第四章根轨迹分析复习要点

合集下载

第四章根轨迹法.

第四章根轨迹法.

9
4.2.1 绘制根轨迹的基本法则 法则 1 根轨迹的分支数和对称性 : 1. 根轨迹对称于实轴(实数根或者复数根) 根轨迹对称于实轴(实数根或者复数根) 2. n阶系统有 条根轨迹 阶方程有 个确定的根,当根由始点 阶系统有n条根轨迹 阶方程有n个确定的根 阶系统有 条根轨迹(n阶方程有 个确定的根, 向终点移动时,必定形成一条根轨迹) 向终点移动时,必定形成一条根轨迹)
24
法则 8 根之和 : 当 n m ≥ 2 时 , 特征方程第二项系数与 K* 无关 , 无论 K* 取 何值 , 开环 n 个极点之和总是等于闭环特征方程 n 个根之和
∑s = ∑ p
i =1 i i =1
n
n
i
(4-25)
25
画出了几种常见的开环零, 在图 4-15 中 , 画出了几种常见的开环零,极点分布及其相应 的根轨迹 , 供绘制概略根轨迹时参考 .
3
4.1.1 根轨迹概念 一, 根轨迹概念 根轨迹简称根迹 , 它是开环系统某一参数从零变到无穷时 , 闭 环系统特征方程的根(闭环极点 在 环系统特征方程的根 闭环极点)在 s 平面上变化的轨迹 . 闭环极点 设控制系统如图4-1所示 设控制系统如图 所示 , 其 闭环传递函数为 C ( s) 2K φ ( s) = = 2 R( s ) s + 2 s + 2 K 显然 , 其特征根为 s1, 2 = 1 ± 1 2 K 其特征根变化如图4-2所示 令 K = 0 → ∞, 其特征根变化如图 所示 . "×"---------表示开环传递函数的极点 × 表示开环传递函数的极点 "°"---------表示开环传递函数的零点 表示开环传递函数的零点 箭头的指向-------表示 增大是根的移动方向 表示K增大是根的移动方向 箭头的指向 表示

第四章 根轨迹法(1)

第四章 根轨迹法(1)

第四章 根轨迹法
(1)当 K * = 0时,s1 = 0、s2 = -2, 此时闭环极点就是开环极点。 (2)当0< K * <1时, s1 、 s2 均为负 实数,且位于负实轴的(-2,0) 一 段上。 (3)当K * = 1时,s1 = s2 = -1,两 个负实数闭环极点重合在一起。 (4)当1< K * <∞时, s1, 1 1 k * 2 两个闭环极点变为一对共轭复数极点。 s1 、 s2 的实部不随K * 变化,其位于过 (-1,0)点且平行于虚轴的直线上。 (5)当K * =∞时, s1 = -1+ j∞、 s2 = -1-j∞,此时s1、s2将趋于无限 远处。
第四章 根轨迹法
② 位于s1左边的实数零、极 点: (S1 – P4 ) 、(S1 – Z1 ) 、 向量引起的相角为0°
∴ 判断 s1是否落在根轨迹 上,位于s1左边的零、极点不 考虑。
③ 位于s1右边的实数零、极点: 每个零、极点提供180°相 角,其代数和为奇数,则满足相角条件。
第四章 根轨迹法
a
(0) (1 j1) (1 j1) (4) (1) 5 4 1 3
60 180 2k 1 180 2k 1 a 180 nm 3 300
k 0 k 1 k 2
第四章 根轨迹法
五、法则五 根轨迹分离点和分离角
K G( s) H ( S )
* i 1 n j 1
(s z )
i
m
S (s p j )
-1
m个开环零点 n个开环极点 K *根轨迹增益
∴在s平面上凡是满足上式的任意一个点s1、s2、…、 s∞,都 是闭环特征根,即闭环极点。
第四章 根轨迹法

