酶工程重点整理总结
酶工程重点
酶工程考点一、名词解释1.酶工程:把酶学基本原理与化学工程技术及基因重组技术有机结合而形成的新型应用技术,主要研究酶的生产、纯化、固定化技术,酶分子结构的修饰和改造,以及在工农业、医药卫生和理论研究等方面应用的一门技术。
2.酶的转换数:表示在单位时间内,酶分子中每个活性中心或每个分子酶所能转化的底物分子数,单位为min-,是酶催化效率的一个指标。
3.酶的发酵生产:为了经济有效利用细胞所生产特定酶,通过人工操作控制,利用细胞(包括微生物细胞、植物细胞和动物细胞)的生命活动,大规模发酵生产人们多需要的酶的技术过程。
4.酶的比活力:指在特定条件下,单位质量蛋白质或RNA所拥有的酶活力单位数:酶的比活力=酶的活力单位数(U)/酶蛋白质量(mg)。
5.酶的总活力:6.酶反应动力学:酶反应动力学是研究酶反应速度规律以及各种因素对酶反应速度影响的科学。
7.2-DE(双向电泳):又称二维电泳,是将等点聚焦和聚丙烯酰胺凝胶电泳技术联合使用的一种分离鉴定技术。
8.HPLC(高效液相色谱): HPLC 是以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。
9.诱导物:诱发诱导酶合成的物质称为诱导物。
10.固定化细胞:利用物理或化学手段将具有一定生理功能的生物细胞(微生物细胞、植物细胞或动物细胞)限制或定位在特定的空间区域,作为可重复使用的生物催化剂而加以利用,这些细胞称为固定化细胞。
11.细胞包埋法:将细胞包埋在多孔载体内部而制成固定化细胞的方法。
12.酶的包埋法:将酶分子截留在具有特定网状结构载体中的一种固定化方法。
13.酶活的国际单位:在标准条件下(25℃、最适pH、最适底物浓度)下,酶每分钟催化1μmol底物转化或催化1μmol底物产生多需要的酶量定义为一个国际单位(U)二、简答题1.目前世界上七大高新技术?答:现代生物技术、航天技术、信息技术、激光技术、自动化技术、新能源技术和新材料技术。
酶工程期末重点总结
酶工程期末重点总结一、酶工程概述酶工程是将酶应用于工业领域的一门科学,通过对酶的研究和改良,可以提高酶的稳定性、催化活力、选择性和产量,以满足工业生产的需求。
酶工程的应用范围广泛,涉及生物技术、医药化学、食品工程等多个领域。
二、酶的产生和分离纯化1. 酶的产生:酶可以通过天然微生物、重组DNA技术等方法进行生产。
天然微生物通过发酵过程产生酶,而重组DNA技术可以将特定基因导入到宿主微生物中,使其产生目标酶。
2. 酶的分离纯化:酶的分离纯化通常包括细胞破碎、组织液处理、沉淀和层析等步骤。
其中,层析是一种常用的分离纯化方法,包括凝胶过滤层析、离子交换层析、亲和层析等。
三、酶的性质和特点1. 酶的性质:酶是一种特殊的蛋白质,具有催化作用。
酶的催化作用是高度选择性的,可以加速化学反应的速率并降低反应的能量活化值。
2. 酶的特点:酶具有高效、低成本、环境友好等特点。
由于酶具有高度选择性,因此可以在温和的条件下催化反应,减少能耗和废弃物产生。
四、酶的改良和优化酶的改良和优化是酶工程的核心内容之一,旨在提高酶的催化活力、选择性和稳定性,以满足工业生产的需求。
1. 酶的改造:通过理性设计和随机突变等手段,改变酶的氨基酸序列,以改善其性质。
常用的改造方法包括点突变、插入突变和删除突变等。
2. 酶的固定化:将酶固定在材料表面或载体上,增加酶的稳定性和重复使用性。
常用的固定化方法包括包埋法、凝胶包覆法和共价固定法等。
3. 酶的进化:通过模拟自然界的进化过程,通过多代选择和酶库筛选等方法,获得具有改良性质的酶。
进化方法包括DNA重组技术、DNA重组酶库和聚合酶链式反应等。
