抽油机井气体影响状况分析

抽油机井气体影响状况分析
抽油机井气体影响状况分析

抽油机井气体影响状况分析

本文结合2003年至今的施工总结,归纳出气影响对抽油机井机、杆、泵的具体危害,并针对此现象采取一系列的措施,取得了一定的效果。事实还说明,及时优化参数,不仅可避免气体影响油井泵况,还可避免近井地带脱气圈对油流的阻力,反而使油井增产。

主题词:注采不平衡气影响液击

1.基本概况

305队位于萨尔图油田萨北开发区北三区东部,北接壤于北部过渡带,1966年投入开发, 按井网划分, 经历了基础井网阶段,(采油井10口)和一次加密调阶段,(共有采油井46口)管理面积3.9平方公里, 开采层位是萨、葡、高油层,地质储量2184.3万吨, 可采储量882万吨,原始地层压力11.91MPa,饱和压力11.21 MPa,平均单井射开砂岩厚度17.23米,有效厚度10.2米,地层系数2.782平方微米·米,共有油水井75口, 其中采油井56口,注水井19口,(其中包括北3-2-060、2-061、2-063三口采油井转为注水井)截止04年4月底累积采油666.7503万吨,采出程度30.52%,采油速度0.55%,累积注水1147.1320万立方米,年注采比0.39。

2.气影响的产生

由于305队地区一直处于注采不平衡的状态下,致使地层压力逐年下降。(见表1)

当地层压力低于饱和压力以下时,溶解在油中的天然气会分离出来,于是出现了油气混流,即油流中夹有气泡流动。当气泡或液滴在变径毛细管中流动时,遇到窄口半径小于气泡或液滴半径时,便受到阻力,要通过比本身小的窄口时,就必须变形,由原来的球形变成非球形,这样就必须增加表面积,因为同体积的气泡或液滴以球形的表面积最小。增加表面积需要额外消耗能量,即使气泡或液

滴后面的压力P

3大于前面的压力P

1

某一值,需要这么一个附加压差,如果没有

这个附加压差,气泡或液滴就不能通过窄口。

当R1=r时,△P有最大值,表示气泡或液滴通过此窄口最小应有2σ

(1/R

1-1/R

2

)大的压差,否则气泡或液滴便通不过半径为r的窄口,将会造成气

泡或液滴对孔道的堵塞。

上述情况,对于一个气泡或液滴来说其阻力是不大的,但是,在原油流向井底的过程中,要经过无数个窄口,如果是气泡,在流动过程中,随压力的不断下降,气泡又不断地增多和增大,这些阻力叠加起来是十分可观的。

随着分离出的气泡不断的增多、增大,阻力也不断增大,再加之地层原油中溶解气的大量分离出来,使得原油粘度逐步增大,而一般情况下,原油中分离出的溶解气要超越原油在前流向井底,这样就使抽油机泵筒内充满大量气体。

3.气影响对抽油机井的危害

气影响不仅降低了泵效,还致使沉没度不够、泵内井液充满不好,抽油工况不理想,这就出现“抽空”现象,导致“液击”的发生。井下抽油泵在上冲程中,当泵腔未被液体完全充满时,泵腔顶部将会出现低压气顶,随后在下冲程中,游动阀一直处于关闭状态,直至与液体接触时的一瞬间液压突然升高,阀被打开为止。这一工况称为“液击”。而“液击”对抽油机的危害很大。

我们对2002年至今已返回施工总结的检泵井进行分析统计,发现其中杆断10井次,凡尔漏失13井次,油管螺纹漏失8井次,而它们出现问题前处于气影响状况工作的有24井次,占检泵井数的72.73%。

3.1容易产生泵漏

“液击”会使抽油泵游动阀组件损坏加剧,同时加快泵筒破裂和固定阀失效。这是因为“液击”产生一瞬间突然升高的液压对泵筒、阀体冲击力很大,当长时间处于此种状态下工作,会使泵筒、阀体破裂,从而导致泵的漏失。

对已经返回施工总结的漏失检泵6口井中,其中4口井在泵漏失前处于气影

响下进行生产,如北3-丁3-47井。

北3-丁3-47井2003.5.13示功图

北3-丁3-47井2003.6.17示功图

3.2会使杆管产生偏磨

抽油杆柱联结在一起属细长杆,是一根长弹簧。在弹簧下端突然增加一个交变载荷,就会产生振动。抽油杆在一个冲程中单程振动3~4次,抽油杆弯曲一次将对油管产生一次冲击,增加了偏磨的程度和范围。振幅越大,冲击力也就越大。由于“液击”现象的产生,增加了振动幅度,在中和点部位增加了轴向压力,将

增加抽油杆弯曲冲击的动量和冲量,这将增加杆柱的轴向作用力。这使杆柱失稳弯曲,抽油杆受到轴向力加大,随之产生的侧向力加大,从而加快了杆管的偏磨。在返回施工总结的5口断脱检泵中,3口井有偏磨现象。

北3-丁3-45井2003.12.17示功图

北3-丁3-45井2004.5.17示功图

在抽油杆断脱以后,由于抽油杆重量的减少,示功图的下载荷线由于承担抽油杆的重量,所以应该下移,上载荷线是承担抽油泵和抽油杆的重量,即P大=P 杆+P液,在断脱后,抽油杆不再承担抽油泵的液柱重量,是下降的。从前后示功图对比我们可以看出该井最大载荷由71.98KN下降到19.39KN。

4.相应措施

针对气影响的危害,我们采取了相应的措施:

4.1优化参数。

消除气影响,下调参是一个行之有效的办法。2003年至今我队对气影响严重、沉没度低的8口抽油机井进行了下调参,效果比较明显,沉没度上升、气影

响消失。例如北3-丁2-46井,2003年4月3日冲次由9次下调为6次。

北3-丁2-46 2003-3-17功图

北3-丁2-46 2003-5-16功图

4.2间抽制度

我队对进行下调参,但仍无法正常生产的井执行间抽。这样即不影响产量,又能保证抽油机井在合理的工况下进行生产,延长检泵周期。

例如我队北3-丁3-60井,在参数已经调至最小时,仍然消除不了气影响,一直处于低流压、低沉没度的状况下生产,对抽油机的危害很大。所以,该井于2004年9月开始执行间抽。

北3-丁3-60 2004.8.13功图

北3-丁3-60 2004.9.19功图

抽油机处于合理的工况下进行生产。

4.3注水井调整

对于气影响较大的油井,单纯的通过下调参数,增大沉没度的方法并不十分有效,而主要还是要通过调整周围注水井来解决。2003年我队新投注水井5口,其中3口油转水,取得了一定的效果。例如北3-2-063井在2003年9月25日转注、12月15日分注,与该井连通的北3-丁2-60井在2004年受效。

北3-丁2-60 2004-1-15功图

北3-丁2-60 2004-3-13功图

SI4+5a层沉积相带图

从沉积相带图中可以看出北3-2-063井与北3-丁2-60井连通状况较好,以SI4+5a小层为例,两口井同处于主体席状砂之中,属于一类连通。北3-2-063井注水后,北3-丁2-60井见效明显。