自动控制原理第四章-根轨迹分析法

自动控制原理第四章-根轨迹分析法

×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s

控制工程基础第4章 根轨迹法

控制工程基础第4章  根轨迹法

n 3, m 0, 故三条根轨迹趋向处。
渐进线与实轴交点的坐标为
[S]
a
0
1
3
2
0
1
渐进线与实轴正向的夹角为
a -2 -1 0
a
2k
1180
3
60 , 180
六、根轨迹的起始角与终止角
起始角:起始于开环极点的根轨迹在起点 处的切线与水平线正方向的夹角。
终止角:终止于开环零点的根轨迹在终点 处的切线与水平线正方向的夹角。
s4
2
1
s3 -2 s20 s1
s3 180 , s3 2 180 s4 1, s4 2 2
若s4位于根轨迹上,则必满足
幅角条件,即1 2 180,
N
s4一定在 2,0的中垂线MN上。
利用幅值条件可算出各根轨迹上的 K 值。

Gs
K
s0.5s 1
2K
ss 2
K
ss 2
终止于 zb 的根轨迹在终点处
的切线与水平正方向的夹角
j 1
i 1
ib
其它零点到 zb 的向量夹角
七、分离点的坐标
几条根轨迹在[S]平面上相遇后又分开的点, 称为根轨迹的分离点(或会合点)。
分离点坐标的求法:
1 d (G(s)H (s)) 0
ds
2 由根轨迹方程
令:dK 0 解出s ds
n
1 180 p1 z p1 p2
180 116.57 90
206.57
由于对称性
2 206.57
会合点 -3
206.57
p1
[S]
z116.57
2.12
-2 -1 0

《自动控制原理》第4章 线性系统的根轨迹法

《自动控制原理》第4章 线性系统的根轨迹法
s=-2 分离角=±90。 o 与虚轴的交点
68
4.5 广义根轨迹
根轨迹部分是个半圆,半径是 k *
证明:根轨迹上一点S满足相角条件
s (s j2) (s j2)
代入s j
( j) ( j( 2)) ( j( 2))
arctan arctan 2 arctan 2
K* G(s)
s(s 2)(s 1)
26
法则五:根轨迹的分离点与分离角
分离点:几条根轨迹在[s]某一点相遇后又分开 的点。
说明有重根
27
实轴上的分离点(常见)
如果根轨迹位于实轴上相邻的两个开环极点之间, 其中一个可以是无限极点,则在这两个极点之间至 少存在一个分离点;
如果根轨迹位于实轴上相邻的两个开环零点之间, 其中一个可以是无限零点,则在这两个零点之间至 少存在一个分离点;
开环极点:
p1 0 p2 0 p3 2 p4 5
(2)实轴上的根轨迹 (3)根轨迹分支数
4
59
G0 ( s)
s2(s
k* 2)(s
5)
(4)渐近线
4条
渐近线与实轴的夹角
a
4
3
4
3
4
4
渐近线与实轴的交点(σa , 0)
4
pi
a
i 1
4
1.75
60
G0 ( s)
s2(s
k* 2)(s
法则二:根轨迹的分支数,对称性和 连续性
• 根轨迹的分支数与开环有限零点数m和有限 极点数n中的大者相等,它们是连续的并且 对称于实轴。
22
法则三:根轨迹的渐近线(n>m)
• 当开环有限零点数m小于有限极点数n时, 有n-m条根轨迹分支沿着与实轴交点 ,

第四章 控制系统根轨迹分析法

第四章 控制系统根轨迹分析法
i j 1 j
4.1 根轨迹的概念
模条件与角条件的作用: 1、角条件与k无关,即s平面上所有满足角条件的 点都属于根轨迹。(所以绘制根轨迹只要依据角条 件就足够了)。 2、模条件主要用来确定根轨迹上各点对应的根轨 I 迹增益k值。
m
k

j 1 m
n
s p
j
s Zi
args Z i
1
所以结论:实轴上线段右侧的零、极点数目之和为奇 数时,此区段为根轨迹。


k G0 ( s ) Ts 1
1 T
×
×
×
×
σ
1 p T
j


1 1 T F 1 T 2k 1 1
k' G0 ( s ) s( s 0.5 )
j
p1 0 p2 0.5
k G0 s 举例: 开环传函: ss 1
K为开环增益(因为标准型) 有两个开环极点 无开环零点
rs
k ss 1
C s
k G s 2 闭环传函: s sk
2 D s s sk 0 则闭环特征方程为:
1 1 闭环特征根(即闭环传函的极点): s1 1 4k
0 0 .5 F 0.25 2 2k 1 3 , 2 2 2

