度、压力、转速都得恰到好处。
就像你做菜一样,火候掌握不好,结果就不对味;铜合金有很多种,不同的铜合金,它们的焊接特性也不一样,搞不好就得重新研究一遍。
搅拌摩擦焊工艺研究
搅拌摩擦焊定义
搅拌摩擦焊原理
搅拌摩擦焊特点
搅拌摩擦焊应用
搅拌摩擦焊的特点
焊接过程稳定
焊接接头强度高
焊接变形小
焊接接头质量好
Part Three
搅拌摩擦焊的设备 与工具
搅拌摩擦焊的设备
搅拌摩擦焊机:用于实现搅拌摩擦焊工艺的主要设备,包括主机、控制系统、搅拌头等部分。 搅拌头:用于产生摩擦热和压力的部件,通常由轴肩、搅拌针和针尖组成。 控制系统:用于控制搅拌摩擦焊机的运行,包括电源、电机、传动系统等。 辅助工具:包括夹具、支撑架等,用于固定和支撑工件,确保焊接过程的稳定性和精度。
润滑设备:定期对设备进行润 滑,减少磨损和摩擦
更换易损件:及时更换易损件, 保证设备正常运行
Part Four
搅拌摩擦焊的操作 流程
焊接前的准备
确定焊接材料:根据材料类型和厚度选择合适的搅拌摩擦焊工艺参数 清理表面:去除材料表面的油污、氧化物等杂质,保证焊接质量 装配定位:将待焊材料精确装配,确保焊接过程中的稳定性和精度 检查设备:确保搅拌摩擦焊设备处于良好状态,具备焊接条件
搅拌摩擦焊与其他焊接方法的结合
搅拌摩擦焊与激光焊接的结合 搅拌摩擦焊与电子束焊接的结合 搅拌摩擦焊与激光-MIG焊接的结合 搅拌摩擦焊与激光-TIG焊接的结合
搅拌摩擦焊在绿色制造领域的应用前景
搅拌摩擦焊在新能源汽车领 域的应用:电池托盘、电机 壳等部件的焊接
搅拌摩擦焊在航空航天领域 的应用:飞机机身、发动机
海洋工程领域:搅拌 摩擦焊可用于制造海 洋平台、船舶和潜艇 等结构件,提高结构 强度和耐腐蚀性
医疗器械领域:搅拌 摩擦焊可用于制造医 疗器械中的高精度零 部件,如手术器械、 植入物等
Part Seven
镁合金搅拌摩擦焊接工艺及其接头成形机理研究
镁合金搅拌摩擦焊接是一种先进的固态焊接工艺,它通过在材料接头处施加力和摩擦热来实现材料的连接。
这种工艺能够有效地避免传统熔化焊接中可能出现的气孔、裂纹和变形等问题,适用于许多高强度、轻量化材料,尤其对于镁合金等具有优异性能的材料更是如此。
镁合金搅拌摩擦焊接工艺的关键步骤包括:1. 摩擦加热:摩擦焊接头部两个要连接的材料在施加一定的轴向力的情况下,通过摩擦产生的热量来加热,但是不到熔化温度。
2. 搅拌混合:在摩擦加热的同时,引入转速,将材料进行搅拌混合,从而在原子尺度上实现了材料的混合。
3. 压制成形:当材料达到一定的塑性状态后,停止搅拌并施加一定的压力,使得材料得以牢固地连接。
镁合金搅拌摩擦焊接工艺的优势在于可以获得高质量的焊接接头,同时避免了传统焊接中的气孔、裂纹等问题,且无需额外的填充材料。
接头成形机理研究主要包括对焊缝组织结构、机械性能、热影响区、残余应力等方面的分析和研究。
通过对接头成形过程中的温度场、应力场等参数进行模拟和实验研究,可以深入了解接头形成的机理,并为优化工艺参数提供理论指导。
镁合金搅拌摩擦焊接工艺的详细步骤如下:1. 材料准备:选择合适的镁合金材料,并对焊接接头进行预处理,包括切割、清洁和表面处理等。
2. 摩擦加热:将两个要连接的镁合金材料端面互相接触,并施加一定的轴向力。
然后,在这种状态下,通过旋转工具(例如圆柱形钎焊头)施加一定的摩擦力,使材料端面之间产生摩擦,并产生大量的热量。
3. 搅拌混合:随着摩擦加热的继续,材料开始变软且具有塑性。
在此阶段,继续旋转工具并施加压力,使工具沿接头方向进行横向搅拌混合。
这样可以将材料的晶粒结构重新排列,从而实现了材料的混合。
4. 压制成形:当材料达到一定的塑性状态时,停止搅拌并继续施加一定的压力。
这将使得材料得以牢固地连接,并形成焊接接头。
压力的大小和持续时间要根据具体材料和工艺进行调整。
通过以上步骤,可以实现镁合金材料的搅拌摩擦焊接。
不锈钢搅拌摩擦焊工艺与搅拌头研究的开题报告
不锈钢搅拌摩擦焊工艺与搅拌头研究的开题报告一、研究背景不锈钢具有优良的耐腐蚀性和强度,广泛应用于机械、航空航天、海洋工程等领域。
在工业生产中,不锈钢零部件的连接常采用焊接工艺。
但是,传统的焊接工艺存在着焊接变形、裂纹等问题,限制了不锈钢的进一步应用。
搅拌摩擦焊作为一种新型焊接工艺,可以有效地避免焊接变形和裂纹的问题,成为不锈钢材料连接的一种重要方式。
然而,搅拌摩擦焊的质量和效率受到搅拌头形状、尺寸等因素的影响,因此需要开展搅拌头研究,以提高搅拌摩擦焊的质量和效率。
二、研究内容本次研究的主要内容包括以下两个方面:1、不锈钢搅拌摩擦焊工艺的研究:针对不锈钢材料的焊接特性和工艺参数,建立合理的搅拌摩擦焊参数体系,包括旋转速度、下压力、搅拌深度等参数的优化设计。
通过实验验证,确定最佳工艺参数,并评估焊缝的质量。
2、搅拌头形状对焊缝质量的影响研究:针对不同形状、尺寸的搅拌头,对不锈钢材料进行搅拌摩擦焊实验,对焊缝的外观、显微结构、力学性能等进行评估。
通过比较不同搅拌头的性能,探究搅拌头形状对焊缝质量的影响规律。
三、研究意义1、优化不锈钢搅拌摩擦焊参数体系,提高焊缝的质量和生产效率,推广搅拌摩擦焊在不锈钢材料连接中的应用。
2、探究搅拌头形状对焊缝质量的影响规律,为搅拌头的设计提供参考。
3、为不锈钢材料的连接提供新型、高效的焊接技术,促进不锈钢材料在机械、航空航天、海洋工程等领域的应用。
四、研究方法本次研究采用实验研究法,包括制备试样、构建实验系统、调节搅拌摩擦焊参数、观察焊缝形貌和显微组织、测量力学性能等。