5.几点认识

尽管我们通过一系列的方法解决了一部分的问题,但还有一部分井处于气影响条件下进行生产,气影响井数还是居高不下,气影响井数占生产井数的29.27%。

(1)加大我队的注采结构调整,提高油层供液能力,从根本上解决气影响现象。(2)气影响、沉没度低的井进行间抽,可以减少对抽油泵及杆的危害,延长检泵周期。

(3)及时优化参数,可避免气体影响油井泵况,还可避免近井地带脱气圈对油流的阻力,使油井增产。

参考文献

[1]赵明国,张继芬.提高原油采收率.石油工业出版社

[2]万仁溥.罗英俊.采油技术手册(机械采油技术).石油工业出版社

[3]韩修延.抽油机井振动载荷对杆管偏磨的影响研究.大庆石油地质与开发

抽油机常见故障的判断和排除

抽油机常见故障的判断与排除 (一)抽油井故障的判断 1.利用示功图 示功图是目前检查深井泵工作状态的有效方法。根据对示功图的分析可判断砂、蜡、气等对深井泵的影响,能判断泵漏失、油管漏失、抽油杆的断脱、活塞与工作筒的配合状况,以及活塞被卡等故障。应用示功图时还必须结合平时油井管理中积累的资料(如油井产量、动液面、砂面、含砂情况,抽油机运转中电流的变化及井下设备的工作期限等资料)进行综合分析。 2.试泵法 这种方法是往油管中打入液体,根据泵压变化来判断抽油泵故障。试泵方法有两种:一种方法是把活塞放在工作筒内试泵,若泵压下降或没有压力,则说明泵的吸入部分和排出部分均漏失。另一种方法是把活塞拔出工作筒,打液试泵,如果没有压力或压力升不起来,则说明泵的吸入部分漏失严重。 3.井口呼吸观察法 这种方法是把井口回压闸门、连通闸门都关上,打开放空闸门,用手堵住放空闸门出口,也可以在放空处蒙张薄纸片,这样凭手的感觉或纸片的活动情况,也就是观察抽油泵上、下"呼吸"情况来判断泵的故障。一般可分为以下几种情况: (1)油井不出油且上行时出气,下行时吸气,说明固定阀

严重漏失或进油部分堵塞。 (2)油井不出油,且上行时稍出气,随后又出现吸气现象,说明主要是游动阀漏失。 (3)上行程时出气大,下行程时出气小,这种现象说明抽油泵工作正常,只是油管内液面低,油液还未抽到井口。 4.井口憋压法 憋压法是通过抽憋和停憋两种情况来分析和判断抽油泵的工作状况、油管漏失等。该方法是目前油田现场普遍采用的一种方法。 具体操作方法是:抽油机运行中关闭回压闸门和连通闸门,然后在井口观察油管压力变化情况(最高憋到2.5MPa) ,从压力上升情况可以分析判断井下故障,称为抽憋(应注意压力超过2.5MPa时必须立即打开回压闸门);当抽憋压力达到2.5MPa时停抽,再憋10~15min,观察压力的下降情况称为停憋,若压力不变或略有下降,说明没有漏失;若压力下降明显,说明有漏失,压力下降越快,说明漏失越严重。 (1)上冲程时压力上升较快,下冲程时压力不变或略有上升,说明泵的工作状况良好。 (2)上冲程时压力上升较快,下冲程时压力下降,经抽油数分钟后,压力变化范围不变。这种情况说明游动阀始终关闭打不开,说明泵内不进油。其原因有以下几种: ①固定阀严重漏失或完全失效; ②泵的进油部分堵塞; ③气体影响大,造成气锁;

抽油机井系统效率影响因素及措施

抽油机井系统效率影响因素及措施 发表时间:2019-10-18T10:39:39.107Z 来源:《基层建设》2019年第14期作者: 1王红艳 2杨宏茹 3李洪伟 [导读] 摘要:随着我国的综合国力在快速的发展,社会在不断的进步,抽油机井系统在运行过程中普遍存效率低的问题。 1大庆油田有限责任公司第七采油厂敖包塔作业区735队黑龙江大庆 163000 2大庆油田有限责任公司第七采油厂第四油台肇联合站黑龙江大庆 163000 3大庆油田有限责任公司第七采油厂第三油矿730队黑龙江大庆 163000 摘要:随着我国的综合国力在快速的发展,社会在不断的进步,抽油机井系统在运行过程中普遍存效率低的问题。本文从井下以及地面两个方面对提升抽油机井系统效率的重要性进行阐述,并对目前造成油田抽油机井系统效率低下的原因进行了分析,最后,结合抽油机井的运行现状提出了提升抽油机井运行效率的有效措施。 关键词:抽油机井;运行效率;影响因素;措施 引言 抽油机井工作时,电动机做功,将井下液体有效举升至地面,整个系统工作是能量不断传递和转化的过程。能量每次传递时都会有一定损失的,系统效率是用来衡量有杆泵抽油系统能量损失的标准。油井系统效率不仅反映用电损耗,更是衡量整个抽油系统运行过程中的综合效率,是节能管理中必须重视的参数。油井系统效率的计算公式复杂,影响因素多,并且在各影响因素之间互相制约,互相影响。 1影响抽油机井系统运行效率的因素分析 1.1地面因素 根据地面驱动设备组成情况,地面能量损失可分为电动机、皮带、齿轮减速器和四连杆机构四部分能量损失之和。地面设备能量损失越小,地面效率越高;反之,地面效率越低。电动机对系统效率的影响主要是热损失和机械损失。其中,电动机类型、设备性能和匹配是影响电动机效率的主要因素。①电动机类型。针对普通型电动机存在启动电流大、能耗高和噪声大等问题,近几年萨中开发区加大了双速双功率电动机、超高转差电动机和双功率电动机等高效节能电动机的应用力度,取得了较好的节能降耗效果。②设备性能。由于电动机长时间运行,造成内部线圈老化,机械磨损增加,降低了电动机的输出功率。③匹配。从动力角度讲,为了保证抽油机的正常运转,峰值扭矩高,势必要选用较大的电动机,这种大电动机、大峰值电流的配套方案,必将导致电动机自身损耗和电路损耗的增加,电动机功率利用率普遍偏低,对抽油机井系统效率影响较大。皮带对系统效率的影响主要是皮带弹性滑动损失、打滑损失和皮带与轮槽间径向滑动的摩擦损失,其中,皮带松紧度是影响皮带传动效率的最重要因素。减速箱对系统效率的影响主要是轴承损失和齿轮损失。轴承和齿轮是否润滑是影响减速箱传送效率的最重要因素。四连杆对系统效率的影响主要是相对运动部件间的摩擦损失和钢丝绳的变形损失。轴承是否润滑,钢丝绳变形程度大小是影响四连杆效率的最重要因素。 1.2被抽石油原料问题 抽油机井系统顾名思义就是对已经被发现的油田进行开采,而抽油机井系统的地下运作设备主要的目的就是将油田内部所存在的所有石油资源进行吸取,并沿着石油输送管道送往抽油机井系统地面运作设备中在进行处理。每一块油田中的石油资源形成都需要漫长的时间,在这段漫长时间中,不同油田中的石油资源质量和品质会受到众多外界因素干扰而不同,则其自身的原油粘度也是互不相同的。因此,在这种情况,一旦油田内部所存在的石油资源自身原油粘度超过了一定程度,就会造成抽油机井系统内部的油井供应液体不足的现象,进而造成抽油机设备不断运作、油泵自身石油容器不满、抽油机井系统不断重复运作等问题,不仅浪费了大量了资源,降低抽油机井系统效率,还会对抽油机井系统造成一定的磨损和损害。 1.3稠油泵 稠油泵在的运行过程中产生能量损失比较多,其中摩擦造成的功率损失、抽油泵的容积功率损失的以及水力损失等都是造成抽油泵功率损失的主要因素。抽油泵的结构形式决定了轴油泵机械摩擦损失以及水力功率损失状况。通常情况下的泵的漏失等是影响抽油泵功率损失的主要因素。 2提升抽油机系统效率的有效途径 2.1优化组合地面节能设备 提高抽油机工作效率。推广应用下偏杠铃抽油机、双驴头抽油机和塔架式抽油机等高效节能抽油机。通过对抽油机四连杆结构的优化设计和平衡方式的完善来改变抽油机曲柄轴净扭矩曲线的形状和大小,使其波动平坦,减少负扭矩,从而减少抽油机的周期载荷系数,提高电动机的工作效率,达到节能的目的。强化抽油机日常维护保养,做到“五及时”,即及时调整抽油机平衡、及时调整光杆对中率、及时调整盘根和皮带松紧度、及时润滑保养轴承和齿轮等部件和及时紧固地面设备部件。提高电动机工作效率。推广应用高效节能电动机。常规游梁式抽油机设计使用传统异步电动机驱动,电动机的平均负载率很低,电能浪费巨大,通过应用高效节能电动机,降低了能量损耗,提高了电动机输出效率。推广应用抽油机井多功能调速控制箱。该控制箱具有软启动功能,可有效降低启动功率及电流,同时具有无级调节冲速功能,能够使参数无法下调井实现供采平衡。在应用过程中体现出调参方便,可节省大量的人力物力。 2.2合理调整盘根盒松紧度 抽油机井系统在运行过程中光杆与盘根盒之间产生的磨阻会造成严重功率损失的,如果盘根盒太紧或者光杆的井口对中性较差,就会导致举升过程中负荷增加,从而导致抽油机出现功率损失现象。因此,必须要合理的调整盘根盒的松紧成都的,这样才能有效控制悬点的载荷情况,从而有效提升抽油机系统效率。 2.3提升电机效率的措施 我国目前配套的抽油机电机在实际运行过程中仍然会产生较大的能量损耗,而且部分抽油机实际配置的电机的功率要远远超过抽油机实际运行的所需的出入功率,功率不匹配现象比较严重,因此,导致电机在运行过程中出现负载率以及功率因数偏低的现象,电机的无功能量损失较大。(1)合理配置电动机一般情况下,三相异步电动机在其实际负载率达到85%的时候其实际运行效率最佳,如果电机实际负载率以及功率因因数过小,就会导致电机功率下降。针对目前油田电机在实际应用过程中出现的小马拉大车的现象,要充分结合抽油机实际的运行情况来合理的配置电机,这样就能充分降低电机的无功损耗,提升电机的功率因数,这样就能有效提升抽油机系统运行效率。(2)应用高效电动机当Y型三相异步电动机实际运行功率达到其额定功率的85%时,其实际运行效率以及功率因数就处于最大,而随着电机负载率的将降低,其运行效率以及功率因数也会逐渐将降低,从而使得能耗逐渐增加。而抽油机井系统在生产实际中扭矩的波动大,因

