福州大学大学物理习题解答-第5章振动和波动
大学物理 第5章 振动和波动习题解答

第5章 振动和波动5-1 解:(1))s rad (105.050===m kωmax 222max 100.040.4(m/s)100.044(m/s )v A a A ωω==⨯===⨯=(2) 设cos()x A t ωϕ=+,则d sin()d xv A t tωωϕ==-+ 2222d cos()d x a A t x t ωωϕω==-+=-当x=0.02m 时,cos()1/2,sin()3/2t t ωϕωϕ+=+=±,所以20.230.346(m/s)2(m/s )1(N)v a F ma =⨯==-==-(3) 作旋转矢量图,可知:π2ϕ=-π0.04c o s (10)2x t =-5 解:A=0.04(m) 0.7(rad/s)0.3(rad)10.11(Hz)8.98(s)2πT ωϕωνν==-====5-3 证明:如图所示的振动系统的振动频率为1212πk k mυ+=式中12,k k 分别为两个弹簧的劲度系数,m为物体的质量。
解: 以平衡位置为坐标原点,水平向右为x 轴正方向。
设物体处在平衡位置时,弹簧1的伸长量为10x ,弹簧2的伸长量为20x ,则应有0202101=+-x k x k当物体运动到平衡位置的位移为x 处时,弹簧1的伸长量就为x x +10,弹簧2的伸长量就为x x -20,所以物体所受的合外力为11022012()()()F k x x k x x k k x =-++-=-+由牛顿第二定律得 2122d ()d xm k k x t =-+即有 2122()d 0d k k x x t m++=上式表明此振动系统的振动为简谐振动,且振动的圆频率为12k k x mω+=振动的频率为 1212π2πk k mων+==5-4解:以平衡时右液面位置为坐标原点,向上为x 轴正方向,建立坐标系。
右液面偏离原点为至x 时,振动系统所受回复力为:22ππ242d d g F x g x ρρ=-⋅⋅=-振动角频率 2π2d gm ρω=振动周期 222ππmT d gρ=5-5解:弹簧、滑轮、物体和地球组成的系统不受外力作用,非保守内力作功之和为零,系统机习题5-4 图械能守恒,以物体的平衡位置为坐标原点向下为x 轴正方向,建立坐标系。
《大学物理教学课件》振动与波作业答案

三、计算题
2、解:设S波源振动方程为: s
y Acos t
A处S1
y1
B处S2
振动方程为:
Acos( t
振动方程为:
2 1
b)
Xy处2 两 波Ac振o动s(位相t 差2为1 : a 2 b2 )
A b s1
a o s2
B
波动(三)
x x
p
2
[
2
x
2 1
a 2 b2 ] [ 2 b 2
v0
A
y x0
A cos ( v 0
y(m) A
t)
2 t
0
y
Acos(v0 t 2 A
x 2
x0
) 2
A
x0
X(m)
-A
2. x 0, t 0 : y 0 dy 0 dt
波动(二)
x0
2
在2秒内波形移动了40cm u 20cm / s
3.2m 2 u 8
(1). y
0.01cos(
t
)
(SI )
82
(2). y 0.01cos( (t x ) )
8 0.2 2
(SI )
一、选择题
波动(三)
1. A 2. A 3. A
二、填空题
1. 某时刻波阵面上每一个点都可以作为一个子波波源。经t时间后, 这些子波波阵面的包迹,就是经t时间后的新的波阵面.
1
2
p 2k 时干涉加强
a2 x2 ]
[ 2 x 2 a 2 b2 ] [ 2 b 2 a 2 x 2 ] 2k
2
1
1
2
1 ( a 2 x 2 x) 2 ( a 2 b2 b) k12
大学物理学振动与波动习题答案

.
显然f点的速度大于零,所以取负值,解得
tf= -T/12.
从f点到达a点经过的时间为T/4,所以到达a点的时刻为
ta= T/4 +tf= T/6,
其位相为
.
由图可以确定其他点的时刻,同理可得各点的位相.
4.3如图所示,质量为10g的子弹以速度v= 103m·s-1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k= 8×103N·m-1,木块的质量为4.99kg,不计桌面摩擦,试求:
[解答](1)设物体的简谐振动方程为
x = Acos(ωt + φ),
其中A= 0.12m,角频率ω =2π/T= π.
当t =0时,x= 0.06m,所以
cosφ= 0.5,
因此
φ= ±π/3.
物体的速度为
v= dx/dt= -ωAsin(ωt + φ).
当t =0时,
v= -ωAsinφ,
由于v> 0,所以sinφ< 0,因此
大学物理学(上)
第四,第五章习题答案
第4章振动
P174.
4.1一物体沿x轴做简谐振动,振幅A= 0.12m,周期T= 2s.当t= 0时,物体的位移x= 0.06m,且向x轴正向运动.求:
(1)此简谐振动的表达式;
(2)t=T/4时物体的位置、速度和加速度;
(3)物体从x= -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.
φ= -π/3.
简谐振动的表达式为
x= 0.12cos(πt –π/3).
(2)当t=T/4时物体的位置为
x= 0.12cos(π/2–π/3)
= 0.12cosπ/6 = 0.104(m).
大学物理题库-振动与波动【精选文档】

振动与波动题库一、选择题(每题3分)1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( )(A ) 2v(B )v (C )v 2 (D )v 42、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2.当0=t 时, 位移为cm 6,且向x 轴正方向运动。
则振动表达式为( )(A))(3cos 12.0ππ-=t x (B ))(3cos 12.0ππ+=t x(C ))(32cos 12.0ππ-=t x (D ))(32cos 12.0ππ+=t x3、 有一弹簧振子,总能量为E,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( )(A )2E (B)4E (C)E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( )(A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝ 6、一平面简谐波,波速为μ=5 cm/s ,设t= 3 s 时刻的波形如图所示,则x=0处的质点的振动方程为 ( )(A ) y=2×10-2cos (πt/2-π/2) (m )(B) y=2×10-2cos (πt + π) (m )(C) y=2×10-2cos (πt/2+π/2) (m )(D ) y=2×10-2cos (πt -3π/2) (m)7、一平面简谐波,沿X 轴负方向 传播。
x=0处的质点的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π(C ) π /2 (D) - π /28、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。
大学物理课后习题答案第五章

