乳液聚合乳液聚合新技术及应用课件

合集下载

乳液聚合.ppt

乳液聚合.ppt
(4)助剂 :相对分子质量调节剂、润滑剂、 抗氧剂、增塑剂、紫外线吸收剂。
三.乳剂化和乳剂作用
1.乳化剂:是一类可使互不相容的油和水转 变成难以分层的乳液的物质,属于表面活 性剂。
• 分子通常由两部分组成 亲水的极性基团
亲油的非极性基团
如长链脂肪酸钠盐
亲油基(烷基)
亲水基(羧酸钠)
乳化剂在水中的情况
S2O82_+ HSO3_→SO42_+ SO4·+HSO3 过氧化氢-亚铁盐
H2O2+ Fe2+→OH_+ HO·+ Fe3+
C. 油溶性氧化剂-水溶性还原剂引发剂 例 异丙苯过氧化氢-亚硫酸氢钠 Φ-C(CH3)2OOH + HSO3_→Φ-
C(CH3)2O·+ ·OH + HSO3· (3)分散介质 a.与单体不相溶。 b .在正常体系中,对油溶 性单体而言,采用无离子水。
NA
N 为乳胶粒浓度,个 / cm3
NA为阿氏常数 103 N / NA 是将粒子浓度化为 mol / L n 为每个乳胶粒内的平均自由基数
乳液聚合恒速期的聚合速率表达式为
Rp

103
N
n kp[M NA
]
对于第一阶段:自由基不断进入胶束引发聚合,成核 的乳胶粒数 N 从零不断增加,因此,Rp不断增加。
则,平均聚合度
xn

rp ri

k p [M] N ρ
聚合度与 N 和ρ有关,与N成正比,与ρ成反比。 聚合速率与N成正比,与单体浓度成正比。
★乳液聚合,在恒定的引发速率ρ下,用增加乳胶
能力愈强
胶束的形状
※ 胶束的大小和

乳液聚合方法PPT课件

乳液聚合方法PPT课件

亲憎平衡值,也称亲水亲油平衡值 ( HLB )
是衡量表面活性剂中亲水部分和亲油部分对其性大,表明亲水性越大。 HLB值不同,用途也不同。乳液聚合在 8~18范围
.
7
3. 乳液聚合机理
对于“ 理想体系”,即单体、乳化剂难溶于水,引 发剂溶于水,聚合物溶于单体的情况
(2)聚合度
设:体系中总引发速率为ρ(生成的自由基 个数/ cm3 • s)
对一个乳胶粒,引发速率为 ri ,增长速率为 rp
则,初级自由基进入一个聚合物粒子的速率为
ri
N
每秒钟一个乳胶粒吸收的自由基数 即 自由基个数 / s
.
14
每个乳胶粒内只能容纳一个自由基,
每秒钟加到一个初级自由基上的单体 分子数,即聚合速率:
单体
单体和乳化
液滴
剂在聚合前
的三种状态
➢ 极少量单体和少量乳化剂以分子分散状态溶解在水中
➢ 大部分乳化剂形成胶束,约 4 ~5 n m,1017-18个/ cm3
➢ 大部分单体分散成液滴,约 1000 n m ,1010-12个/ cm3
.
8
聚合场所:
水相不是聚合的主要场所;
单体液滴也不是聚合场所;
一般自由基聚合,提高[ I ] 和T,可提高Rp, 但Xn下降
.
16
.
4
加入单体的情况
在形成胶束的水溶液中加入单体
极小部分单体 以分子分散状 态溶于水中
小部分单体 可进入胶束 的疏水层内
大部分单体 经搅拌形成 细小的液滴
体积增至 60 ~100Å
相似相容,等于增 加了单体在水中的 溶解度,将这种溶 有单体的胶束称为 增容胶束
.
体积约为 10000Å

乳液聚合法制备聚醋酸乙烯酯制备PPT课件

乳液聚合法制备聚醋酸乙烯酯制备PPT课件

20
☆乳胶粒生成阶段(阶段Ⅰ)
胶束
单体珠滴
增溶胶束


单体珠滴
乳胶粒
I
水相
乳胶粒
胶束
第21页/共62页
21
☆乳胶粒长大阶段(阶段Ⅱ)
单体珠滴

乳胶粒

单体珠滴
水相
乳胶粒
I
第22页/共62页
22
☆聚合完成阶段(阶段Ⅲ)