抽油机井系统效率计算公式

机采系统节能指标 一、抽油机井系统效率 抽油机井系统效率是指将液体举升到地面的有效作功能量与系统输入能量之比,即抽油机的有效功率与输入功率的比值。 P e P i 其中,抽油井的有效功率是指将井内液体举升到地面所需要的功率;抽油机的输入功率是指拖动机械采油设备的电动机总的消耗功率。抽油机的输入功率可由现场测试取得,抽油井的有效功率可由以下公式计算: Q, H- p - g P e= ----------------------------- 86400 式中:P e——有效功率,KVV Q-一油井日产液量,m3/d ; H—有效扬程,m P——油井液体密度,t/m3; g --- 重力加速度,g=9.8m/s2; 其中有效扬程: (P L Pt)x 1000 H=Hd + - ------------------------ P - g 式中:H ------------ 油井动液面深度,m; P ------------ 井口油压,MPa; Pt ---------- 井口套压,MPa; 二、抽油机井平■衡合格率 1、抽油机井平■衡度 抽油机井稳定运行过程中,下冲程时的最大电流与上冲程时 最大电流比值。(80-100%合理,小于80%欠平衡,大于100%? 平衡)

平衡度=(I下行峰值/I上行峰值)X 100% 采液用电单耗:油片采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:M油井日耗电量,Kw, CH油井日产液量,t3/d 2、抽油机井平■衡度合格率: 抽油机井平衡度达标的井数占总开井数的比值。 抽油机井平衡度合格率=(S合格/S总)X 100% 式中:S合格一抽油机井平衡度达标的井数; S总一抽油机开井总数。 三、抽油机井泵效 抽油机井的实际产液量与泵的理论排量的比值叫做泵效。 = (Q实/Q 理)X 100% T] 式中:门一泵效(%) Q实一指核实日产液量(m3/d); Q理一泵理论排液量(m3/d); 其中:Q理=1.1304 x 10一3 x Sx NX D 式中:S一冲程(m) N 一冲数(n/m) D —泵径(mm); 四、米液用电单耗 油片采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:M油井日耗电量,K^『油井日产液量,t3/d