-0.5 0
4.2 根轨迹的绘制规则
规则四:根轨迹的渐近线: (1)条数: (n-m)条 (2)与实轴所成角度 当
m n 2k 1
n m
s 时,认为所有开环零极点引向s的角相同
Z1 Z m p1 p n
G 0 s k
m
为m个开环零点

(自动控制)第四章:根轨迹法

(自动控制)第四章:根轨迹法

动态性能:从根轨迹图可以分析出系统的工作状态,
如过阻尼状态、欠阻尼状态……
根轨迹增益、闭环零极点与开环零极点的关系 l f
* G(s)= KG
∏( s-p ) i i=1
f i i 1 H q
q
∏( s-z ) i i=1
;
l
j=1 * H (s)= KH h
f l m
∏(s-zj )
C(s)
C ( s) 2k 2 R ( s ) S 2 S 2k
特征方程(闭环):
S2+2s+2k=0

k s(0.5s+1)
特征根:s1,2= -1±√1-2k k=0时, s1=0, s2=-2
K:0 ~ ∞
0<k<0.5 时,两个负实根 ;若s1=-0.25, s2=? k=0.5 时,s1=s2=-1 0.5<k<∞时,s1,2=-1±j√2k-1 j
注意:一组根对应同一个K;
K一变,一组根变; K一停,一组根停;
-2
-1
0
由以上分析,s1、s2两条根轨迹反映了系统特征根随参 数k变化的规律,组成了系统的根轨迹。 1.二阶系统有两个特征根,它的根轨迹有两条分支; 一个n阶系统的根轨迹则应有n条分支。 2.k=0时的闭环极点,s1=0、s2=-2正好是开环传递函 数的两个极点,因此说,系统开环极点就是它各条根轨 迹的起点。 3. k=∞时的闭环极点,是根轨迹的终点。 4.特征方程的重根点是根轨迹的分支离开负实轴进入复 数平面的分支点。
a.系统响应单调上升(ξ>1)系统具有两个不相等的负实根┈ 过阻尼响应。 b.系统响应衰减振荡(0<ξ<1)系统具有一对负实部的共 轭复根┈欠阻尼响应。

4第四章__根轨迹法(2)

4第四章__根轨迹法(2)
3
2
1
Imag Axis
0
-1
-2
-3 -2
-1.5
-1
-0.5 Real Axis
0
0.5
1
第四章 线性系统的根轨迹分析
2)确定内环的闭环极点 要求内环的反馈系数 内环的特征方程 3.2<Kf<3.5
( s 0.6)(s2 2s 4) K f 0
在实轴上选取试验点进行试探,P1=-1.6时,Kf =3.36 可求得内环的另外两个闭环极点为 p2 0.5 j1.83 p3 0.5 j1.83 3)绘制外环的根轨迹图 外环的开环传递函数
(2)根轨迹的起点 (3)实轴上的根轨迹
0,-1,-3
终点 均为∞
[0 , ] [3 , 1]
第四章 线性系统的根轨迹分析
(4)根轨迹的渐近线
a
n
2k 180 0 ,120 nm
m j i 1 i
k 0、 1
a=
( p ) ( z )
i 1 j与虚轴的交点 (相同) (9)闭环极点的和 (相同)
第四章 线性系统的根轨迹分析
例:控制系统方框图如下所示
R(s )


Kc s2


K0 s( s 1)
C (s )
1 s3
系统的内环为正反馈,绘制内环根轨迹图。 解: (1)内环的开环传递函数
G1 ( s ) H1 ( s ) K0 s( s 1)(s 3)
第四章 线性系统的根轨迹分析
4-3
广义根轨迹
其它种类的根轨迹: 1.参数根轨迹
2.多回路系统的根轨迹 3.正反馈回路和零度根轨迹