水相
乳胶粒
乳胶粒
I
第23页/共62页
23

聚合场所:
水相不是聚合的主要场所;
机物,较高时应进行除氧和去离子处理。
第35页/共62页
35
引发剂
☆常用过氧化物作引发剂,如过硫酸钾、过硫酸铵、过氧
化氢等,用量为单体重量的0.1-1%。工业上常使用过
硫酸铵(室温下水中溶解度20%以上,过硫酸钾则为
2%)。
第36页/共62页
36
乳化剂
☆属表面活化剂。常用的乳化剂有OP-10(辛基苯酚聚

粘结剂、涂料:白胶、乳胶漆等

各种助剂(纺织、造纸、建筑)等
第2页/共62页
2
乳液聚合生产的主要特点是:
(1) 聚合速度快,分子量高;
(2) 以水为介质,成本低。反应体系粘度小,稳定性优
良,反应热易导出。可连续操作;
(3) 乳液制品可以直接作为涂料和粘合剂。粉料颗粒小,
适合于某些特殊使用场合;
(4) 由于使用乳化剂,聚合物不纯。后处理复杂,成本高。
第11页/共62页
11
பைடு நூலகம்
非离子乳化剂
活性部分呈分子状态,如环氧乙烷聚合物,或与环

《乳液聚合》课件

《乳液聚合》课件

领域 食品 医药 化妆品
应用 乳化剂及膳食纤维等添加物的制备和添加 生物胶体、医药品、口服液和原材料制备 乳化液、婴儿油、防晒霜、压缩液等制备
乳液聚合的优缺点分析
1 优点
使用乳液聚合反应制备的聚合物具有结构、形态、性质、功能等方面的高度可控性。
2 缺点
乳液相对密度过大的固体较难分散在水中,很难获得尺寸分布小的微粒,从而造成成品 的质量不稳定性。
结束:乳液混合液残余物的 处理
聚合反应结束后,用凝固浴将聚合 好的聚合物从乳液分散相里析出来, 并用去离子水作为清洗剂,将聚合 物晾干即可。
乳液中的表面活性剂作用
乳化效应
表面活性剂减小液-液或液-固界面的张力,分散一 些难溶解的液体或液体中的小颗粒,使它们变成液 滴、颗粒或胶体,即达到乳化效果。
缓解反应过程中的自聚集
乳液聚合中的引发体系选择
热量引发剂
热量引发剂的引发机理主要是通过 分解发生最后生成自由基,有机过 氧化物既是热量引发剂中一类较重 要的通用引发剂,也是选择较广的 多用途过氧化物类物质。
光引发剂
光引发剂的引发机理主要是通过光 能的吸收激发,释放出自由基,其 强化耐久性和协同作用性好,广泛 应用于能够进一步优化其性质的不 同聚合物体系之中。
3
引发剂打碎和投加时间
反应开始前应确认好引发剂的类型、用量和投加时间,充分搅拌,确保单体稳定 地分散在水相中,实行分批投加和掌控操作步骤。
乳液聚合在涂料行业的应用
优势
乳液聚合涂料膜具有良好的粘结性、附着性和耐久 性。且聚合反应温度低,无毒、无害、无溶剂,节 能环保。
缺点
相对于传统涂料,乳液涂料失去了某些特殊的性能。 耐化学腐蚀性差,可划痕、不耐磨损和磨灭,对于 注重工艺装饰的某些场合不适用。而乳液涂料含水 量较大,有可能影响涂层干燥、表面附着性、耐水 性及适用性等问题。

乳液聚合经典教程ppt课件

乳液聚合经典教程ppt课件

Williame 核壳理论
7
★ 乳液聚合特点
优 (1) 易散热
η ↓ (对本体、溶液)
dp↓ (悬浮50~200μ
(2) Rp Mw 可同步增加
分割体系 Mw~τ Rp~Nc
(3) 聚合产物粘度低,易操作
(4) 水基 安全 无公害
(5) 直接使用
缺 (1) 固体聚合物使用 分离困难
(2) 乳化剂等杂质
6
乳液聚合的基础研究
Gardon Harada Parts Sundberg Ⅰ阶段 重新考察计算
引伸发展经典理论
Stockmayer O'Toole
Ⅱ阶段 解析求S-E方程通解
Ugelsted 稳态假设
Ⅱ阶段 慢速终止 数值法求解
Gardon 非稳态假设
Katz
Ⅱ阶段 快速终止 统计法求解
Zimmit Benson Burkhart Criis Hui Ⅲ阶段 Trommsdoff效应
X% 胶束 单体液滴 Nc 胶粒体积 [M]
分散阶段
0 存在 存在
0
0
0
Ⅰ M/P生成阶段 0~10 存在 存在 增加 增长 恒定
Ⅱ M/P长大阶段 10~40 无 存在 恒定 增长 恒定
Ⅲ 聚合完成阶段 40~100 无 无 恒定 稍微收缩 下降
-