第五章 机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示. [解答](1)与标准波动方程比较得:2π/λ = 0.6, 因此波长为:λ = 10.47(m);圆频率为:ω = 10π,频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1).且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为(m).试求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:; 即 = 0.03cos[4π(t – 5x ) + π/2]. (2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2] = 0.03cos(4πt -π/2).5.3 已知平面波波源的振动表达式为(m).求距波源5m 处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为: , 位相差为 Δφ = 5π/4(rad).5.4 有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少? [解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m .由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π. 当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2. 原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5 一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求:2cos()xy A t πωλ=-0.03cos(4)2A y t ππ=-cos[()]Ax x y A t uωϕ-=-+0.050.03cos[4()]0.22x y t ππ-=--20 6.010sin 2y t π-=⨯26.010sin()2xy t u π-=⨯-50.06sin()24t ππ=-0.03cos[50()]2x y t u ππ=-+(1)P 点的振动表达式; (2)波动方程;(3)画出O 点的振动曲线.[解答](1)设P 点的振动方程为 y P = A cos(ωt + φ), 其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m),所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程;(2)画出x = λ/2处质点的振动曲线;(3)图中波线上a 和b 两点的位相差φa – φb 为多少? [解答](1)设此波的波动方程为: ,当t = T /4时的波形方程为:. 在x = 0处y = 0,因此得sin φ = 0,解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0. 因此波动方程为:. (2)在x = λ/2处质点的振动方程为:, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为; x b = λ处的质点的振动方程为.波线上a 和b 两点的位相差0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+cos[2()]t xy A T πϕλ=++cos(2)2xy A ππϕλ=++sin(2)xA πϕλ=-+cos 2()t x y A T πλ=+cos(2)cos 2t t y A A T Tπππ=+=-cos(2)2a t y A T ππ=+cos(22)b ty A Tππ=+图5.5φa – φb = -3π/2.5.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点?(2)画出t = 4.2s 时的波形曲线.[解答]波的波动方程可化为:y = A cos2π(2t – x ),与标准方程比较,可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1. (1)当t = 4.2s 时的波形方程为y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…), 各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8 一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示. (1)写出时x = 0处质点的振动方程;(2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1).(1)设x = 0处的质点的振动方程为y = A cos(ωt + φ), 其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3).(2)波的表达式为:.(3)t = 1s 时刻的波形方程为,波形曲线如图所示.5.9 在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,cos[2()]t x y A T πϕλ=-+cos[2()]t xy A T πϕλ=-+cos[()]23t x ππ=-+5cos()26y x ππ=-图5.8已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.[解答] 设波动方程为:, 那么A 和B 两点的振动方程分别为:,.两点之间的位相差为:,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1).5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程;(2)如以距A 点5m 处的B 点为坐标原点,写出波动方程; (3)写出传播方向上B ,C ,D 点的振动方程. [解答](1)以A 点为坐标原点,波动方程为 .(2)以B 点为坐标原点,波动方程为. (3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为, ,.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量.[解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1), 波的平均能量密度为:= 158(J·m -3), 平均能流密度为:= 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12 一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强?此时声强相当于多少分贝?已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1),cos[2()]t xy A T πϕλ=-+cos[2()]A A xt y A T πϕλ=-+cos[2()]B B xt y A T πϕλ=-+2(2)6B A x x πππλλ---=-3cos 4()3cos(4)5x x y t t u πππ=+=+3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-3cos 4()3cos(4)BB x y t t u πππ=+=-33cos 4()3cos(4)5C C x y t t u πππ=+=-93cos 4()3cos(4)5D D x y t t u πππ=+=+2212w A ρω=I wu =图5.10声波的平均能量密度为:= 6.37×10-6(J·m -3), 平均能流密度为:= 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2), 此声强的分贝数为:= 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为, 其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 660(Hz). 火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 550(Hz). (2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 680(Hz). 当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 533(Hz). [注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m); 在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m); 在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为 = 1421(Hz).将反射面作为波源,其频率为ν1,反射声音的频率为2212w A ρω=I wu =010lgIL I =BB S Su u u u νν-=-33060033030B S S u u u νν==--33060033030B S S u u u νν==-+3301060033030B B S S u u u u νν-+==--3301060033030B B S S u u u u νν--==-+1033165108033130B Su u u u νν++==⨯--= 1768(Hz). 反射声音的波长为=0.1872(m).或者 = 0.1872(m). [注意]如果用下式计算波长=0.2330(m), 结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15 S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为,那么S 2在S 1左侧产生的波的波动方程为,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为,那么S 2在其右侧产生的波的波动方程为,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16 两相干波源S 1与S 2相距5m ,其振幅相等,频率都是质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为 ,那么S 2在其左侧产生的波的波动方程为. 两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).`11331142133165B u u u νν==⨯--`1111331651421BBu u u u λννν--=-==`1`13311768u λν==`111650.27871768Bu λλν=-=-1cos[2()]t xy A T πϕλ=++2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-1cos[2()]t xy A T πϕλ=-+2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+1/2cos[2()]x l y A t u πνϕ+=-+5cos(2)24A t x πππνϕ=-+-2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-S 1 S 2S 125.17 设入射波的表达式为,在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为.(2)合成波为y = y 1 + y 2,将三角函数展开得,这是驻波的方程.5.18 两波在一很长的弦线上传播,设其表达式为:,,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:,, 可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).1cos 2()t xy A T πλ=+2cos 2()t xy A T πλ=-222coscosy A x t Tππλ=1 6.0cos(0.028.0)2y x t π=-2 6.0cos(0.028.0)2y x t π=+1 6.0cos 2()0.5200t x y π=-2 6.0cos 2()0.5200t x y π=+。
大学物理习题详解—振动与波动部分

第十二章 机械振动简谐振动12.1 一倔强系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为1T ,若将此弹簧截去一半的长度,下端挂一质量为12m 的物体,则系统振动周期2T 等于 (A )21T ;(B )1T ;(C )1T /2;(D )1T /2 ;(E )1T /4. [ ] 答:(C )分析:一根弹簧,弹性系数为k ,把它截短以后,k 不是减小了,而是增大了。
弹簧的弹力大小取决于弹簧的形变,在伸长相同的长度x 的情况下,弹簧越短,其变形越大,弹力f 也越大。
而胡克定律为:f kx =,即 fk x=,因此弹簧变短后弹性系数k 增大。
12T = 22k k =,下端挂一质量为12m 的物体,则系统振动周期2T 为: 2T 1112222T ⎛=== ⎝ 12.2 图(下左)中三条曲线分别表示简谐振动中的位移x ,速度v 和加速度a ,下列说法中那一个是正确的?(A )曲线3、1、2分别表示x 、v 、a 曲线; (B )曲线2、1、3分别表示x 、v 、a 曲线; (C )曲线1、3、2分别表示x 、v 、a 曲线; (D )曲线2、3、1分别表示x 、v 、a 曲线; (E )曲线1、2、3分别表示x 、v 、a 曲线.第12. 3题图v (a)(b)t答:(E )分析:位移x 与加速度a 的曲线时刻都是反相的,从图上看曲线1、3反相,曲线2是速度v 曲线;另外,速度比位移的位相超前2π,加速度比速度的位相超前2π,从图上看曲线3比2超前了2π,3是加速度曲线;曲线2比1超前了2π,1是位移曲线12.3 在t =0时,周期为T 、振幅为A 的单摆分别处于图(上右)(a)、(b)、(c)三种状态,若选单摆的平衡位置为x 轴的原点,x 轴正向指向右方,则单摆作小角度摆动的振动表达式分别为(1) ; (2) ; (3) . 答:(1)X =A cos (t T π2-2π) (2)X =A cos (t T π2+2π) (3)X =A cos (t Tπ2+π). 分析:关键是写出初位相,用旋转矢量法最方便:ωx xx(a )φ= -π/2ω ω(b )φ= π/2(c )φ= π12.4 设振动周期为T ,则a 和b 处两振动的时间差t ∆=____________。
大学物理第五章课后习题答案