同时,采用数值模拟方法,对搅拌头和焊缝的温度场分布进行模拟分析,探究搅拌头形状对焊缝质量的影响规律。
五、预期成果1、建立不锈钢搅拌摩擦焊参数体系,确定最佳工艺参数,提高焊缝质量和生产效率。
2、研究不同形状、尺寸的搅拌头对焊缝质量的影响规律,为搅拌头设计提供参考。
3、揭示焊接过程中搅拌头的作用机制,为焊接研究提供新的思路和方法。
铝合金搅拌摩擦焊技术研究及应用
铝合金搅拌摩擦焊技术研究及应用铝合金搅拌摩擦焊技术是一种高效、环保的焊接方法,在航空航天、交通运输、轻工制造等领域具有广泛应用前景。
本文将从工艺原理、研究进展、优势与挑战等方面进行分析,全面介绍铝合金搅拌摩擦焊技术的研究及应用。
搅拌摩擦焊是一种非传统焊接方法,它将工件接头通过旋转和外力压合的方式进行连接,并在摩擦热量和塑性变形的作用下实现焊接。
铝合金在搅拌摩擦焊过程中,由于高温和塑性变形,形成了均匀的焊接区域,焊缝强度和密封性良好。
与传统的焊接方法相比,铝合金搅拌摩擦焊具有以下几个优点:首先,搅拌摩擦焊无需外加焊接材料,避免了常规焊接中的焊剂使用和气体保护等问题。
这降低了成本,同时减少了环境污染。
其次,搅拌摩擦焊具有较高的焊接速度和效率。
焊接头变形均匀,焊接时间短,适用于大面积或长尺寸工件的焊接。
第三,搅拌摩擦焊对铝合金的应变硬化效应较小,减少了焊接区域的硬化现象,提高了焊缝的塑性和可靠性。
铝合金搅拌摩擦焊技术的研究进展日益丰富。
首先,针对不同铝合金材料和焊接条件,研究者通过调整焊接参数和其他工艺控制手段,优化焊接质量和性能。
例如,通过控制转速、下压力、摩擦时间等参数,可以实现理想的焊接接合。
同时,研究者还对焊接头几何形状、初始材料状态等因素进行改善和控制,提高焊接接合的可靠性。
其次,近年来,通过引入其他技术手段,如电流、激光、超声等,与搅拌摩擦焊相结合,可以进一步提高焊接接合的强度和质量。
例如,搅拌摩擦挤压焊技术将搅拌摩擦焊与挤压焊结合,对铝合金零件进行焊接加工,获得了良好的焊接接合。
此外,铝合金搅拌摩擦焊技术在实际应用中也取得了广泛成功。
在航空航天领域,搅拌摩擦焊被用于连接飞机结构件、涡轮叶片等零部件,取得了良好的焊接接合效果。
在交通运输领域,搅拌摩擦焊被广泛应用于铁路和汽车制造中。
在轻工制造领域,搅拌摩擦焊技术也被广泛应用于电子设备、电池等领域的制造。
然而,铝合金搅拌摩擦焊技术仍面临一些挑战。
铝合金搅拌摩擦焊工艺研究
目前,该所主要是与航空、航天、船舶、高速列车及汽车等焊接设备制造厂和国际性的大公司联合,以团体赞助或合作的形式(TWI的GSP项目)研究、开发搅拌摩擦焊技术,不断扩大其应用范围。
目前由工业企业赞助的研究项目包括:大厚度铝合金的搅拌摩擦焊、钢的搅拌摩擦焊、钛合金的搅拌摩擦焊、汽车轻型构件的搅拌摩擦焊等。美国的爱迪生焊接研究所(EWI)与TWI密切协作,也在进行FSW工艺的研究。美国的洛克希德。马丁航空航天公司、马歇乐航天飞行中心、美国海军研究年、Dartmuth大学、德国的Stuttgart大学、澳大利亚的Adelaide大学及澳大利亚焊接研究所等都有从不同的角度对搅拌摩擦焊进行了专门研究。
Boeing公司投资几百万美元,制造了用于Delta运载火箭的大型低温燃料容器的大型专用搅拌摩擦焊机,BAE空中客车公司正在对FSW技术进行方法、性能和可行性验证,目的是用来生产中型和大型商用客机,所采用的搅拌摩擦焊机由地处合利伐克斯的GRAWFORD-SWIFT公司制造,据说是欧洲功率最大的焊机。美国ECLIPSE(月蚀)航空公司将利用FSW来制造一架10.86m长、翼展11.88m的中型飞机。公司估计,采用FSW可以将机身壁板上的加强肋、框架的装配时间减少80%,使飞机成本降低为83.7万美元。此飞机的主要结构件、蒙皮等全部采用国际上最新的连接技术――搅拌摩擦焊技术制造,客机的机身基本上全部利用搅拌摩擦焊制造,其中包括飞机蒙皮、翼肋、弦状支撑、飞机地板以及结构件的装配等
1. 2提高飞机制造效率
传统的飞机结构多为机械连接的装配方法,零件多,速度慢,制造步骤复杂,不容易实现生产装配自动化。但搅拌摩擦焊技术在飞机制造领域的应用,可使飞机高成本、大件加工、机械连接方式变为低成本、小件焊接、整体成型结构方式,有效提高了飞机制造装配的效率,缩短了飞机零、部件的制造装配周期。另外,搅拌摩擦焊技术对硬件要求较低,完全可以通过对传统机床设备的改造,或在现有机械设计和加工能力的基础上完成。而且焊接过。目前国外公司已经在数控多坐标铣床和焊接机器人系统上应用搅拌摩擦焊技术,实现搅拌摩擦焊的变截面的空间曲线轨迹的焊接。波音公司已经成功地实现了复杂结构的飞机门的曲线搅拌摩擦焊焊接;另外在战斗机的裙翼上成功地实现了薄板T形接头的搅拌摩擦焊连接,并且进行了相关飞行测试。
焊接工艺中的摩擦搅拌焊技术
焊接工艺中的摩擦搅拌焊技术摩擦搅拌焊技术在焊接工艺中的应用摩擦搅拌焊(Friction Stir Welding,FSW)技术,作为一种新兴的焊接工艺,正在逐渐得到人们的关注和认可。
它的出现不仅改变了传统焊接方法,还带来了许多优势和创新。
本文将从摩擦搅拌焊技术的原理、应用范围和未来发展等方面,探讨其在焊接工艺中的重要性和价值。
一、摩擦搅拌焊技术的原理摩擦搅拌焊技术是一种无熔区焊接方法,它利用回转的焊接工具,通过摩擦加热和搅拌的作用,将金属板材相互连接。
其原理主要包括以下几个方面:1. 摩擦加热:焊接工具通过与工件的摩擦产生热量,将工件表面加热至可塑性温度,但不达到熔点。