d[M]/dt


0 11 X
2.3 S-E动力学理论 ◆ 低聚物自由基 水相中 可能的反应和结果
5
60-80' (现状)
◆ 乳液聚合工业规模 ~1000万吨/年 1/10聚合物产量
◆ 乳液聚合产品的应用
橡胶 丁苯 丁腈 氯丁 etc 塑料 PTFE ABS PVC糊 etc 涂料 粘合剂 织物整理剂 纸张处理剂

【华东理工大学】《乳液聚合》课件——乳液聚合新技术及应用

【华东理工大学】《乳液聚合》课件——乳液聚合新技术及应用

五、细乳液聚合成核位置
单体液滴表面积大一方面有利于捕获自由基,消除胶束成核;另一方面 有利于捕获水中临界溶解长度之前的低聚自由基,消除均相成核
6. 聚合物乳胶粒子的大小和分布
一、乳化剂SHS和助乳化剂HD比例的影响
二、助乳化剂HD和细乳化法对乳胶粒径的影响
7. 聚合动力学特征
细乳液聚合不存在明显的恒速阶段!!!
.
单体液滴 1000~5000nm
单体亚微液滴 100~400nm 单体溶胀胶束 40~50nm
引入助乳化剂,采用微乳化工艺
独特 优点
①体系稳定性高; ②产物乳胶粒径较大; ③聚合速率适中; ④可制备互穿聚合物网络
2. 细乳液的制备方法
一、细乳液的制备步骤
①预乳化:乳化剂与助乳化剂溶于单体或水中 ②乳化:将单体(混合物)加入①,搅拌均匀 ③细乳化:将②通过超声振荡器或均化器均化
无明显恒速期
四、微乳液及其聚合的特点
乳液(聚合) ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ 动力学稳定,强力搅拌形成 液滴粒径100-500nm,体系浑浊或半透 明 与之相反 成核期、恒速期,降速期 胶束成核,转化率小于10%-20% 聚合物链数目大100-1000 聚合物粒子内平均自由基数N=5 粒子结构形态性能不同 微乳液(聚合) 热力学稳定,可自发形成 液滴粒径小于100nm,透明或半透明或 微蓝 单体含量低于10%,乳化剂含量高于 10% 成核期,降速期 连续的粒子成核,可延续到较高转化率 聚合物粒子内链少,分子量高 聚合物粒子内平均自由基数N<5
五、微乳液聚合的研究现状(了解)
法国Candau——水溶性单体的微乳液聚合研究 国立新加坡大学以Gan为首——O/W微乳液中油溶性单体的聚合动力 学和聚合机理以及共聚行为;以W/O或双连续相微乳液为介质制备多 孔聚合物微球 美国Akron大学Cheung——揭示所得的多孔材料与聚合前微乳液结 构之间的关系 Vaskova——研究引发聚合的场所与引发剂种类之间的关系

乳液聚合生产工艺培训教材ppt(72张)

