等差数列应用题教师版
1-2-3等差数列应用题.题库版
【例 1】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 2】 一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人 ,那么这个队列共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 (方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++=2+10025=10325=2550⨯⨯()(方法二)根据12398991005050++++++=,从这个和中减去1357...99+++++的和,就可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 3】 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 也就是已知一个数列:3、5、7、9、11、13、15、…… ,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第n 项=首项+公差1n ⨯-(), 所以,第102项321021205=+⨯=(-);由“项数=(末项-首项)÷公差1+”,999所处的项数是: 999321996214981499-÷+=÷+=+=()【答案】499【巩固】 有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 将每层圆木根数写出来,依次是:5,6,7,8,9,10,…可以看出,这是一个等差数列,它的首项是5,公差是1,项数是28.求的是第28项.我们可以用通项公式直接计算.解: 1(1)n a a n d =+-⨯5(281)1=+-⨯32=(根)故最下面的一层有32根.【答案】32例题精讲等差数列应用题【巩固】建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?【考点】等差数列应用题【难度】2星【题型】解答【解析】项数=(2106-2)÷4+1=527,因此,层数为奇数,中间项为(2+2106)÷2=1054,数列和=中间项×项数=1054×527=555458,所以中间一层有1054块砖,这堆砖共有555458块。
等差数列数列练习题(一)教师版
等差数列练习题(一)1.已知为等差数列,,则等于A. -1B. 1C. 3D.7【解析】∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B 。
【答案】B2.设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( )A .13B .35C .49D . 63 【解析】172677()7()7(311)49.222a a a aS +++====故选C.或由21161315112a a d a a a d d =+==⎧⎧⇒⎨⎨=+==⎩⎩,716213.a =+⨯= 所以1777()7(113)49.22a a S ++===故选C.3.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于A .1B 53 C.- 2 D 3【答案】:C[解析]∵31336()2S a a ==+且3112 =4 d=2a a d a =+∴.故选C4.已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d =A.-2B.-12 C.12 D.2【解析】a 7-2a 4=a 3+4d -2(a 3+d)=2d =-1 ⇒ d =-12【答案】B5.若等差数列{}n a 的前5项和525S =,且23a =,则7a =( )A.12B.13C.14D.15答案 B6.在等差数列{}n a 中, 284a a +=,则 其前9项的和S 9等于 ( )A .18B 27C 36D 9答案 A7.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于() A .64 B .100 C .110 D .120答案 B8.记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S =( )A .16B .24C .36D .48答案 D9.等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( )A .12B .10C .8D .6答案 B10.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( )A .63B .45C .36D .27答案 B11.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 ( )A .15B .30C .31D .64 答案 A12.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++= . 答案 7二、填空题13. 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++=答案 24解析 {}n a 是等差数列,由972S =,得599,S a ∴=58a = ∴2492945645()()324a a a a a a a a a a ++=++=++==.14.设等差数列{}n a 的前n 项和为n S ,若535a a =则95S S = 解析 {}n a 为等差数列,9553995S a S a ∴==答案 9 15.等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a =解析 ∵S n =na 1+12n(n -1)d ∴S 5=5a 1+10d,S 3=3a 1+3d ∴6S 5-5S 3=30a 1+60d -(15a 1+15d)=15a 1+45d =15(a 1+3d)=15a 4 答案 3116.已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=⋅a a a ,则前10项的和S 10= 答案:-10三、解答题17.在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++ .解答、n a n 2.0=,393805251=+++a a a18、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0,①求公差d 的取值范围;②1212,,,S S S 中哪一个值最大?并说明理由. ①∵121126767713113712()6()002130()1302S a a a a a a a S a a a ⎧=+=+>⎪+>⎧⎪⇔⎨⎨<⎩⎪=+=<⎪⎩ ,∴111211060212a d a d a d +>⎧⎪+<⎨⎪+=⎩解得,2437d -<<-,②由67700a a a +>⎧⎨<⎩6700a a >⎧⇒⎨<⎩,又∵2437d -<<-∴{}n a 是递减数列, ∴1212,,,S S S 中6S 最大.19、己知}{n a 为等差数列,122,3a a ==,若在每相邻两项之间插入三个数,使它和原数列的数构成一个新的等差数列,求:(1)原数列的第12项是新数列的第几项?(2)新数列的第29项是原数列的第几项?解:设新数列为{},4,)1(,3,2,1512511d b b d n b b a b a b b n n +=-+=====有根据则即3=2+4d ,∴14d =,∴172(1)44n n b n +=+-⨯= 1(43)7(1)114n n a a n n -+=+-⨯=+= 又,∴43n n a b -=即原数列的第n 项为新数列的第4n -3项.(1)当n=12时,4n -3=4×12-3=45,故原数列的第12项为新数列的第45项;(2)由4n -3=29,得n=8,故新数列的第29项是原数列的第8项。
高中数学-数列应用题-老师-(七)
4、户,一月初向银行贷款10万元作开店资金,每月底获得的利润是该月初投入资金的20%,每月需交所得税为该月所得金额(含利润)的10%,每月生活费和其它开支三千元,余款作为资金全部投入再营业.如此继续,问到这一年底,这位个体户还清银行贷款后,纯收入还有多少?
2.由1.得{an}是等比数列a1=0.2 ,q=
3、有一个细胞集团,每小时死亡2个,余下的各个分裂成2个,设最初有细胞7个,问n小时后有多少个细胞?
解:设n小时后的细胞总数为an,则a0=7,且an+1=2(an-2),即an+1-4=2(an-4),数列{(an-4}是首项为a0-4=3,公比为2的等比数列,∴an=3·2n+4 (n∈N)。因此,第n个小时后的细胞总数为3·2n+4个。
欲使Tn最大,则: ,得 ,故n=5,此时s=7875。
即该厂家应生产7875件产品,做5千元的广告,能使获利最大。
三、an= C·an-1+B,其中B、C为非零常数且C≠1
例3、某企业投资1千万元于一个高科技项目,每年可获利25%,由于企业间竞争激烈,每年底需要从利润中取出资金200万元进行科研、技术改造与广告投入,方能保持原有的利润增长率,问经过多少年后,该项目的资金可以达到或超过翻两番(4倍)的目标?(lg2=0.3)。
解:由上面的分析可知: ,即
得t1=40.所以这次运送共持续了40小时.
2、为了保护某处珍贵文物古迹,政府决定建一堵大理石护墙,设计时,为了与周边景点协调,对于同种规格的大理石用量须按下述法则计算:第一层用全部大理石的一半多一块,第二层用剩下的一半多一块,第三层…依次类推,到第十层恰好将石块用完,问共需大理石多少块?每层各用大理石多少块?
等差数列练习题(教师版,附详细答案)
等差数列练习题1、数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应函数的解析式。
例1.根据数列前4项,写出它的通项公式: (1)1,3,5,7……;(2)2212-,2313-,2414-,2515-;(3)11*2-,12*3,13*4-,14*5。
解析:(1)n a =21n -; (2)n a = 2(1)11n n +-+; (3)n a = (1)(1)nn n -+。
点评:每一项序号与这一项的对应关系可看成是一个序号到另一个数集的对应关系,这对考生的归纳推理能力有较高的要求。
如(1)已知*2()156n n a n N n =∈+,则在数列{}n a 的最大项为__ ; (2)数列}{n a 的通项为1+=bn ana n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为__ ;(3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围;2、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
例2.设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列 答案:B ; 解法一:a n =⎩⎨⎧≥-==⇒⎩⎨⎧≥-=-)2( 12)1( 1)2( )1( 11n n n a n S S n S n n n∴a n =2n -1(n ∈N ) 又a n+1-a n =2为常数,12121-+=+n n a a n n ≠常数 ∴{a n }是等差数列,但不是等比数列.解法二:如果一个数列的和是一个没有常数项的关于n 的二次函数,则这个数列一定是等差数列。
小学奥数专题-等差数列应用题.教师版