第四章线性系统的根轨迹法

第四章线性系统的根轨迹法
2. 零度根轨迹: 1 实轴上根轨迹区间右侧开环零极点数目之和为偶数 2 实轴与渐近线正方向夹角2kπ/n-m 3 求出射角和入射角时2kπ
4 分离角不变
1-G(S)H(S)=0 G(K)=1 例题:开环传递函数:
绘制系统的根轨迹。
解:①n=3.所以根轨迹有三条。 ②极点: ③渐近线: 5 分离点:
令 1. 闭环零极点由前向通道的零点和反馈通道的极点构成,对于单 位负反馈系统的闭环零点就是开环零点。 2. 闭环极点与开环极点,开环零极点及根轨迹都有关系。
4).根轨迹方程:
幅值条件: 相角条件: ①满足相角条件的点肯定是根轨迹上的点,相角条件是确定根轨迹 的充要条件。 ②幅值条件是用来确定根轨迹上的点所对应的根轨迹增益。 5).绘制更轨迹的法则: ①根轨迹的连续性:根轨迹是连续变化的直线或曲线。 ②根轨迹的对称性:根轨迹位于幅平面的实轴上或对称的实轴上。 ③根轨迹的条数;等于系统的阶次。即:闭环特征根最高次幂。 ④根轨迹的起点和终点:起源于n个开环极点,终止于m个开环零点。 以及n-m个无穷远零点。
闭环极点。
解 (1)系统的开环极点为,,是根轨迹各分支的起点。由于 系统没有有限开环零点,三条根轨迹分支均趋向于无穷远处。 (2)系统的根轨迹有条渐进线
渐进线的倾斜角为 取式中的K=0,1,2,得=π/3,π,5π/3。
渐进线与实轴的交点为
三条渐近线如图的虚线所示。 (3)实轴上的根轨迹位于原点与-1点之间以及-2点的左边,如图中 的粗实线所示。 (4)确定分离点:系统的特征方程式为 即
所以 即: ②分离点: 证明:
②除以①式
无零点 分离点重根 ③分离角:指根轨迹进入分离点的切线方向与离开分离点的切线方向之 间的夹角。当l条根轨迹进入并立即离开分离点时 8)根轨迹的出射角和入射角: 出射角:起始于开环极点的根轨迹在起点处,切线方向与正实轴的夹 角。 入射角:终止于开环零点的根轨迹在终点处切线方向与正实轴的夹角。

《自动控制原理》第4章_根轨迹分析法

《自动控制原理》第4章_根轨迹分析法
一般有两个解,从中
因此求分离点和会合点公式: 可以判断是分离点或
N(s)D '(s) N '(s)D(s) 0 会合点,只有满足条
Kg 0
件Kg≥0的是有用解。
例4-1.设系统结构如图, 试绘制其概略根轨迹。
R(s)
k(s 1) c(s)
s(s 2)(s 3)
解:画出 s 平面上的开环零点(-1),开环极点(0, -2,-3)。
逆时针为正。(- , )
m
n
pj (2k 1) ( z j pi ) pj pi
j 1
j 1
ji
m
n
zi (2k 1) ( z j zi ) p j zi
j 1
j 1
j i
k 0,1,
k 0, 1,
例3.设系统开环传递函数为: G(s) Kg(s 1.5)(s 2 j)(s 2 j) s(s 2.5)(s 0.5 j1.5)(s 0.5 j1.5)
K
s1
00
0.5 1
1 1 j1
s2
K
K 2.5
2
K 1
1 K 0
1 j1
2 1
2 1 j 3 1 j 3
1 j 1 j
j
2
1
0
K 0.5
1
2
一、根轨迹的一般概念
开环系统(传递函数)的某一个参数从零变化到 无穷大时,闭环系统特征方程根在 s 平面上的轨迹 称为根轨迹。
根轨迹法:图解法求根轨迹。 借助开环传递函数来求闭环系统根轨迹。
nm
独立的渐近线只有(n-m)条 u=0,1…,(n-m-1)
(2)渐近线与实轴的交点
分子除以分母