这种无熔区的加热方式是摩擦搅拌焊的特点之一。
2. 塑性流动:在摩擦作用下,金属材料开始发生塑性变形,产生较强的流动性,但保持了原有的晶体结构。
通过搅拌工具的旋转和推进,工件的材料被搅拌成连续的焊接接头。
3. 冷却固化:在搅拌过程中,焊接接头由于摩擦加热而达到可塑性状态,但在离开焊接工具后,温度迅速下降,接头被固化为连续的金属接合部分。
二、摩擦搅拌焊技术的应用范围摩擦搅拌焊技术以其独特的焊接原理和优异的性能,广泛应用于不同材料的焊接领域。
其主要应用范围包括以下几个方面:1. 航空航天领域:摩擦搅拌焊技术可以用于航空航天器件的连接,例如飞机翼板、舱壁、涡轮发动机叶片等。
这种焊接方法能够减少热输入,提高焊接质量和强度,减小了焊接变形和应力集中的问题。
2. 轨道交通领域:摩擦搅拌焊技术可以应用于轨道交通车辆的制造和维修。
例如,高铁列车的车体焊接、地铁车辆的连接等。
由于摩擦搅拌焊能够避免焊接变形和减小焊接缺陷,因此能够提高车辆的运行平稳性和安全性。
3. 汽车制造领域:摩擦搅拌焊技术可以应用于汽车车身的焊接。
与传统的焊接方法相比,摩擦搅拌焊能够提供更强的接头强度和密封性,同时还能够降低噪音和振动,提高车身的刚性和安全性。
4. 电子设备领域:摩擦搅拌焊技术可以用于电子设备的组装和连接。
铝合金搅拌摩擦焊工艺分析研究
铝合金搅拌摩擦焊工艺研究1. 本设计<课题)研究的目的和意义 1 搅拌摩擦焊在飞机制造中的优越性搅拌摩擦焊技术从制造成本、重量和连接质量的角度考虑具有显著的优越性。
例如,在飞机上的应用可以减少零件数量和库存,降低装配费用,减少设计成本,减少维修费用等。
同时搅拌摩擦焊代替铆接可以降低接头重量。
对于给定的应力水平而言,搅拌摩擦焊可以消除铆接和螺接的紧固孔引起的应力集中,提高飞机的疲劳性能和所必需的安全检验阈值以及时间间隔。
消除板 -板对接连接中的结合面,防止潮湿介质的入侵和腐蚀。
消除不同材料紧固连接需要的紧固件和可能的电势腐蚀作用。
免去密封介质和局部材料保护等。
1. 1 降低系统制造成本搅拌摩擦焊技术为轻型铝合金结构的低成本、无紧固件的可靠连接提供了可能性,而且已经在航宇飞行器的制造过程中的成本控制上得到突破性进展。
目前飞机制造中零部件的装配连接使用了大量的铆接和螺栓连接结构,如在空中客车A340飞机上使用了超过100万个铆钉。
如果用搅拌摩擦焊接代替铆接,一方面搅拌摩擦焊具有比铆接更快的制造速度(因为搅拌摩擦焊准备简单,装配方便,操作程序少,焊接速度快>。
另一方面搅拌摩擦焊不需要焊丝,不需要对接束缚条,不需要加强板,不需要粘接密封介质,没有紧固铆钉和高锁,在减少制造过程库存零部件的同时,大大减轻了飞机连接装配的重量。
搅拌摩擦焊作为一种低成本的制造技术,用来代替气体保护熔化焊接( GMAW 和APPW> ,大幅度降低了系统费用。
同时使单个燃料筒体的制造周期由原来的 23天,缩短为 6天。
1. 2 提高飞机制造效率传统的飞机结构多为机械连接的装配方法,零件多,速度慢,制造步骤复杂,不容易实现生产装配自动化。
但搅拌摩擦焊技术在飞机制造领域的应用,可使飞机高成本、大件加工、机械连接方式变为低成本、小件焊接、整体成型结构方式,有效提高了飞机制造装配的效率,缩短了飞机零、部件的制造装配周期。
另外,搅拌摩擦焊技术对硬件要求较低,完全可以通过对传统机床设备的改造,或在现有机械设计和加工能力的基础上完成。
铝合金薄板的搅拌摩擦焊工艺及性能的研究的开题报告
铝合金薄板的搅拌摩擦焊工艺及性能的研究的开题
报告
一、研究背景及意义
铝合金材料具有良好的机械性能、耐腐蚀性和导热性,已广泛应用
于航空、汽车、电子等领域。
而对于一些轻量化要求较高的产品,如飞机、汽车等,更需采用铝合金薄板进行制造,以减少重量。
然而,传统
的铝合金薄板焊接方法存在诸多问题,如裂纹、变形等,影响产品质量。
因此,寻找新的铝合金薄板焊接技术已成为研究热点。
搅拌摩擦焊是一种适用于铝合金薄板焊接的新技术,通过机械搅拌
和热力作用,将两个铝合金薄板接合在一起,不需要添加任何填充材料,焊接接头强度高、无明显变形、裂纹等缺陷。
因此,研究铝合金薄板搅
拌摩擦焊的工艺及性能,对于提高产品质量、减少生产成本,具有重要
的现实意义。
二、研究内容及方案
本文将从铝合金薄板搅拌摩擦焊的工艺角度出发,探究其合适的工
艺参数,包括转速、搅拌头形状、压力等对焊接质量的影响,通过实验
方法考察不同参数组合下焊接接头的强度、变形、裂纹等性能指标。
同时,对于焊接接头的微观结构等进行显微镜等测试与分析,以深入了解
铝合金薄板搅拌摩擦焊的机理和性能,并对其工程应用提供依据。
三、研究预期
通过对铝合金薄板搅拌摩擦焊工艺的研究,可望在焊接质量、生产
效率、产品质量等方面取得优异的表现,为铝合金薄板的生产提供科学
依据和技术支持。
同时,可望为当前和未来的铝合金薄板焊接技术的研
究提供有益的参考和借鉴。
《3003铝合金搅拌摩擦焊组织与性能研究》范文
《3003铝合金搅拌摩擦焊组织与性能研究》篇一一、引言随着现代工业的快速发展,铝合金因其轻质、高强、耐腐蚀等特性在航空、汽车、船舶等领域得到了广泛应用。
其中,3003铝合金因其良好的加工性能和中等强度成为了研究的热点。
搅拌摩擦焊(Friction Stir Welding,FSW)作为一种固相连接技术,因其工艺简单、无污染、连接强度高等优点在铝合金的连接中得到了广泛应用。
然而,搅拌摩擦焊过程中的组织演变和性能变化对焊接质量有着重要影响。