【例 1】 100以内的自然数中.所有是3的倍数的数的平均数是 .【考点】等差数列应用题 【难度】1星 【题型】填空【关键词】希望杯,五年级,复赛,第3题,5分【解析】 100以内的自然数中是3的倍数的数有0,3,6,9,99共33个,他们的和是()09934179916832+⨯=⨯=,则他们的平均数为1683÷34=49.5. 【答案】49.5【例 2】 一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果.最后,每只小猴分得8个野果.这群小猴一共有_________只.【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】希望杯,四年级,二试,第7题【解析】 平均每只猴分8个野果,所以最后一只猴摘了821=15⨯-只果,共有15只猴.【答案】15只猴子【例 3】 15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有 位同学.【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】学而思杯,1年级【解析】因为从左边起思思报10,所以,思思的右边还有15105-=(个);又因为从右边起学学报12,所以,学学的左边还有15123-=(个),15645--=(个)学学和思思中间排着5位同学.<考点> 排队问题【答案】5位【例 4】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数.如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 5】 一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人 ,那么这个队列共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 (方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++=2+10025=10325=2550⨯⨯()(方法二)根据12398991005050++++++=,从这个和中减去1357...99+++++的和,就可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 6】 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由例题精讲等差数列应用题多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 也就是已知一个数列:3、5、7、9、11、13、15、…… ,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第n 项=首项+公差1n ⨯-(), 所以,第102项321021205=+⨯=(-);由“项数=(末项-首项)÷公差1+”,999所处的项数是:999321996214981499-÷+=÷+=+=()【答案】499【例 7】 如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问:这列数中的第9个是多少?【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】华杯赛,初赛,第6题【解析】 这列数第一项为3,第二项比第一项多3,以后每项比前项多项数加1,所以第9项为3+3+4+5+6+…+10=1+2+3+4+5+6+…+10=55.【答案】55【例 8】 有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 将每层圆木根数写出来,依次是:5,6,7,8,9,10,…可以看出,这是一个等差数列,它的首项是5,公差是1,项数是28.求的是第28项.我们可以用通项公式直接计算.解: 1(1)n a a n d =+-⨯5(281)1=+-⨯32=(根)故最下面的一层有32根.【答案】32【巩固】 建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 项数=(2106-2)÷4+1=527,因此,层数为奇数,中间项为(2+2106)÷2=1054,数列和=中间项×项数=1054×527=555458,所以中间一层有1054块砖,这堆砖共有555458块.【答案】555458【例 9】 一个建筑工地旁,堆着一些钢管(如图),聪明的小朋友,你能算出这堆钢管一共有多少根吗?【考点】等差数列应用题 【难度】3星 【题型】解答【解析】 (方法一)不难发现,这堆钢管每一层都比上一层多1根,也就是从上到下每层钢管的数量构成了一3108252()(根)+⨯÷=(方法二)我们可以这样假想:通过对几何图形进行旋转,从而达到配对的目的是解决问题的关键(如图)这个槽内的钢管共有8层,每层都有31013+=(根),所以槽内钢管的总数为:3108104()+⨯=(根).取它的一半,可知例题图中的钢管总数为:104252÷=(根)【答案】52【巩固】某剧院有20排座位,后一排都比前一排多2个座位,最后一排有70个座位,这个剧院一共有多少个座位?【考点】等差数列应用题【难度】2星【题型】解答【解析】第一排座位数:702(201)32-⨯-=(个),一共有座位:(3270)2021020+⨯÷=(个).【答案】1020【巩固】一个大剧院,座位排列成的形状像是一个梯形,而且第一排有10个座位,第二排有12个座位,第三排有14个座位,……最后一排他们数了一下,一共有210个座位,思考一下,剧院中间一排有多少个座位呢?这个剧院一共有多少个座位呢?【考点】等差数列应用题【难度】2星【题型】解答【解析】如果我们把每排的座位数依次记下来,10、12、14、16、… 容易知道,是一个等差数列.210是第+÷=()排,那么中间一排有:()排,中间一排就是第1011251n=-÷+=2101021101⨯=(块).()(个)座位.根据刚刚学过的中项定理,这个剧场一共有:11010111110 105112110+-⨯=【答案】11110【例 10】有码放整齐的一堆球,从上往下看如右图,这堆球共有多少个?【考点】等差数列应用题【难度】5星【题型】填空【关键词】华杯赛,初赛,第10题【解析】从图中可以看出,除去最上层1个球外,第二层(次上层)有(1+2+3+4+5)=15个球,以后每层比上一层多6、7、8、9、10个球,共7层.15+6=21,21+7=28,28+8=36,36+9=45,45+10=55,1+15+21+28+36+45+55=201.答:共有201个球.【答案】201个球【例 11】某年4月所有星期六的日期数之和是54,这年4月的第一个星期六的日期数是.【考点】等差数列应用题【难度】2星【题型】填空【关键词】希望杯,五年级,二试,第14题【解析】4x+(+7) +(+14) +(+21)=54,x=3【答案】3【例 12】一辆双层公共汽车有66个座位,空车出发,第一站上一位乘客,第二站上两位乘客,第三站上三位乘客,依此类推,第几站后,车上坐满乘客?【考点】等差数列应用题【难度】2星【题型】解答【解析】通过尝试可得:1231111111266(),即第11站后,车上坐满乘客.记住自然数++++=+⨯÷=1~10的和对于解一些应用题很有帮助,需要尝试求解时能够较快找到大概的数.【答案】11【例 13】时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟敲一下.问:时钟一昼夜打多少下?【考点】等差数列应用题【难度】3星【题型】解答【解析】时钟每个白天敲打的次数是每个整点敲打次数的和加上12个半点敲打的一下,即:()((下),1231212112)12212781290+++++=+⨯÷+=+=所以一昼夜时钟一共敲打:902180⨯=(下).【答案】180【例 14】已知:13599101b=+++++,则a、b两个数中,较大的数比较小a=+++++,24698100的数大多少?【考点】等差数列应用题【难度】3星【题型】解答【解析】(方法一)计算:11015122601(),所以a比b大,大b=+⨯÷=(),21005022550a=+⨯÷=-=.2601255051(方法二)通过观察,a中的加数从第二个数起依次比b中的加数大1,所以a比b大,()()()()-=+-+-++-+-=a b13254999810110051【答案】51【例 15】小明进行加法珠算练习,用1234++++,当加到某个数时,和是1000.在验算时发现重复加了一个数,这个数是多少?【考点】等差数列应用题【难度】2星【题型】解答【关键词】迎春杯【解析】通过尝试可以得到12344144442990-=.().于是,重复计算的数是100099010++++=+⨯÷=【答案】10【例 16】编号为1~9的9个盒子里共放有351粒糖,已知每个盒子都比前一个盒子里多同样数量的糖.如果1号盒子里放11粒糖,那么后面的盒子比它前一个盒子里多放几粒糖?【考点】等差数列应用题【难度】3星【题型】解答【解析】根据题意,灵活运用有关等差数列的求和公式进行分析与解答.由等差数列求和公式“和=(首项+末项⨯)项数2⨯÷项数-首项.÷”,可得:末项=和2则第9个盒子中糖果的粒数为:351291167⨯÷-=(粒)题目所求即公差6711915687()()(粒),则后面盒子比前一个盒子多放7粒糖.=-÷-=÷=【答案】7【巩固】例题中已知如果改为3号盒子里放了23粒糖呢?【考点】等差数列应用题【难度】3星【题型】解答【解析】等差数列有个规律:首项+末项=第2项+倒数第2项=第3项+倒数第3项=,所以我们可以得到等差数列求和公式的一个变形,假设等差数列有n项,则和=(第a项+第1)2⨯n a-+项n÷,则倒数第3个盒子即第931⨯÷-=(粒)-+()个盒子中糖果的粒数为:351292355题目所求即公差5523733248()()(粒),则后面盒子比前一个盒子多放8粒糖.=-÷-=÷=【答案】8【例 17】小王和小高同时开始工作.小王第一个月得到1000元工资,以后每月多得60元;小高第一个月得到500元工资,以后每月多得45元.两人工作一年后,所得的工资总数相差多少元?【考点】等差数列应用题【难度】3星【题型】解答【解析】小王:1000+60×(12-1)=1660,(1000+1660)×12÷2=15960小高:500+45×(12-1)=995,(500+995)×12÷2=8970,15960-8970=6990即一年后两人所得工资总数相差6990元.【答案】6990【巩固】王芳大学毕业找工作.她找了两家公司,都要求签工作五年的合同,年薪开始都是一万元,但两个公司加薪的方式不同.甲公司承诺每年加薪1000元,乙公司答应每半年加薪300元.以五年计算,王芳应聘公司工作收入更高.【考点】等差数列应用题 【难度】3星 【题型】解答【关键词】走美杯,3年级,决赛【解析】 甲公司五年之内王芳得到的收入为:100001100012000130001400060000++++=(元).乙公司五年之内王芳得到的收入为:1000053006009001200300950000300⨯++++++⨯=+ 4563500⨯=(元).所以,王芳应聘乙公司工作收入更高.【答案】63500【例 18】 在一次数学竞赛中,获得一等奖的八名同学的分数恰好构成等差数列,总分为656,且第一名的分数超过了90分(满分为100分).已知同学们的分数都是整数,那么第三名的分数是多少?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 他们的平均分为656÷8=8282+1、82+2、82+3……都有可能成为第四名,相对应的,公差分别为1×2=2、2×2=4、3×2=6……若第四名为82+1=83分,则第一名为83+(4-1)×2=89分,不符合题意,舍;若第四名为82+2=84分,则第一名为84+(4-1)×4=96分,不符合题意;若第四名为82+3=85分,则第一名为85+(4-1)×6=103分,不符合题意.因此,第四名为84分,公差为4,所以第三名为84+4=88分【答案】88【例 19】 若干个同样的盒子排成一排,小明把50多个同样的棋子分装在盒中,其中只有一个盒子没有装棋子,然后他外出了,小光从每个有棋子的盒子里各拿了一个棋子放在空盒内,再把盒子重新排了一下,小明回来后仔细查看了一下,没有发现有人动过这些盒子和棋子.共有多少个盒子?【考点】等差数列应用题 【难度】3星 【题型】解答【解析】 这道看似蹊跷的题想要求出共有多少个盒子,必须先弄清楚小明盒子中的棋子是怎样放的.我们设除了空盒子以外一共有n 个盒子.小明回来查看时,原来那个空盒子现在不空了,但是小明却没有发现有人动过这些盒子和棋子,那么一定是有另一个盒子现在变成了空盒子.这样,原来小明放置棋子时必有一个盒子只装着一个棋子.原来只装着一个棋子的盒子变成了空盒子以后,还需要一个盒子装一个棋子来代替它,那么这个代替它的盒子原来一定只装着2个棋子,依此类推,可以推断出小明所放的棋子依次是0,1,2,3,,n . 根据这个等差数列的和等于50多,通过尝试求出当10n =时,1231011010255++++=+⨯÷=() 满足题意,其余均不满足.这样,只能是10n =,即共有11个盒子.【答案】11【例 20】 某工厂12月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人250人.