第五章课后习题答案5.1 解:以振动平衡位置为坐标原点,竖直向下为正向,放手时开始计时。
设t 时刻砝码位置坐标为x ,由牛顿第二定律可知: 220)(dtx d mx x k mg =+-其中0x 为砝码处于平衡位置时弹簧的伸长量,所以有 0kx mg = 解出0x 代入上式,有:022=+x mk dtxd 其中 mk =ω可见砝码的运动为简谐振动简谐振动的角频率和频率分别为: s r a d x g mk /9.90===ω Hz 58.12==πων振动微分方程的解为)c o s (ϕω+=t A x由起始条件 t =0 时,,1.00m x x -=-= 0=v得: A =0.1m ,πϕ=振动方程为:)9.9cos(1.0π+=t x5.2 证明:取手撤去后系统静止时m 的位置为平衡位置,令此点为坐标原点,此时弹簧伸长为x ,则有: 0sinkx mg =θ (1)当物体沿斜面向下位移为x 时,则有: ma T mg =-1sin θ (2) βJ R T R T =-21 (3) )(02x x k T += (4)R a β= (5) 将(2)与(4)代入(3),并利用(5),可得: k x R R kx mgR a RJ mg --=+0sin )(θ利用(1)式可得 x RJ mR kR dtx d a +-==22所以物体作简谐振动因为 R J mR kR +=ω 所以振动周期为 ωπ2=T5.3 解: 因为 mk ππων212==所以 :1221m m =νν22121)(m m νν==2 Kg5.4 解:(1) 由振动方程)420cos(01.0ππ+=t x 可知:振幅A =0.01m ;圆频率 πω20=; 周期 s T 1.02==ωπ频率Hz 10=ν ;初相40πϕ=(2)把t =2s 分别代入可得:2005.0)420cos(01.0|2=+==ππt x t m2314.0)420sin(2.0|2-=+-===πππt dt dx v t m/s)420sin(4|22πππ+===t dtdv a t5.5 解: T =2s ,ππω==T2设振动方程为:)cos(10ϕπ+=t x则速度为:)s i n (10ϕππ+-=t v加速度为: )c o s (102ϕππ+-=t a根据t =0 时,x =5cm ,v < 0 的条件,得振动的初相为 3πϕ=,故振动方程为:)3cos(10ππ+=t x设在 1t 时刻振子位于cm x 6-=处,并向x 轴负方向运动,则有:53)3'c o s (-=+ππt 54)3's i n (=+ππt故有 s cm t v /1.25)3'sin(10-=+-=πππ22/2.59)3'cos(10s cm t a =+-=πππ设弹簧振子回到平衡位置的时刻为2t ,则有πππ2332=+t ,从上述位置回到平衡位置所需时间为: st t 8.0/)]3)53(arccos()323[(12=----=-ππππ5.6。
大学物理习题及解答(振动与波、波动光学)

1. 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ⨯10-2 m 。
假如使物体上下振动,且规定向下为正方向。
〔1〕t =0时,物体在平衡位置上方8.0 ⨯10-2 m处,由静止开始向下运动,求运动方程。
〔2〕t = 0时,物体在平衡位置并以0.60m/s 的速度向上运动,求运动方程。
题1分析:求运动方程,也就是要确定振动的三个特征物理量A 、ω,和ϕ。
其中振动的角频率是由弹簧振子系统的固有性质〔振子质量m 与弹簧劲度系数k 〕决定的,即m k /=ω,k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相ϕ需要根据初始条件确定。
解:物体受力平衡时,弹性力F 与重力P 的大小相等,即F = mg 。
而此时弹簧的伸长量m l 2108.9-⨯=∆。
如此弹簧的劲度系数l mg l F k ∆=∆=//。
系统作简谐运动的角频率为1s 10//-=∆==l g m k ω〔1〕设系统平衡时,物体所在处为坐标原点,向下为x 轴正向。
由初始条件t = 0时,m x 210100.8-⨯=,010=v 可得振幅m 100.8)/(2210102-⨯=+=ωv x A ;应用旋转矢量法可确定初相πϕ=1。
如此运动方程为])s 10cos[()m 100.8(121π+⨯=--t x〔2〕t = 0时,020=x ,120s m 6.0-⋅=v ,同理可得m 100.6)/(22202022-⨯=+=ωv x A ,2/2πϕ=;如此运动方程为]5.0)s 10cos[()m 100.6(122π+⨯=--t x2.某振动质点的x -t 曲线如下列图,试求:〔1〕运动方程;〔2〕点P 对应的相位;〔3〕到达点P 相应位置所需要的时间。
题2分析:由运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题。
此题就是要通过x -t 图线确定振动的三个特征量量A 、ω,和0ϕ,从而写出运动方程。
曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比拟方便。
大学物理第五章机械振动习题解答和分析

5-1 有一弹簧振子,振幅m A 2100.2-⨯=,周期s T 0.1=,初相.4/3πϕ=试写出它的振动位移、速度和加速度方程。
分析 根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。
解:振动方程为:]2cos[]cos[ϕπϕω+=+=t TA t A x 代入有关数据得:30.02cos[2]()4x t SI ππ=+ 振子的速度和加速度分别是:3/0.04sin[2]()4v dx dt t SI πππ==-+ 2223/0.08cos[2]()4a d x dt t SI πππ==-+5-2若简谐振动方程为m t x ]4/20cos[1.0ππ+=,求: (1)振幅、频率、角频率、周期和初相; (2)t=2s 时的位移、速度和加速度.分析 通过与简谐振动标准方程对比,得出特征参量。
解:(1)可用比较法求解.根据]4/20cos[1.0]cos[ππϕω+=+=t t A x 得:振幅0.1A m =,角频率20/rad s ωπ=,频率1/210s νωπ-==, 周期1/0.1T s ν==,/4rad ϕπ=(2)2t s =时,振动相位为:20/4(40/4)t rad ϕππππ=+=+ 由cos x A ϕ=,sin A νωϕ=-,22cos a A x ωϕω=-=-得 20.0707, 4.44/,279/x m m s a m s ν==-=-5-3质量为kg 2的质点,按方程))](6/(5sin[2.0SI t x π-=沿着x 轴振动.求: (1)t=0时,作用于质点的力的大小;(2)作用于质点的力的最大值和此时质点的位置.分析 根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。
解:(1)跟据x m ma f 2ω-==,)]6/(5sin[2.0π-=t x 将0=t 代入上式中,得: 5.0f N =(2)由x m f 2ω-=可知,当0.2x A m =-=-时,质点受力最大,为10.0f N =5-4为了测得一物体的质量m ,将其挂到一弹簧上并让其自由振动,测得振动频率Hz 0.11=ν;而当将另一已知质量为'm 的物体单独挂到该弹簧上时,测得频率为Hz 0.22=ν.设振动均在弹簧的弹性限度内进行,求被测物体的质量.分析 根据简谐振动频率公式比较即可。
大学物理活页答案(振动和波)