乳液聚合生产工艺培训教材ppt(72张)
Байду номын сангаас四、乳液聚合生产工艺
1、乳液聚合生产工艺的特点 乳液聚合的定义: 乳液聚合是单体和水在乳化剂的作用下配制 成的乳状液中进行的聚合,体系主要由单体、 水、乳化剂及水溶性引发剂四种成分组成。
乳液聚合的应用 合成橡胶:丁苯橡胶、氯丁橡胶、丁腈橡胶等 合成树脂:聚氯乙烯及其共聚物、聚醋酸乙烯及
其共聚物、聚丙烯酸酯类共聚物等
(3)空间位阻的保护作用
乳化剂使液滴或乳胶粒周围
形成有一定厚度和强度的水合
乳胶粒
层,起空间位阻的保护作用 。
这种空间位阻的保护作用阻碍
了液滴或乳胶粒之间的聚集而 具有空间位阻作用的水合层示意图 使乳状液稳定
影响乳状液稳定的因素
(1)电解质的加入
当乳状液中加入一定量的电解质后,液相中离子浓度增 加,在吸附层中异性离子增多,电中和的结果是使动电位下 降,双电层被压缩。当电解质浓度达到足够浓度时,乳胶粒 的动电位降至临界点以下,乳胶粒之间的吸引力由于排斥力 的消失而体现出来,使体系出现破乳和凝聚现象。
加入乳化剂,浓度低于CMC时形成真溶液,高于CMC 时形成胶束。
加入单体
按在水中的溶解度以分子 状态溶于水中,更多的溶 解在胶束内形成增溶胶束, 还有的形成小液滴,即单 体液滴。
单体、乳化剂在单体液滴、 水相及胶束间形成动态平 衡。
乳液聚合生产工艺培训教材(PPT72页)
(2)乳胶粒生成阶段
引发剂溶解在水中,分解形成初始自由基。 引发剂在不同的场所引发单体——生成乳胶粒。
(1)乳化剂使分散相和分散介质的表面张力降低 以表面活性剂作为乳化剂时,乳化剂使分散相 和分散介质的界面张力降低, 使液滴和乳胶粒的自 然聚集的能力大大降低,因而使体系稳定性提高。 但这样仅使液滴和乳胶粒有自聚集倾向,而不能彻 底防治液滴之间的聚集。

《乳液聚合简介》课件

《乳液聚合简介》课件
《乳液聚合简介》PPT课 件
乳液聚合是一种重要的聚合反应技术,通过将乳液中的单体分散在连续相中, 利用乳化聚合是一种通过将乳液中的单体分散在连续相中进行的聚合反应。乳液由乳化剂稳定单体的分散相和连续 相组成。
乳液的组成
分散相
包含单体和乳化剂的微细颗粒。
连续相
环境中的介质,使乳液形成稳定状态。
乳液聚合的基本过程
1
分散
将单体分散在连续相中,形成乳液。
2
乳化
通过加入乳化剂使乳液形成稳定状态。
3
聚合
在乳液中引发聚合反应,形成聚合物颗粒。
乳液聚合反应的条件
1 温度
2 pH值
3 催化剂
适宜的聚合反应温度。
合适的pH范围。
适当的催化剂选择和添加。
聚合稳定剂的选择
涂料
用于制备高性能的涂料和涂层材料。
纺织品
制备纺织品用的抗菌乳液。
化妆品
制备乳液状化妆品,如乳液霜、乳液粉底等。
医药
用于制备缓释药物和纳米药物载体。
聚合后的乳液的性质
粒径 稳定性 流变性
均匀分布的聚合物颗粒。 通过乳化剂的选择和添加,保持乳液的稳定性。 具有良好的流变性质,适合不同工艺需求。
乳化剂
用于稳定乳液中的单体分散状态。
抗凝剂
防止聚合物颗粒聚集,保持乳液的稳定性。
乳液聚合的优点
高度分散
乳化剂使单体高度分散在连续 相中,得到均匀的聚合物颗粒。
粒径可调
通过控制乳化剂的添加量和反 应条件,可以调节聚合物颗粒 的粒径。
灵活性高
可以用于制备各种形状和性质 的聚合物颗粒。
乳液聚合的应用领域