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

第四章 根轨迹法反馈系统的稳定性由系统的闭环极点确定。

研究系统参数变化对闭环系统特性的影响,是分析系统和设计控制器的重要内容。

参数变化的作用,体现在对闭环极点的影响上。

对于高阶系统,用解析方法说明这种影响,很困难,且不易理解。

图解法是一种方便的近似方法。

l 、基本内容和要点 (l )根轨迹的基本概念根轨迹的定义。

以二阶系统为例说明什么是根轨迹,怎样从根轨迹分析闭环零、极点与系统的性能。

(2)绘制根轨迹的基本规则根轨迹的特点和性质。

绘制以系统开环增益K 为变量的根轨迹的规则与方法。

常见的几种典型系统的根轨迹图。

(3)参数根轨迹参数根轨迹的定义。

多参变量根轨迹。

多环系统的根轨迹。

(4)非最小相位系统的根轨迹最小相位和非最小相位系统的定义和特点。

非最小相位系统根轨迹的特点和绘制规则。

(5)含有延迟环节的系统的根轨迹有延迟环节的系统的极轨迹特点及绘制规则。

延迟环节的近似表达式及使用条件。

(6)基于根轨迹分析系统的响应根轨迹的形状,零极点的位置与系统时域响应性能指标间的关系。

几种常见的典型系统的零、极点分布与其暂态响应性能指标。

2、重点(l )最小相位系统的以开环增益K 为变量的根轨迹的特点及其绘制的规则和方法。

(2)系统根轨迹的形状,零、极点的分布与其时域响应性能指标的关系。

3、难点对“根轨迹上所有的点只是可能的闭环极点”的理解以及非最小相位系统中含最高次冥项系数为负的因子时根轨迹的绘制。

4-1 根轨迹法的基本概念1. 根轨迹概念根轨迹法:根据参数变化∞→0,研究系统闭环极点变化轨迹的一种图解方法。

即在参数变化时图解特征方程。

近似作图;重要区域,如与虚轴的交点与实轴的交点等,根轨迹要准确;依据根轨迹图,可以确定合适的系统参数,为设计控制器提供依据。

例图4-1,研究系统的开环增益K 的变化∞→0, 对闭环极点的影响。

开环传递函数)15.0()(+=s s Ks G ,闭环传递函数Ks s K s 222)(2++=Φ,特征方程0222=++K s s ,根轨迹方程1)2(-=+s s k ,∞→=0,2K k 。

第4章线性系统的根轨迹分析

第4章线性系统的根轨迹分析
➢根轨迹的渐近线 根轨迹的渐近线就是确定当开环零点数目m小于极点 数目n时,(n-m)条根轨迹沿什么方向趋于[s]平面无 穷远处。由式(4-1-7)及式(4-2-1)求得
k (s z1)(s z2 )(s zm ) 1 (s p1)(s p2 )(s pn )
(4-2-6)
g(t) c(t) 1 et /
闭环系统特征方程为
f (s) s3 3s2 2s k 0
df (s) 3s2 6s 2 0 ds
s1 0.422, s2 1.578
由前边分析得知,s2 不是根轨迹上的点,故舍 去。s1是根轨迹与实轴分离点坐标。最后画出
根轨迹如图4-2-4所示。
图4-2-4 例4-2-1的跟轨迹图
利用多项式乘法和除法,由式(4-2-6)可得
n
s n ( pi )s n1
k
i 1 m
s m ( z j )s m1
j 1
m
n
s nm ( z j
pi )s nm1
j 1
i 1
将式(4-2-8)代入上式可得
m
n
(s )nm snm ( z j pi )snm1
(n m)
(4-2-1)
式中 s z j ( j 1,2,, m) 为系统的开环零点 s pi (i 1,2,, n) 为系统的开环极点
k称为根轨迹增益或根轨迹放大倍数。设系统为v型, 即有s=0的开环极点,将式(4-2-1)改写为
G(s)H (s)
K (1s 1)( 2s 1)( ms 1)
当1<k<∞时,两个闭环极点变为一对共轭复数极点
明当sk1→、s21、∞ 时s12,位js1于、k(s-121,将,且j趋0s1)、向点s于且2 无平的限行实远于部处虚不。轴随图的k变4直-化1线的,上控说。