大学物理活页答案(振动和波部分)第一节 简谐振动1. D2.D3.B4.B5.B6.A7. X=0.02cos (52π−π2) 8. 2:1 9. 0.05m -37° 10. π or 3π 11. 012.解: 周期 3/2/2=ω=πT s , 振幅 A = 0.1 m , 初相 φ= 2π/3, v max = A = 0.3π m/s ,a max = 2A = 0.9π2 m/s 2 .13.提示:旋转矢量法(1)x =0.1cos (πt −π2)(2)x =0.1cos (πt +π3) (3)x =0.1cos (πt +π)14. (1)x =0.08cos (π2t +π3)t=1 x=-0.069m F=-kx=−m ω2x =2.7×10−4(2)π3=π2t t=0.67s第二节 振动能量和振动的合成1. D2.D3.D4.B5.B6. )(212121k k m k k +=νπ 提示:弹簧串联公式等效于电阻并联 7. 0.02m 8. π 0 提示:两个旋转矢量反向9. 402hz10. A=0.1m 位相等于113° 提示:两个旋转矢量垂直。
11. mv 0=(m +M)v ′ 12kA 2=1(m+M)v ′22 A=0.025m ω=√k m+M =40 x=0.025cos (40t −π/2)12. x=0.02cos (4t +π/3)x (m) ω π/3 π/3 t = 0 0.04 0.08 -0.04 -0.08 O A A机械波第一节 简谐波1. B2. A3.D4.C5.A (注意图缺:振幅A=0.01m )6.B7. 503.2 8. a 向下 b 向上 c 向上 d 向下 (追赶前方质元)9. π 10. 4π 或011.解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) (2) t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T y m 1.0)818/1(4cos 1.0=-π= (3) 振速 )20/(4sin 4.0x t ty -ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 26.1)21sin(4.02-=π-ππ-=v m/s 12.λ=0.4m u =0.05 k =ωu =2πλ=5π ω=π4 ϕ0=π2−2πT ∙T 2=−π2 y (x,t )=0.06cos (π4t −5πx −π2) y (0.2,t )=0.06cos (π4t −3π2)13. 210)cos sin 3(21-⨯-=t t y P ωω 210)]cos()21cos(3(21-⨯π++π-=t t ωω )3/4cos(1012π+⨯=-t ω (SI). 波的表达式为:]2/234cos[1012λλω-π-π+⨯=-x t y )312cos(1012π+π-⨯=-λωx t (SI) 第二节 波的干涉 驻波 电磁波1.D2.C3. D4.B5.B6.A7.C8. y =−2Acos (ωt ) ðy ðt =2Aωsin (ωt)9. 2A (提示:两振动同相)10. 0.5m 11. Acos2π(t T −x λ) A12. > 70.8hz 13. 7.96×10-2 W/m 214.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2cos[2π+-π=T t x A y λ(2) 驻波的表达式是 21y y y += )21/2cos()21/2cos(2π-ππ+π=T t x A λ (3) 波腹位置: π=π+πn x 21/2λ, λ)21(21-=n x , n = 1, 2, 3, 4,… 波节位置: π+π=π+π2121/2n x λ λn x 21= , n = 1, 2, 3, 4,…15.解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得: ν = 4 Hz , λ = 1.50 m , 波速 u = λν = 6.00 m/s(2) 节点位置 )21(3/4π+π±=πn x )21(3+±=n x m , n = 0,1,2,3, …(3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, …。
大学物理学振动与波动习题答案