反相乳液聚合ppt

反相乳液聚合ppt

反相乳液聚合形成的乳液粒径分布较宽, 可能导致聚合物性能的不均匀性。
由于反相乳液聚合需要使用大量的乳化剂 ,这些乳化剂在产品中可能会残留,影响 产品的性能和安全性。
改进方向与前景展望
优化乳化剂体系
通过研究新型的、高效的乳化剂或复合乳化剂体系,降低其用量,提高聚合效率和产品质量。
控制聚合物链结构
深入研究反应机理,优化聚合工艺,控制聚合物链的分子量、分子量分布和支化度,提高聚合物性能。
适的单体浓度以获得最佳的聚合效果。
乳化剂种类与浓度
总结词
乳化剂种类和浓度对反相乳液聚合的稳定性、粒径和粒径分布具有重要影响。
详细描述
乳化剂是反相乳液聚合中的关键组分,其种类和浓度决定了乳液的稳定性、粒径和粒径分布。不同种类的乳化剂 具有不同的亲水性和亲油性,从而影响乳液的界面张力和粒径大小。同时,乳化剂的浓度也会影响粒径大小和分 布,以及乳液的稳定性。因此,选择合适的乳化剂种类和浓度是实现反相乳液聚合的关键。
聚合反应过程
反相乳液聚合的过程包括油溶性引发剂引发单体聚合、聚合物粒子形成 和聚合物粒子生长三个阶段。
在聚合过程中,油溶性引发剂首先引发油溶性单体进行自由基聚合,形 成初级粒子。随着聚合反应的进行,初级粒子之间会相互碰撞、融合,
形成更大的聚合物粒子。
聚合反应结束后,可以通过加热或加盐等方法使聚合物粒子凝聚成块状 聚合物,便于后续处理。
应用。
聚合物微球
聚合物微球是一种具有微米级直 径的球形颗粒,可以通过反相乳 液聚合制备。这些微球可用于药 物载体、催化剂载体、色谱填料
等领域。
有机无机复合材料
反相乳液聚合可以将无机物与有 机物结合,制备出具有优异性能 的有机无机复合材料。这些复合 材料可用于涂料、胶粘剂、塑料

【华东理工大学】《乳液聚合》课件——第十二章工业合成

【华东理工大学】《乳液聚合》课件——第十二章工业合成

一 间歇乳液聚合 优点:乳液的乳胶粒直径分布窄,有利于改善聚合
物乳液的流动性和成膜性;设备简单,操作方便,
生产灵活性大,因此在进行小批量、多品质的精细 产品生产时,可以考虑选用该工艺。
缺点:
① 间歇乳液聚合过程会出现前期和后期反应不均衡,常常会导 致反应失控; ② 对于乳液聚合来说,各种单体的竞聚率不同,竞聚率大的单 体过早地被消耗掉,而留下竞聚率小的单体,这样势必导致反 应前期和后期所得到的聚合物组成不同,严重影响产品的质量; ③由于间歇乳液聚合在反应开始时把单体一次投入聚合釜中在 搅拌和乳化剂的作用下分散成单体珠滴。 ④从能量利用的角度来看,间歇乳液聚合也有不尽合理之处。 反应开始需要升温;反应开始后需要降温冷却;在过程后期反 应接近完成,反应速率放慢,此时又需要升温。 ⑤ 一般来说,间歇乳液聚合只能制备具有均相乳胶粒结构的聚 合物乳液。而欲得异形结构的则需其他工艺。
6 操作弹性大,但生产周期比间歇法长,故生产效率较低。若 用半饥饿法,可缩短生产周期,提高效率。
7 加料中若带入阻聚剂,其对以上两种的影响顾虑不同。 前者会出现诱导期,对于后者会见地自由基浓度和聚合反应速 率,但物料加完后可能会出现一个聚合高峰。 8 采用半连续补加乳化剂可时体系始终处于较高的稳定状 态,因此可以制造高浓度乳液。
特点: 1 在采用饥饿态加单体时,单体加料速率和实际的聚合反应速
率相等。
2 采用饥饿态加单体时可以有效地控制聚合物的共聚组成。 3 所得聚合物的分子量比间歇法的偏小,且分子量分布偏宽。 4 自由基易向聚合物链转移,所得聚合物支化度偏高。 5 由于在单体饥饿态半连续乳液聚合体系中无单体珠滴存在,
且无大的温度波动,故乳液聚合体系稳定性高。
影响反应器的传热。