五、酶工程在工业中的应用酶工程在工业中的应用广泛,涉及到生物能源、纺织印染、制药等多个领域。
1. 生物能源:酶可以催化生物质转化为生物能源,如酶解纤维素制备生物乙醇。
2. 纺织印染:酶可以代替传统的化学处理方法,实现更加环保和高效的染色和整理。
3. 制药:酶可以用于合成药物和研发新药,如利用酶合成青霉素等抗生素。
酶工程精要
《酶工程》要点1、酶工程:酶的生产、改性与应用的技术过程。
酶的生产:获得酶的技术——微生物发酵产酶、动植物培养产酶和酶的提取与分离。
酶的改性:改进酶的催化特性技术过程——酶分子修饰、酶固定化、酶非水相催化和酶定向进化。
酶的应用:获得所需物质或除去不良物质技术过程——酶反应器的选择与设计以及酶在各个领域的应用。
2、酶工程的主要内容:微生物细胞发酵产酶,动植物细胞培养产酶,酶的提取与分离纯化,酶分子修饰,酶、细胞、原生质体固定化,酶非水相催化,酶定向进化,酶反应器和酶的应用等。
3、酶的催化特点:(1)酶催化的专一性强——绝对与相对(2)酶催化效率高(3)作用条件温和4、影响酶催化作用的因素:(1)底物浓度——催化反应速度先随底物浓度增加而增加,达最大是趋于平衡,过量时反而下降。
(2)酶浓度——成正比。
(3)温度——过高过低影响酶活性,最适温度。
(4)PH——最适PH,极端PH酶分子空间构象改变而失活。
(5)抑制剂——可逆,不可逆。
(6)激活剂。
(7)底物结构类似物。
5、抑制机理:(1)竞争性抑制——抑制剂和底物竞争与酶分子的结合,V m不变,K m变小。
(2)非竞争性抑制——抑制剂和底物分别与酶分子结合,V m变小,K m不变。
(3)反竞争性抑制——抑制剂与中间复合体结合,V m和K m都变小。
6、酶的分类与命名:蛋白类酶——1氧化还原酶,2转移酶,3水解酶,4裂合酶,5异构酶,6连接酶(合成酶)。
四码编号法:第一个号码为六大类酶,第二个号码为亚类,第三个号码亚类中的小类,第四个号码该小类中的序号。
7、酶活力:一定条件下酶催化反应的初速度。
酶活力单位:特定条件下每1min催化1µmol的底物转化为产物的酶量为1个酶活力单位。
酶的比活力:特定条件下单位质量(mg)蛋白质或RNA所具有的酶活力单位数。
酶比活力=酶活力/mg蛋白质(RNA)8、酶的生产方法:(1)提取分离法——盐溶液提取、酸碱溶液提取、有机溶剂提取。
酶学与酶工程重点总结
酶学与酶⼯程重点总结第⼆章酶学基础⼀、酶的活性中⼼(active center,active site)(⼀)活性中⼼和必需基团1、与酶活性显⽰有关的,具有结合和催化底物形成产物的空间区域,叫酶的活性中⼼,⼜叫活性部位。
2、活性中⼼可分为结合部位和催化部位。
3、结合部位决定酶的专⼀性,催化部位决定酶所催化反应的性质。
4、酶结构概述(1)活性中⼼是⼀个三维实体。
(2)是有⼀些⼀级结构上可能相距较远的氨基酸侧链基团组成,有的还包含辅酶或辅基的某⼀部分基团。
(3)在酶分⼦表⾯呈裂缝状。
(4)酶活性中⼼的催化位点和结合位点可以不⽌⼀个。
(5)酶活性中⼼的基团都是必需基团,但必需基团还包括活性中⼼以外的基团。
5、酶分⼦中的氨基酸残基或其侧链基团可以分为四类1.接触残基2.辅助残基3.结构残基4.⾮贡献残基(⼆)酶活性中⼼中的化学基团的鉴别1.⾮特异性共价修饰:某些化学试剂能使蛋⽩质中氨基酸残基的侧链基团反应引起共价结合、氧化或还原修饰反应,使基团结构和性质发⽣变化。
如果某基团修饰后不引起酶活⼒的变化,就可初步认为此基团可能是⾮必需基团;反之,如修饰后引起酶活⼒的降低或丧失,则此基团可能是酶的必需基团。
2.亲和标记共价修饰剂是底物的类似物,可专⼀性地引⼊酶的活性中⼼,并具有活泼的化学基团(如卤素),可与活性中⼼的基团形成稳定的共价键。