抽油机井常见井下故障判别及处理方法

抽油机井常见井下故障判别及处理方法 摘要:阐述了如何利用技术方法来对井下故障进行判别,同时在井下故障分析与判断过程中,还要同地面故障分析相结合,只有这样才能保证井下故障的诊断准确率,并提出了处理方法。 关键词:抽油机井下故障判别处理方法 一、常见井下故障判别方法及处理 1.1抽油泵故障 (1)游动凡尔漏失。油产量下降、示功图增载缓慢,液面上升,上电流比正常时小,下电流正常,蹩压时,上冲程压力上升缓慢。 (2)固定凡尔漏失。油产量下降,上电流正常,下电流稍大。抽蹩时上冲程压力上升,下冲程压力下降,压力蹩得越高,上下冲程压力变化越大,待压力升起后再将驴头停在下死点稳压,若固定凡尔漏失则稳不住压。 (3)双凡尔漏失。量油产量下降,液面上升,增载卸载都很缓慢,图形圆滑,双凡尔漏失严重时的功图与断脱功图相类似,上电流较低,下电流稍大,严重漏失时不出油,抽蹩压力上升缓慢,严重时不升,驴头停在上、下死点都稳不住压力。蹩压时,先停蹩压力稳定不升时再启抽蹩压,以检验泵的工况。停蹩时要记录每分钟压力值,抽蹩时要注意上下冲程时压力变化情况。处理方法:一般来讲,造成游动凡尔漏失,由于结蜡严重,蜡卡游动凡尔,也可能是由于凡尔球与球座磨损漏失,对于前种情况可采取长时间热洗方法处理,洗后在管柱内充满洗井液的情况下,再进行测示功图和蹩压工作以确定是否还漏失。 (4)凡尔未打开。游动凡尔打不开:不出油,液面到井口,示功图与固定凡尔失灵差不多,载荷卸不下来。蹩压时上冲程压力上升,下冲程压力下降,变化值基本不变。这类井热洗时将活塞提出泵筒能洗通,放入泵筒内就洗不通,电流:上电流正常,下电流比正常时要小。固定凡尔打不开:不出油,液面在井口,示功图不能卸载,类似于游动凡尔打不开,电流上冲程大,下冲程小(因为泵抽空产生吸力)。对于这类井应查清是否有井下开关,若有井下开关则按井下开关失灵处理,若无井下开关采取高压热洗处理,无效后作业检泵。 (5)凡尔关不上。游动凡尔关不上:示功图不能增载,图形与抽油杆底部断脱类似。蹩压时,上冲程压力不升,下冲程压力上升,井口下冲程出油,电流上冲程减小,下冲程正常。固定凡尔关不上:示功图不能卸载,井口不出油,液面在井口,上下冲程电流均小于正常时电流,洗井正常。措施:大排量热洗,并在洗井过程中开关回压闸门,再测试功图,蹩压,若无效则报作业。固定阀罩变形,使阀球在开启时堵塞油流通道,造成井液不能入泵,泵抽真空,不出油。这类问题多数是由于固定凡尔罩材质不合格造成,另外碰泵生产也能造成固定阀罩变形。这类问题多发生在修复泵上

抽油机井典型示功图分析

抽油机井典型示功图分析 学习目的:抽油机井典型示功图是采油技术人员在多年的生产实践中总结出来的,大多数具有一定的特征,一看就可直接定性的示功图。把这些具有典型图形特征的例子作为生产现场初步判断抽油机井泵况的参考依据,也是综合分析实测示功图的第一步。通过对本节的学习,使分析者能以此为参考,对具有典型特征的示功图做出准确的定性判断。 一、准备工作 1、准备具有典型特征的示功图若干; 2、纸,笔,尺,计算器。 二、操作步骤 1、把给定的示功图逐一过一遍,按所理解的先初步给示功图定性定类。 第一类:图形较大,除去某一个角外就近似于平行四边形的示功图——即抽油泵是在工作的示功图; 第二类是图形上下幅度很小,两侧较尖的示功图——即抽油泵基本不工作的示功图; 第三类示功图:特征不明显的示功图——即最难直接定性的示功图。 2、按定类详细分析判断。 三、实测示功图分析解释 为了便于分析,我们先从图形受单一因素影响的典型示功图着手。所谓典型示功图:就是指某一个因素的影响十分明显,其形状代表了该因素影响下示功图的基本特征。然后把典型示功图与实测示功图对比分析,以阐明分析方法和各类图形的特征。最后提出相应的整改措施。用对比相面法把实测示功图与理论示功图形状进行对比,看图形变化,分析泵的工作状况。 1、泵工作正常时的示功图 所谓泵的工作正常,指的是泵工作参数选用合理,使泵的生产能力与油层供油能力基本相适应。其图形特点:接近理论示功图,近似的平行四边形。这类井其泵效一般在60%以上。

图中虚线是人为根据油井抽汲参数绘制的理论负载线,上边一条为最大理论负载线,下边一条为最小理论负载线。现场常常把增载线和减载线省略了。 2、惯性载荷影响的示功图 在惯性载荷的作用下,示功图不仅扭转了一个角度,而且冲程损失减少了,有利于提高泵效。示功图基本上与理论示功图形状相符。影响的原因是:由于下泵深度大,光杆负荷大,抽汲速度快等原因在抽油过程中产生较大的惯性载荷。在上冲程时,因惯性力向下,悬点载荷受惯性影响很大,下死点A上升到A′,AA′即是惯性力的影响增加的悬点载荷,直到B′点才增载完毕;在下冲程时因惯性力向上使悬点载荷减小,下死点由C降低到C′,直到D′才卸载完毕。这样一来使整个示功图较理论示功图沿顺时针方向偏转一个角度,活塞冲程由S活增大到S′活,实际上,惯性载荷的存在将增加最大载荷和减少最小载荷,从而使抽油杆受力条件变坏,容易引起抽油杆折断现象。 整改措施: 1、减小泵挂深度,以减轻光杆负荷。 2、降低抽油机的抽汲参数,减小惯性力。 3、振动载荷影响的示功图 分析理论示功图可知,液柱载荷是周期性作用在活塞上。当上冲程变化结束后,液体由静止到运动,液柱的载荷突然作用于抽油杆下端,于是引起抽油杆柱的振动。在下冲程,由于抽油杆柱突然卸载也会发生类似现象。 振动载荷的影响是由抽油机抽汲参数过快,使抽油杆柱突然发生载荷变化而引起的振动,而使载荷线发生波动。 整改措施: 降低抽油机的抽汲参数,减小惯性力。 4、泵受气体影响的示功图

抽油机运行状态监控与故障处理对策

抽油机运行状态监控与故障处理对策 摘要:抽油机设备是油田机械采油过程中重要的生产设备,抽油机设备状态好 坏直接影响油田的原油生产。由于其操作环境很复杂,长期在野外运转,造成了 对抽油机的使用要求很高。本文对油田抽油机的常见故障进行了分析,并提出了 不同的维护管理对策。 关键词:油田;抽油机;故障分析;维护管理前言设备是企业生产的物质基础,是企业发展水平与现代化程度的主要标志。设备管理是实现安全生产和环境 保护的前提,是降低管理成本、提高企业经济效益的重要途径。抽油机井是依靠 抽油机和井下有杆泵将油从地层采到地面的油井。抽油机井按照抽油杆分类为: 普通钢杆井、高强度杆井、玻璃钢杆井、空心杆井、电热杆井、连续杆井及其它 杆柱类井。抽油泵由抽油杆带动上下运动,抽吸井内原油,它分为管式泵和杆式泵。 管式泵是抽油泵井最常见的一种。抽油机目前油田中的一个重要的设备,具 有结构简单,使用可靠,操作维护方便,可以在恶劣的条件下长期可靠的工作, 在油田的开采中得到了广泛的应用。但是抽油机也有一些常见的故障,掌握这些 常见的故障进行分析并掌握处理方法,对延长抽油机井的使用寿命是非常有效的。 1 抽油机设备效益最大化原则是核心原则抽油机设备从安装投产到设备的运 行再到设备的报废,在设备的生命周期内,通过提高管理水平,减少抽油机的故 障率,可降低抽油机的修理费用;通过抽油机润滑管理水平的提高,降低抽油机 的故障率,也可降低抽油机的修理费用;通过例保、一级保养、二级保养的开展,抽油机设备处在一个良好的状态,也可降低抽油机的修理费用。这些都体现了抽 油机设备效益最大化原则。加强设备精细管理要树立以维护为主修理为辅,防止 轻管理、轻保养、重使用的错误观念。建立工作流程和工作技术文件和管理规定,可以有效避免工作的盲目性。因此,必须了解抽油机井的工作原理和抽油机井的 常见故障,以便及时进行维护。 2 曲柄销子故障分析与处理(1)曲柄销故障的原因。抽油机的曲柄销是用来 连接曲柄和连杆的,以传递动力和运动。曲柄销不仅受到曲柄锥套的连接力,还 承受着连杆的拉力。它的失效形式有断裂、脱扣,磨损等。在曲柄销的锥面上经 常发生断裂,由于曲柄销和锥套一起转动,所以作用在连杆上的拉力的大小和方 向都是变化的,这导致曲柄销有微小的振动。导致曲柄销故障的原因有很多种, 有时候是由于一种原因引起的,有时候是多种原因共同引起的。 第一,在安装抽油机时,由于地基的处理情况不同,导致了不同的承压能力,虽然安装时是合格的,但是由于重力的作用,地基的水平度不合格,从而导致了 曲柄销的断裂。第二,由于抽油机输出轴上的安装曲柄的键不在一条直线上,造 成了安装在减速箱的剪应力过大,最终导致了曲柄销的受力不均,从而发生断裂。第三,由于销子的质量不合格,销子和衬套的接触面积太小,而造成销子相对于 衬套自己旋转的故障。第四,由于曲柄销的轴承保养不好,造成了抽油机的单臂 运动,从而曲柄销断裂。第五,由于抽油机的不平衡,导致了抽油机处于长期超 负荷运转的情况,销子发生了偏磨。(2)曲柄销故障的处理方法。当发生故障时,不要急于去修理更换,首先要判断故障发生的原因上什么,进行对应的处理。首先要进行检查,如抽油机的剪刀差,纵向的水平率,横向的水平率,连杆的长度,冲程孔内是不是有不干净的物质等。检查完这些后,对于不符合要求的项目 要一一的进行改造,使它们符合规定,可按照常规更换曲柄销的步骤进行处理。