如果月底统计总厂工人的工作量是9455个工作日(1人工作1天为1个工作日),且无1人缺勤.那么这月由总厂派到分厂工作的工人共有多少人.【考点】等差数列应用题 【难度】3星 【题型】解答【关键词】迎春杯,决赛【解析】 260人工作31天,工作量是260318060⨯=(个)工作日.假设每天从总厂派到分厂a 个工人,第一天派去分厂的a 个工人在总厂的工作量为0个工作日;第二天派去分厂的a 个工人在总厂的工作量为a 个工作日;第三天派去分厂的a 个工人在总厂的工作量为2a 个工作日;……第31天派去分厂的a 个工人在总厂的工作量为30a 个工作日.从而有:9455023308060a a a a =++++++94558060123301395130302465a a a-=⨯++++=⨯+⨯÷=()() 求得3a =.那么这月由总厂派到分厂工作的工人共有33193⨯=(人).【答案】93【例 21】 右图中,每个最小的等边三角形的面积是12平方厘米,边长是1根火柴棍.如果最大的三角形共有8层,问:⑴最大三角形的面积是多少平方厘米?⑵整个图形由多少根火柴棍摆成?【考点】等差数列应用题 【难度】3星 【题型】解答【解析】 最由上表看出,⑴ 最大三角形面积为:13515121158212768++++⨯=+⨯÷⨯=()()(平方厘米).⑵ 火柴棍的数目为:3692432482108++++=+⨯÷=()(根). 【答案】⑴768 ⑵108 【巩固】 如右图,25个同样大小的等边三角形拼成了大等边三角形,在图中每个结点处都标上一个数,使得图中每条直线上所标的数都顺次成等差数列.已知在大等边三角形的三个顶点放置的数分别是100,200,300.求所有结点上数的总和.【考点】等差数列应用题 【难度】3星 【题型】解答【关键词】走美杯【解析】 如下图,各结点上放置的数如图所示.从100到300这条直线上的各数的平均数是200,平行于这条直线的每条直线上的各数的平均数都是200.所以21个数的平均数是200,总和为200214200⨯=.220200180120140160180200220240260280300240260220200180160140100【答案】4200【巩固】 用3根等长的火柴棍摆成一个等边三角形,用这样的等边三角形,按图所示铺满一个大的等边三角形,如果这个大的等边三角形的底边放10根火柴,那么一共要放多少根火柴?10根 【考点】等差数列应用题 【难度】3星 【题型】解答【解析】 如果把图中最上端的一个三角形看作第一层,与第一层紧相连的三个三角形(向上的三角形2个,向下的三角形1个)看作第二层,那么这个图中一共有10层三角形.这10层三角形每层所需火柴数就是构成上图中所有阴影三角形的边数和.自上而下依次为:3,6,9,……,310⨯.它们成等差数列,而且首项为3,公差为3,项数为10.求火柴的总根数,就是求这个等差数列各项的和,即36930330102335165++++=+⨯÷=⨯=()(根)所以,一共要放165根火柴【答案】165【例 22】 盒子里放有编号1~9的九个球,小红先后三次从盒子中取球,每次取3个,如果从第二次起每次取出的球的编号的和都比上一次的多9,那么他第一次取的三个球的编号为_____.【考点】等差数列应用题 【难度】3星 【题型】解答【关键词】走美杯,3年级,初赛 【解析】 根据题意知道这九个小球的编号和为:123945++++=,若想每次去球都比上一次的多9,则从数论角度来看本题就是将45拆三个数字和,并且三个数字和的公差为9,所以第一次取球为()4599236--⨯÷=,所以第一次去的3个求的编号为:1、2、3.【答案】1、2、3.【例 23】 小明练习打算盘,他按照自然数的顺序从1开始求和,当加到某一个数的时候,和是1997,但他发现计算时少加了一个数,试问:小明少加了哪个数?【考点】等差数列应用题 【难度】3星 【题型】解答【解析】 用x 表示小明少加的那个数,199712x n n +=+⨯÷(),139942n n x +⨯=+(),两个相邻的自然数的积比3994大一些,因为1n n +⨯()和2n 比较接近,可以先找3994附近的平方数,最明显的要数36006060=⨯,而后试算两个相邻自然数的乘积61623782⨯=,62633906⨯=,63644032⨯=,所以63n =,正确的和是2016,少加的数为:2016199719-=.【答案】19【例 24】 黑板上写有从1开始的一些连续奇数:1,3,5,7,9,…,擦去其中一个奇数以后,剩下的所有奇数的和是2008,那么擦去的奇数是 .【考点】等差数列应用题 【难度】3星 【题型】解答 【关键词】走美杯【解析】 1,3,5,7,,(21n -),这n 个奇数之和等于2n ,2452025=,擦去的奇数是2025200817-=.【答案】17【巩固】 小明住在一条胡同里.一天,他算了算这条小胡同的门牌号码.他发现,除掉他自己家的不算,其余各门牌号码之和正好是100.请问这条小胡同一共有多少户(即有多少个门牌号码)?小明家的门牌号码是多少?【考点】等差数列应用题 【难度】3星 【题型】解答【解析】 这道题目的具体数值只有一个,所以我们要通过估算的方法解决问题!我们都知道:121055+++=,所以和在100附近的应该为1~14、或1~15,⑴1214105+++=,小明家门牌号为5,共有14户人家;⑵121415120++++=,小明家门牌号为20,不再1~15的范围,所以不符合题意.【答案】共有14户人家;门牌号为5【例 25】 在51个连续的奇数1,3,5,,101中选取k 个数,使得它们的和为1949,那么k 的最大值是多少?【考点】等差数列应用题 【难度】3星 【题型】填空【关键词】华杯赛,决赛,第二大题,第4题,10分【解析】 显然,选的数越小,可以使选出的数的个数越多.首先考虑从45个连续的奇数1,3,5,7,…,99中选出n 个数,使它们的和不超过1949.由()21352n 1n ++++-=得2n ≤1949.因为2452025=>1949,且45个奇数的和不小于135892025++++=>1949,所以n ≤44.若选取44个奇数,因为偶数个奇数的和为偶数,而1949为奇数,所以不可能选取44个奇数,使得它们的和为1949.所以n ≤43.因为2441936=<1949,2025-1949=76,且76是偶数,所以至少从1,3,5,…,89中删除两个奇数,并使它们的和为76.如,去掉1,3,5,…,89中的两个奇数37和39,即选1,3,…,35,41,…,87,89.易验证135354143892025761949++++++++=-=.所以n 的最大值为43.【答案】43【例 26】 小丸子玩投放石子游戏,从A 出发走1米放1枚石子,第二次走4米又放3枚石子,第三次走7米再放5枚石子,再走10米放7枚石子,照此规律最后走到B 处放下35枚石子.问从A 到B 路程有多远?【考点】等差数列应用题 【难度】3星 【题型】解答【解析】 先计算投放了多少次.由题意依次投放石子数构成的数列是:1,3,5,7,,35.这是一个等差数列,其中首项11a =,公差 2d =,末项= 35n a ,那么113512118n n a a d =-÷+=-÷+=()();再看投放石子每次走的路程依次组成的数列:1,4,7,10,这又是一个等差数列,其中首项11a =,,公差,3d =,项数1 8n =.末项,,,111181352n a a n d =+-⨯=+-⨯=()(),其和为,,,12152182477n n S a a n =+⨯÷=+⨯÷=()()(米).【答案】477【例 27】 如图,把边长为1的小正方形叠成“金字塔形”图,其中黑白相间染色.如果最底层有15个正方形,问其中有多少个染白色的正方形,有多少个染黑色的正方形?【考点】等差数列应用题 【难度】3星 【题型】解答【解析】 由题意可知,从上到下每层的正方形个数组成等差数列,其中11a =, 2d =,15n a =,所以151218n =-÷+=(),所以,白色方格数是:1238188236++++=+⨯÷=()黑色方格数是:1237177228++++=+⨯÷=().【答案】28【巩固】 有若干根长度相等的火柴棒,把这些火柴棒摆成如下图的图形.照这样摆下去,到第10行为止一共用了 根火柴棒.【考点】等差数列应用题 【难度】3星 【题型】解答【关键词】小机灵杯【解析】 横向:1行:11+根;2行:133++根;3行:1355+++根;10行:135171919+++++纵向:1行:2根;+根;2行:24++根;3行:24610行:24620++++根总共有1351719192462011910219220102()()()()++++++++++=+⨯÷+++⨯÷=++=(根).10019110229【答案】229【例 28】如图所示,白色和黑色的三角形按顺序排列.当两种三角形的数量相差12个时,白色三角形有个.【考点】等差数列应用题【难度】3星【题型】解答第4题【关键词】中环杯,初赛【解析】根据题意可知,每个图形两种三角形的个数相差依次成数列1,2,3,4,排列,所以第12个图形的两种三角形的个数相差为12,这个图形的白色三角形的个数是1231166++++=(个).【答案】66【例 29】木木练习口算,她按照自然数的顺序从1开始求和,当计算到某个数时,和是888,但她重复计算了其中一个数字.问:木木重复计算了哪个数字?【考点】等差数列应用题【难度】3星【题型】解答【解析】用x表示木木多加的那个数,88812+⨯=-(),两个相邻的自然数的n n xX n n-=+⨯÷(),117762积是比1776小一些的一个数,先找1776附近的平方数,16004040=⨯,试算:⨯=,所以41n=,所以⨯=,41421722⨯=,4243180640411640x=-⨯÷=().177********【答案】27【巩固】奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.已知去时用了4天,回来时用了3天.问:学校距离百花山多少千米?【考点】等差数列应用题【难度】3星【题型】解答【解析】这道题目关键是弄清题意,发现关键是要求出第一天拉练的距离,在这里可以用方程的思想来帮助解题,可以给四年级学生一个方程的初步认识,来回的距离是相同的,通过这点来做方程求解,设第一天拉练的距离是x,则第二天为2x+,第五天的距离为8x+,第六天x+,第四天6x+,第三天为4的距离为10x+.且去时和来时的路程一样,则x+,第七天的12()()()()()(),则18++++++=+++++24681012x x x x x x xx=,学校距离百花山84千米.【答案】84【巩固】点点读一本故事书,第一天读了30页,从第二天起,每天读的页数都比前一天多4页,最后一天读了70页,刚好读完.那么,这本书一共有多少页?【考点】等差数列应用题【难度】3星【题型】解答【解析】每天看的页数组成等差数列,公差是4,首项是30,末项是70,要求这本书一共多少页,应该先求出点点总共看了多少天.天数(项数)=(末项-首项)÷公差170304111+=-÷+=()总页数3070112100112550(),所以,这本书一共有550页.=+⨯÷=⨯÷=【答案】550【巩固】小明想把55枚棋子放在若干个盒子里,按第一个盒子里放1枚,第2个盒子里放2枚,第3个盒子里放3枚,……,这样下去,最后刚好将棋子放完,那么小明用了多少个盒子呢?【考点】等差数列应用题【难度】3星【题型】解答【解析】根据学学的放法,可知:第1个盒子放了1枚棋子;第2个盒子放了2枚棋子;第3个盒子放了3枚棋子;……因此,只要是从自然数加起,加数依次增加1,一直加到某个自然数,它们的和正好是55,那么,这些加数的个数就是盒子数了.我们估算一下结果:1234515++++=,但是15和55相差较大,所以还要增加加数(自然数)的个数12345678945++++++++=,45与55比较接近了,又因为-=,所以,1234567891055+++++++++=,这个式子说明,55是10个自然数的和,所以554510需要用10个盒子做游戏.【答案】10【例 30】幼儿园304个小朋友围成若干个圆(一圈套一圈)做游戏,已知内圈24人,最外圈52人,如果相邻两圈相差的人数相等,那么相邻的两圈相差多少人?【考点】等差数列应用题【难度】3星【题型】解答【解析】这一等差数列的和是304,首项24,末项52,先根据公式“和=(首项+末项)⨯项数2÷”求出项数:()公差”求出公差:(5224)74n-⨯⨯÷=.再根据公式“末项=首项+13042768-÷=.【答案】4。
小学奥数知识名师点拨 例题精讲 解题思路 等差数列应用题.教师版
等差数列应用题例题精讲【例 1】100以内的自然数中。