因其作⽤机制是利⽤酶对底物类似物的亲和性⽽将酶共价标记的,故称为亲和标记。
3.差别标记在过量底物或可逆抑制剂遮蔽活性中⼼的情况下,加⼊共价修饰剂,使后者只修饰活性中⼼以外的有关基团;然后去除底物或可逆抑制剂,暴露活性中⼼,再⽤同位素标记的向⼀修饰剂作⽤于活性中⼼的同类基团;将酶⽔解后分离带有同位素的氯基酸,即可确定该氨基酸参与活性中⼼。
4.蛋⽩质⼯程这是研究酶必需基闭和活性中⼼的最先进⽅法,即将酶蛋⽩相应的互补DNA(cDNA)定点突变,此突变的cDNA表达出只有⼀个或⼏个氨基酸被置换的酶蛋⽩,再测定其活性,可以知道被置换的氨基酸是否为活⼒所必需。
酶工程复习要点
1、酶的催化作用特点:具有专一性,催化效率高和反应条件温和等显著特点。
2、酶研究的两个方向:理论研究方向和应用研究方向。
理论研究方向:酶的理化性质、催化性质、催化机制等。
应用研究:促进了酶工程的形成。
3、酶工程的定义:利用酶或者微生物细胞,动植物细胞,细胞器,借助于酶的催化作用,通过工程学手段生产产品或提供社会服务的科学体系。
4、酶工程的应用范围:①对生物资源中天然酶的开发和生产②自然酶的分离纯化与鉴定技术③酶的固定化技术④酶反应器的研制与应用⑤与其它生物技术领域的交叉与渗透。
5、酶工程的组成:①酶的发酵生产②酶的分离纯化③酶分子修饰④酶和细胞固定化⑤酶反应器和酶的应用等方面。
6、酶工程的主要任务:通过预先设计,经过人工操作控制而获得大量所需的酶,并通过各种方法使酶发挥其最大的催化功能。
8、酶的分类:第1类,氧化还原酶;第2类,转移酶;第3类,水解酶;第4类,裂合酶;第5类,异构酶;第6类,合成酶;第7类,核酸类酶。
9、酶的作用机制:酶的催化机理可能与几种因素有关:酶与底物结合时,两者构象的改变使它们互相契合,底物分子适当地向酶分子活性中心靠近,并且趋向于酶的催化部位,使活性中心这一局部地区额底物浓度大大增高,并使底物分子发生扭曲,易于断裂。
在另一些情况中,可能还有一些其他的因素使酶反应速度稍有一些提高,如酶与底物形成有一定稳定度的过渡态中间物——共价的ES中间物,这种ES中间物又可迅速地分解成产物,又如酶活性中心的质子供体和质子受体对底物分子进行了广义的酸碱催化等。
10、酶的催化能力:酶仅能改变化学反应的速度,并不不能改变化学反应的平衡点。
酶本身在反应前后也不发生变化例如肽键遇水自发地进行水解的反应极为缓慢,当有蛋白酶存在时,这个反应则进行得十分迅速,可降低反应的活化能。
在一个化学反应体系中,反应开始时,反应物(S)分子的平均能量水平较低为“初态”,在反应的任何一瞬间反应物中都有一部分分子具有了比初态更高一些的能量,高出的这一部分能量称为活化能,使这些分子进入“过渡态”,这时就能形成或打破一些化学键,形成新的物质——产物(P)。
酶工程重点
一、名词解释1、酶生物合成中的转录与翻译酶合成中的转录是指以核苷三磷酸为底物,以DNA链为模板,在RNA聚合酶的作用下合成RNA分子。
酶合成中的翻译是指以氨基酸为底物,以mRNA为模板,在酶和辅助因子的共同作用下合成蛋白质的多肽链。
2、诱导与阻遏酶合成的诱导是指加入某种物质使酶的合成开始或加速进行的过程;酶合成的阻遏作用则是指加入某种物质使酶的合成中止或减缓进行的过程。
这些物质分别称为诱导物及阻遏物。
3、酶回收率与酶纯化比(纯度提高比)酶的回收率是指某纯化步骤后酶的总活力与该步骤前的总活力之比。
酶的纯化比是之某纯化步骤后的酶的比活力与该步骤前的比活力之比。
4、酶的变性与酶的失活酶的变性是指酶分子结构中的氢键、二硫键及范德华力被破坏,酶的空间结构也受到破坏,原来有序、完整的结构变成了无序,松散的结构,失去了原有的生理功能。