抽油机井系统效率计算公式

一、抽油机井系统效率 抽油机井系统效率是指将液体举升到地面的有效作功能量与系统输入能量之比,即抽油机的有效功率与输入功率的比值。 i e p p =η 其中,抽油井的有效功率是指将井内液体举升到地面所需要的功率;抽油机的输入功率是指拖动机械采油设备的电动机总的消耗功率。抽油机的输入功率可由现场测试取得,抽油井的有效功率可由以下公式计算: Q·H·ρ·g P e =———————— 86400 式中:Pe ——有效功率,KW ; Q ——油井日产液量,m 3/d ; H ——有效扬程,m ; ρ——油井液体密度,t/m 3; g ——重力加速度,g=9.8m/s 2; 其中有效扬程: (Po —Pt )×1000 H=Hd + --———————— ρ·g 式中:Hd ————油井动液面深度,m; Po ————井口油压,MPa; Pt ————井口套压,MPa; 二、抽油机井平衡合格率 1、抽油机井平衡度 抽油机井稳定运行过程中,下冲程时的最大电流与上冲程时最大电流比值。(80-100%合理,小于80%欠平衡,大于100%超平衡)。 平衡度=(I 下行峰值/I 上行峰值) ×100% 采液用电单耗:油井采出每吨液的用电量,单位t

采液用电单耗=W/Q 式中:W—油井日耗电量,Kw;Q—油井日产液量,t3/d 2、抽油机井平衡度合格率: 抽油机井平衡度达标的井数占总开井数的比值。 抽油机井平衡度合格率=(S合格/S总)×100% 式中:S合格—抽油机井平衡度达标的井数; S总—抽油机开井总数。 三、抽油机井泵效 抽油机井的实际产液量与泵的理论排量的比值叫做泵效。η=(Q实/Q理)×100%; 式中:η—泵效(%) Q实—指核实日产液量(m3/d); Q理—泵理论排液量(m3/d); 其中:Q理=×10-3×S×N×D2 式中:S—冲程(m) N—冲数(n/m) D—泵径(mm); 四、采液用电单耗 油井采出每吨液的用电量,单位t 采液用电单耗=W/Q 式中:W—油井日耗电量,Kw;Q—油井日产液量,t3/d

抽油机典型示功图

抽油机示功图是将抽油机井光杆悬点载荷变化所作的功简化成直观封闭的几何图形,是光杆悬点载荷在动态生产过程中的直观反映,是油田开发技术人员必须掌握的分析方法。通过示功图的正确分析评价,可诊断抽油机井是否正常生产。本文将通过典型示功图示例阐述,结合现场实际,对井下生产情况进行解释分析,应用地面示功图解决现场实际问题,为油田开发现场分析诊断提供可借鉴性依据。 1、泵正常工作 图像分析:供液充足、泵的沉没度大、泵阀基本不漏 失,泵效高,游动阀尔和固定阀尔能够及时开、闭,柱塞 能够迅速加载和卸载。 管理措施:此类井供液充足,沉没度大,仍有生产潜 力可挖,可以将机抽参数调整到最大,以求得最大产量, 发挥井筒应有的产能水平。 2、振动影响 图形分析:泵深超过800m时抽油杆会发生有规律的振动,一 般不会影响泵效,振动引起悬点载荷叠加在正常工作产生的曲 线上,由于抽油杆柱的振动为阻尼振动,所以出现逐渐减弱 的波浪线。 管理措施:一般不考虑振动影响,如果冲次加大后,振动幅度 变大,就导致功图失真,上下死点有小尾巴出现,泵效低,这 时需要对油井进行综合评估,减小冲次建立合理制度。 3、供液不足 图形分析:供液不足为油田常见工况,当泵充满系数小于0.6 时,可以认为深井泵的工作制度不合理,泵的排出能力大于油 层的供液能力,造成沉没度太小,液体充满不了泵筒。 管理措施;主要进行油层改造,改善供液条件,机抽参数,对于 泵挂较深井可采取长冲程,小泵径、慢冲次,泵挂相对较浅的 井,在井况及抽油设备允许情况下,加深泵挂深度,以求得最 大泵效。 4、泵工作正常,油稠时的情况。 图像分析:油稠,使摩擦等附加阻力变大,造成上负荷线 偏高,下负荷线偏低,同时,油稠可能使得凡尔开关比6B63 常时滞后,凡尔和凡尔座配合不严密,造成较大漏失。 管理措施:对于稠油井,主要对进泵液体降粘,定期地向 油田区块注入降粘剂,采取环空加热措施,并采用反馈抽 稠泵机抽。

抽油机常见故障的判断与处理措施

抽油机常见故障的判断与处理措施 【摘要】抽油机是机械采油的主要设备之一,加强对抽油机的维护保养,避免抽油机发生故障,提高抽油机系统的效率,开采出更多的油流,满足油田生产的技术要求。对抽油机常见的故障进行判断和处理,恢复抽油机的正常运行状态是非常必要的。 【?P键词】抽油机;故障;判断;处理措施 引言 综合分析抽油机的运行状况,通过抽油机井生产参数的变化,判断抽油机系统的故障,采取有效的治理措施,保证抽油机系统安全运行,达到预期的采油生产效率。提高对抽油机故障的判断与处理的能力,加强对抽油机系统的维护,使其更好地为采油生产服务。 一、抽油机采油技术措施 抽油机采油生产过程中,利用电动机将电能转化为机械能,通过三角皮带的传动,将电动机的高速旋转运动,传递给减速箱的输人轴,经过减速处理后,输出为曲柄齿的低速圆周运动。如何经过曲柄连杆结构的处理,将圆周运动转化为直线运行,引起抽油机驴头的上下往复运动,通过抽油杆传递动力,带动井下的抽油泵活塞运行,将井内的液体开采到地面上来。