大学物理学(上)第四,第五章习题答案第4章振动P174.4.1 一物体沿x轴做简谐振动,振幅A = 0.12m,周期T = 2s.当t = 0时,物体的位移x = 0.06m,且向x轴正向运动.求:(1)此简谐振动的表达式;(2)t = T/4时物体的位置、速度和加速度;(3)物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.[解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m,角频率ω = 2π/T= π.当t = 0时,x = 0.06m,所以cosφ = 0.5,因此φ= ±π/3.物体的速度为v = d x/d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sinφ,由于v > 0,所以sinφ < 0,因此φ = -π/3.简谐振动的表达式为x= 0.12cos(πt –π/3).(2)当t = T/4时物体的位置为x= 0.12cos(π/2–π/3)= 0.12cosπ/6 = 0.104(m).速度为v = -πA sin(π/2–π/3)= -0.12πsinπ/6 = -0.188(m·s-1).加速度为a = d v/d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s-2).(3)方法一:求时间差.当x = -0.06m 时,可得cos(πt1 - π/3) = -0.5,因此πt1 - π/3 = ±2π/3.由于物体向x轴负方向运动,即v< 0,所以sin(πt1 - π/3) > 0,因此πt1 - π/3 = 2π/3,得t1 = 1s.当物体从x= -0.06m处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt2 - π/3) = 0,可得πt2 - π/3 = -π/2或3π/2等.由于t2 > 0,所以πt2 - π/3 = 3π/2,可得t2 = 11/6 = 1.83(s).所需要的时间为Δt = t2 - t1 = 0.83(s).方法二:反向运动.物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间就是它从x= 0.06m,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x0/A),(-π < φ≦π),初位相的取值由速度决定.由于v = d x/d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sinφ,当v > 0时,sinφ < 0,因此φ = -arccos(x0/A);当v < 0时,sinφ > 0,因此φ = arccos(x0/A).可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x0 = A时,φ = 0;当初位置x0 = -A时,φ= π.4.2 已知一简谐振子的振动曲线如图所示,试由图求:(1)a,b,c,d,e各点的位相,及到达这些状态的时刻t各是多少?已知周期为T;(2)振动表达式;(3)画出旋转矢量图.[解答]方法一:由位相求时间.(1)设曲线方程为x = A cosΦ,其中A表示振幅,Φ = ωt + φ表示相位.由于x a = A,所以cosΦa = 1,因此Φa = 0.由于x b = A/2,所以cosΦb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t增加,b点位相就应该大于a点的位相,因此Φb = π/3.由于x c = 0,所以cosΦc = 0,又由于c点位相大于b位相,因此Φc = π/2.同理可得其他两点位相为Φd = 2π/3,Φe = π.c点和a点的相位之差为π/2,时间之差为T/4,而b点和a点的相位之差为π/3,时间之差应该为T/6.因为b点的位移值与O时刻的位移值相同,所以到达a点的时刻为t a = T/6.到达b点的时刻为t b = 2t a = T/3.到达c点的时刻为t c = t a + T/4 = 5T/12.到达d点的时刻为t d = t c + T/12 = T/2.到达e点的时刻为t e = t a + T/2 = 2T/3.(2)设振动表达式为x = A cos(ωt + φ),当t = 0时,x = A/2时,所以cosφ = 0.5,因此φ =±π/3;由于零时刻的位相小于a点的位相,所以φ = -π/3,因此振动表达式为cos(2)3tx ATπ=π-.另外,在O时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t轴相交于f点,由于x f= 0,根据运动方程,可得cos(2)03tTππ-=图6.2所以232f t Tπππ-=±. 显然f 点的速度大于零,所以取负值,解得 t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为t a = T /4 + t f = T /6,其位相为203a a t T Φπ=π-=. 由图可以确定其他点的时刻,同理可得各点的位相.4.3如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k= 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅; (2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即mv = (m + M )v 0.解得子弹射入后的速度为v 0 = mv/(m + M ) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得(m + M ) v 02/2 = kA 2/2,所以振幅为A v =-2(m). (2)振动的圆频率为ω=s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为x = A cos(ωt + φ).当t = 0时,x = 0,可得φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为x = 5×10-2cos(40t - π/2)(m).4.4 如图所示,在倔强系数为k的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为v =物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为0m v v m M ==+这也是它们振动的初速度. 设振动方程为x = A cos(ωt + φ),其中圆频率为ω=物体没有落下之前,托盘平衡时弹簧伸长为x 1,则x 1 = Mg/k .物体与托盘碰撞之后,在新的平衡位置,弹簧伸长为x 2,则x 2 = (M + m )g/k .取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k . 因此振幅为图4.3图4.4A===初位相为arctanvxϕω-==4.5重量为P的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)可以证明:当两根弹簧串联时,总倔强系数为k=k1k2/(k1+ k2),因此固有频率为2πων===.(2)因为当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为2πων===4.6 一匀质细圆环质量为m,半径为R,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]方法一:用转动定理.通过质心垂直环面有一个轴,环绕此轴的转动惯量为I c = mR2.根据平行轴定理,环绕过O点的平行轴的转动惯量为I = I c + mR2 = 2mR2.当环偏离平衡位置时,重力的力矩为M = -mgR sinθ,方向与角度θ增加的方向相反.根据转动定理得Iβ = M,即22dsin0dI mgRtθθ+=,由于环做小幅度摆动,所以sinθ≈θ,可得微分方程22ddmgRt Iθθ+=.摆动的圆频率为ω=周期为2πTω=22==方法二:用机械能守恒定律.取环的质心在最底点为重力势能零点,当环心转过角度θ时,重力势能为E p = mg(R - R cosθ),绕O点的转动动能为212kE I=ω,总机械能为21(cos)2E I mg R R=+-ωθ.环在转动时机械能守恒,即E为常量,将上式对时间求导,利用ω= dθ/d t,β=dω/d t,得0 = Iωβ + mgR(sinθ)ω,由于ω ≠ 0,当θ很小有sinθ≈θ,可得振动的微分方程22ddmgRt Iθθ+=,从而可求角频率和周期.[注意]角速度和圆频率使用同一字母(b)图4.5ω,不要将两者混淆.4.7 横截面均匀的光滑的U 型管中有适量液体如图所示,液体的总长度为L ,求液面上下微小起伏的自由振动的频率。
第5章振动和波动习题解答.docx

5-1 一个弹簧振子 m = 0.5 kg , k = 50N/m ,振iffl A = 0.04 m ,求(1) 振动的角频率、最人速度和最人加速度;⑵ 振子对平衡位置的位移为x = 0.02m 吋的瞬吋速度、加速度和回复力;(3)以速度具有正的最大值的时刻为计时起点,写出振动方程。
v niax = coA = 10x0.04 = 0.4(m/s) % = = 102 x0.04 = 4(m/s 2)(2) 设 x = A cos@ + (p),贝!J当 x=0.02m 时,COS (6X + 0)= 1/2, sin (0f + 0)= ±\/^/2 ,所以v = +0.2x73 = +0.346(m/s)tz = -2(m/s 2)F — ma = -1(N)TT(3)作旋转矢量图,可知:(p = 一一 271x = 0.04cos(10/ -—)5-2弹簧振子的运动方程为x = 0.04cos(0.7r-0.3)(Sl),写出此简谐振动的振幅、角频率、 频率、周期和初相。
A=0.04(m) 0)- 0.7(rad/s) (p - -0.3(rad) 解: s 1 i/ = —= 0.11(Hz) r = - = 8.98(s) 2兀 v5-17 一质点同时参与两个在同一总线上的简谐振动,两个振动的振动方程为x,=0.04cos(2z + -) (SI) 6Tt x 2 = 0.03cos(2/——)(SI) 6求合振动的振幅和初相。
解:A = J 彳 + 力;+ 2力]& cos (0 -(P )= yj42 +32 +2x4x3xcosy = 6.08(cm)(rad/s)dx d7 =-coAs\n(cot + cp) d 2x d7 =-ar A cos (血 + ©) = -cdx 解:(1)=10A . , A . 4xsin —+ 3xsin(——) A. sin (p 、+ A. sin % A 6 (p - arctan —! ---- — ---- 匕 -- --- =arctan ------------ --------------- --cos 叭 + A 2 COS % 4 x cos 兰 + 3 x cos(-壬)6 65-20质量为4536kg 的火箭发射架在发射火箭时,因向后反冲而具冇反冲能量,这能量 由发射架圧缩一个弹簧而被弹簧吸收。
大物习题答案第5章机械波