所有是3的倍数的数的平均数是 。
【考点】等差数列应用题 【难度】1星 【题型】填空【关键词】希望杯,五年级,复赛,第3题,5分【解析】100以内的自然数中是3的倍数的数有0,共33个,他们的和是3,6,9,99 ,则他们的平均数为1683÷34=49.5。
()09934179916832+⨯=⨯=【答案】49.5【例 2】一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。
最后,每只小猴分得8个野果。
这群小猴一共有_________只。
【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】希望杯,四年级,二试,第7题【解析】平均每只猴分8个野果,所以最后一只猴摘了只果,共有15只猴.821=15⨯-【答案】只猴子15【例 3】15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有 位同学.【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】学而思杯,1年级【解析】因为从左边起思思报10,所以,思思的右边还有(个);又因为从右边起学学报12,15105-=所以,学学的左边还有(个),(个)学学和思思中间排着5位同学.15123-=15645--=<考点> 排队问题【答案】位5【例 4】体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】【解析】首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 5】一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人 ,那么这个队列共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】(方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++ =2+10025=10325=2550⨯⨯()(方法二)根据,从这个和中减去的和,就12398991005050++++++= 1357...99+++++可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 6】有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】【解析】也就是已知一个数列:3、5、7、9、11、13、15、…… ,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第项首项公差,n =+1n ⨯-()所以,第102项;由“项数(末项首项)公差”,999所处的项数是:321021205=+⨯=(-)=-÷1+ 999321996214981499-÷+=÷+=+=()【答案】499【例 7】如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。
高中数学 第一章 数列 1.2 等差数列 1.2.2 第2课时 等差数列的综合问题学案(含解析)北师
第2课时等差数列的综合问题知识点一等差数列的性质[填一填](1)若{a n}为等差数列,则距首末距离相等的两项之和都相等,且等于首末两项之和,即a1+a n=a2+a n-1=a3+a n-2=….(2)若{a n}为等差数列,m,n,p,q∈N+,且m+n=p+q,则a m+a n=a p+a q.(3)若{a n}为等差数列,m,k,n成等差数列,则a m,a k,a n也成等差数列(m,k,n∈N+),即若m+n=2k,则a m+a n=2a k.[答一答]1.对于性质:若{a n}为等差数列,m,n,p,q∈N+,且m+n=p+q,则a m+a n=a p +a q,请给出证明.提示:证明:设{a n}的公差为d,则a m=a1+(m-1)d,a n=a1+(n-1)d,a p=a1+(p-1)d,a q=a1+(q-1)d,∴a m+a n=2a1+(m+n-2)d,a p+a q=2a1+(p+q-2)d,∵m+n=p+q,∴a m+a n=a p+a q.知识点二 等差数列前n 项和的性质[填一填](1)等差数列前n 项和公式S n =na 1+n (n -1)2d 可写成S n =d2n 2+⎝⎛⎭⎫a 1-d 2n ,即S n =An 2+Bn (A ,B 为常数)的形式,当A ≠0时(即d ≠0),S n 是关于n 的二次函数,其图像是抛物线y =Ax 2+Bx 上的一群孤立的点.(2)若{a n },{b n }都是等差数列,则{pa n +qb n }(p ,q 为常数)是等差数列.(3)若等差数列{a n }的公差为d ,前n 项和为S n ,则数列S k ,S 2k -S k ,S 3k -S 2k ,…(k ∈N +)也是等差数列,其公差等于k 2d .(4)若等差数列{a n }的项数为2n (n ∈N +),则S 2n =n (a n +a n +1)(a n ,a n +1为中间两项),且S偶-S 奇=nd ,S 偶S 奇=a n +1a n.(5)若等差数列{a n }的项数为2n -1(n ∈N +),则S 2n -1=(2n -1)a n (a n 为中间项),且S 奇-S偶=a n ,S 偶S 奇=n -1n .[答一答]2.等差数列前n 项和的“奇偶”性质:在等差数列{a n }中,公差为d ,①若数列共有2n 项,则S 2n =n (a n +a n +1),S 偶-S 奇=nd ,S 偶S 奇=a n +1a n ;②若数列共有2n +1项,则S 2n+1=(2n +1)a n +1,S 偶-S 奇=-a n +1,S 偶S 奇=n(n +1).请给出证明.提示:证明:①若数列共有2n 项,则S 2n =2n (a 1+a 2n )2=2n (a n +a n +1)2=n (a n +a n +1),S 偶=n (a 2+a 2n )2=2na n +12=na n +1,S 奇=n (a 1+a 2n -1)2=2na n2=na n ,S 偶-S 奇=na n +1-na n =n (a n +1-a n )=nd , S 偶S 奇=a n +1a n ;②若数列共有2n +1项,则S 2n +1=(2n +1)(a 1+a 2n +1)2=2(2n +1)a n +12=(2n +1)a n +1,S 偶=n (a 2+a 2n )2=2na n +12=na n +1,S 奇=(n +1)(a 1+a 2n +1)2=2(n +1)a n +12=(n +1)a n +1,S 偶-S 奇=-a n +1, S 偶S 奇=n(n +1).1.三数成等差数列的设法为:a -d ,a ,a +d ,其中d 为公差;四数成等差数列的设法为:a -3d ,a -d ,a +d ,a +3d ,其公差为2d .2.会用方程的思想处理等差数列的有关问题.等差数列的通项公式与前n 项和公式涉及五个量:a 1,d ,n ,a n ,S n ,知道其中任意三个就可以通过列方程组求出另外两个(俗称“知三求二”).解等差数列问题的基本方法是方程法,在遇到一些较复杂的方程组时,要注意整体代换,使运算更加迅速和准确.类型一 等差数列的性质的应用【例1】 在等差数列{a n }中,(1)若a 3+a 4+a 5+a 6+a 7=350,则a 2+a 8=________;(2)若a 2+a 3+a 4+a 5=34,a 2·a 5=52,且a 4<a 2,则a 5=________; (3)若a 3=6,则a 1+2a 4=________.【解析】 若设出a 1,d 从通项公式入手,运算过程较为繁琐,若能利用性质,可使问题简化.(1)∵a 3+a 7=a 4+a 6=2a 5=a 2+a 8,又由已知a 3+a 4+a 5+a 6+a 7=350,∴5a 5=350, ∴a 5=70,∴a 2+a 8=2a 5=140.(2)∵a 2+a 3+a 4+a 5=34,又由等差数列的性质知a 3+a 4=a 2+a 5,∴2(a 2+a 5)=34,∴a 2+a 5=17.又a 2·a 5=52,联立⎩⎪⎨⎪⎧a 2+a 5=17a 2·a 5=52,解之得⎩⎪⎨⎪⎧a 2=4a 5=13,或⎩⎪⎨⎪⎧a 2=13a 5=4,又∵a 4<a 2,∴a 4-a 2=2d <0, ∴d <0,∴a 2>a 5,∴a 5=4.(3)∵a 3=6,∴a 1+2a 4=a 1+a 3+a 5=a 3+(a 1+a 5)=a 3+2a 3=3a 3=18. 【答案】 (1)140 (2)4 (3)18规律方法 等差数列具有一些性质,例如当m +n =p +q (m ,n ,p ,q ∈N +)时,有a m +a n =a p +a q ,特别地,当m +n =2k (m ,n ,k ∈N +)时,有a m +a n =2a k ;a n =a m +(n -m )d 等等.灵活运用这些性质,可大大简化解题过程.【例2】 在等差数列{a n }中,已知a 2+a 5+a 8=9,a 3a 5a 7=-21,求数列的通项公式. 【思路探究】 要求通项公式,需要求出首项a 1及公差d ,由a 2+a 5+a 8=9和a 3a 5a 7=-21直接求解很困难,这就促使我们转换思路.如果考虑到等差数列的性质,注意到a 2+a 8=2a 5=a 3+a 7,问题就容易解决了.【解】 a 2+a 5+a 8=9,a 3a 5a 7=-21,又由等差数列的性质知a 2+a 8=a 3+a 7=2a 5,∴a 5=3, ∴a 2+a 8=a 3+a 7=6,① 又a 3a 5a 7=-21, ∴a 3a 7=-7,②由①②解得a 3=-1,a 7=7或a 3=7,a 7=-1. ∴a 3=-1,d =2或a 3=7,d =-2. 由通项公式的变形公式a n =a 3+(n -3)d , 得a n =2n -7或a n =-2n +13.规律方法 若m +n =p +q ,则a m +a n =a p +a q ,此性质要求等式两边必须是两项和的形式,否则不成立,如a 10≠a 2+a 8,只能是a 2+a 8=a 3+a 7,使用时应切记它的结构特征.在等差数列{a n }中,a 3+a 7=36,则a 2+a 4+a 5+a 6+a 8=90. 解析:a 3+a 7=a 2+a 8=a 4+a 6=2a 5=36, ∴a 2+a 4+a 5+a 6+a 8==36+36+18=90.类型二 等差数列前n 项和的性质【例3】 项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求这个数列的中间项及项数.【思路探究】 根据等差数列中的奇数项依次仍成等差数列,偶数项依次仍成等差数列可求解.【解】 设等差数列{a n }共有(2n +1)项,则奇数项有(n +1)个,偶数项有n 个,中间项是第(n +1)项,即a n +1,所以S 奇S 偶=12(a 1+a 2n +1)·(n +1)12(a 2+a 2n )·n=(n +1)a n +1na n +1=n +1n =4433=43.解得n =3.又因为S 奇=(n +1)·a n +1=44,所以a n +1=11. 故这个数列的中间项为11,共有2n +1=7项.规律方法 在等差数列{a n }中,(1)若项数为2n +1(n ∈N +),则S 奇S 偶=n +1n ,其中S 奇=(n +1)a n +1,S 偶=na n +1;(2)若数列的项数为2n (n ∈N +),则S 偶-S 奇=nd .【例4】 已知等差数列{a n }的前10项和为30,它的前30项和为210,则前20项和为( )A .100B .120C .390D .540【解析】 方法一:设等差数列{a n }的前n 项和为S n =na 1+n (n -1)2d .由题意,得⎩⎪⎨⎪⎧10a 1+45d =30,30a 1+435d =210,解得⎩⎨⎧a 1=65,d =25.∴S n =65n +n (n -1)2·25=15(n 2+5n ).∴S 20=15×(202+5×20)=100.方法二:设S n =An 2+Bn ,由题意,得⎩⎪⎨⎪⎧100A +10B =30,900A +30B =210,解得⎩⎪⎨⎪⎧A =15,B =1.∴S n =15n 2+n .∴S 20=15×202+20=100.方法三:由题意,知S 10,S 20-S 10,S 30-S 20也是等差数列. ∴2(S 20-S 10)=S 10+S 30-S 20,即S 20=13(3S 10+S 30)=S 10+13S 30=100.