酶的失活则是指酶的自身活性受损(包括辅酶、金属离子受损),失去了与底物结合的能力。
5固定化酶:是将水溶性酶经物理或化学方法处理后,成为不溶于水但仍具有酶活性的一种酶的衍生物。
6酶分子修饰,通过各种方法使酶分子的结构发生某些改变,从而改变酶的某些特性和功能的技术过程称为酶分子修饰。
7酶的共价修饰,指的是酶蛋白肽链上的一些基团与某种化学基团发生可逆的共价结合,从而改变酶的活性。
在共价修饰过程中,酶发生无活性(或低活性)与有活性(或高活性)两种形式的互变;包括磷酸化与脱磷酸化、乙酰化与脱乙酰化、甲基化与脱甲基化、腺苷化与脱腺苷化及-SH与-s-s-的互变等8酶的化学修饰,酶蛋白肽链上的某些基团,在另一种酶的催化下发生可逆的共价修饰,从而引起酶活性改变,这种调节称为酶的化学修饰。
9酶比活力,指在特定条件下,每1mg酶蛋白所具有的酶活力单位数,是酶制剂纯度的指标。
10、非水酶学:通常酶发挥催化作用都是在水相中进行的,研究酶在有机相中的催化机理的学科即为非水酶学11、产酶动力学:主要研究细胞产酶速率及各种因素对产酶速率的影响,包括宏观产酶动力学和微观产酶动力学。
2023年酶工程考点总结
第一章什么是酶?试述酶旳化学本质?酶是生物体内普遍存在旳一种具生物催化活性旳蛋白质(或核酸),能在不变化化学反应平衡点旳条件下大大减少反应旳活化能,从而使化学反应可以在常温常压下迅速高效地进行.酶促反应速度旳概念, 表达措施(底物消耗, 产物生成), 影响酶促反应旳原因(至少4种)?酶催化反应旳速率称作酶速度;酶促反应速度就是用一定期间内底物减少或产物生成旳量来表达反应旳进程。
影响酶促反应旳原因: pH、温度、激活剂、克制剂1,写出米氏酶促反应动力学方程并阐明其含义.Km值有何物理意义? 怎样测量Km值和Vmax值?Km值物理意义:(1) km是酶旳一种基本旳特性常数。
其大小与酶旳浓度无关, 而与详细旳底物有关, 且伴随温度、pH和离子强度而变化。
(2)从km可判断酶旳专一性和天然底物。
Km最小旳底物, 一般就是该酶旳最适底物, 也就是天然底物。
(3)当k2>>k3时, km旳大小可以表达酶与底物旳亲和性。
(4)从km旳大小, 可以懂得对旳测定酶活力时所需旳底物浓度。
(5)km还可以推断某一代谢物在体内也许旳代谢途径。
测量Km值和Vmax值旳措施:米氏常数可根据试验数据作图法直接求得:先测定不一样底物浓度旳反应初速度, 从v与[S]旳关系曲线求得V, 然后再从1/2V求得对应旳[S]即为Km(近似值)。
充足理解酶旳不可逆克制,可逆克制(竞争性、非竞争性、反竞争性), 理解在上述克制过程中Km和Vmax旳变化不可逆克制作用:克制剂与酶旳结合(共价键)是不可逆旳。
一般是与靠近活性部位旳氨基酸残基形成共价键, 永久地使酶失活。
可逆克制作用: 克制剂与酶旳结合是可逆旳。
克制程度是由酶与克制剂之间旳亲和力大小、克制剂旳浓度以及底物旳浓度决定。
①竞争性克制作用: 克制剂和底物竞争与酶结合。
特点: 1)克制剂和底物竞争酶旳结合部位2)克制程度取决于I和S旳浓度以及与酶结合旳亲和力大小。
3)竞争性克制剂旳构造与底物构造十分相似。
酶工程复习重点考点
1.酶生物合成法生产的主要工艺过程包括那几个步骤?(1)用作培养菌种及扩大生产的发酵罐的培养基的配制(2)培养基、发酵罐以及辅助设备的消毒灭菌(3)将已培养好的有活性的纯菌株以一定量转接到发酵罐中(4)接种到发酵罐中的菌株控制在最适条件下生长并形成代谢产物(5)将产物抽提并进行精制(6)回收或处理发酵过程中产生的废物和废水如何控制微生物发酵产酶的工艺条件?发酵过程中,为了能对生产过程进行必要的控制,需要对有关工艺参数进行定期取样测定或进行连续测量。