因此,对3003铝合金搅拌摩擦焊的组织与性能进行研究具有重要的理论和实践意义。
二、3003铝合金搅拌摩擦焊的组织研究1. 焊接过程组织演变在搅拌摩擦焊过程中,焊缝区的组织会发生显著的变化。
由于摩擦热的产生和材料的流动,焊缝区的铝合金会发生动态再结晶、晶粒长大等现象。
此外,焊接过程中的热循环也会对焊缝区的组织产生影响,如晶粒的形状、大小和分布等。
2. 焊接接头组织分析搅拌摩擦焊的接头组织包括焊缝区、热影响区和母材区。
焊缝区的组织最为复杂,包含了再结晶晶粒、部分未再结晶晶粒以及由材料流动产生的纹理。
热影响区的组织也会发生变化,但程度较焊缝区轻。
母材区的组织基本保持不变。
三、3003铝合金搅拌摩擦焊的性能研究1. 力学性能搅拌摩擦焊的接头力学性能主要包括抗拉强度、屈服强度和延伸率等。
研究表明,合理的焊接工艺参数可以获得高强度的焊接接头。
此外,焊缝区的微观组织对力学性能也有重要影响,如再结晶晶粒的分布和大小等。
2. 耐腐蚀性能铝合金的耐腐蚀性能对其应用具有重要意义。
搅拌摩擦焊的接头耐腐蚀性能受焊接过程中组织的演变和化学成分的变化影响。
研究表明,适当的焊接工艺参数可以减小接头处的化学成分偏析,从而提高接头的耐腐蚀性能。
四、结论通过对3003铝合金搅拌摩擦焊的组织与性能进行研究,可以得出以下结论:1. 搅拌摩擦焊过程中,焊缝区的组织会发生显著的动态再结晶和晶粒长大现象,热影响区的组织也会发生变化。
谈搅拌摩擦焊技术研究与应用
CATALOGUE 目录•搅拌摩擦焊技术简介•搅拌摩擦焊技术研究现状•搅拌摩擦焊技术在不同领域的应用•搅拌摩擦焊技术的前景展望与发展趋势•结论搅拌摩擦焊是一种新型的焊接方法,其核心是利用搅拌头与工件之间的摩擦热和塑性变形热,使工件局部加热至塑性状态,并在搅拌头的强烈搅拌作用下实现材料的连接。
与传统的熔焊方法不同,搅拌摩擦焊过程中不涉及熔化,因此可以避免熔焊过程中出现的元素烧损、接头组织性能恶化等问题。
高效节能接头质量高适用范围广操作简单ABCD航空航天领域汽车制造领域其他领域轨道交通领域搅拌摩擦焊技术的应用范围搅拌摩擦焊技术的研究进展搅拌摩擦焊技术自发明以来,经过多年的研究和发展,已经在多个领域得到广泛应用。
在科研方面,研究者们不断探索新的搅拌摩擦焊技术,提高其焊接质量和效率。
在应用方面,搅拌摩擦焊技术已经应用于航空、航天、汽车、船舶等领域,取得了良好的效果。
010203搅拌摩擦焊技术的优势与局限搅拌摩擦焊技术的研究热点与挑战总结词搅拌摩擦焊技术在航空航天领域的应用具有广泛性和重要性。
要点一要点二详细描述搅拌摩擦焊技术在该领域主要用于制造飞机和火箭等关键部件,如铝合金和钛合金的焊接。
相比传统焊接方法,搅拌摩擦焊技术具有更高的焊接质量和更快的焊接速度,提高了生产效率,降低了制造成本。
此外,搅拌摩擦焊技术还具有较好的接头强度和耐腐蚀性,使得飞机和火箭等关键部件的寿命更长、安全性更高。
航空航天领域总结词搅拌摩擦焊技术在汽车制造领域的应用日益增多,成为汽车制造的重要焊接方法之一。
详细描述搅拌摩擦焊技术在该领域主要用于制造汽车车身、底盘和发动机等关键部件,如低碳钢、铝合金和不锈钢的焊接。
相比传统焊接方法,搅拌摩擦焊技术具有更高的焊接质量和更快的焊接速度,提高了生产效率,降低了制造成本。
此外,搅拌摩擦焊技术还具有较好的接头强度和耐腐蚀性,使得汽车的关键部件更加可靠、耐用。
总结词搅拌摩擦焊技术在船舶制造领域的应用具有广泛性和重要性。
搅拌摩擦焊接实验报告
搅拌摩擦焊接实验报告实验报告:搅拌摩擦焊接实验目的:1. 掌握搅拌摩擦焊接的基本原理和工艺流程。
2. 研究不同焊接参数对焊缝质量的影响。
3. 分析和评价搅拌摩擦焊接的优点和局限性。
实验原理:搅拌摩擦焊接是一种焊接技术,利用摩擦热对焊接接头进行局部加热,然后施加搅拌力使材料发生塑性流动,最终形成无缺陷的焊缝。
焊接参数包括旋转速度、下压力和搅拌速度等。
实验步骤:1. 准备试样:选择相同材料的两个金属试样进行试验。
2. 调整焊接参数:根据实验要求和预先设定的焊接参数范围,选择适当的焊接参数。
3. 焊接试验:将试样夹持到试验装置上,开始进行摩擦加热和搅拌焊接。
注意监测焊接过程中的温度变化和力的变化。
4. 检验焊缝质量:取下焊接接头,用金相显微镜观察焊缝的组织结构和缺陷情况。
可以用拉伸试验和硬度测试进行焊缝性能评价。
实验结果:根据实验的结果,我们可以对搅拌摩擦焊接的影响因素进行分析,找到最佳的焊接参数组合。
实验讨论:1. 搅拌摩擦焊接的优点:焊接速度快、焊接熔池温度低,不会产生气孔和裂纹,焊缝质量高,接头强度满足工程要求。
2. 搅拌摩擦焊接的局限性:需要对焊接参数进行严格控制,材料选择有一定限制,部分材料的焊接接头可塑性较差。
结论:通过搅拌摩擦焊接实验,我们得出以下结论:1. 这种焊接技术具有许多优点,如焊接速度快、焊缝质量高等。
2. 进一步研究和改进该技术,可以扩大其应用范围,提高接头强度。
3. 在实际应用中,应根据具体工程要求和材料特性来选择合适的焊接参数。
在此实验中,我们对搅拌摩擦焊接的基本原理和工艺流程有了更深入的了解,也意识到了其在实际工程中的应用前景。
通过进一步优化参数和改进材料选择,可以使该技术在航空航天、汽车制造等领域得到更广泛的应用。
搅拌摩擦焊实验报告
一、实验目的1. 了解搅拌摩擦焊的基本原理和操作方法。
2. 掌握搅拌摩擦焊实验设备的操作流程。
3. 分析搅拌摩擦焊过程中的关键参数对焊接质量的影响。
4. 评估搅拌摩擦焊在特定材料焊接中的应用效果。