《反相乳液聚合法》课件

《反相乳液聚合法》课件

反相乳液聚合的相行为
反相乳液聚合的相行为主要涉及乳液体系的稳定性、液滴 的大小和分布以及聚合物颗粒的形态。
乳液体系的稳定性取决于分散剂的种类和浓度,以及油水 两相的界面张力。分散剂的作用是降低界面张力,增加油 水两相的稳定性。
液滴的大小和分布对聚合反应速率和聚合物颗粒的形态有 重要影响。较小的液滴有利于提高聚合反应速率,而良好 的液滴分布可以获得粒径均匀的聚合物颗粒。
易工业化
反相乳液聚合的工艺流程简单,易于实现工业化生产,能够满足大 规模生产的需要。
反相乳液聚合的缺点
01
02
03
乳化剂用量大
为了形成稳定的乳液体系 ,反相乳液聚合需要使用 大量的乳化剂,这会增加 聚合物的成本和残留量。
聚合物链的支化
由于反相乳液聚合是在油 溶性介质中进行,聚合物 链的支化程度较高,会影 响聚合物的性能。
记录实验数据,进行数据分析,以评估实验结果。
总结与反思
总结实验过程,反思实验中的不足之处,为后续实验提供改进建议。
05
反相乳液聚合的优缺点分 析
反相乳液聚合的优点
高分子量
反相乳液聚合能够制备出高分子量的聚合物,分子量分布窄,有 利于提高聚合物的物理性能。
高固含量
反相乳液聚合的固含量较高,能够减少溶剂的使用,降低生产成本 和环境污染。
以减少对环境的污染。
03
多功能化与高性能化
为了满足不断发展的市场需求,研究者们正在努力开发具有多功能和高
性能的新型反相乳液聚合物。
06
反相乳液聚合的实际应用 案例
反相乳液聚合在涂料领域的应用
总结词
环保、高效、高性能
详细描述
反相乳液聚合制备的涂料具有环保、高效、高性能的特点,广泛应用于建筑、家具、汽车等领域的涂 装。其优异的性能主要得益于反相乳液聚合技术的特殊工艺和聚合机理,能够实现高分子量、窄分子 量分布聚合物的制备,从而提高涂料的附着力、耐候性、耐腐蚀性等性能。

【华东理工大学】《乳液聚合》课件——乳液聚合新技术及应用

【华东理工大学】《乳液聚合》课件——乳液聚合新技术及应用

温度如何影响乳化剂HLB值?
离子型乳化剂一般需要用助乳化剂——长链烷烃,长链脂肪族醇或醚 作用:调节乳化剂的HLB,吸收聚合物微粒子表面乳化剂来分散,链转移
三、制备工艺
早期认为需用微乳化工艺——超声波或流态均化器 自发乳化√
缺陷:消耗大量乳化剂,聚合物粒子表面含有大量乳化剂难以脱除干净
高压均化器或微射流乳化器
五、微乳液聚合的研究现状(了解)
法国Candau——水溶性单体的微乳液聚合研究 国立新加坡大学以Gan为首——O/W微乳液中油溶性单体的聚合动力 学和聚合机理以及共聚行为;以W/O或双连续相微乳液为介质制备多 孔聚合物微球 美国Akron大学Cheung——揭示所得的多孔材料与聚合前微乳液结 构之间的关系 Vaskova——研究引发聚合的场所与引发剂种类之间的关系
无明显恒速期
四、微乳液及其聚合的特点
乳液(聚合) ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ 动力学稳定,强力搅拌形成 液滴粒径100-500nm,体系浑浊或半透 明 与之相反 成核期、恒速期,降速期 胶束成核,转化率小于10%-20% 聚合物链数目大100-1000 聚合物粒子内平均自由基数N=5 粒子结构形态性能不同 微乳液(聚合) 热力学稳定,可自发形成 液滴粒径小于100nm,透明或半透明或 微蓝 单体含量低于10%,乳化剂含量高于 10% 成核期,降速期 连续的粒子成核,可延续到较高转化率 聚合物粒子内链少,分子量高 聚合物粒子内平均自由基数N<5
不适用于极性单体
7. 微乳液聚合的性能
一、微乳液聚合的共聚物
反相微乳液共聚:共聚组成不随转化率变化,接近理想共聚 正相微乳液共聚:研究较少
二、聚合物的特殊物理性能
所得聚合物密度较低? ——每个聚合物粒子内只有几个聚合物链 可制备立体结构规整的聚合物? ——聚合物粒子小,界面层影响大,极性基团分布于界面并伸向水相