参数中,对发酵过程影响较大的有温度、PH、溶解氧浓度等。
(1)温度:温度对发酵的影响是多方面的,主要表现在对细胞生长、产物形成、发酵液的物理性质和生物合成方面。
例如:枯草杆菌的最适温度为34--37℃,黑曲霉的最适温度为28--32℃(2)pH:发酵过程中pH的变化取决于所用的菌种、培养基的成分和培养条件。
微生物生长和生物合成都有其最适和能够耐受的pH范围,大多数微生物生长的最适pH6.3-7.5,霉菌和酵母生长的最适pH4-6,放线菌生长的最适pH7-8。
(3)溶解氧浓度:对于好氧发酵,溶解氧浓度是最重要的参数之一。
好氧性微生物深层培养时,需要适量的溶解氧以维持其呼吸代谢和某些产物的合成,氧的不足会造成代谢异常,产量降低。
简述凝胶层析、亲和层析、离子交换层析的原理和操作要点?离子交换层析原理:根据待分离物质带电性质不同的分离纯化方法。
操作:a上样:上样体积不十分严格。
b洗脱:增加溶液的离子强度c梯度洗脱法:改变溶液的pHd再生:用0.5mol/LNaOH和0.5mol/L NaCl混合溶液或0.5mol/L HCl处理。
凝胶层析原理:利用某些凝胶对于不同分子大小的组分阻滞作用的不同。
大分子物质不能进入凝胶孔内,在凝胶颗粒之间的空隙向下移动,并最先被洗脱出来;小分子物质可自由出入凝胶孔,流程长而后流出层析柱。
操作:a凝胶的选择和处理,根据相对分子质量范围选择相应型号的凝胶介质。
酶工程复习资料(整理)
酶工程复习资料(整理)第一章:(一)酶工程的概念是将酶、细胞或细胞器等置于特定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应原料转化成有用物质并应用于社会生活的一门科学技术一、酶的分类1.氧化还原酶:2.转移酶:3.水解酶:4.裂合酶:5.异构酶6.连接酶,7. 核酶(一)酶的组成形式1.单体酶( monomeric enzyme) :由一条或多条肽链组成,肽链间以共价键结合的酶。
2 .寡聚酶(oligomeric enzyme) :由若干相同或不相同的亚基以非共价键结合而组成,亚基一般没有活性,必须相互结合后才有活性。
3.多酶复合体(multienzyme system) :由2个或2个以上功能相关的酶通过非共价键连接而成的、能进行连续反应的体系就是多酶复合体。
(二)酶的结构特点(holoenzyme) (apoenzyme) (cofactor)全酶 = 酶蛋白 + 辅因子(金属离子、辅酶、辅基)金属离子无机离子金属离子有机化合物辅酶、辅基辅酶(coenzyme) :指与酶蛋白结合比较松弛的小分子有机物质,通过透析方法可以除去。
例如硫胺素、焦磷酸。
辅基(prosthetic group) :是以共价键和酶蛋白结合,结合的较紧密,不能通过透析法除去,需要经过一定的化学处理才能与酶蛋白分开。
四、酶的作用机制(一)酶的结构组成及活性中心调控基团中心外必需基团酶的结构必需基团活性中心结合部位中心内必需基团催化部位活性中心以外的必需基团其它部分1、酶的活性中心(active center) :是指结合底物和将底物转化为产物的区域,通常是相隔很远的氨基酸残基形成的三维实体。
2、结合部位:酶分子中与底物结合,使底物与酶的一定构象形成复合物的基团。
酶的结合基团决定酶反应的专一性。
3、催化部位:酶分子中催化底物发生化学反应并将其转变为产物的基团。
4、4、调控基团:酶分子中一些可与其他分子发生某种程度的结合并引起酶分子空间构象的变化,对酶起激活或抑制作用的基团催化基团决定酶所催化反应的性质,同时也是决定反应的高效性。
酶工程重点汇总
第一章绪论酶:生物细胞产生的,具有催化能力的生物大分子。