二、实验原理搅拌摩擦焊(Friction Stir Welding,FSW)是一种新型固相连接技术,通过高速旋转的搅拌头与工件接触产生摩擦热,使材料发生塑性变形,实现焊接。
该技术具有焊接接头质量高、变形小、无需填充材料等优点。
三、实验设备与材料1. 实验设备:搅拌摩擦焊机、焊接电源、引伸计、硬度计等。
2. 实验材料:不锈钢板材,尺寸为100mm×100mm×3mm。
四、实验方法1. 根据实验要求,设置搅拌摩擦焊机的参数,包括搅拌头的转速、焊接速度、搅拌头插入深度等。
2. 将不锈钢板材放置在焊接机的工作台上,调整好夹具,确保工件固定牢固。
3. 启动搅拌摩擦焊机,进行焊接实验。
焊接过程中,观察搅拌头的旋转状态和焊接接头的形成过程。
4. 焊接完成后,对焊接接头进行外观检查、力学性能测试和金相组织分析。
五、实验结果与分析1. 外观检查:焊接接头表面光滑,无裂纹、气孔等缺陷,焊接质量良好。
2. 力学性能测试:焊接接头的抗拉强度、弯曲强度等指标均达到母材水平,说明搅拌摩擦焊具有良好的力学性能。
3. 金相组织分析:焊接接头的显微组织为细小的等轴晶粒,晶粒尺寸均匀,无明显的热影响区,说明搅拌摩擦焊具有优异的组织性能。
六、讨论与结论1. 搅拌摩擦焊具有焊接接头质量高、变形小、无需填充材料等优点,在航空航天、汽车制造等领域具有广泛的应用前景。
2. 实验结果表明,搅拌摩擦焊能够有效地焊接不锈钢板材,焊接接头质量良好,力学性能满足要求。
3. 搅拌摩擦焊过程中的关键参数对焊接质量有重要影响。
通过合理调整搅拌头的转速、焊接速度、搅拌头插入深度等参数,可以获得高质量的焊接接头。
七、实验总结本次实验成功进行了搅拌摩擦焊实验,验证了搅拌摩擦焊技术的可行性和有效性。
搅拌摩擦焊工艺研究
直流正极性的特点:
-
钨极
钨极发射电子,带走大量的逸出功,
○+ ○-
钨极本身温度不高,烧损小,同样
○+ ○-
+ ○+ ○-
直径钨极可使用较大电流,电弧稳
工件
定而集中,熔深大,焊接质量好。
22
1.4 TIG焊的电流种类和极性
直流反极性的特点: 钨极吸收电子,钨极本身温度高, 烧损大,同样大小直径的钨极许 + 用电流要小的多,电流密度小, 熔深浅而宽。
相比生产成本高,故主要用于要求较高产品的焊接。 20
1.3 TIG焊的应用
材料:几乎可用于所有钢材、有色金属及其合
金的焊接,特别适合于化学性质活泼的金属及 其合金。
结构:一般只用于焊接6mm以下的焊件。 主要用于薄件焊接或厚件的打底焊,易 实现单面焊双面成形。
21
1.4 TIG焊的电流种类和极性 TIG焊的电流种类可分为直流正接、直流反接及
4
工作思路
项目工作组
5名学生组成团队 共同完成工作任务
信息收集处理
识读不锈钢管焊 接施工图;利用 课堂、网络、资 料室等学习储备 相关知识
计划决策
确定焊接材料; 编制焊接工艺; 交流讨论,完善 焊接工艺,并填 写工艺片
实施完善
掌握钨极氩弧焊 基本操作方法, 按照工艺实施焊 接,分析试件焊 接质量,完善焊 接工艺
阴极清理:在质量很大的氩正离 -
子的高速撞击下可清除铝、镁等 易氧化金属表面形成的氧化膜, 有阴极清理即 “ 清洁 ” 作用。
钨极
○+ ○- ○+ ○- ○+ ○-
工件
23
1.4 TIG焊的电流种类和极性
电流种类
直流正接
2024铝合金搅拌摩擦焊研究共3篇
2024铝合金搅拌摩擦焊研究共3篇2024铝合金搅拌摩擦焊研究12024铝合金搅拌摩擦焊研究摘要:随着机械制造行业的不断发展,越来越多的铝合金产品被广泛应用。
搅拌摩擦焊作为一种新兴的接合技术,具有与传统的接合技术相比更加显著的优势。
为了深入探究2024铝合金搅拌摩擦焊的焊接特性,本文开展了一系列实验,分析了焊接热影响区、焊缝组织结构等性能指标。
关键词:2024铝合金,搅拌摩擦焊,焊接特性,金相分析1、引言搅拌摩擦焊技术是一种新兴的固态接合技术,在汽车、航空航天、船舶制造等领域有着广泛的应用。
相较于传统的接合技术,搅拌摩擦焊具有焊接速度快、焊缝强度高、热影响区小等优势,因此备受关注。
其中,铝合金产品的制造领域,搅拌摩擦焊技术也得到了越来越广泛的应用。
2024铝合金是一种常用的高强度铝合金。
它有良好的耐腐蚀性、加工性和低密度等优点,被广泛应用于航空航天、船舶制造等领域。
因此,研究2024铝合金的搅拌摩擦焊技术,具有重要的现实意义和科学价值。
2、实验方法本实验采用了直径为10mm、厚度为2mm的2024铝合金板材作为实验材料。
在实验过程中,我们针对不同的搅拌头转速、焊接速度和夹紧力等参数,开展了一系列的实验测试。
通过实验得出了不同参数下,2024铝合金搅拌摩擦焊的焊接性能指标。
3、实验结果通过对实验结果的分析,我们得出了以下几个结论:(1)随着搅拌头转速的提高,搅拌时间会减少,焊接中的热影响区域也会缩小。
但是,如果转速太高,会导致合金材料的塑性变差,焊接强度反而会降低。
(2)增加焊接速度可以提高焊接效率,但是过快的焊接速度会导致焊缝表面燃烧和氧化,降低焊接强度。
(3)夹紧力对焊接强度的影响非常大。
夹紧力过小,会出现焊缝错位、拉伸断裂等问题,严重影响焊接质量。
夹紧力过大,会增加合金材料的塑性变形,进而影响焊接强度。
(4)通过金相显微镜的观察,我们发现焊接区域的金相组织结构非常致密,焊接区域的显微硬度与母材相近。
搅拌摩擦焊搅拌头研究综述
搅拌摩擦焊搅拌头研究综述搅拌摩擦焊搅拌头研究综述搅拌摩擦焊( Friction Stir Welding, 简称FSW) 是由英国焊接研究所( The Welding Institute, 简称TWI) 于1991 年提出的一种固态连接方法。