自动控制理论第四章 线性系统的根轨迹分析

自动控制理论第四章 线性系统的根轨迹分析

由以上分析得知:
根轨迹表明了系统参数对闭环极点分布的影 响,通过它可以分析系统的稳定性、稳态和 暂态性能与系统参数之间的关系。
利用根轨迹,可对系统动态特性进行下述分析: (1)判断该系统在K1从0到变化时的稳定性; (2)判断系统在K1从0到变化时根轨迹的条数; (3)判断该系统K1取值在何范围时处于过阻尼、 临界阻尼和 欠阻尼状态; (4)判断系统的“型”,从而计算系统稳态特性; (5)当K1值确定后,在根轨迹上找到闭环极点,从而计算系 统闭环性能指标;或反之;
•根轨迹法作为经典控制理论的基本方法,与频率特性法 互为补充,是分析和研究自动控制系统的有效工具。
•实际上,我们可以利用matlab方便地绘制系统的根轨 迹图。
本章内容
第一节 根轨迹的基本概念 第二节 绘制根轨迹的方法 第三节 参量根轨迹和多回路系统根轨迹 第四节 正反馈系统和零度根轨迹 第五节 利用根轨迹分析系统的暂态性能 第六节 延迟系统的根轨迹 本章小结、重点和习题
当K1由0变化到时,试按一般步骤与规则绘制 其根轨迹图。 解: (1)本系统为3阶系统,有3条根轨迹; (2)起始点:系统没有开环零点,只有三个开环 极点,分别为p1=0,p2=-1,p3=-2。 (3)渐近线:K1时, p1 p2 p3 0 1 2 a 1 有3条根轨迹趋向无穷远处, nm 30 其渐近线与实轴的交点和 (2q 1)180 (2q 1)180 a nm 3 倾角分别为:
满足相角条件,s1=-1.5+j2.5是该系统根轨迹上的点。
(3)利用幅值条件求得与s1 相对应的K1值。
K1

s1 ( s1 2) ( s1 6.6) ( s1 4)
1.5 j 2.5 0.5 j 2.5 5.1 j 2.5 2.5 j 2.5

第4章 根轨迹分析法

第4章 根轨迹分析法

i 1
其余n m,
m
(s zi )
i 1 n
(s pj )
m
(1
m
i 1
pj
(1 s)
zi
n
s
) (s
p
j
)
1 Kg
j 1
j 1
j m 1
此时s ,即无穷远处
8/63
五.实轴上的根轨迹
在实轴上,右方的实数开环极点和实数开环零 点的总和为奇数时,此为根轨迹上点。
GK (s)
m
n
闭环系统特征方程 或根轨迹方程
4/63
GK (s) GK (s) e jGK (s) 1
幅值条件: GK (s) 1 相角条件: GK (s) 180o (2k 1) k 0,1, 2,
或:
m
(s zi )
充要条
K i1 gn
1

(s pi )
m
n
j 1
s zi s p j 180o (2k 1) k 0,1,2,
当 nm2
n
n
an1 ( pj ) (sj ) s j 为系统的闭环极点
j 1
j 1
随着根轨迹增益的变化,若一些闭环极点向右移动,则另一些
必向左移动
n
(sj )=(-1)n (a0 Kgb0) j 1
22/63
十条法则:
1.连续性 2.对称性 3.分支数 4.起点、终点 5.实轴上的根轨迹 6.渐近线 7.分离点、会合点 8.出射角、入射角 9.虚轴交点 10.闭环极点的和与积
D(s)N(s) N(s)D(s) 0,3s2 6s 2 0
ss21
0.423 1.577

第四章-根轨迹分析法

第四章-根轨迹分析法

i 1
K
K*(sz1) (szm)
(sp1)(sp2) (spn)K 0 K 0 K
6 5
° 3
!绘制注意点
1)实轴、虚轴相同的刻度 5.53
2)“×”、 “〇” 3)加粗线及箭头
4)关键点的标注
j
• K 35, 1.35
1 1
1
0
• K 35, 1.35
29
绘制根轨迹的基本法则
从特征根的表达式中看出每个特征根都随K的变化 而变化。例如,设
K=0 K=0.5 K=1 K=2.5 K=+∞
s1 0, s2 2 s1 1, s2 1 s1 1 j, s2 1 j s1 1 2 j, s2 1 2 j s1 1 j , s2 1 j
l
h
(szj) (spi)(lh)
j1
i1
•如满足辐角条件必有
(lh)(21)
所以,L-h必为奇数,当然L+h也为奇数。
证毕
36
例3
设一单位负反馈系统的开环传递函数为 G(s)=K(s+1)/[s(0.5s+1)],求 K0 时的闭环根轨迹。
解:将开环传递函数写成零、极点形式 G(s) 2K(s 1) s(s 2)
因此,渐近线交点总在实轴上。
41
例4
已知系统的开环传递函数
G(s)H(s)s(s4 K)g((ss2 12)s2)
试根据6,求出根轨迹的渐近线。
解:
零点 z1, m1 极点 p 10,p2 4,p 3 1j1 ,p4 1j1 ,
n4
42
按照公式得
1800(1 2) 1800(1 2)
nm
➢1.根轨迹的连续性 ➢2.根轨迹分支数 ➢3.根轨迹的对称性 ➢4.根轨迹的起点和终点 ➢5.实轴上的根轨迹 ➢6.根轨迹的渐近线