【答案】 A规律方法 一个等差数列,从首项起,分成项数相等的若干段后,各段内诸项之和组成新的等差数列.若每段含有n 项,则新公差是原公差的n 2倍.(1)已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为3. (2)在等差数列{a n }中,a 1=-2 017,其前n 项和为S n ,若S 1010-S 88=2,则S 2 017的值等于-2_017.解析:(1)由等差数列前n 项和的性质,得S 偶-S 奇=102×d (d 为该数列的公差),即30-15=5d ,解得d =3.(2)方法一:设等差数列{a n }的公差为d ,由S 1010-S 88=2得-2 017×10+10×92d10--2 017×8+8×72d8=2,解得d =2,所以S 2 017=-2 017×2 017+2 017×2 0162×2=-2 017.方法二:由等差数列前n 项和的性质可知,数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列,设其公差为d ,则由S 1010-S 88=2可得2d =2,即d =1.又S 11=-2 017,所以S 2 0172 017=-2 017+(2 017-1)×1=-1,所以S 2 017=-2 017.类型三 等差数列的综合应用题【例5】 已知数列{a n }是等差数列. (1)若a m =n ,a n =m (m ≠n ),求a m +n ; (2)若S m =n ,S n =m (m >n ),求S m +n .【思路探究】 (1)由通项公式或前n 项和公式得a 1和d 的关系,通过解方程组求得a 1和d ,进而求得a m +n 和S m +n .(2)利用等差数列的性质可使问题简化.【解】 设首项为a 1,公差为d , (1)解法一:由a m =n ,a n =m ,得⎩⎪⎨⎪⎧a 1+(m -1)d =n ,a 1+(n -1)d =m ,解得a 1=m +n -1,d =-1.∴a m +n =a 1+(m +n -1)d =m +n -1-(m +n -1)=0. 解法二:由a m =n ,a n =m ,得d =n -mm -n =-1,∴a m +n =a m +(m +n -m )d =n +n ×(-1)=0. (2)解法一:由已知可得 ⎩⎪⎨⎪⎧m =na 1+n (n -1)2d ,n =ma 1+m (m -1)2d ,解得⎩⎪⎨⎪⎧a 1=n 2+m 2+mn -m -nmn ,d =-2(m +n )mn .∴S m +n =(m +n )a 1+(m +n )(m +n -1)2d =-(m +n ).解法二:∵{a n }是等差数列, ∴可设S n =An 2+Bn .则⎩⎪⎨⎪⎧Am 2+Bm =n ,①An 2+Bn =m .②①-②得A (m 2-n 2)+B (m -n )=n -m , ∵m ≠n ,∴A (m +n )+B =-1.∴S m +n =A (m +n )2+B (m +n )=-(m +n ).规律方法 (1)灵活运用性质求等差数列中的量,可以简化运算,提高解题速度及准确性;(2)在应用性质:若m +n =l +k ,则a m +a n =a l +a k 时,首先要找到项数和相等的条件,然后根据需要求解,解决此类问题要有整体代换的意识.数列{a n }满足a 1=1,a n +1=a n +2,且前n 项和为S n . (1)求数列{S nn }的前n 项和T n ;(2)求数列{1T n}的前n 项和.解:(1)由a n +1=a n +2,得数列{a n }是等差数列,且a 1=1,公差d =2, 从而a n =2n -1,∴S n =n (a 1+a n )2=n 2.∴S nn =n ,从而T n =n (n +1)2. (2)由(1)有1T n =2n (n +1)=2(1n -1n +1),其前n 项和为2[(11-12)+(12-13)+(13-14)+…+(1n -1n +1)]=2nn +1.——多维探究系列—— 特殊值法解等差数列问题特殊值法在解一些选择题和填空题中经常用到,就是通过取一些特殊值、特殊点、特殊函数、特殊数列、特殊图形等来求解或否定问题的目的.用特殊值法解题时要注意,所选取的特例一定要简单,且符合题设条件.【例6】 在等差数列{a n }中,a 1=1,前n 项和S n 满足条件S 2n S n =4n +2n +1,n =1,2,…,则a n =________.【思路分析】 因S n =na 1+n (n -1)2d =n +n (n -1)2d ,则S 2n =2na 1+2n (2n -1)2d =2n +n (2n -1)d ,故S 2n S n =2n +n (2n -1)d n +n (n -1)2d=2(2dn +2-d )dn +2-d =4n +2n +1, 解得d =1,则a n =n . 【规范解答】 n已知正数数列{a n }对任意p ,q ∈N +,都有a p +q =a p +a q ,若a 2=4,则a 9=( C ) A .6 B .9 C .18D .20解析:解法一:∵a 2=a 1+1=a 1+a 1=4,∴a 1=2,a 9=a 8+1=a 8+a 1=2a 4+a 1=4a 2+a 1=18.解法二:∵a 2=a 1+1=a 1+a 1=4,∴a 1=2,令p =n ,q =1,所以a n +1=a n +a 1,即a n +1-a n =2,∴{a n }是等差数列,且首项为2,公差为2,故a 9=2+(9-1)×2=18.一、选择题1.设S n 是等差数列{a n }的前n 项和,S 5=10,则a 3的值为( C ) A.65B .1C .2D .3 解析:∵S 5=5(a 1+a 5)2=5a 3,∴a 3=15S 5=15×10=2.2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 1=4,则公差d 等于( C ) A .1 B.53C .-2D .3解析:由题意,得6=3×4+3×22d ,解得d =-2.3.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项和S 10等于( C ) A .138 B .135 C .95 D .23解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+d +a 1+3d =4,a 1+2d +a 1+4d =10, 解得a 1=-4,d =3,所以S 10=10a 1+10×92d =95. 二、填空题4.在数列{a n }中,a n =5n -105,则当n =20或21时,S n 取最小值.5.已知{a n }是等差数列,S n 为其前n 项和,n ∈N +,若a 3=16,S 20=20,则S 10的值为110.解析:设等差数列{a n }的首项为a 1,公差为d . a 3=a 1+2d =16,S 20=20a 1+20×192d =20. ∴⎩⎪⎨⎪⎧ a 1+2d =16,2a 1+19d =2.解得⎩⎪⎨⎪⎧ a 1=20,d =-2.∴S 10=10a 1+10×92d =200-90=110. 三、解答题6.等差数列{a n }中,a 2+a 3=-38,a 12=0,求S n 的最小值以及相对应的n 值. 解:解法一:(单调性法)设等差数列{a n }的首项为a 1,公差为d ,则有⎩⎪⎨⎪⎧ (a 1+d )+(a 1+2d )=-38a 1+11d =0, 解得⎩⎪⎨⎪⎧ a 1=-22d =2.∴当⎩⎨⎧ a n ≤0a n +1≥0, 即⎩⎪⎨⎪⎧-22+2(n -1)≤0-22+2n ≥0时,S n 有最小值,解得11≤n ≤12, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132. 解法二:(配方法)由解法一得⎩⎪⎨⎪⎧a 1=-22d =2,∴S n =-22n +n (n -1)2×2=n 2-23n =⎝⎛⎭⎫n -2322-5294, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132. 解法三:(邻项比较法)由解法二得S n =n 2-23n ,又由⎩⎪⎨⎪⎧ S n ≤S n -1,S n ≤S n +1,得⎩⎪⎨⎪⎧n 2-23n ≤(n -1)2-23(n -1),n 2-23n ≤(n +1)2-23(n +1), 解得11≤n ≤12,故S 11=S 12, ∴当n =11或12时,S n 取得最小值,最小值为S 11=S 12=-132.。
新教材2023版高中数学第一章数列2等差数列2
题型三 利用an与Sn的关系求解数列问题 例3 已知正项数列{an}的前n项和为Sn,且8Sn=(an+2)2. (1)求证:{an}为等差数列; (2)求{an}的通项公式.
方法归纳 在给出数列的an与Sn的关系式时,可根据an=Sn-Sn-1(n≥2)将关系 式中的Sn(或an)消去,从而求得an与an-1(或Sn与Sn-1)的关系,然后借 助等差数列或其他特殊数列中的方法求解.
=0.解得n=7,n=-20(舍去),所以相遇是在开始运动后7分钟.
5.已知数列{an}的前n项和为Sn,且满足Sn=an+n2-1(n∈N+).求 {an}的通项公式.
解析:当n=2时,S2=a1+a2=a2+22-1,即a1=3,当n≥2时,Sn=an+n2-1, Sn-1=an-1+(n-1)2-1,
多少路程?
方法归纳
(1)本题属于与等差数列前n项和有关的应用题,其关键在于构造合 适的等差数列.
(2)遇到与正整数有关的应用题时,可以考虑与数列知识联系,建立 数列模型,具体解决要注意以下两点:
①抓住实际问题的特征,明确是什么类型的数列模型. ②深入分析题意,确定是求通项公式an,或是求前n项和Sn,还是求 项数n.
跟踪训练3 已知数列{an}的前n项和为Sn,且满足a1=1,an+2SnSn -1=0(n≥2).
(1)求证:数列 1 是等差数列;
Sn
(2)求{an}的通项公式.
[课堂十分钟]
1.设数列{an}的前n项和Sn=n2,则a8的值为( )
A.15
B.16
C.49
D.64
答案:A
解析:a8=S8-S7=82-72=15. 故选A.
(1)求a1时不能使用an=Sn-Sn-1,因为S0在数列前n项和中无意义,
7.等差数列及其前n项和(教师版)常考题型
S1 Sn-Sn-1
n=1, n>1,n∈N*
例 2、已知数列 项和.。求数列
满足 的通项公式
,
是数列
的前
【巩固练习】已知数列
的各项均为正数,
是数列
的前 n 项和,且
.
3
求数列
的通项公式
例 3、已知数列 (1)求数列 (2)若数列
的前 项和为 的通项公式; 满足:
,且
(
)。
,求数列
的通项公式
【巩固练习】已知数列 an 满足:
1 1 1 1 n 2 (n N * ) ,求 an a1 a 2 a3 an
类型二
等差数列的判定与证明
4
等差数列的判定方法 (1)定义法:对于 n≥2 的任意自然数,验证 an-an-1 为同一常数; (2)等差中项法:验证 2an-1=an+an-2(n≥3,n∈N*)成立; (3)通项公式法:验证 an=pn+q; (4)前 n 项和公式法:验证 Sn=An2+Bn. [提醒] 在解答题中常应用定义法和等差中项法, 而通项公式法和前 n 项和公式法主要适用于选 择题、填空题中的简单判断. 1 例 1、已知数列{an}的前 n 项和为 Sn 且满足 an+2Sn· Sn-1=0(n≥2),a1=2.
h 修三四五课
第三步:检验 n=1 时,a1=S1 是否适合上式, 若适合,则数列{an}的通项公式是 an=Sn-Sn-1; 若不合适,则数列{an}的通项公式是 an= 例 1、已知数列{an}的前 n 项和 Sn=3n+b,求 an.
解 当 n=1 时,a1=S1=3+b.n≥2 时,an=Sn-Sn-1=2· 3n 1. - - 因此,当 b=-1 时,a1=2 适合 an=2· 3n 1,∴an=2· 3n 1. 3+b n=1 - 当 b≠-1 时,a1=3+b 不适合 an=2· 3n 1,∴an= n-1 . 2· 3 n≥2 - 综上可知,当 b=-1 时,an=2· 3n 1; 3+b n=1 当 b≠-1 时,an= n-1 . 2· 3 n≥2
奥数:1-2-3等差数列应用题