通过搅拌针和轴肩与工件间的摩擦热, 在搅拌针的附近形成塑性软化层, 软化层在搅拌头高速旋转的作用下填充入搅拌针后方所形成的空腔内, 从而实现可靠的连接。
与弧焊、激光焊、电子束、钎焊和扩散连接等传统焊接方法相比, 搅拌摩擦焊具有焊接温度低、接头残余应力小、焊接工件变形小,晶粒细小, 疲劳性能、拉伸性能和弯曲性能良好、无尘烟、无气孔、无飞溅、节能、无需焊丝、焊接时不需使用保护气体、焊接后残余应力和变形小等优点。
由于搅拌摩擦焊的焊接温度低于合金元素的熔点, 从而避免了合金内易挥发性元素和低熔点元素的损失, 接头内不易形成气孔和热裂纹等焊接缺陷。
由于搅拌摩擦焊的这些优点, 搅拌摩擦焊接头的力学性能较高, 并且能一次完成较长、较大截面、多方位的焊接, 操作便于机械化、自动化, 所消耗的成本也较低。
搅拌摩擦焊最初用于铝合金, 随着研究的深入, 搅拌摩擦焊不仅可以用于铝合金的焊接, 还可以用于铜、钛等其它金属以及不同金属之间的焊接。
搅拌头是搅拌摩擦焊的关键, 最优搅拌头是搅拌摩擦焊获得高质量接头的前提。
搅拌头主要由轴肩和搅拌针两部分构成, 其几何形貌和尺寸不仅决定着焊接过程的热输入方式, 还影响焊接过程中搅拌头附近塑性软化材料的流动形式, 对于给定板厚的材料来说,焊接质量和效率主要取决于搅拌头的形貌和几何设计。
因而设计合理的搅拌头是提高焊接质量、获得高性能接头的前提和关键。
1 轴肩研究现状轴肩在焊接过程中主要起两种作用: 1通过与工件表面间的摩擦, 提供焊接热源; o提供一个封闭的焊接环境, 以阻止高塑性软化材料从轴肩溢出。
常见的几种轴肩形貌如图1 所示, 它们都是在搅拌针和轴肩的交界处中间凹入。
摩擦搅拌焊接实验报告
摩擦搅拌焊接实验报告摩擦搅拌焊接(Friction Stir Welding,FSW)是一种先进的金属焊接技术,广泛应用于飞船、船舶、航空、汽车等领域。
本实验主要通过摩擦搅拌焊接工艺进行铝合金的焊接,对焊接接头的力学性能和金相组织进行研究与分析。
实验步骤:1. 准备材料:选取两块相同尺寸的6061铝合金板材进行焊接。
板材表面清洁干净,以保证焊接效果。
2. 确定焊接参数:根据铝合金的材料性能,选择合适的转速和下压力。
转速一般为500-2000转/分钟,下压力一般为5-20 kN。
3. 进行焊接:将两块板材对接,夹紧固定在焊接夹具中。
焊接搅拌头放在板材连接处,并开启电机。
根据焊接参数,控制转速和下压力。
焊接头在高速旋转摩擦过程中,通过机械搅拌使连接处金属软化并混合,形成连续的焊缝。
4. 修整焊缝:焊接完成后,用金属锉刀去除焊接缝表面的毛刺和凸起部分。
5. 金相组织观察:将焊接接头的横截面进行金相组织观察,使用金相显微镜观察焊缝区域和热影响区的组织变化。
6. 力学性能测试:对焊接接头进行拉伸试验和硬度测试,测试焊缝区域的强度和硬度。
结果与讨论:根据实验结果,摩擦搅拌焊接获得的铝合金焊接接头具有明显的优势。
通过金相组织观察,焊缝区域晶粒细化,高温区发生晶格重组和析出相变化。
焊缝区域具有优良的力学性能和硬度。
拉伸试验结果显示,摩擦搅拌焊接接头的强度高于基材,接近基材强度,焊缝区表现出良好的塑性延展性。
硬度测试结果显示,焊接接头的硬度略高于基材,说明焊缝区存在一定的形变硬化效应。
总结与展望:本实验通过摩擦搅拌焊接工艺进行铝合金的焊接,并对焊接接头的力学性能和金相组织进行了研究。
实验结果表明,摩擦搅拌焊接获得的铝合金焊接接头具有良好的力学性能和硬度。
但是,还需要进一步研究焊接参数对焊接接头性能的影响,优化焊接工艺以提高焊接质量。
此外,还可以研究不同材料的焊接接头的力学性能和金相组织,扩大该焊接技术的应用范围。
铝合金搅拌摩擦接头的熔焊工艺研究
铝合金搅拌摩擦接头的熔焊工艺研究铝合金因其重量轻、抗腐蚀性能好等优点,得到了越来越广泛的应用,其中搅拌摩擦接头技术是其中重要的一种连接方式,它不仅能够避免传统焊接方法中常见的熔裂、变形、气孔等问题,而且具有高强度、耐疲劳、耐腐蚀等优点。
本文旨在探讨铝合金搅拌摩擦接头的熔焊工艺。
一、搅拌摩擦接头原理搅拌摩擦接头是指在两种铝合金之间插入一个特殊的金属夹层,再通过摩擦力进行搅拌而达到连接效果的一种新型连接技术。
具体而言,搅拌摩擦接头可分为三个阶段:第一阶段为加热阶段,这一阶段的目的是通过摩擦产生的热量对接头进行加热,使接头表面温度超过其塑性阈值;第二阶段为搅拌阶段,这一阶段通过特殊工具对接头进行搅拌,将接头产生的塑性变形与金属夹层进行结合;第三阶段为冷却阶段,这一阶段是通过给接头提供适当的冷却条件,使接头在保证连接质量的同时避免过度的变形。
二、工艺流程对于铝合金搅拌摩擦接头的熔焊工艺,其工艺流程如下:1、准备焊接材料首先需要选择合适的铝合金材料,并对其进行清洗和预热处理。
此外,还需要准备搅拌摩擦接头金属夹层,并对其进行表面处理。
2、准备工具在进行接头焊接前,需要准备好特殊的搅拌摩擦接头工具,其中工具的形状和尺寸要根据具体的焊接需求进行选择。
3、接头加热将待焊接的两个铝合金材料加热到一定的温度,此时即可进行接头搅拌。
4、接头搅拌使用特殊的搅拌摩擦工具对接头进行搅拌,并调节摩擦力和搅拌速度,使金属夹层与基材发生塑性变形,并形成均匀的接头。
5、冷却处理将焊接后的接头进行适当的冷却处理,使其能够保持连接强度,并避免过度变形。