自动控制原理根轨迹分析知识点总结

自动控制原理根轨迹分析知识点总结

自动控制原理根轨迹分析知识点总结自动控制原理是研究自动控制系统的基本理论和方法的学科,而根轨迹分析是自动控制原理中的一项重要内容。

本文将对根轨迹分析的知识点进行总结,帮助读者更好地理解和运用这一分析方法。

一、根轨迹分析的基本概念根轨迹是描述控制系统传递函数的极点随参数变化而在复平面上运动的轨迹。

通过绘制根轨迹图,可以直观地了解系统的稳定性、动态响应和频率特性等重要信息。

二、根轨迹的性质1. 根轨迹图是在复平面上绘制的闭合曲线,其中包含了系统的所有极点。

2. 根轨迹出发点(即开环传递函数极点)的数量等于根轨迹终止点(即闭环传递函数极点)的数量。

3. 根轨迹关于实轴对称,即系统的实部极点只存在于实轴的左半平面或右半平面上。

4. 根轨迹通过传递函数零点的个数和位置来确定。

三、根轨迹的画法1. 确定系统的开环传递函数。

2. 根据传递函数的表达式,求得系统的特征方程。

3. 计算特征方程的根,即极点的位置。

4. 绘制根轨迹图,显示系统极点随参数变化的轨迹。

四、根轨迹的稳定性分析1. 若根轨迹通过左半平面(实部为负)的点的个数为奇数,则系统是不稳定的。

2. 若根轨迹通过左半平面的点的个数为偶数,则系统是稳定的。

五、根轨迹的频率特性分析1. 根轨迹的形状和分布可以判断系统的阻尼比、振荡频率和衰减时间等性能指标。

2. 根轨迹与系统的频率响应曲线之间存在一一对应的关系。

六、根轨迹的应用1. 根据根轨迹可以设计和优化控制系统的参数,使系统具有所需的动态性能。

2. 利用根轨迹可以直观地观察到系统的稳定性和动态响应,便于故障诊断和故障排除。

七、根轨迹分析的注意事项1. 在绘制根轨迹图时,应注意传递函数的极点和零点的位置,以及参数的范围。

2. 在分析根轨迹时,应考虑系统的稳定性、动态响应和频率特性等综合因素。

以上就是自动控制原理根轨迹分析的知识点总结。

根轨迹分析作为自动控制原理中的一项重要内容,对于理解和设计控制系统具有重要意义。

第四章:根轨迹分析法

第四章:根轨迹分析法

n
m
j
n−m
2k+1 ϕa = π n− m
(k = 0,1,2,⋯, n− m−1)
18
在例4-1中,开环传递函数为
G(s)H(s) =
Kg s(s+ 2)
开环极点数n=2,开环零点数m=0,n-m=2,两条渐近线 在实轴上的交点位置为
−2 σa = = −1 2
π 它们与实轴正方向的交角分别为 (k = 0) 2 3 π 和 (k =1) ,两条渐近线正好与 Kg ≥1 时的根轨迹 2 重合。
在绘 制根轨 迹时 ,可 变参数 不 限定 是 根轨 迹 增 益 Kg ,可为系统的其它参数(如时间常数、反馈系数 等)这时只要把系统的特征方程化为上式,将感兴趣 的系统参数取代根轨迹增益 Kg 的位置都可以绘制根 轨迹。
8
根轨迹方程是一个向量方程,用模和相角的形式 表示
| G(s) H(s) | ej∠G(s)H(s) =1⋅ ej(±180°+k⋅360°) (k = 0,1,2,⋯ )
15
规则三 实轴上的根轨迹
若实轴上某线段右侧的开环零、 若实轴上某线段右侧的开环零、极点的个数之 和为奇数,则该线段是实轴上的根轨迹。 和为奇数,则该线段是实轴上的根轨迹。 例4-3 设系统的开环传递函数为
G(s) H(s) = Kr (s− z1)(s − z2 )(s − z3 )(s − z4 ) (s− p1)(s− p2 )(s− p3 )(s − p4 )(s − p5 )
24

P 1
θ p1
[s]
P 3
0
σ
P 2
θ p2
图4-8(a) 根轨迹的出射角
25

第四章 根轨迹法(1)