等差数列应用题目tM 怔 例题精讲【例1】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬 冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人? 【考点】等差数列应用题 【难度】2星【题型】解答【解析】首项=17,末项=150,公差=7,项数=(150-17) £+1=20【答案】20【例2】 一个队列按照每排 2, 4, 6, 8人的顺序可以一直排到某一排有 100人,那么这个队列共有多少人?【考点】等差数列应用题【难度】2星【题型】解答【解析】(方法一)利用等差数列求和公式:通过例 1的学习可以知道,这个数列一共有50个数,再将和为102的两个数——配对,可配成 25对. 所以 2 4 696 98 100 = ( 2+100) 25=103 25= 2550(方法二)根据 1・2・3 . 98 99 10^5050,从这个和中减去 13 5 7 ... 99的和,就可得出此题的结果,这样从反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例3】 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的•第一个雕塑有3只蝴蝶,第二个雕塑有 5只蝴蝶,第三个雕塑有 7只蝴蝶,第四个雕塑有 9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方, 学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题【难度】2星【题型】解答【解析】也就是已知一个数列:3、5、7、9、11、13、15、……,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式 一一第门项=首项+公差(n-1),所以,第102项=3+2(102-1) = 205;由 项数=(末项-首项尸公差十1”,999所处的项数是:(999—3)2+1 =996 斗 2 +1 =498+1 =499【答案】499【巩固】有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根 ?【考点】等差数列应用题【难度】2星【题型】解答【解析】将每层圆木根数写出来,依次是:5, 6, 7, 8, 9, 10 ,…可以看出,这是一个等差数列,它的首项是5,公差是1,项数是28•求的是第28项•我们可以用通项公式直接计算.解:a n =印(n — 1) d=5 (28 -1) 132(根)故最下面的一层有 32根.【答案】32【巩固】建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多 4块砖,已知最下层 2106块砖,问中间一层多少块砖?这堆砖共有多少 块?【解析】项数=(2106-2)韶+1=527,因此,层数为奇数,中间项为(2+2106)吃=1054,数列和=中间项X项数=1054 >527=555458,所以中间一层有1054块砖,这堆砖共有555458块。
小学奥数教程-等差数列计算题.教师版(11)全国通用(含答案)
2a ba 22ab b 2.为便于记忆,可形象的叙述为:首平方,尾平方,2倍乘积在中央、常用技巧1. abcabc abc 1001 ;2. ababab ab 10101 ;3. 1 0.142857 , 2 0.285714 , 30.428571 ,7 7 7 4 1 5 1 6—0.571428 , — 0.714285 , — 0.857142 ; 7 7 7 4. %驰 %邨 123|||n||(321 ,其中 n 9.n 个1n 个1且隹例题精讲一'、前n 项和 【例 1】12 32 52"192【考点】公式法之求和公式 【解析】12 32 52 "I 192(12 22 32 ||| 192) (221 /2 2 —19 20 39 4 (1 2 6自tut/、常用公式1.2 3III2. 12 22 323. 13 23 334.5.6. 7.知识点拨IIIIll 10 n (n 1) 2n 等比数列求和公式: 平方差公式: b2n (n 1) (2n 1)S n II IIl la〔q1a 〔q公式法计算22n (n 1) a 〔qn n 1III a 1(q n1)(q 3 2 1 n2;1);完全平方公式: 用文字表述为:2ab b 2,2 一2a 2ab b两数和(或差)的平方,等于这两个数的平方和, 加上(或者减去)这两个数的积的2倍,两条公式也可以合写在一起:【难度】2星42 || 182)III 92) 【题型】计算57600 门平 c2 ---- 2 7 8 4 8128【答案】81281 2 23333-100 101 21 2 501 2 2 3 1 2 2 —100 101 2 50 51 4 42470 2470【答案】21851—9 10 19 6285 2185 222222【巩固】124 5 7 8 【考点】公式法之求和公式【解析】原式(12 22 I0 162) (12 22 ||| 162) 2222210 11 13 14 16【难度】3星 (32 62 92 122 152)32 (12 2232 4252) 【题型】计算16 17 33 5 6 11--------- 9 ---------6 61496 495 1001【答案】1001[例 2 ] 计算:36 49 64 81 III 400 【考点】公式法之求和公式 【难度】3星【解析】原式62 72 82 H 2021222 32 ” 20212 2 2 32 42 521 120 21 41 5 6 11 6 6 2870 55 2815【答案】2815【题型】计算【例3】 计算:13 33 53 73 【考点】公式法之求和公式 33339 11 13 15【难度】3星【题型】计算【解析】原式13 23 33 432215 15 1 ---------- 8 III 143 13 23 153 III 23 73 43 III314【巩固】计算:13 33 53 \\\ 【考点】公式法之求和公式 【解析】 与公式13 23\\\ n 3先补上偶数项. 3991 2【难度】3星212n n m -------- 相比,4【题型】填空13 33 53”993缺少偶数项,所以可以原式 13 23 33 \\\ 100323 43 \\\ 1003_2 _2_ 2502 1012 2 512 12497500 【答案】124975001 23 33 20063【例4 ] 计算:------------------------------ 11 2 3 2006【关键词】西城实验 2003 2 2001 22 13 5 I]) 2001 2 1 2003 1002 2 2008008其中也可以直接根据公式 1 3 5 7 “ 2n 1 n 2得出1 3 5 ” 2001 2003 10022【答案】2008008 【例 6】计算:1 22 2 32 3 42 \[[ 18 192 19 202 【考点】公式法之求和公式 【难度】3星【题型】计算【解析】 分拆(21) 22 23 22 (3 1 ) 32 33321HHi 再用公式4 川丁( I( (J (II ( ( ( ( ( ( \J I ) 。
等差数列问题(教师版)
等差数列问题(教师版)等差数列1:了解等差数列的概念及特征;2:掌握等差数列通项公式推导⽅法;3:学会⽤逆向求和的⽅法推导等差数列的和通项公式;4:能灵活运⽤等差数列的通项公式与和通项公式求解⼀般数列。
5 能⼒⽬标培养学⽣观察、分析、归纳、推理的能⼒,在领会函数与数列关系的前提下,把研究函数的⽅法迁移来研究数列,培养学⽣的知识、⽅法迁移能⼒;通过阶梯性练习,提⾼学⽣分析问题和解决问题的能⼒。
6. 情感⽬标在解决问题的过程中培养学⽣主动探索、勇于发现的求知精神;使学⽣认识事物的变化形态,养成细⼼观察、认真分析、善于总结的良好思维习惯。
等差数列我们可以简单地理解为:⼀组数、任意相邻的两个,差都相等,要正确解决实际问题,⼀是要掌握等差数列通⽤公式,既(⾸项+末项)÷2=等差数列的平均数(⾸项+末项)×项数÷2=等差数列所有各项的和⾸项+(项数—1)×公差=末项末项-(项数—1)×公差=⾸项(末项-⾸项)÷(项数-1)=公差(末项-⾸项)÷公差+1=项数第⼆是注意观察,认真思考,明确题⽬中给出条件的实质意义,找出规律性的内容,然后选择合适的公式进⾏计算。
1:2,5,8,11,14……是按照规律排列的⼀串数,第21项是多少?【解析】此数列为⼀个等差数列,将第21项看做末项。
末项=2+(21-1)×3=622:观察右⾯的五个数:19、37、55、a、91排列的规律,推知a =________ 。
【解析】19+18=37,37+18=55,所以a=55+18=733:2、4、6、8、10、12、是个连续偶数列,如果其中五个连续偶数的和是320,求它们中最⼩的⼀个.【解析】⽅法⼀:利⽤等差数列的“中项定理”,对于奇数个连续⾃然数,最中间的数是所有这些⾃然数的平均值,五个连续偶数的中间⼀个数应为320564÷=,因相邻偶数相差2,故这五个偶数依次是60、62、64、66、68,其中最⼩的是60.4:在等差数列6,13,20,27,…中,从左向右数,第 _______个数是1994.【解析】每个数⽐前⼀个数⼤7,根据求通项1(1)n a a n d =+-的公式得1()1n n a a d =-÷+,列式得: (19946)7284-÷=2841285+=即第285个数是1994.5:⼀个等差数列2,4,6,8,10,12,14,这个数列各项的和是多少?【解析】根据中项定理,这个数列⼀共有7项,各项的和等于中间项乘以项数,即为:8756?= 6:学校进⾏书法⼤赛,每个选⼿都要和其他所有选⼿各赛⼀场。
新教材高中数学第四章数列4.2等差数列4.2.2.2等差数列习题课课件新人教A版选择性必修第二册
①式的两边同除以SnSn-1得:
1 Sn1
1 Sn
2即:1 Sn
1 Sn1
2,
所以数列 { 1是} 首项为2,公差为2的等差数列,
Sn
所以 S1n=2+2(n-1)=2n,即:Sn=21n ,则
an
2SnSn1
1 (n 2n(n 1)
【类题·通】 应用等差数列解决实际问题的一般思路
【习练·破】 植树节某班20名同学在一段直线公路一侧植树,每人植树一棵,相邻两棵树相 距10 m,开始时需将树苗集中放置在某一棵树坑旁边,使每位同学从各自树坑 出发前来领取树苗往返所走的路程总和最小,此最小值为________ m.
【解析】假设20位同学是1号到20号依次排列,使每位同学从各自树坑出发前
【习练·破】 已知等差数列{an}的前n项和为Sn,n∈N*,满足a1+a2=10,S5=40. (1)求数列{an}的通项公式; (2)设bn=|13-an|,求数列{bn}的前n项和Tn.
【素养·探】 在裂项求和与并项求和有关的问题中,经常利用核心素养中的数学运算,通过 对数列通项结构特征的分析和适当变形,选择恰当的方法求和. 将本例1的条件改为“an=(-1)n(3n-2)”,试求a1+a2+…+a10.
【解析】a1+a2+…+a10=-1+4-7+10+…+(-1)10·(3×10-2) =(-1+4)+(-7+10)+…+[(-1)9·(3×9-2)+(-1)10·(3×10-2)]=3×5=15.
等差数列前n项和公式的推导及简单应用第2课时高二下学期数学人教A版(2019)选择性必修第二册
解得d=-2.
nn-1 ∴Sn=25n+ 2 ×(-2)=-n2+26n =-(n-13)2+169.
∴当n=13时,Sn有最大值169.
典例精析
题型二:等差数列前n项和的最值
例2 在等差数列{an}中,若a1=25,且S9=S17,求Sn的最大值.
方法二 同方法一,求出公差d=-2.
∴an=25+(n-1)×(-2)=-2n+质
(2)两个等差数列{an},{bn}的前 n 项和分别为 Sn 和 Tn, 已知TSnn=7nn++32,求ab55的值.
解
ab55=1212ab11++ab99=99ba1122++ba99=TS99=7×9+9+3 2=6152.
典例精析
题型一:等差数列前n项和性质
A.5
√B.6
C.7
D.8
解析 由 7a5+5a9=0,得ad1=-137. 又a9>a5,所以d>0,a1<0. 因为函数 y=d2x2+a1-d2x 的图象的对称轴为 x=12-ad1=12+137=367,
取最接近的整数 6,故 Sn 取得最小值时 n 的值为 6.
跟踪练习
4.植树节某班20名同学在一段直线公路一侧植树,每人植树一棵,相邻两棵树相距 10米,开始时需将树苗集中放置在某一棵树坑旁边,使每位同学从各自树坑出发前 来领取树苗往返所走的路程总和最小,此最小值为________米.