第5章机械波基本要求1.理解描述简谐波的各物理量的意义及相互间的关系.2.理解机械波产生的条件.掌握由已知质点的简谐振动方程得出平面简谐波的波函数的方法.理解波函数的物理意义.理解波的能量传播特征及能流、能流密度概念.3.了解惠更斯原理和波的叠加原理.理解波的相干条件,能应用相位差和波程差分析、确定相干波叠加后振幅加强和减弱的条件.4.理解驻波及其形成。
5.了解机械波的多普勒效应及其产生的原因.基本概念1.机械波机械振动在弹性介质中的传播称为机械波,机械波产生的条件首先要有作机械振动的物体,即波源;其次要有能够传播这种机械振动的弹性介质。
它可以分为横波和纵波。
2.波线与波面沿波的传播方向画一些带有箭头的线,叫波线。
介质中振动相位相同的各点所连成的面,叫波面或波阵面。
在某一时刻,最前方的波面叫波前。
3.波长λ在波传播方向上,相位差为2π的两个邻点之间的距离称为波长,它是波的空间周期性的反映。
4.周期T与频率ν一定的振动相位向前传播一个波长的距离所需的时间称为波的周期,它反映了波的时间周期性,波的周期与传播介质各质点的振动周期相同。
周期的倒数称为频率,波的频率也就是波源的振动频率。
5.波速u单位时间里振动状态(或波形)在介质中传播的距离。
它与波动的特性无关,仅取决于传播介质的性质。
6.平面简谐波的波动方程在无吸收的均匀介质中沿x轴传播的平面简谐波的波函数为()2cos y A tx ωϕπλ=+或s )co (x y A tu ωϕ⎡⎤=+⎢⎥⎣⎦其中,“-”表示波沿x 轴正方向传播;“+”表示波沿x 轴负方向传播。
波函数是x 和t 的函数。
给定x ,表示x 处质点的振动,即给出x 处质点任意时刻离开自己平衡位置的位移;给定t ,表示t 时刻的波形,即给出t 时刻质点离开自己平衡位置的位移。
7.波的能量 波动中的动能与势能之和,其特点是同体积元中的动能和势能相等。
任意体积元的222k 211d =d d d sin ()22P W W W VA t x πλρωωϕ==-+8.平均能量密度、能流密度 一周期内垂直通过某一面积能量的平均值是平均能量密度,用w 表示。
大学物理 第五章机械振动习题集答案

一、选择题B C D A B B B B B A 二、填空题22121221. cos() , cos() ;232 2. 100; 3. A -A , (A -A )cos()2x A t x A t T T t T πππππππ=-=++ 三、计算题 1、解:3223220.09(-)0.0100,, 0.01cos()33gl gl b b m gl b x gl gl x A m t x A v k gl x t ρρρρρϕπρωπ'=⇒=''-=-⇒===-=⇒='=⇒==⇒=+设物体在平衡位置时被浸没深度为b ,则物体受合外力F=物体作简谐振动当物体全被浸没时可知时,令简谐振动方程2、解:222222221d sin sin 2d 1sin 3d 1d 300d 2d 22πM Mgl kl J tJ Ml l Mg kl Mg kl t J t Ml T θθθθθθθθθθθθ=--=≈=⎡⎤+=⇒+=⎢⎥⎣⎦⇒=当杆向右摆动角时,重力矩与弹力矩均与相反,有很小,,,(+2)(+)3、解:设物体平衡时两弹簧分别伸长X 1, X 2由物体受力平衡得:1122121222211122111212121212sin (1)x sin sin (2)(1)(2) (3), mg k x k x x x x x x x F mg k x x mg k x x F k x k x FFx x x x x k k k k F x kx k k θθθω==''''=+''=-+=-+''=-=-''''=-=-=+⋅=-=-⇒=+物体沿轴移动位移时,两弹簧又分别被拉长,即则()() 将代入得:2v πω==4、解:04140000.05,02340,02-54245π0.1cos()243-0, 1.6P P A t x m t x st x t t sπϕπϕϕϕφπωπϕϕφϕωω-===>⇒=-==<⇒=∆===∆⇒=-∆=∆===由振动方程为,0v v5、解:222,22 0-0.05-,0232π0.1cos()237(1)1,0.1cos,620(2),8000==2s, =2s24(4)==s33TAt x mx tt s x mF kx m x Nt t tt tππωπϕππωφωππφω=====<⇒=⇒=+===-=-=-=∆∆=⇒∆∆∆=⇒∆振动方程为,(3)由,即由,v6、解:21-211221122313323π3ππ(1)-44210m sin sin tan 11 =1.48radcos cos 3π(2)2, =2+ (0 1, )45π2+1, =2+ (0 1, )4A A A A A k k k k k k ϕϕϕϕϕϕϕϕϕϕϕϕπϕπϕϕϕπϕπ∆=-=-==⨯+==⇒+∆=-=⇒=±∆=-=⇒=± ,,,,(),,。
大学物理 第五章机械波 课后习题 参考答案

方程才能写成这种形式? 解: 由于坐标原点和开始计时时刻的选全完取是一种主观行为, 所以在波动方程中, 坐标原 点不一定要选在波源处,同样, t 0 的时刻也不一定是波源开始振动的时刻;当波动方程
w w
可表示为 2 A cos
的含义已做了拓展,即在写波动方程时,我们可以把介质中某一已知点的振动视为波源,只 要把振动方程为已知的点选为坐标原点,即可得题示的波动方程. 5-5 在驻波的两相邻波节间的同一半波长上,描述各质点振动的什么物理量不同,什么物理 量相同? 解: 取驻波方程为 y 2 A cos
(1)波的振幅、波速、频率、周期与波长;
om
者是通过压缩波面(缩短波长)使频率增高, 后者则是观察者的运动使得单位时间内通过的波 面数增加而升高频率.
(2)写出传播方向上距离波源为 l 处一点的振动方程; (3)任一时刻,在波的传播方向上相距为 d 的两点的位相差. 解: (1)已知平面简谐波的波动方程
2
2 代入上式,即得 C
( x 2 x1 )
Cd .
2
v max A 10 0.05 0.5 m s 1
a max 2 A (10 ) 2 0.05 5 2 m s 2
.c
x)
B 2 ,波速 u , C C 1 2 波动周期 T . B (2)将 x l 代入波动方程即可得到该点的振动方程
不变,由此能从波动方程说明什么?
.k
x
u
x x )+ 0 ]中的 表示什么?如果改写为 y = A cos u u x x x ( t 又是什么意思?如果 t 和 x 均增加,但相应的[ ( t )+ 0 ]的值 0 ), u u u
大学物理练习册习题及答案波动学基础