第四章 根轨迹法(1)

an1 p1 p2
n
pn p j , j 1
n
a0 p1 • p2 • • pn p j j 1
闭环系统的特征方程为:F (s) 1 Gk (s) 0 ,即: (1)
设闭环系统的极点为: s1, s2 ,... sn ,则
(2)
系统闭环特征方程为:
F (s) sn an1sn1 ... a0 Kg (sm bm1sm1 ... b0 )
倾角:设根轨迹在无限远处有一点 sk ,则s平面上所有的 开环有限零点和极点到 sk 的相角都相等,即为渐近线的倾
角 。代入根轨迹的相角条件得:
m
n
(s zi ) (s p j ) m n (2k 1)
i 1
j 1
规定:相角逆时针为正,顺时针为负。
渐近线与实轴的交点
[例]系统开环传递函数为:Gk (s)
(2)实轴上相邻开环零点(包括无穷远零点)之间是根轨迹, 则这段根轨迹上必有会合点;
(3) 实轴上根轨迹在一个开环零点与开环极点之间, 则存在两种情况,既有 分离点也有会合点,既无分离点 也无会合点;
[分离点和会合点的求法]:
代数重根法:
m
Go (s) Kg
(s zj )
j 1
n
(s pi )
根轨迹法的优点有哪些:
1、从已知的开环零、极点的位置及某一变化参数来求 取闭环极点的分布,即解决闭环特征式的求根问题。
2、根轨迹图不仅可以直接给出闭环系统时间响应的全部 信息,而且可以指明系统参数应该怎样变化才能满足给定 闭环系统的性能指标要求。
2
4.1根轨迹法的基本概念
一、根轨迹的定义
例4-1 某随动系统如图所示
p3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 根轨迹分析复习要点
根轨迹图绘制规则,以系统开环传递函数:()()
14.005.02++=S S S K
S G 为例,画出系统的根轨迹图。

1.对称性:控制系统的根轨迹图。

因系统开环增益K 变化,导致系统闭环特征方程的根在复平面上变化,形成根轨迹图。

闭环特征方程的根或者为实数,或者为一对共轭复数(实部相同,虚步互为相反数),所以控制系统的根轨迹图关于实轴对称。

2.根轨迹分支数:控制系统开环传递函数中,分母多项式的解为极点,个数为n ,分子多项式的解为零点,个数为m ,所以系统有n 条根轨迹,m 条终止于零点,n-m 条终止于无穷远处。

例题中系统有0个零点,3个极点,0条根轨迹终止于零点,3条根轨迹终止于无穷远处。

闭环系统特征方程是:04.005.023=+++K S S S 。

3个开环极点为:P1=0,P2=-4+2j ,P3=-4-2j 。

3.确定实轴上属于根轨迹的段。

实轴上任意取一点,该点右端零极点个数和为奇数,则该点所在段属于根轨迹。

例题中,整个负实轴均为根轨迹。

4.渐近线:有n-m 条渐近线,与实轴正向夹角()0,1,...,1
21K n m K n m π
θ=--+=-,与实轴交点
-a n m
σ-=-所有极点和所有零点和,例题渐近线与实轴交点:-2.67,渐近线与实轴夹角:60度,180度,300度。

5.求分汇点:特征方程中K 用s 表示,对K 求s 的一阶导数,令之为0,解方程可得根轨迹的分汇点,
根据实际情况适当取舍。

例题,特征方程为:320.050.4S S S K ++=-,200.150.810dK S S ds
=++=,,12S 3.33S 2解得:=-,=-,均为分汇点。

6.出射角:极点出射角为:180度+所有零点与该极点连线与实轴正向夹角和-所有其他极点与该极点连线与实轴正向夹角和。

例题,P2的出射角为:180+0-(153.4+90)=-63.4度,因为根轨迹的对称性,P3的出射角为:63.4度。

7.与虚轴交点:s =j ω 带入特征方程,整理出实部和虚部,令之为0,解2个方程得到ω和K 的值,ω为根轨迹和虚轴交点,K 为到达交点时的增益数值,大于该值系统失去稳定性。

例题中
s =j ω 带入04.005.023=+++K S S S ,可得:()()32j 0.40K ωωω-+-=,解得8, 4.47K ω==。

王小增 20141116。

相关文档
最新文档