高分子乳液聚合的讲义课件.ppt

高分子乳液聚合的讲义课件.ppt

非离子型表面活性剂的亲水基主要是聚氧乙烯基。升高温 度会破坏聚氧乙烯基同水的结合,而使溶解度下降,甚至析 出。所以加热时可以观察到溶液发生混浊现象。
发生混浊的最低温度称为浊点
聚氧乙烯的分子数越多,亲水性越强,浊点就越高。反 之,亲油性越强,浊点越低。
Gemini表面活性剂定义、结构特 征
双子表面活性剂(Gemini surfactant), 又称孪连表面活性剂、 双生表面活性剂、 偶联表面活性剂,
+
__ + _+
+
带负电的乳胶粒双电层示意图
2、乳液聚合的基本原理
(3)空间位阻的保护作用
乳化剂使液滴或乳胶粒周围形 成有一定厚度和强度的水合层,起 空间位阻的保护作用 。这种空间位
阻的保护作用阻碍了液滴或乳胶粒之 间的聚集而使乳状液稳定
乳胶粒
具有空间位阻作用的水合层示意图
2、乳液聚合的基本原理
乳液聚合机理
分散阶段(聚合前段)
增容胶束
M
M M
胶束
M
M
M
M ~1μm
单体液滴
分散阶段乳液状态示意图
乳液聚合机理
乳胶粒生成阶段(聚合Ⅰ段)(单体转化率达到10~20%)
M M
M
M/P
M
R*
~1μm
乳胶粒生成阶段乳液状态示意图
乳胶粒
乳液聚合机理
乳胶粒长大阶段(聚合Ⅱ段)(单体转化率达到20~60%)
(4)长期存放
2、乳液聚合的基本原理
乳液聚合机理及动力学
1、乳液聚合机理
乳液聚过程合体系的相转变:
液-液体系→液-固体系
根据间隙乳液聚合的动力学特征,可以把整个乳液聚合过程分为四 个阶段:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、时间-转化率关系
PPT学习交流
15
二、液滴中单体和转化率的关系
A 无HD B 8mmol HD C 24mmol HD
ABC均不采用微乳化工P艺PT学,习加交流入HD用微乳化法分离不出单体
16
总结HD作为助乳化剂的作用
①乳化时,促进亚微单体液滴形成并吸附乳化剂——稳定作用 ②聚合初期,对引发的单体液滴有“单体保持效应” ③聚合后期,降低聚合物乳胶粒子中单体平衡浓度 ④乳胶粒溶胀能力增大
PPT学习交流
6
二、操作条件
乳化温度
偏低
助乳化剂不能完全溶解 大大影响其发挥作用
偏高
单体和乳化剂活动性增加 单体易从液滴中扩散出来
细乳液的稳定性 细乳液聚合
反应器:间歇式反应器(基础研究);管流式反应器和连续搅拌罐反应器√
均化方式:分两步——细乳化和聚合?
高剪切混合器会破坏聚合过程中产生的聚合物颗粒稳定性
区别于常规乳液聚合的特点:生成的微乳胶粒子中聚合物链数很少,
无明显恒速期
PPT学习交流
22
四、微乳液及其聚合的特点
乳液(聚合)
微乳液(聚合)
① 动力学稳定,强力搅拌形成
热力学稳定,可自发形成
② 液滴粒径100-500nm,体系浑浊或半透 液滴粒径小于100nm,透明或半透明或