在日常的生产管理过程中,如果不重视抽油机的维护保养,会导致抽油机系统故障频发,影响到抽油机的安全运行。通过观察抽油机运行参数的变化,及时发现抽油机的故障问题,采用科学的故障诊断方式,确定抽油机系统的故障,并及时采取最佳的处理措施,解除故障状态,保证抽油机系统安全平稳运行,达到预期的抽油效率。 加强对抽油机系统的循环检查,及时发现机械故障,紧固各部位的螺栓,保证动力的正常传递,促使抽油机系统各个部件安全运行。结合抽油杆传递动力的作用,判断抽油杆是否存在偏磨的情况,通过示功图等测试资料,判断抽油杆的弯曲变形及断脱的故障,采取修井作业技术措施,及时解决抽油杆的故障问题。 通过油井的动态分析,油井生产压力的变动等情况,分析井下抽油泵的运行状况,及时解决抽油泵的故障,如抽油泵漏失、泵充不满、气体影响等,采取最优化的采油工程技术措施,提高抽油泵的泵效,满足采油生产的需要。对抽油泵发生卡钻的情况进行处理,通过修井检泵作业的方式,恢复抽油泵的正常运行状态,保证抽油泵发挥自身优势,达到更高的泵效。 二、抽油机常见故障的判断与处理措施 抽油机系统运行过程中,会由于各种原因出现故障状态,为了判断抽油机的故障,采取最佳的故障判断方法,确定故

抽油机井系统效率计算公式word精品

机采系统节能指标 、抽油机井系统效率 抽油机井系统效率是指将液体举升到地面的有效作功能量与系统输入能量之比,即抽油机的有效功率与输入功率的比值。 P i 其中,抽油井的有效功率是指将井内液体举升到地面所需要的功率;抽油机的输入功率是指拖动机械采油设备的电动机总的消耗功率。抽油机的输入功率可由现 场测试取得,抽油井的有效功率可由以下公式计算: Q? H- p ?g P e= ------------------- 86400 式中:P e——有效功率,KW; Q油井日产液量,vn/d ; H—有效扬程,m 3 p ――油井液体密度,t/m ; g --- 重力加速度,g=9.8m/s ; 其中有效扬程: (Po- Pt )x 1000 H=Hd + - ------------------------ p ?g 式中:H ------------ 油井动液面深度,m; Po ---------- 井口油压,MPa; Pt ----------- 井口套压,MPa; 二、抽油机井平衡合格率 1、抽油机井平衡度 抽油机井稳定运行过程中,下冲程时的最大电流与上冲程时 最大电流比值。(80-100%合理,小于80%欠平衡,大于100%超平衡)

平衡度=(1下行峰值/I上行峰值)x 100% 采液用电单耗:油井采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:W—油井日耗电量,Kw Q-油井日产液量,t3/d 2、抽油机井平衡度合格率:抽油机井平衡度达标的井数占总开井数的比值。 抽油机井平衡度合格率=(S合格/S总)X 100% 式中:S合格一抽油机井平衡度达标的井数; S 总—抽油机开井总数。 三、抽油机井泵效抽油机井的实际产液量与泵的理论排量的比值叫做泵效。 n = (Q实/Q 理)X 100% 式中:n—泵效(%) Q实一指核实日产液量(m3/d); Q理一泵理论排液量(m3/d); 其中:Q理=1.1304 X 10-3X S X NX D2 式中:S—冲程(m) N —冲数(n/m) D —泵径(mm); 四、采液用电单耗 油井采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:W—油井日耗电量,Kw Q-油井日产液量,t3/d

设备故障判断与处理

设备常见故障判断与处理 第一节:井口设备及流程常见故障与处理 一、井口设备易发生故障及处理 1.采油树易发生故障及处理 采油树易发生的故障主要有:油套环形空间密封不好产生串通(尤其是抽油井);顶丝盘根渗漏;大法兰钢圈刺漏;卡箍钢圈刺漏;表层套管与生产套管的支承开焊等。下面具体介绍故障的现象、判断及处理: (1)油套环空串通故障及处理。 ①故障现象: a.当热洗时在井口能听到响声,当热油(水)改到井下时井口温度短时间即达到进出口一样的温度。 b.平时量油产量下降。 c.液面(流压)抽不下去。 d.抽压时稳不住压力,严重时油压不起,正注打压(憋压)时出现油套压平衡现象。 e.水井油套串通时:正注将套管打开放空时有刺漏的声响,严重时溢流量变大。 ②故障原因验证: 热洗时在采油树的进出口测量温度,若是短时间即达到或接近就可定为油套环空串。 ③处理方法:抽油井可采取抽压方法落实。 在抽油机正常运行中,关闭生产阀或二次生产阀门抽压:上好油套压表(需经校对合格的表),看油压表上升的情况,如油套串通压力上升很慢,当上升到一定值时(油套压基本平衡时),油压不再上升;或在四通上能听到有刺漏声。 蹩压法落实:停止抽油机运转,由站内输送来的高压液体从油管打入井中,关小直通阀(注意以防止压力过高蹩坏其它地方或蹩泵),当蹩到一定压力时(一般是超过套压1MPa~2MPa时),关闭生产阀看套压是否上升如套压上升可证实油套串通(在四通上能听到有刺漏声)。 a.可在作业时更换油管头; b.报小修更换油管头或油管头的密封圈。 (2)油管挂顶丝盘根渗漏故障及处理。 目前的采油树多采用CY-250型采油树,联接方式为卡法连接,因此多用了一些附件。井口四通部份多了油套环空的密封与下部的连接采用了法兰联接方式,顶丝法兰的作用主要是适应不压井起下管柱。例如大庆地区采用的都是锥形油管挂,代替了原来的油管头;锥型油管挂是上大下小,下端是母扣和油管连接后,坐在顶丝法兰和套管四通上法兰的锥形斜面上,油管挂下有两个“O“型密封圈和一道烤焊的紫铜密封圈,以此密封油套环形空间,即油管座好后对称上紧顶丝法兰上的四个螺丝,顶丝尖部正好顶在油管挂上端的锥型斜面上,确保油套环空的密封。 ①故障现象: a.油井顶丝处经常有油污或水渗漏。 b.水井顶丝盘根,压帽处有渗漏,一层白色结晶状物体附着在表面。 ②处理方法:主要是更换盘根,操作方法是先停止抽油机或电动潜油泵井运转,关闭生产阀,由套管接放空管线将油套环空压力放净,卸掉顶丝盘根压帽,挖出旧的“O”型盘根,要挖净不准留有旧盘根。新盘根抹上少许黄油加入到顶丝盘根盒中,上好压帽,注意不要卸松顶丝,四条顶丝要均匀顶紧不可偏斜,加完盘根后倒回原生产流程,启机试压,观察,在确定无渗漏情况后方可离开井场。 (3)采油树大法兰钢圈刺漏故障及处理。 ①故障现象:采油树大法兰钢圈常见的故障是钢圈刺漏;大法兰钢圈刺漏时常有油污渗出,水井有漏水现象或成雾状喷射;这里通常是指上法兰钢圈刺漏,而下法兰钢圈刺漏时只有起出油管才能更换,所以这类故障只有作业或小修时才能更换。我们讲的主要是上法兰钢圈刺的更换,