酶分两大类:主要由蛋白质组成——蛋白类酶(P酶)主要由核糖核酸组成——核酸类酶(R酶)酶工程:研究酶的生产与应用的技术过程。
酶工程分两大类:化学酶工程与生物酶工程第二章酶学基本原理1.酶的分类:氧化还原酶,转移酶,水解酶,裂合酶 ,异构酶,合成酶。
2.新酶:核酸酶:是唯一的非蛋白酶。
它是一类特殊的RNA,能够催化RNA分子中的磷酸酯键的水解及逆反应。
抗体酶:抗体通过对抗原的包裹、降解等作用使抗原失活,其生物特性十分类似于酶3.根据酶的组成分为单纯蛋白酶,结合蛋白酶4.根据酶蛋白分子的特点,可将酶分为:单体酶,寡聚酶,多酶复合物5.根据金属离子与酶蛋白结合程度,可分为:金属酶和金属激酶6.结合蛋白酶的组成:酶蛋白、辅酶,辅基和金属离子。
结合蛋白酶的蛋白质部分称为酶蛋白,非蛋白质部分包括辅酶、辅基及金属离子(统称为辅因子)。
7.全酶:酶蛋白与辅因子组成的完整分子称为全酶。
单纯的酶蛋白无催化功能。
一般来说,全酶中的辅酶决定了酶所催化的类型(反应专一性),而酶蛋白则决定了所催化的底物类型(底物专一性)。
8.金属酶中离子催化作用 :1. 提高水的亲核性能 2.电荷屏蔽作用3.电子传递中间体9.激酶:是一种磷酸化酶类,在ATP存在下催化葡萄糖,甘油等磷酸化。
10.酶蛋白的结构:一级结构:多肽链的氨基酸残基的排列顺序。
(它是由基因上遗传密码的排列顺序所决定的)二级结构:指多肽链借助于氢键沿一维方向排列成具有周期性的结构的构象,是多肽链局部的空间结构(构象)。
二级结构形式:α-螺旋、β-折叠、β-转角和无规则卷曲等(α-螺旋:同一肽链上的每个残基的酰胺氢原子和位于它后面的第4个残基上的羰基氧原子之间形成氢键。
)三级结构:指整条多肽链由二级结构元件构建成的总三维结构,包括一级结构中相距远的肽段之间的几何相互关系,骨架和侧链在内的所有原子的空间排列。
四级结构:在亚基和亚基之间通过疏水作用等次级键结合成为有序排列的特定的空间结构必需基团:这些基团若经化学修饰使其改变,则酶的活性丧失。
酶工程考试复习重点
名词解释1、酶:指活细胞产生具有催化活性和高度专一性的特殊生物大分子,包括蛋白质和核酸。
2、酶转换率(催化效率常数K cat):酶被底物完全饱和时,每单位时间内每个酶分子所能转化的底物分子数。
3、酶比活力:指每毫克蛋白质所含有酶的活力单位数,一般用IU/mg表示,一般来说,酶活力比越高,酶越纯。
4、酶活力:也称酶活性,是指酶催化一定化学反应的能力,是用在一定条件下,他所催化某一反应的反应初速度来表示。
5、固定化酶:是通过物理的或化学的手段,将酶束缚于水不溶的载体上,或将酶束缚在一定的空间内,限制酶分子的自由流动,但能使酶充分发挥催化作用。
6、酶分子的化学修饰:就是在分子水平上对酶进行改造,以达到改造和改性的目的。
即是在体外将酶分子通过人工的方法与一些化学基团,也别是具有生物相容性的物质,进行供价连接,从而改变酶的结构和性质。
7、生物反应器:在生物反应过程中,利用生物催化剂进行生化反应,将原料转化为产物的核心装置。
根据使对象不同,氛围酶反应器和细胞反应器。
8、生物传感器:是一种分析测试装置,具有转移、灵敏、快速、简便、准确的有点,用于测定混合物溶液中某种物质的浓度。
9、酶传感器:是以固定化酶作为感受器,以基础电极作为换能器的乘务传感器,是应用最早和最广的生物传感器。
10、半合成抗生素:指用化学法或酶法改造已知抗生素的化学结构,所产生的抗生素衍生物。
11、酶反应器:指以游离酶或固定化酶、固定化细胞作为生物催化剂,进行酶促反应的装置。
12、细胞反应器:指利用增殖细胞内的酶系将培养基中的成分转化成产品的装置。