习题及参考答案第五章 波动学基础参考答案思考题5-1把一根十分长的绳子拉成水平,用手握其一端,维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则(A )振动频率越高,波长越长; (B )振动频率越低,波长越长; (C )振动频率越高,波速越大; (D )振动频率越低,波速越大。
5-2在下面几种说法中,正确的说法是(A )波源不动时,波源的振动周期与波动的周期在数值上是不同的; (B )波源振动的速度与波速相同;(C )在波传播方向上的任二质点振动位相总是比波源的位相滞后; (D )在波传播方向上的任一质点的振动位相总是比波源的位相超前 5-3一平面简谐波沿ox 正方向传播,波动方程为010cos 2242t x y ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦. (SI)该波在t =0.5s 时刻的波形图是( )5-4图示为一沿x 轴正向传播的平面简谐波在t =0时刻的波形,若振动以余弦 函数表示,且此题各点振动初相取-π到π之间的值,则()(A )1点的初位相为φ1=0(B )0点的初位相为φ0=-π/2(m)(A )(m)(m)(B )(C )(D )思考题5-3图思考题5-4图(C )2点的初位相为φ2=0 (D )3点的初位相为φ3=05-5一平面简谐波沿x 轴负方向传播。
已知x=b 处质点的振动方程为[]0cos y A t ωφ=+,波速为u ,则振动方程为( )(A)()0cos y A t b x ωφ⎡⎤=+++⎣⎦(B)(){}0cos y A t b x ωφ⎡⎤=-++⎣⎦(C)(){}0cos y A t x b ωφ⎡⎤=+-+⎣⎦ (D)(){}0cos y A t b x u ωφ⎡⎤=+-+⎣⎦ 5-6一平面简谐波,波速u =5m·s -1,t =3s 时刻的波形曲线如图所示,则0x =处的振动方程为( )(A )211210cos 22y t ππ-⎛⎫=⨯- ⎪⎝⎭ (SI) (B )()2210cos y t ππ-=⨯+ (SI) (C )211210cos 22y t ππ-⎛⎫=⨯+ ⎪⎝⎭ (SI) (D )23210cos 2y t ππ-⎛⎫=⨯- ⎪⎝⎭ (SI) 5-7一平面简谐波沿x 轴正方向传播,t =0的波形曲线如图所示,则P 处质点的振动在t =0时刻的旋转矢量图是( )5-8当一平面简谐机械波在弹性媒质中传播时,下述各结论一哪个是正确的? (A )媒质质元的振动动能增大时,其弹性势能减少,总机械能守恒; (B )媒质质元的振动动能和弹性势能都作周期变化,但两者的位相不相同;(C )媒质质元的振动动能和弹性势能的位相在任一时刻都相同,但两者的数值不相等; (D )媒质质元在其平衡位置处弹性势能最大。
大物第五章课后习题答案