抽油机井系统效率计算公式复习课程

抽油机井系统效率计 算公式

机采系统节能指标 一、抽油机井系统效率 抽油机井系统效率是指将液体举升到地面的有效作功能量与系统输入能量之比,即抽油机的有效功率与输入功率的比值。 i e p p =η 其中,抽油井的有效功率是指将井内液体举升到地面所需要的功率;抽油机的输入功率是指拖动机械采油设备的电动机总的消耗功率。抽油机的输入功率可由现场测试取得,抽油井的有效功率可由以下公式计算: Q·H·ρ·g P e =———————— 86400 式中:Pe ——有效功率,KW ; Q ——油井日产液量,m 3/d ; H ——有效扬程,m ; ρ——油井液体密度,t/m 3; g ——重力加速度,g=9.8m/s 2; 其中有效扬程: (Po —Pt )×1000 H=Hd + --———————— ρ·g 式中:Hd ————油井动液面深度,m; Po ————井口油压,MPa; Pt ————井口套压,MPa; 二、抽油机井平衡合格率 1、抽油机井平衡度 抽油机井稳定运行过程中,下冲程时的最大电流与上冲程 时最大电流比值。(80-100%合理,小于80%欠平衡,大于100%超平衡)。

平衡度=(I下行峰值/I上行峰值) ×100% 采液用电单耗:油井采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:W—油井日耗电量,Kw;Q—油井日产液量,t3/d 2、抽油机井平衡度合格率: 抽油机井平衡度达标的井数占总开井数的比值。 抽油机井平衡度合格率=(S合格/S总)×100% 式中:S合格—抽油机井平衡度达标的井数; S总—抽油机开井总数。 三、抽油机井泵效 抽油机井的实际产液量与泵的理论排量的比值叫做泵效。η=(Q实/Q理)×100%; 式中:η—泵效(%) Q实—指核实日产液量(m3/d); Q理—泵理论排液量(m3/d); 其中:Q理=1.1304×10-3×S×N×D2 式中:S—冲程(m) N—冲数(n/m) D—泵径(mm); 四、采液用电单耗 油井采出每吨液的用电量,单位Kw.h/t 采液用电单耗=W/Q 式中:W—油井日耗电量,Kw;Q—油井日产液量,t3/d

(完整word版)抽油机井常见故障的判断方法与分析步骤

二、抽油机井常见故障的判断方法与分析步骤 抽油井在生产过程中经常发生一些故障,采油工人在巡回检查中必须及时发现,分析判断原因,及时采取相应的措施解除故障并及时观察效果,总结经验,以保证油井的正常生产。 (一)抽油井故障的判断 1.利用示功图 示功图是目前检查深井泵工作状态的有效方法。根据对示功图的分析可判断砂、蜡、气等对深井泵的影响,能判断泵漏失、油管漏失、抽油杆的断脱、活塞与工作筒的配合状况,以及活塞被卡等故障。应用示功图时还必须结合平时油井管理中积累的资料(如油井产量、动液面、砂面、含砂情况,抽油机运转中电流的变化及井下设备 的工作期限等资料)进行综合分析。 2.试泵法 这种方法是往油管中打入液体,根据泵压变化来判断抽油泵故障。试泵方法有两种:一种方法是把活塞放在工作筒内试泵,若泵压下降或没有压力,则说明泵的吸入 部分和排出部分均漏失。另一种方法是把活塞拔出工作筒,打液试泵,如果没有压力或压力升不起来,则说明泵的吸入部分漏失严重。 3.井口呼吸观察法 这种方法是把井口回压闸门、连通闸门都关上,打开放空闸门,用手堵住放空闸门出口,也可以在放空处蒙张薄纸片,这样凭手的感觉或纸片的活动情况,也就是观察抽油泵上、下"呼吸"情况来判断泵的故障。一般可分为以下几种情况: (1)油井不出油且上行时出气,下行时吸气,说明固定阀严重漏失或进油部分堵塞。 (2)油井不出油,且上行时稍出气,随后又出现吸气现象,说明主要是游动阀漏失。 (3)上行程时出气大,下行程时出气小,这种现象说明抽油泵工作正常,只是油 管内液面低,油液还未抽到井口。 4.井口憋压法 憋压法是通过抽憋和停憋两种情况来分析和判断抽油泵的工作状况、油管漏失等。该方法是目前油田现场普遍采用的一种方法。 具体操作方法是:抽油机运行中关闭回压闸门和连通闸门,然后在井口观察油管 压力变化情况(最高憋到2.5MPa) ,从压力上升情况可以分析判断井下故障,称为抽 憋(应注意压力超过2.5MPa时必须立即打开回压闸门);当抽憋压力达到2.5MPa时停抽,再憋10~15min,观察压力的下降情况称为停憋,若压力不变或略有下降,说明没有 漏失;若压力下降明显,说明有漏失,压力下降越快,说明漏失越严重。 (1)上冲程时压力上升较快,下冲程时压力不变或略有上升,说明泵的工作状况 良好。 (2)上冲程时压力上升较快,下冲程时压力下降,经抽油数分钟后,压力变化范 围不变。这种情况说明游动阀始终关闭打不开,说明泵内不进油。其原因有以下几种: ①固定阀严重漏失或完全失效;

抽油机井憋压判断及分析

抽油机井憋压判断及分析 【摘要】:措施是根本,管理是保障。憋压是抽油机机井日常管理重要措施之一,是保证油井正常生产的最基本操作,小措施制定偏差或操作不当,直接影响实施效果,使得油井不能正常生产,生产潜能难以得到有效发挥。油井憋压就好比“中医大夫给人把脉”一样,要想做到手到病除,就必须严把操作关,认真操作,仔细观察,细心记录,认真分析,就能够制定出合理有效的措施。为油井管理助一臂之力。本文通过对油井憋压数据的变化情况,结合液面、功图,对油井出液情况及泵工作情况进行分析、判断,为油井稳产提供可靠的依据。 【关键词】:油井憋压油井管理资料分析措施 一、前言 井口憋压是油井上一种现场检验油井出油情况的方法,我们现场用的较多,是每天必须做的一项小措施,每天对油井至少憋压1-2次,主要判断油井的出液情况和泵是否工作正常,但是油井出液不好或不出液的原因是多方面的与诸多因素有关,因此憋压必须是有目的的,也必须按操作步骤严格执行,以免造成事故。 1、井口憋压:主要用来检验抽油泵各阀的工作状况,是通过在抽油机运转和停抽状况下,通过关回压阀门憋压的方式,各测一条压力与时间的关系曲线来判断泵的工作情况及油井的出液情况。 二、憋压的原理、目的 1、憋压的目的:1)、验证油管、泵是否漏失、出液是否正常的一项重要手段。 2)、憋压后产生的瞬时卸压,可将油管中或管线中的软蜡带走,使之不易沉积在管壁上。 3、油井憋压的理论依据 ~ 当深井泵的工作状况完好,阀不漏失时,每当一个冲程结束,泵将压进管腔