三、工艺参数搅拌摩擦接头的熔焊工艺需要控制的主要参数有摩擦速度、搅拌力和冷却时间等,具体的参数设置需要根据铝合金材料的种类和焊接的具体要求来进行选择。
举例而言,在对6xxx系铝合金进行搅拌摩擦接头时,摩擦速度可以设置为1000~1500转/分钟,搅拌力可以设置为30~40KN,冷却时间可以设置为几分钟到几十分钟不等。
搅拌摩擦焊返工工艺研究
搅拌摩擦焊返工工艺研究随着现代制造业的发展,对于焊接技术的要求也越来越高。
搅拌摩擦焊作为一种新型的焊接方法,因其具有高效、节能、环保等优越的特点,已经成为焊接领域研究的热点。
但是,由于其特殊的焊接原理,出现焊接不良情况的可能性也较高,因此如何有效解决焊接不良情况成为了研究的重点。
本文就针对搅拌摩擦焊的返工工艺进行研究。
搅拌摩擦焊返工工艺是指针对焊接不良的部分进行“重焊”处理的工艺。
与传统的焊接工艺不同,搅拌摩擦焊因为其焊接原理特殊,焊接不良情况在实际应用中仍然时有发生。
例如,搅拌摩擦焊由于温度过高、力过大等原因,焊接部位可能出现裂纹、孔洞等缺陷,这些情况都需要返工处理。
针对搅拌摩擦焊返工的工艺,我们需要对焊接不良情况进行分析,并针对性的制定返工方案。
一般来说,搅拌摩擦焊返工分为两种情况:一种是焊接过程中出现缺陷,需要在焊接前或者焊接时加以处理;另外一种是已经完成的焊接存在缺陷,需要进行返工处理。
对于搅拌摩擦焊焊接过程中出现的缺陷,我们可以在焊接前进行预防,采用适当的工艺措施来保证焊接质量。
例如,可以通过降低焊接速度、控制加热温度、调整摩擦力等方式来降低焊接过程中可能出现缺陷的风险。
此外,还可以采用预处理的方法将焊接件热处理一下,以确保焊接接头的质量。
对于已经完成的焊接存在缺陷的情况,我们需要考虑进行返工处理。
目前,大多数搅拌摩擦焊返工方法采用“二次焊接”方式进行。
即:在焊接不良的部分,再次进行搅拌摩擦焊处理。
在这个过程中,我们需要注意以下几个问题:1. 拆卸:首先需要将焊接不良的部分进行拆卸。
这个过程需要注意不要损伤周围焊接区域,以不影响整个焊接接头的质量。
2. 上下平整:在进行二次焊接之前,需要将两个部分的焊接面进行上下平整,以确保可以有效的焊接起来。
在这个过程中,需要注意不要破坏原有的焊接面,否则对于返修后的焊接品质将会有所影响。
3. 重焊:在确定好焊接表面彼此平整之后,可以开始二次焊接过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板厚 不锈钢
铝
mm
(A)
(A)
铜
焊接速度 钨极直径 气体流量 钨极与工件距离
(A)
cm/min
mm
L/min
mm
0.81.0
30-50
20-50
40-65
20-30
1-1.6
5-6
1-1.2
1.22.0
60-100
30-80
50-120
20-25
1.6-2
6-7
1.6-2.5
2.53.0
110-160 120-160 130-200
15-25
2-2.4
Байду номын сангаас7-8
2.5-3.5
4.04.5
170-220 170-240 220-300
15-20
2.4--3.2
8-9
4—5
5.06.0
200-250 200-320 300-370
15-20
3.2-4
10-12
5-6
8.010.0
240-300 300-380
350-430
10-12
3.2-4
搅拌摩擦焊工艺研究
2.3 填充焊丝的选择
TIG焊时,可采用填充焊丝或不填充的方法形成焊缝。 不填充焊丝法主要用于薄板焊接。
如厚度在3mm以下的不锈钢板, 可采用不留间隙的卷边对接,焊 接时不加填充焊丝,而且可实现 单面焊双面成形。
搅拌摩擦焊工艺研究
2.4 焊接参数的选择
l 焊接材料: 钨极直径;端部形状;保护气体; 焊丝牌号;焊丝规格。
焊接有裂纹倾向的合金时,不能采用高速焊接。
电极直径(mm)
0.5 1.0 1.6 2.4 3.2
交流 5~20 15~80 70~150 140~235 225~325
焊接电流(A)
直流正接
直流反接
5~20
15~80
70~150
10~20
150~250
15~30
250~400
25~40
搅拌摩擦焊工艺研究
喷嘴
电极夹套
焊矩本体
钨极
开口夹套
电极帽
10-12
6
﹥12 ﹥ 300 ﹥ 400 ﹥ 500
10-12
﹥ 4.8
12-15
6
搅拌摩擦焊工艺研究
2.4 焊接参数的选择
焊接电流增大,凹陷深度a1、背面焊缝余高e、
熔透深度s、焊缝宽度c增大; 而焊缝余高h减小 焊接电流太大,易引起焊缝咬边、焊漏等缺陷; 焊接电流太小,易形成未焊透。
搅拌摩擦焊工艺研究
②
①
③
④
搅拌摩擦焊工艺研究
焊矩
喷嘴
电极夹套
焊矩本体
钨极
开口夹套
电极帽
②
①
③
④
焊矩
开关
焊矩电 缆
开关插头
风冷式焊矩示意图
气管
搅拌摩擦焊工艺研究
1.1 TIG焊的原理
✓ TIG焊分为手工和自动两种;填丝焊和不填丝焊接;
焊接薄焊件时,一般不需开坡口和填充焊丝; 还可采用脉冲电流以防止烧穿焊件。 焊接厚大焊件时,填充焊丝在电弧前方添加,以 提高熔敷速度。
2.4 焊接参数的选择
电弧电压(弧长)增加,熔宽 c 增大;
弧压过高,电弧热量分散使热效率下降,电弧力 对熔池的作用减小,熔宽 c 和母材熔化面积均减小。 弧压过高,气体保护效果降低。
不加丝.弧长以控制在1~3mm, 加丝焊,弧长约3~6mm。
L =(1~1.5)δ,应尽量采用短弧进行焊接。
搅拌摩擦焊工艺研究
焊铝为什么要使用交流?