解析 假设20位同学是1号到20号依次排列, 使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小, 则树苗需放在第10或第11号树坑旁, 此时两侧的同学所走的路程都组成以20为首项,20为公差的等差数列, 故所有同学往返的总路程为S=9×20+9×28×20+10×20+9×210×20=2 000米. 答案 2 000
课时作业16:第1课时 等差数列前n项和公式的推导及简单应用
§2.3 等差数列的前n 项和第1课时 等差数列前n 项和公式的推导及简单应用一、选择题1.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2,n ∈N *),则数列{a n }的前9项和等于( ) A.27 B.632C.45D.-9 考点 等差数列前n 项和题点 求等差数列前n 项和答案 A解析 由已知数列{a n }是以1为首项,以12为公差的等差数列,∴S 9=9×1+9×82×12=9+18=27.2.在等差数列{a n }和{b n }中,a 1=25,b 1=75,a 100+b 100=100,则数列{a n +b n }的前100项的和为( )A.10 000B.8 000C.9 000D.11 000考点 等差数列前n 项和题点 求等差数列的前n 项和答案 A解析 由已知得{a n +b n }为等差数列,故其前100项的和为S 100=100[(a 1+b 1)+(a 100+b 100)]2=50×(25+75+100)=10 000.3.在-20与40之间插入8个数,使这10个数成等差数列,则这10个数的和为( )A.200B.100C.90D.70考点 等差数列前n 项和题点 求等差数列的前n 项和答案 B解析 S 10=10×(-20+40)2=100.4.在等差数列{a n }中,若a 2+a 8=8,则该数列的前9项和S 9等于( )A.18B.27C.36D.45考点 等差数列前n 项和题点 求等差数列的前n 项和答案 C解析 S 9=92(a 1+a 9)=92(a 2+a 8)=36.5.在等差数列{a n }中,若S 10=4S 5,则a 1d 等于( )A.12B.2C.14D.4考点 等差数列前n 项和性质运用题点 两等差数列和之比与项之比问题答案 A解析 由题意得10a 1+12×10×9d =4⎝⎛⎭⎫5a 1+12×5×4d ,∴10a 1+45d =20a 1+40d ,∴10a 1=5d ,∴a 1d =12.6.在小于100的自然数中,所有被7除余2的数之和为( )A.765B.665C.763D.663考点 等差数列前n 项和题点 求等差数列的前n 项和答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.7.在等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10等于() A.-9 B.-11 C.-13 D.-15考点 等差数列前n 项和题点 求等差数列的前n 项和答案 D解析 由a 23+a 28+2a 3a 8=9,得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15.8.已知数列{a n }的前n 项和S n =n 2-2n ,则a 2+a 18等于( )A.36B.35C.34D.33考点 a n 与S n 关系题点 由S n 公式求a n答案 C解析 方法一 a 2=S 2-S 1=(22-2×2)-(12-2×1)=1,a 18=S 18-S 17=182-2×18-(172-2×17)=33.∴a 2+a 18=34.方法二 a 2+a 18=a 1+a 19,S 19=19(a 1+a 19)2=192-2×19,∴a 1+a 19=34,即a 2+a 18=34. 二、填空题9.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为________.考点 等差数列的前n 项和应用题题点 等差数列前n 项和应用题答案 10解析 钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为1+2+3+…+n =n (n +1)2. 当n =19时,S 19=190.当n =20时,S 20=210>200.∴当n =19时,剩余钢管根数最少,为10根.10.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________.考点 等差数列前n 项和题点 等差数列前n 项和有关的基本量计算问题答案 15解析 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1, S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8. 由⎩⎪⎨⎪⎧ a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2. 故a 9=a 1+8d =-1+8×2=15.11.在等差数列{a n }中,a n =2n +3,前n 项和S n =an 2+bn +c (a ,b ,c 为常数),则a -b +c =________.考点 等差数列前n 项和题点 等差数列前n 项和综合问题答案 -3解析 因为a n =2n +3,所以a 1=5,S n =(5+2n +3)n 2=n 2+4n ,与S n =an 2+bn +c 比较,得a =1,b =4,c =0,所以a -b +c =-3.三、解答题12.已知等差数列{a n }的前三项依次为a,4,3a ,前k 项和S k =2 550,求a 及k . 考点 等差数列前n 项和题点 等差数列前n 项和有关的基本量计算问题 解 设等差数列{a n }的公差为d ,则由题意得⎩⎪⎨⎪⎧ a +3a =2×4,d =4-a ,ka +k (k -1)2d =2 550, ∴⎩⎪⎨⎪⎧ a =2,d =2,k =50,(k =-51舍)∴a =2,k =50.13.已知数列{a n }的所有项均为正数,其前n 项和为S n ,且S n =14a 2n +12a n -34. (1)证明:{a n }是等差数列;(2)求数列{a n }的通项公式.考点 a n 与S n 关系题点 由S n 和a n 递推式求通项(1)证明 当n =1时,a 1=S 1=14a 21+12a 1-34, 解得a 1=3或a 1=-1(舍去).当n ≥2时,a n =S n -S n -1=14(a 2n +2a n -3)-14(a 2n -1+2a n -1-3). 所以4a n =a 2n -a 2n -1+2a n -2a n -1,即(a n +a n -1)(a n -a n -1-2)=0.因为a n +a n -1>0,所以a n -a n -1=2(n ≥2).所以数列{a n }是以3为首项,2为公差的等差数列.(2)解 由(1)知a n =3+2(n -1)=2n +1.四、探究与拓展14.已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 200OC →,且A ,B ,C 三点共线(该直线不过原点O ),则S 200=________.考点 等差数列的前n 项和题点 等差数列前n 项和综合问题答案 100解 因为A ,B ,C 三点共线(该直线不过原点O ), 所以a 1+a 200=1,所以S 200=200(a 1+a 200)2=100. 15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足:a 3a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c . 考点 等差数列前n 项和题点 等差数列前n 项和综合问题解 (1)设等差数列{a n }的公差为d ,且d >0. ∵a 3+a 4=a 2+a 5=22,又a 3a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两个根. 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13. ∴⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1,d =4,∴a n =4n -3. (2)由(1)知,S n =n ×1+n (n -1)2×4=2n 2-n , ∴b n =S n n +c =2n 2-n n +c. ∴b 1=11+c ,b 2=62+c ,b 3=153+c. ∵{b n }是等差数列,∴2b 2=b 1+b 3,∴2c 2+c =0,∴c =-12(c =0舍去). 经检验,c =-12符合题意,∴c =-12.。
(小学奥数)等差数列应用题
等差數列應用題例題精講【例 1】100以內的自然數中。
所有是3的倍數的數的平均數是。
【例 2】一群小猴上山摘野果,第一只小猴摘了一個野果,第二只小猴摘了2個野果,第三只小猴摘了3個野果,依次類推,後面的小猴都比它前面的小猴多摘一個野果。
最後,每只小猴分得8個野果。
這群小猴一共有_________只。
【例 3】15位同學排成一隊報數,從左邊報起思思報10.從右邊報起學學報12.那麼學學和思思中間排著有位同學.【例 4】體育課上老師指揮大家排成一排,冬冬站排頭,阿奇站排尾,從排頭到排尾依次報數。
如果冬冬報17,阿奇報150,每位同學報的數都比前一位多7,那麼隊伍裏一共有多少人?【例 5】一個佇列按照每排2,4,6,8人的順序可以一直排到某一排有100人,那麼這個佇列共有多少人?【例 6】有一個很神秘的地方,那裏有很多的雕塑,每個雕塑都是由蝴蝶組成的.第一個雕塑有3只蝴蝶,第二個雕塑有5只蝴蝶,第三個雕塑有7只蝴蝶,第四個雕塑有9只蝴蝶,以後的雕塑按照這樣的規律一直延伸到很遠的地方,學學和思思看不到這排雕塑的盡頭在哪里,那麼,第102個雕塑是由多少只蝴蝶組成的呢?由999只蝴蝶組成的雕塑是第多少個呢?【例 7】如右圖,用同樣大小的正三角形,向下逐次拼接出更大的正三角形。
其中最小的三角形頂點的個數(重合的頂點只計一次)依次為:3,6,10,15,21,…問:這列數中的第9個是多少?【例 8】有一堆粗細均勻的圓木,堆成梯形,最上面的一層有5根圓木,每向下一層增加一根,一共堆了28層.問最下麵一層有多少根?【巩固】建築工地有一批磚,碼成如右圖形狀,最上層兩塊磚,第2層6塊磚,第3層10塊磚…,依次每層都比其上面一層多4塊磚,已知最下層2106塊磚,問中間一層多少塊磚?這堆磚共有多少塊?【例 9】一個建築工地旁,堆著一些鋼管(如圖),聰明的小朋友,你能算出這堆鋼管一共有多少根嗎?【巩固】某劇院有20排座位,後一排都比前一排多2個座位,最後一排有70個座位,這個劇院一共有多少個座位?【巩固】一個大劇院,座位排列成的形狀像是一個梯形,而且第一排有10個座位,第二排有12個座位,第三排有14個座位,……最後一排他們數了一下,一共有210個座位,思考一下,劇院中間一排有多少個座位呢?這個劇院一共有多少個座位呢?【例 10】有碼放整齊的一堆球,從上往下看如右圖,這堆球共有多少個?【例 12】一輛雙層公共汽車有66個座位,空車出發,第一站上一位乘客,第二站上兩位乘客,第三站上三位乘客,依此類推,第幾站後,車上坐滿乘客?【例 13】時鐘在每個整點敲打,敲打的次數等於該鐘點數,每半點鐘敲一下.問:時鐘一晝夜打多少下?【例 14】已知:13599101b=+++++,則a、b兩個數中,較a=+++++,24698100大的數比較小的數大多少?【例 15】小明進行加法珠算練習,用1234++++,當加到某個數時,和是1000.在驗算時發現重複加了一個數,這個數是多少?【例 16】編號為1~9的9個盒子裏共放有351粒糖,已知每個盒子都比前一個盒它前一個盒子裏多放幾粒糖?【巩固】例題中已知如果改為3號盒子裏放了23粒糖呢?【例 17】小王和小高同時開始工作。
等差数列数列练习题(一)教师版
等差数列练习题(一)1.已知为等差数列,,则等于 A. -1 B. 1 C. 3 D.7 【解析】∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B 。
【答案】B2.设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( ) A .13 B .35 C .49 D . 63【解析】172677()7()7(311)49.222a a a a S +++====故选C. 或由21161315112a a d a a a d d =+==⎧⎧⇒⎨⎨=+==⎩⎩, 716213.a =+⨯=所以1777()7(113)49.22a a S ++===故选C.3.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于A .1B 53C.- 2 D 3 【答案】:C[解析]∵31336()2S a a ==+且3112 =4 d=2a a d a =+∴.故选C 4.已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d =A.-2B.-12 C.12D.2 【解析】a 7-2a 4=a 3+4d -2(a 3+d)=2d =-1 ⇒ d =-12【答案】B5.若等差数列{}n a 的前5项和525S =,且23a =,则7a =( ) A.12 B.13 C.14 D.15 答案 B6.在等差数列{}n a 中, 284a a +=,则 其前9项的和S 9等于 ( )A .18B 27C 36D 9 答案 A7.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( ) A .64 B .100 C .110 D .120 答案 B8.记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S =( ) A .16 B .24 C .36 D .48 答案 D9.等差数列{}n a 的前n 项和为x S 若=则432,3,1S a a ==( )A .12B .10C .8D .6 答案 B10.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .27 答案 B11.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 ( ) A .15 B .30C .31D .64答案 A 12.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.答案 7 二、填空题13. 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 答案 24解析 {}n a 是等差数列,由972S =,得599,S a ∴=58a =∴2492945645()()324a a a a a a a a a a ++=++=++==.14.设等差数列{}n a 的前n 项和为n S ,若535a a =则95SS =解析 {}n a 为等差数列,9553995S aS a ∴==答案 915.等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a =解析 ∵S n =na 1+12n(n -1)d ∴S 5=5a 1+10d,S 3=3a 1+3d∴6S 5-5S 3=30a 1+60d -(15a 1+15d)=15a 1+45d =15(a 1+3d)=15a 4 答案3116.已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=⋅a a a ,则前10项的和S 10= 答案:-10 三、解答题17.在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++ .解答、n a n 2.0=,393805251=+++a a a18、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0, ①求公差d 的取值范围;②1212,,,S S S 中哪一个值最大?并说明理由.①∵121126767713113712()6()002130()1302S a a a a a a a S a a a ⎧=+=+>⎪+>⎧⎪⇔⎨⎨<⎩⎪=+=<⎪⎩ ,∴111211060212a d a d a d +>⎧⎪+<⎨⎪+=⎩ 解得,2437d -<<-,②由67700a a a +>⎧⎨<⎩6700a a >⎧⇒⎨<⎩,又∵2437d -<<-∴{}n a 是递减数列,∴1212,,,S S S 中6S 最大.19、己知}{n a 为等差数列,122,3a a ==,若在每相邻两项之间插入三个数,使它和原数列的数构成一个新的等差数列,求:(1)原数列的第12项是新数列的第几项?(2)新数列的第29项是原数列的第几项? 解:设新数列为{},4,)1(,3,2,1512511d b b d n b b a b a b b n n +=-+=====有根据则即3=2+4d ,∴14d =,∴172(1)44n n b n +=+-⨯= 1(43)7(1)114n n a a n n -+=+-⨯=+= 又,∴43n n a b -=即原数列的第n 项为新数列的第4n -3项.(1)当n=12时,4n -3=4×12-3=45,故原数列的第12项为新数列的第45项; (2)由4n -3=29,得n=8,故新数列的第29项是原数列的第8项。
等差数列及其应用
等差数列及其应用
一、填空题。
1、已知等差数列4,8,12,16…,它的第25项是()。
2、已知等差数列2,7,12,…,122,这个等差数列共有()项。
3、从25开始往后,数20个连续的奇数,最后1个奇数是()。
4、在一个等差数列中,第一项是12,第五项是60,公差是()。
5、在自然数10到30之间插入4个数,使这六个数构成等差数列,这四个数分别是()、()、()、()。
6、三个数成等差数列,它们的和是18,积是120,这三个数是()、()、()。
二、计算题。
1、2+6+10+14+…+210+214
2、(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
三、解答题。
1、有一个等差数列:1,5,9,13,17,21…(1)第1000个数是多少?(2)4921是它的第几项?