微蓝
③ 与之相反 ④ 成核期、恒速期,降速期
三、引发剂
类型:水溶性/油溶性√
PPT学习交流
8
4. 细乳液聚合研究的表征
一、单体液滴大小测定
冷冻-破碎-投影复制-去除乳液-TEM
二、乳化体系离心稳定性测定
高速离心-测定分离的单体量
三、乳化剂吸附测定
高速离心-滴定水相中乳化剂-计算单体吸附乳化剂
四、乳胶粒子溶胀能力和膜中HD测定
过量甲苯溶胀-气相色谱 溶于含十四烷的THF-气相色谱
①自发形成的热力学稳定体系 ②粒径小:与胶束溶液的区别!
PPT学习交流
19
三种类型
PPT学习交流
20
二、微乳液的形成机理
(1)增溶理论:一定条件下表面活性剂胶束溶液对油或水形成增
溶的胶束溶液,只有在高于CMC才能表现
(2)相平衡理论:解释(1)
例如有机硅微乳液体系水层增溶油的能力大于/小于/相当于油层增溶水的能力 O/W; W/O; 层状液晶。。。
(3)界面张力理论:油水界面张力低于10~5N/m时,获得稳定的微乳液
(4)界面弯曲理论:微乳液胶束的形成需要界面的高度弯曲。如加
入油水两亲的小分子物质作为助表面活性剂
(5)界面膜理论:界面吸附膜的强度对微乳颗粒的形成及最后产物
的质量均有很大影响。
PPT学习交流
21
三、微乳液聚合的基本概念
直接制备纳米聚合物粒子(10-50nm)
五、聚合物乳胶粒子大小及分布的测定
透射电镜法
PPT学习交流
9
5. 细乳液形成原理及成核位置
一、乳化体系的微观结构
单体液滴平均直径50-150nm,总表面积在体系中占优势,引发成核 主要在亚微单体液滴中
二、乳液的离心稳定性(如图6-3)
三、单体液滴中乳化剂的吸附量(如图6-2)
PPT学习交流
10
ห้องสมุดไป่ตู้
四、乳胶的溶胀能力和膜中HD
单体含量低于10%,乳化剂含量高于 10%
HD在乳胶粒子中起“溶胀促进剂”作用
PPT学习交流
11
五、细乳液聚合成核位置
单体液滴表面积大一方面有利于捕获自由基,消除胶束成核;另一方面 有利于捕获水中临界溶解长度之前的低聚自由基,消除均相成核
PPT学习交流
12
6. 聚合物乳胶粒子的大小和分布
一、乳化剂SHS和助乳化剂HD比例的影响
二、助乳化剂HD和细乳化法对乳胶粒径的影响
乳化剂与助 稳定剂用量
外观
存放稳定性
1~3(无助 稳定剂)
乳白色
很快分层
共约5
乳白色 稳定数小时
~数月
共10~30
透明或半透 明
热力学稳定
PPT学习交流
3
第四章 细乳液聚合 Mini-emulsion polymerization
PPT学习交流
4
1. 细乳液聚合的特点
20世纪70年代,美国Lehigh大学Ugelstad, El-Aasser和 Vanderhoff等提出新的粒子成核机理——在亚微单体液滴 (submicron)中引发成核
.
单体液滴 1000~5000nm
单体亚微液滴 100~400nm
单体溶胀胶束 40~50nm
引入助乳化剂,采用微乳化工艺
独特 优点
①体系稳定性高; ②产物乳胶粒径较大; ③聚合速率适中; ④可制备互穿聚合物网络
PPT学习交流
5
2. 细乳液的制备方法
一、细乳液的制备步骤
①预乳化:乳化剂与助乳化剂溶于单体或水中 ②乳化:将单体(混合物)加入①,搅拌均匀 ③细乳化:将②通过超声振荡器或均化器均化
例如:
油溶性引发剂/水溶性引发剂
先乳化法/后乳化法
PPT学习交流
7
3. 各种添加剂
一、乳化剂
类型:离子型乳化剂——同性离子相斥
用量:过低——不稳定;过高——胶束成核;
低于CMC——聚合速率快于常规乳液聚合
二、助乳化剂
类型:溶于单体不溶于水——长链烷烃HD十六烷或长链脂肪醇CA十六醇;
聚合物等
使分散相、液滴间形成界面层,阻止单体液滴和聚合后生成胶粒间的碰撞、凝聚; 在液滴内的强力疏水性,阻止单体的扩散、重新分配和碰撞凝聚
PPT学习交流
17
第五章 微乳液聚合 Micro-emulsion polymerization
PPT学习交流
18
1. 微乳液的特点
一、微乳液的概念
Schulman和Hoar于1943年首先报道了一种用油、水喝乳化剂以及醇 配制的透明均一体系,1959年命名为微乳液microemulsion
各向同性、热力学稳定的胶体分散体系 分散相液滴10-100nm,透明或半透明
乳液聚合新技术及应用
PPT学习交流
1
• 经典乳液聚合
• 特种乳液聚合
• 细乳液聚合 • 微乳液聚合 • 无皂乳液聚合 • 反相乳液聚合 • 种子(或多步)乳液聚合 • 超浓乳液聚合 • 分散(乳液)聚合 • 悬浮乳液聚合
PPT学习交流
2
三种乳液比较
传统乳液 细乳液
微乳液
珠滴直径 0.5-10μm 50-500nm 10-50nm
PPT学习交流
13
7. 聚合动力学特征
细乳液聚合不存在明显的恒速阶段!!!
阶段Ⅰ:比常规体系长-乳化剂和助乳化剂界面降低了自由基的捕获率 阶段Ⅱ:聚合速率下降-单体得不到补充 阶段Ⅲ:转化率~60%,聚合速率上升-凝胶效应 阶段Ⅳ:转化率~80%,聚合速率下降-接近玻璃化转变温度
PPT学习交流
14
相关文档
最新文档