内一定量液体,压力上升,液体压缩;同时,抽油杆将发生弹性伸长;柱塞与衬套间隙漏失速度随着柱塞上下压差的增大也将有所增加。当压力达到一定程度后,管腔内由气的体积比较小,压力随时间变化关系,主要表现为液体压缩的增压关系与抽油杆弹性伸长的增容不得缓压及间隙漏失缓压关系的结果。 三、憋压操作及注意事项 1、憋压操作步骤: 1)、关压力表阀门,更换量程合适的压力表,打开压力表阀门,记录初始压力表读数。 2)、关闭回压闸门开始憋压。 3)、记录压力随时间的变化值,当压力升到一定值时,停抽10min,观察记录压力降随时间的变化值。 4)、打开回压闸门泄压,换回原来的压力表,恢复正常生产。 5)、将井号、憋压时间、压力数据等内容填入有关资料,并画出憋压曲线,根据压力判断泵、管漏失情况、出液情况。 2、注意事项 1)、憋压时压力值不超过压力表量程2/3 ; ] 2)、压力上升值不低于1MPa; 3)、读压力值时,眼睛、指针、刻度成一条垂直于表盘的直线; 4)、憋压时井口不能有渗漏,憋压时人站在阀门侧面。 5)、憋压时,所用的压力表必须经标定合格; 四、憋压资料分析 1、上冲程时油压增高而下冲程时油压稍稳定或略有下降,说明泵工作正常。

如何提高抽油机井系统效率-文档

如何提高抽油机井系统效率 科学化管理的是提高油机井系统效率的有效手段。针对降低抽油机生产能耗,在不增加成本的情况下,优化生产管理方式是提高抽油机井系统效率的有效方法。只要把日常工作做严,做细,原因分析清楚,措施实施得当,就能实现从管理要效益,油井系统效率得到提高的目的。 、影响因素 2017年我区抽油机井系统效率测试220 口井,平均单井系统效率为22.759%。其中,系统效率低于平均值的有119 口井,比例超过54%,系统效率相对较低。原因有以下几种: 1、抽汲参数不合理,符合上调参、下调参条件的没能及时 调整,该类井占近35%的比例。 2、方案设计管理不到位,一些优化的参数,采取的措施没 能及时进行调整,该类井占近10%。 3、漏失井的影响,有部分井由于管柱、泵的原因,出现少 量漏失,造成产液量下降,举升高度减少,该类进占近20%。 4、其它因素影响,包括皮带的传动效率低,冲程损失大, 不平衡运转和出沙、结蜡因素等,该类井占近35%。 二、强化技术管理 1、实施动态管理,优化参数运行,提高单井系统效率 由于油井生产的动态化,参数管理成为重要,及时合理的调

整,不仅改善泵况,对提高油井系统效率也起到了很大的作用。 根据油井生产数据动态变化,及时地进行参数调整,但无论上调参还是下调参,必须遵循合理沉没度的规律,也就是说,在通过提高泵效,提高系统效率的方式上,参数和泵效并非性关系,随着有效扬程的增加,泵效增加的趋势逐渐变缓,直到达到最大。 合理沉没度的确定一般定为300-400 米,单井合理举升高度可由公式进行计算。 2、优化作业井方案设计 优化方案设计,不仅可以有效延长油井的泵周期,同时通过设计过程中的方案调整,还可以有效提高油井的系统效率。近几年来,加大了检泵井的方案优化力度,换泵同步实施和优先泵挂深度。防护措施上也相应地采取油管锚定和低沉没度井热洗质量,跟踪措施井措施后生产情况,效果明显,减少一次性投入,延长油井检泵周期的同时,油井的系统效率也有所增加。 1)检抽泵井。通过加强方案设计管理,实施检换泵同步施工35口井,其中检换小泵15 口井,检换大泵20口井,通过 方案设计过程中合理的参数调整,措施效果明显,系统效率也有所增加。资料对比35 口井,单井产液时上升17.8 吨,举升高度增加了111.2 米。系统效率上升了8.21 个百分点。检换小泵井,单井产液量上升3.6 吨,举升高度下降了102.3 米,系统效率上升了1.98 个百分点,吨液百米耗电减少0.369 千瓦时。 2)优化泵挂。优选泵挂深度不仅改善泵的工况,同时也 改善了抽油机驴头悬点受力情况,特别是上提泵挂井,节电效果明显。针对含水相对较高的井上提泵挂9 口井,对比9 口

抽油机示功图实例

抽油机示功图实例 1、泵正常工作 图像分析:供液充足、泵的沉没度大、泵阀基本不漏 失~泵效高~游动阀尔和固定阀尔能够及时开、闭~柱塞 能够迅速加载和卸载。 管理措施:此类井供液充足~沉没度大~仍有生产潜 力可挖~可以将机抽参数调整到最大~以求得最大产量~ 发挥井筒应有的产能水平。 2、振动影响 图形分析:泵深超过800m时抽油杆会发生有规律的振动~一般不会影响泵效~振动引起悬点载荷叠加在正常工作产生的曲线上~由于抽油杆柱的振动为阻尼振动~所以出现逐渐减弱的波浪线。

管理措施:一般不考虑振动影响~如果冲次加大后~振动幅度变大~就导致功图失真~上下死点有小尾巴出现~泵效低~这时需要对油井进行综合评估~减小冲次建立合理制度。 3、供液不足 图形分析:供液不足为油田常见工况~当泵充满系数小于0.6时~可以认为深井泵的工作制度不合理~泵的排出能力大于油层的供液能力~造成沉没度太小~液体充满不了泵筒。管理措施;主要进行油层改造~改善供液条件~机抽参数~对于泵挂较深井可采取长冲程~小泵径、慢冲次~泵挂相对较浅的井~在井况及抽油设备允许情况下~加深泵挂深度~以求得最大泵效。 4、泵工作正常~油稠时的情况。 图像分析:油稠~使摩擦等附加阻力变大~造成上负荷线 偏高~下负荷线偏低~同时~油稠可能使得凡尔开关比6B63 常时滞后~凡尔和凡尔座配合不严密~造成较大漏失。 管理措施:对于稠油井~主要对进泵液体降粘~定期地向 油田区块注入降粘剂~采取环空加热措施~并采用反馈抽

稠泵机抽。 5、油井出砂 图形分析:油层出砂~细小的砂粒将随着油流进入泵 内~造成活塞在工作筒内遇阻~使活塞在整个行程中 增加了一个附加阻力~上冲程时附加阻力使光杆负荷 增加~下冲程时~附加阻力使光杆负荷减少~并且由 于砂子具有流动性~使其分布在泵筒内各处多少不同~ 致使光杆负荷在很短时间内发生多次急剧的变化~严 重时会造成固定凡尔~活塞卡死~造成油井停产。 管理措施:对出砂油井~一方面应保持油井平稳生产~ 减少停井次数和时间~放套气也应平稳运行~另一方 面采取油层防砂~加筛管~砂锚~对油井经常洗井等措施~延长抽油设备的使用寿命。 6、气体影响

相关文档
最新文档