通常情况下,铝板或镁板表面有一层很明显的氧 化膜。即使工件金属熔化后,此膜也呈固体状浮 在表面上(既不熔化),为达到良好的焊接效果, 就需要清除此膜。
+
钨极 氧化膜
2050℃
○+ ○- ○+ ○-
- ○+ ○-
工件
660℃
TIG交流电源
正极性
t
0 反极性
钨极
○+ ○- ○+ ○- ○+ ○-
搅拌摩擦焊工艺研究
2020/11/20
搅拌摩擦焊工艺研究
教学目标
识读储气罐的焊接施工图; 了解钨极氩弧的原理、工艺特点及应用范围; 合理选用钨极氩弧焊焊接材料; 合理制定钨极氩弧焊工艺并正确实施; 了解钨极氩弧焊新技术
搅拌摩擦焊工艺研究
项目工作描述
l 工作任务:钨极氩弧焊不锈钢管接头焊接
搅拌摩擦焊工艺研究
阴极清理:在质量很大的氩正离 -
子的高速撞击下可清除铝、镁等 易氧化金属表面形成的氧化膜, 有阴极清理即 “ 清洁 ” 作用。
钨极
○+ ○- ○+ ○- ○+ ○-
工件
搅拌摩擦焊工艺研究
1.4 TIG焊的电流种类和极性
电流种类
直流正接
-
直流
直流反接
+
示意图
○+ ○- ○+ ○-
+ ○+ ○-
○+ ○- ○+ ○-
TIG焊:惰性气体保护,利用钨极与焊件间
产生的电弧热熔化母材和填充焊丝(或不加 填充焊丝),形成焊缝。
搅拌摩擦焊工艺研究
1.1 TIG焊的原理
配电箱
焊接电
流量
源
计
A
Panasonic
Pana-TIG WP 300
气管
冷却水
负极电缆
气瓶 焊枪
开关
焊接电流
正极电缆
遥控 盒 收弧搅电拌流摩擦焊工艺研究
工件
工件
搅拌摩擦焊工艺研究
焊铝为什么要使用交流?
清洁作用:TIG焊接工件为阴极时,阳离子(氩气
正离子)加速冲向工件,破坏并分解表面的氧化 膜,使氧化膜消失。这一作用是在氩气中进行的, 一旦被破坏消除后,此膜不会再生,即可得到漂 亮、光洁的铝等焊缝。
为了兼顾钨极和工件发热量的合理分配,对于铝、 镁等金属一般都采用同时具有直流正接和直流反
识读不锈钢管焊 接施工图;利用 课堂、网络、资 料室等学习储备 相关知识
计划决策
确定焊接材料; 编制焊接工艺; 交流讨论,完善 焊接工艺,并填 写工艺片
实施完善
掌握钨极氩弧焊 基本操作方法, 按照工艺实施焊 接,分析试件焊 接质量,完善焊 接工艺
搅拌摩擦焊工艺研究
资讯
1 TIG焊的特点及应用
1.1 TIG焊的原理
1.1 TIG焊的原理
- 高频发生器
TIG 焊接电源 (直流或交流)
填充焊丝
+
钨极
熔点(3410℃)
开口夹套 喷嘴 氩气
电弧
工件
TIG焊工作原理
用非熔化钨极在氩气的保护下与工件间产生电弧,实施焊接。
搅拌摩擦焊工艺研究
1.1 TIG焊的原理
✓ 保护气体: ✓ TIG焊一般采用氩气作保护气体;
在焊接厚板、高导热率或高熔点金属等情况下,
寿命长,抗污染能力强。引弧性能好,电弧稳 定。成本高,有微量放射性。
l 铈钨极:含有2%的氧化铈,引弧性能更好,电
弧稳定,热量集中,寿命长,电流密度比钍钨 高5%--8%,烧损率比钍钨低5%--50%,放射性 低,推荐使用。
搅拌摩擦焊工艺研究
钨电极
焊接方法 直流TIG焊接
交流TIG焊接
电极材质 2%氧化钍钨(钍) 2%氧化铈钨(铈) 2%氧化镧钨(镧) 2%氧化钍钨(钍) 2%氧化铈钨(铈)
能量参数: 焊接电流;电弧电压;焊接速度; 保护效果:喷嘴孔径; 喷嘴至焊件之间的距
离;气体流量。 电源极性: 直流(正接,反接);交流;脉冲。
搅拌摩擦焊工艺研究
2.4 焊接参数的选择 TIG焊接参数的选择原则
材料种类 焊件厚度 焊接位置 结构特点
焊钨
喷
气
接极
嘴
体
电直
孔
流
流径
径
量
搅拌摩擦焊工艺研究
2.4 焊接参数的选择
焊接速度减小,凹陷深度a1、熔透深度s、熔宽c增大。 焊接速度过快,气体保护效果降低,易产生未焊透、
气孔、夹渣和裂纹等。
焊接速度过慢,焊缝易产生焊穿和咬边。
自动高速焊时,为了扩大有效保护范围,可适当加大 喷嘴孔径和保护气流量。
搅拌摩擦焊工艺研究
2.4 焊接参数的选择
提示:焊接铝及铝合金等高导热金属时,为了减少 变形,应采用较快的焊接速度。
搅拌摩擦焊工艺研究
1.2 TIG焊的特点
✓ 热源和焊丝可分别控制,因而热输入量容易调节,特
别适合于薄件、超薄件的焊接; ✓ 可进行各种位置的焊接,易于实现机械化和自动化焊
接。 ✓ 焊接生产率低 钨极承载电流能力较差,过大的电流
会引起钨极熔化和蒸发,其颗粒可能进入熔池,造成夹 钨。
✓ 生产成本较高 由于惰性气体较贵,与其他焊接方法
- ○+ ○-
交流(对称的)
○+ ○- ○+ ○- ○+ ○-
熔深特点
深、窄
电极热量分布 工件70% 钨极30%
钨极许用电流
最大
电弧引燃
容易,燃烧稳定
阴极清理作用
无
适用材料
除铝、镁外金属
浅、宽
中等
工件30% 钨极70%
工件50% 钨极50%
小
较大
困难
较易
有
有(工件为负时)
一般不采用
铝、镁、铝青铜等
搅拌摩擦焊工艺研究
交流三种。其特点如下:
直流正极性的特点:
-
钨极
钨极发射电子,带走大量的逸出功,
○+ ○-
钨极本身温度不高,烧损小,同样
○+ ○-
+ ○+ ○-
直径钨极可使用较大电流,电弧稳