简答题5.1 什么是简谐运动?说明下列运动是否是简谐运动?(1)活塞的往复运动;(2)皮球在硬地上的跳动;(3)一小球在半径很大的光滑凹球面底部的来回滑动,且经过的弧线很短;(4)锥摆的运动。
答:质点的简谐振动一定要有平衡位置,以平衡位置作为坐标原点,如果以x 表示质点偏离平衡位置的位移,质点所受合外力一定具有F kx =-的形式。
(1)活塞的往复运动不是简谐运动,因为活塞受力的方向和它的位移是同一方向,任一时刻所受的合外力不具有F kx =-的形式,所以活塞的往复运动是简谐运动。
(2)皮球在硬地上的跳动不是简谐运动,因为忽略空气阻力,皮球在上升和下落阶段,始终受到竖直向下的重力的作用,任一时刻所受的合外力不具有F kx =-的形式,所以皮球的运动不是简谐运动。
(3)一小球在半径很大的光滑凹球面底部的来回滑动,且经过的弧线很短是简谐运动。
符合简谐运动的定义。
(4)锥摆的运动不是简谐运动,此时锥摆受到重力和绳的拉力的作用,这两个力的合力的大小为恒量,而方向在不断的改变,任一时刻所受的合外力不具有F kx =-的形式,所以锥摆的运动不是简谐运动。
5.2(1)试述相位和初相的意义,如何确定初相?(2)在简谐振动表达式)cos(ϕω+=t A x 中,t=0是质点开始运动的时刻,还是开始观察的时刻?初相20/,πϕ=各表示从什么位置开始运动?答:1)相位是决定谐振动运动状态的物理量,初相是确定振动物体初始时刻运动状态的物理量。
由初始条件可以确定初相。
2)在简谐振动表达式)cos(ϕω+=t A x 中,t =0是质点开始计时时刻的运动状态,是开始观察的时刻。
初相0ϕ=是物体处于正最大位移处开始运动,初相/2ϕπ=是物体处于平衡位置且向初相x 轴负向开始运动。
5.3 一质点沿x轴按)cos(ϕω+=t A x 作简谐振动,其振幅为A ,角频率为ω,今在下述情况下开始计时,试分别求振动的初相:(1)质点在x=+A 处;(2)质点在平衡位置处、且向正方向运动;(3)质点在平衡位置处、且向负方向运动;(4)质点在x=A /2处、且向正方向运动;(5)质点的速度为零而加速度为正值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
于是
R2k J mR 2 J mR 2 R2k
T 2π
5-7 如图所示,质量为 10g 的子弹,以 v0 1000m s 速度射入木块并嵌在木块中,使弹 簧压缩从而作简谐运动,若木块质量为 4.99kg,弹簧的劲度系数为8 103 N m ,求振动的振
幅。 (设子弹射入木块这一过程极短) 解: 先讨论子弹与木块的碰撞过程, 在碰撞过程中, 子弹与木块组成的系统的动量守恒,
福州大学-大学物理习题解答
第5章
振动和波动
5-1 一个弹簧振子 m 0.5kg , k 50 N m ,振幅 A 0.04m ,求 (1) 振动的角频率、最大速度和最大加速度; (2) 振子对平衡位置的位移为 x = 0.02m 时的瞬时速度、加速度和回复力; (3) 以速度具有正的最大值的时刻为计时起点,写出振动方程。 解: (1)
d2 x 2 A cos(t ) 2 x d t2
当 x=0.02m 时, cos(t ) 1/ 2,
sin(t ) 3 / 2 ,所以
v 0.2 3 0.346(m/s) a 2(m/s 2 ) F ma 1(N)
解:根据题意,两质点分别在 x
A2
4π 3
O A1 A2
2π 3 A1
O
x
x
习题 5-9 图 5-10 一简谐振动的振幅 A = 24c m、周期 T = 3s ,以振子位移 x = 12cm、并向负方向运 动时为计时起点,作出振动位移与时间的关系曲线,并求出振子运动到 x = -12c m处所需的 最短时间。 解:依题意可得, 法可知
k 50 10 m 0.5
(rad s)
vmax A 10 0.04 0.4(m/s) amax 2 A 102 0.04 4(m/s 2 )
(2) 设 x A cos(t ) ,则
v
dx A sin(t ) dt
a
xmax 0.062(m) , A xmax 0.062(m)
5-14 一木块在水平面上作简谐运动,振幅为 5.0c m,频率为 ,一块质量为 m 的较小 木块叠在其上,两木块间最大静摩擦力为 0.4mg,求振动频率至少为多大时,上面的木块将 相对于下面木滑动? 解:以平衡位置为坐标原点,向右为 x 轴正方向,建 立坐标系,小木块在 x 处:
由题意知,振动初速度 v0 0 (1)x 轴正向向上时: x0 0.01(m)
振动方程为 x 0.01cos(10 10t )(m) (2)x 轴正向向下 时: x0 0.01(m) 振动方程为 x 0.01cos(10 10t )(m)
0
5-12 劲度系数为 k 的轻弹簧,上端与质量为 m 的平板相联,下端与地面相联。如图所 示,今有一质量也为 m 的物体由平板上方 h 高处自由落下,并与平板发生完全非弹性碰撞。 以平板 开始 运动时 刻为 计时起 点, 向下 为正, 求振 动周期 、振 幅和 初相。
(3) 作旋转矢量图,可知:
π 2
π x 0 . 0 4 c o st( 10 2
)
5-2 弹簧振子的运动方程为 x 0.04cos(0.7t 0.3)(SI) , 写出此简谐振动的振幅、 角频率、 频率、周期和初相。
A=0.04(m) 0.7(rad/s) 0.3(rad)
4
福州大学-大学物理习题解答
设碰撞后子弹与木块共同以速度 v 运动,则有
mv0 (m m)v v mv0 2(m/s) m m
然后系统做简谐振动,因为简谐振动过程中机械能守恒,所以振幅 A 可由初始时刻系 统的机械能确定,已知初始时刻系统的势能为零,所以有
1 1 (m m)v 2 kA2 2 2
习题 5-4 图
2
福州大学-大学物理习题解答
解:以平衡时右液面位置为坐标原点,向上为 x 轴正方向,建立坐标系。右液面偏离原点为 至 x 时,振动系统所受回复力为:
F
πd 2 g 2m
πd 2 πd 2 g 2x g x 4 2
振动角频率
振动周期 T 2 π
物体受力与位移成正比而反向,即可知物体做简谐振动国,此简谐振动的周期为
T 2π
m k
5-9 两质点分别作简谐振动, 其频率、 振幅均相等, 振动方向平行。 在每次振动过程中, 它们在经过振幅的一半的地方时相遇,而运动方向相反。求它们相差,并用旋转矢量图表示
5
福州大学-大学物理习题解答
出来。
A A 和 x 处相向通过,由此可以画出相应的旋转 2 2 2 4 矢量图,从旋转矢量图可得两个简谐振动的相位差为 π或 π 。 3 3
解:
2π
0.11(Hz) T
1
8.98(s)
5-3 证明:如图所示的振动系统的振动频率为
1 k1 k2 2π m
为 物 体 的 质 量 。
式 中 k1 , k2 分 别 为 两 个 弹 簧 的 劲 度 系 数 , m
1
福州大学-大学物理习题解答
习题 5-3 图 解: 以平衡位置为坐标原点,水平向右为 x 轴正方向。设物体处在平衡位置时,弹簧 1 的 伸长量为 x10 ,弹簧 2 的伸长量为 x20 ,则应有
k1 x10 k 2 x20 0
当物体运动到平衡位置的位移为 x 处时,弹簧 1 的伸长量就为 x10 x ,弹簧 2 的伸长量就 为 x20 x ,所以物体所受的合外力为
F k1 ( x10 x) k2 ( x20 x) (k1 k2 ) x
由牛顿第二定律得
7
福州大学-大学物理习题解答
习题 5-12 图 解:物体下落与平板碰撞前速度: v
2 gh
mv (m m)v0
所以物体与平板碰撞后共同运动的速度: v0
1 2 gh 2 mg k
以平衡位置为坐标原点,向下为 x 轴正方向,建立坐标系。依题意: x0 在 x 处,物体和平板受力:
) arccos
mg m g 2 mgkh
2
5-13 在一平板上放一重 9.8N 的物体,平板在竖直方向作简谐振动,周期 T =0.50s ,振 幅 A =0.020m,试求 (1)重物对平板的压力 F ; (2)平板以多大振幅运动时,重物将脱离平板? 解:以平衡位置为坐标原点,向下为 x 轴正方向,物体在 x 处时,
2π 2π ,又由旋转矢量 T 3
π 3 2π π t )(m) 3 3
x
A/2
所以振动方程为: x 0.24 cos(
o
质点运动到 x = -12c m处最小相位变化为 π 3 , 所以 需要最短时间为
A
3
习题 5-10 图
t (s)
t
π3 T 3 0.5(s) 2π 2π
O F x
F m 2 x
2π 2 T
O
x
x
在最大位移处,F 最大, Fmax m 2 x
2
习题 5-14 图
当 Fmax f s,即m A s mg 时小木块开始相对于大木块滑动,由此得:
g s 8.85(rad/s) A
8.85 1.4(Hz) 2π
F 2mg k ( x
则: T 2π
2 v0
2mg ) kx k
2m k
2π k T 2m
2 A x0
2
m 2 g 2 2 gh / 4 1 m 2 g 2 mgkh k2 k / 2m k
见旋转矢量图,有:
arccos(
x0 A
mg sin kx0
平衡位置距 O 点为: l0 x0 l0
x0
mg sin k
mg sin k
以平衡位置为坐标原点,如图建立坐标轴 Ox,当物体运动到离开平衡位置的位移为 x 处时,弹簧的伸长量就是 x0 x ,所以物体所受的合外力为
F mg sin k ( x0 x) 即F kx
习题 5-6 图 解:设任意时刻 t,物体 m 离平衡位置的位移为 x,速率为 v,则振动系统的总机械能
1 1 v 1 E kx 2 C J mv 2 恒量 2 2 R 2
式中 C 为滑轮的重力势能,为一常量,上式两边对 t 求导得
2
kxv J
v a mva 0 R R k a x 2 x J m R2
N O
8
mg
x
习题 5-13 图
福州大学-大学物理习题解答
mg N ma m 2 x N mg m 2 x 9.8 16 2 x
(1)重物对平板的压力 F 9.8 16 2 x (2)当 N=0 时重物将脱离平板,由 N 9.8 16 2 xmax 0 ,得
A
m m 0.01 4.99 v 2 0.05m k 8 103
5-8 如图所示,在一个倾角为 的光滑斜面上,固定一个原长为 l0 、劲度系数为 k 、质 量可以忽略不计的弹簧,在弹簧下端挂一个质量为 m 的重物,求重物作简谐运动的平衡位 置和周期。
解: 设物体处在平衡位置时弹簧伸长量为 x0 ,则
5-11 如图所示,一轻弹簧下端挂着两个质量均为 m = 1.0kg 的物体 B 和 C,此时弹簧伸 长 2.0c m并保持静止。用剪刀断连接 B 和 C 的细线,使 C 自由下落,于是 B 就振动起来。 选 B 开始运动时为计时起点,B 的平衡位置为坐标原点,在下列情况下,求 B 的振动方程 (1)x 轴正向向上; (2)x 轴正向向下。