线性变换与二阶矩阵

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性变换与二阶矩阵

学习目标

1.理解线性变换、矩阵、单位矩阵、零矩阵的概念;

2.掌握旋转变换的矩阵表示和其几何意义。

教学重点:

旋转变换的矩阵表示和其几何意义。

教学过程

1.旋转变换

P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P 在此旋转变换作用下的象。

其结果为''x x y y ⎧=-⎨=-⎩,也可以表示为''00x x y y x y

⎧=-+⋅⎨=⋅-⎩。

问题1. P (x,y )绕原点逆时针旋转30o 得到),(///y x p ,试完成以下任务①写出象/p ;

②写出这个旋转变换的方程组形式;③写出矩阵形式.

事实上,在平面直角坐标XOY 内,很多几何变换都具有下列形式:

dy cx y by

ax x +=+=// ,其中d c b a ,,,均为常数。我们把形如上式的几何变换叫做线性变换。该式叫做这

),(///y x p 是P (x,y )在这个线性变换作用下的像。

我们引进正方形数表a b c d ⎡⎤⎢

⎥⎣⎦,那么上述线性变换可由a b c d ⎡⎤⎢⎥⎣⎦唯一确定,反之,a b c d ⎡⎤⎢⎥⎣⎦也可以由上述线性变换唯一确定。

像这样,由4个数d c b a ,,,排成的正方形数表a b c d ⎡⎤⎢⎥⎣⎦

称为二阶矩阵,数d c b a ,,,称为矩阵的元素。 元素全为0的二阶矩阵⎥⎦

⎤⎢⎣⎡0000称为零矩阵,简记作0. 矩阵⎥⎦

⎤⎢⎣⎡1001称为二阶单位矩阵,记为2E 。

问题2.把问题2中的旋转30o 改为旋转α角,其结果又如何?

四、简单应用

1.设矩阵A=1001-⎡⎤⎢⎥⎣⎦,求点P(2,2)在A 所对应的线性变换下的象。

练习:

P 13 1.2.3.4.5

相关文档
最新文档