2、39个连续奇数的和是1989,其中最大的一个
3、1-100这一百个自然数中所有不能被9
奇数是多少?整除的奇数的和是多少?
4、九个连续偶数的和比其中最小的数多232,这九个数中最大的数是多少?
四、应用题。
1、蜗牛从早晨开始爬行,每小时比前一小时多爬行10厘米,第一小时爬了100厘米,休息的最后一小时爬了190厘米。
问:蜗牛爬了几小时?
2、影剧院有座位若干排,第一排有25个座位,以后每排比前一排多3个座位,最后一排有94个座位。
问:这个影剧院共有多少个座位?
3、50把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次就足够了?。
等差数列专题训练1(老师版)
等差数列专题训练1(老师版)等差数列专题训练1(老师版)一、基本概念等差数列是指一个数列中的每一项与前一项之间的差都相等的数列。
其中,差值称为等差数列的公差。
二、公式推导对于等差数列 $\{a_n\}$,首项为 $a_1$,公差为 $d$,第$n$ 项为 $a_n$。
其通项公式为:$a_n = a_1 + (n - 1) \cdot d$三、常见问题训练问题1已知等差数列的首项 $a_1 = 3$,公差 $d = 2$,求该等差数列的第 $10$ 项。
解析:根据通项公式,可得 $a_{10} = 3 + (10 - 1) \cdot 2 = 3 + 9 \cdot 2 = 3 + 18 = 21$。
问题2等差数列 $\{a_n\}$ 的首项为 $a_1 = 5$,公差为 $d = -3$,求该等差数列的前 $6$ 项之和。
解析:根据求和公式,可得 $S_6 = \frac{6}{2} \cdot (2 \cdot 5 + (6 - 1) \cdot (-3)) = 3 \cdot (10 + 15) = 3 \cdot 25 = 75$。
问题3已知等差数列的前 $3$ 项之和为 $12$,公差为 $2$,求该等差数列的第 $8$ 项。
解析:设第 $n$ 项为 $a_n$,根据前 $n$ 项和公式,可得 $S_3 =\frac{3}{2} \cdot (2 \cdot a_1 + (3 - 1) \cdot 2) = a_1 + 3 \cdot 2 = a_1 + 6$。
已知 $S_3 = 12$,则 $a_1 + 6 = 12$,解得 $a_1 = 6$。
根据通项公式,可得 $a_8 = a_1 + (8 - 1) \cdot 2 = 6 + 14 = 20$。
四、总结本文介绍了等差数列的基本概念、公式推导以及常见问题训练。
通过学习等差数列的性质和公式,我们能够更好地理解和解决与等差数列有关的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例 1】 100以内的自然数中。
所有是3的倍数的数的平均数是。
【考点】等差数列应用题【难度】1星【题型】填空【关键词】希望杯,五年级,复赛,第3题,5分【解析】 100以内的自然数中是3的倍数的数有0,3,6,9,99L 共33个,他们的和是()09934179916832+⨯=⨯=,则他们的平均数为1683÷34=49.5。
【答案】49.5【例 2】 一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。
最后,每只小猴分得8个野果。
这群小猴一共有_________只。
【考点】等差数列应用题【难度】2星【题型】填空【关键词】希望杯,四年级,二试,第7题【解析】 平均每只猴分8个野果,所以最后一只猴摘了821=15⨯-只果,共有15只猴.【答案】15只猴子【例 3】 15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有位同学.【考点】等差数列应用题【难度】2星【题型】填空【关键词】学而思杯,1年级【解析】因为从左边起思思报10,所以,思思的右边还有15105-=(个);又因为从右边起学学报12,所以,学学的左边还有15123-=(个),15645--=(个)学学和思思中间排着5位同学.<考点>排队问题【答案】5位例题精讲等差数列应用题【例 4】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。
如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题【难度】2星【题型】解答【解析】 首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 5】 一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人,那么这个队列共有多少人?【考点】等差数列应用题【难度】2星【题型】解答【解析】 (方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++L =2+10025=10325=2550⨯⨯()(方法二)根据12398991005050++++++=L ,从这个和中减去1357...99+++++的和,就可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 6】 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题【难度】2星【题型】解答【解析】 也就是已知一个数列:3、5、7、9、11、13、15、……,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第n 项=首项+公差1n ⨯-(), 所以,第102项321021205=+⨯=(-);由“项数=(末项-首项)÷公差1+”,999所处的项数是:【答案】499【例 7】 如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。
其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问:这列数中的第9个是多少?【考点】等差数列应用题【难度】2星【题型】填空【关键词】华杯赛,初赛,第6题【解析】 这列数第一项为3,第二项比第一项多3,以后每项比前项多项数加1,所以第9项为3+3+4+5+6+…+10=1+2+3+4+5+6+…+10=55。
【答案】55【例 8】 有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层.问最下面一层有多少根【考点】等差数列应用题【难度】2星【题型】解答【解析】 将每层圆木根数写出来,依次是:5,6,7,8,9,10,…可以看出,这是一个等差数列,它的首项是5,公差是1,项数是28.求的是第28项.我们可以用通项公式直接计算.解:1(1)n a a n d =+-⨯32=(根)故最下面的一层有32根.【答案】32【巩固】 建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?【考点】等差数列应用题【难度】2星【题型】解答【解析】 项数=(2106-2)÷4+1=527,因此,层数为奇数,中间项为(2+2106)÷2=1054,数列和=中间项×项数=1054×527=555458,所以中间一层有1054块砖,这堆砖共有555458块。
【答案】555458【例 9】 一个建筑工地旁,堆着一些钢管(如图),聪明的小朋友,你能算出这堆钢管一共有多少根吗?【考点】等差数列应用题【难度】3星【题型】解答【解析】 (方法一)不难发现,这堆钢管每一层都比上一层多1根,也就是从上到下每层钢管的数量构成了一个等差数列,而且首项为3,末项为10,项数为8.由等差数列求和公式可以求出这堆钢管的总数量:3108252+⨯÷=()(根)(方法二)我们可以这样假想:通过对几何图形进行旋转,从而达到配对的目的是解决问题的关键(如图)这个槽内的钢管共有8层,每层都有31013+=(根),所以槽内钢管的总数为:3108104+⨯=()(根).取它的一半,可知例题图中的钢管总数为:104252÷=(根)【答案】52【巩固】某剧院有20排座位,后一排都比前一排多2个座位,最后一排有70个座位,这个剧院一共有多少个座位?【考点】等差数列应用题【难度】2星【题型】解答【解析】第一排座位数:702(201)32-⨯-=(个),一共有座位:(3270)2021020+⨯÷=(个).【答案】1020【巩固】一个大剧院,座位排列成的形状像是一个梯形,而且第一排有10个座位,第二排有12个座位,第三排有14个座位,……最后一排他们数了一下,一共有210个座位,思考一下,剧院中间一排有多少个座位呢?这个剧院一共有多少个座位呢【考点】等差数列应用题【难度】2星【题型】解答【解析】如果我们把每排的座位数依次记下来,10、12、14、16、…容易知道,是一个等差数列.210是第2101021101n=-÷+=()排,中间一排就是第+-⨯=()排,那么中间一排有:105112110()(个)座位.根据刚刚1011251+÷=学过的中项定理,这个剧场一共有:11010111110⨯=(块).【答案】11110【例 10】有码放整齐的一堆球,从上往下看如右图,这堆球共有多少个?【考点】等差数列应用题【难度】5星【题型】填空【关键词】华杯赛,初赛,第10题【解析】从图中可以看出,除去最上层1个球外,第二层(次上层)有(1+2+3+4+5)=15个球,以后每层比上一层多6、7、8、9、10个球,共7层.15+6=21,21+7=28,28+8=36,36+9=45,45+10=55,1+15+21+28+36+45+55=201。
【解析】答:共有201个球。
【答案】201个球【例 11】某年4月所有星期六的日期数之和是54,这年4月的第一个星期六的日期数是。
【考点】等差数列应用题【难度】2星【题型】填空【关键词】希望杯,五年级,二试,第14题【解析】4x+(+7)+(+14)+(+21)=54,x=3【答案】3【例 12】一辆双层公共汽车有66个座位,空车出发,第一站上一位乘客,第二站上两位乘客,第三站上三位乘客,依此类推,第几站后,车上坐满乘客?【考点】等差数列应用题【难度】2星【题型】解答【解析】通过尝试可得:1231111111266L(),即第11站后,车上坐满乘++++=+⨯÷=客.记住自然数1~10的和对于解一些应用题很有帮助,需要尝试求解时能够较快找到大概的数.【答案】11【例 13】时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟敲一下.问:时钟一昼夜打多少下?【考点】等差数列应用题【难度】3星【题型】解答【解析】时钟每个白天敲打的次数是每个整点敲打次数的和加上12个半点敲打的一下,即:L()((下),+++++=+⨯÷+=+=1231212112)12212781290所以一昼夜时钟一共敲打:902180⨯=(下).【答案】180【例 14】已知:13599101L,则a、b两个数中,较b=+++++a=+++++L,24698100大的数比较小的数大多少?【考点】等差数列应用题【难度】3星【题型】解答【解析】(方法一)计算:11015122601(),所以a比ba=+⨯÷=b=+⨯÷=(),21005022550大,大2601255051-=.(方法二)通过观察,a中的加数从第二个数起依次比b中的加数大1,所以a比b大,【答案】51【例 15】小明进行加法珠算练习,用1234++++L,当加到某个数时,和是1000.在验算时发现重复加了一个数,这个数是多少?【考点】等差数列应用题【难度】2星【题型】解答【关键词】迎春杯【解析】通过尝试可以得到12344144442990L().于是,重复计算的数是++++=+⨯÷=-=.100099010【答案】10【例 16】编号为1~9的9个盒子里共放有351粒糖,已知每个盒子都比前一个盒子里多同样数量的糖.如果1号盒子里放11粒糖,那么后面的盒子比它前一个盒子里多放几粒糖?【考点】等差数列应用题【难度】3星【题型】解答【解析】根据题意,灵活运用有关等差数列的求和公式进行分析与解答.由等差数列求和公式“和=(首项+末项⨯)项数2÷”,可得:末项=和2⨯÷项数-首项.则第9个盒子中糖果的粒数为:351291167⨯÷-=(粒)题目所求即公差6711915687()()(粒),则后面盒子比前一个盒子=-÷-=÷=多放7粒糖.【答案】7【巩固】例题中已知如果改为3号盒子里放了23粒糖呢?【考点】等差数列应用题【难度】3星【题型】解答【解析】等差数列有个规律:首项+末项=第2项+倒数第2项=第3项+倒数第3项=L,所以我们可以得到等差数列求和公式的一个变形,假设等差数列有n项,则和=(第a项+第1-+()n a-+项n⨯)2÷,则倒数第3个盒子即第931个盒子中糖果的粒数为:351292355⨯÷-=(粒)题目所求即公差5523733248()()(粒),则后面盒子比前一个盒=-÷-=÷=子多放8粒糖.【答案】8【例 17】小王和小高同时开始工作。