13、固定化细胞:固定在载体上并在一定空间范围内进行生命活动的细胞。
14、组成酶:指机体中一直存在的,其合成仅受遗传物质控制,与外界环境无关的酶类。
15、诱导酶:指在通常情况下不合成或者合成很少,当加入诱导物后就大量合成的一类酶。
16、尾产物阻遏:指当有些酶的作用产物积累到一定浓度,并能满足机体需要后,酶的合成就受阻的一种现象。
酶工程课程期末总结
酶工程课程期末总结引言酶工程是一门综合性应用学科,涉及生物学、化学、工程学等多个学科的知识。
通过对酶的研究和应用,可以提高酶的活性、稳定性和选择性,从而在生物技术、制药、食品加工、环境保护等领域得到广泛应用。
在酶工程课程的学习中,我们深入掌握了酶的分类、酶的性质、酶催化反应机理,以及酶工程的基本原理和方法。
本文将对酶工程课程进行总结和回顾。
一、酶的分类酶是一类可以催化生物反应的蛋白质,根据酶的催化反应类型和底物,可以将酶分为六大类:氧化还原酶、转移酶、水解酶、异构酶、合成酶和裂解酶。
每一类酶都有其特定的底物和催化机理。
通过了解和掌握各种酶的分类和属性,可以更好地选择和应用适当的酶。
二、酶的性质酶具有高度的专一性、高效催化和可调节性等特点。
酶的专一性使其只对特定底物具有催化活性,而对其他物质无作用。
酶的催化效率高,可以大大加速生物反应速度。
此外,酶的活性还可以受到温度、pH值和金属离子等环境因素的影响,可以进行调节和控制。
三、酶催化反应机理酶催化反应的机理主要有两种:键合模型和诱导拟钥模型。
键合模型认为酶与底物之间形成亲和力强的作用,而诱导拟钥模型则认为底物在与酶结合后,酶的三维结构会发生变化,从而适应催化反应的需要。
了解酶催化反应机理,可以更好地理解酶的催化过程和调控方式。
四、酶工程的基本原理和方法酶工程是指通过改变酶的基因序列或表达条件,来提高酶的活性、稳定性和选择性等性质。
酶工程可以通过基因重组技术、蛋白工程技术、诱变和筛选等方法来实现。
其中,基因重组技术可以通过克隆和转化方法,插入外源基因到宿主细胞中,从而大量产生目标酶。
蛋白工程技术则通过改变酶的氨基酸序列,来改变酶的性质。
诱变和筛选则通过诱发随机突变和筛选优良突变体的方法,来提高酶的性能。
酶工程的基本原理和方法为我们进一步进行酶研究和应用提供了有效的手段。
五、酶工程在生物技术领域的应用酶工程在生物技术领域有广泛的应用,主要包括制药、食品加工、生物燃料和环境保护等方面。
!!酶工程总结
一、酶基本知识1、酶是有催化活力的蛋白质2、酶的分类:氧化还原酶转移酶水解酶裂合酶异构酶连接酶(A TP水解偶联)3、酶作用机理:酶与过渡态中间物的紧密结合,稳定了底物的过渡态结构,从而降低了底物形成其过渡态所需克服的能垒,提高了反应的速度二、酶的生产、制备重点:微生物酶(诱变育种、发酵工程、基因工程)1、重组蛋白质表达(1)酶基因获得已知序列vs未知序列(2)表达系统选择A.首选:大肠杆菌(E.coli启动子:tac、trc、T7-lac)首选:pET系统强大的T7启动子完全专一受控于T7 RNA 聚合酶,而高活性的T7 RNA 聚合酶合成mRNA 的速度比大肠杆菌RNA聚合酶快5倍——当二者同时存在时,宿主本身基因的转录竞争不过T7表达系统,几乎所有的细胞资源都用于表达目的蛋白;诱导表达后仅几个小时目的蛋白通常可以占到细胞总蛋白的50%以上。
由于大肠杆菌本身不含T7 RNA 聚合酶,需要将外源的T7 RNA 聚合酶引入宿主菌,因而T7 RNA 聚合酶的调控模式就决定了T7系统的调控模式——非诱导条件下,可以使目的基因完全处于沉默状态而不转录,从而避免目的基因毒性对宿主细胞以及质粒稳定性的影响;通过控制诱导条件控制T7 RNA 聚合酶的量,就可以控制产物表达量,某些情况下可以提高产物的可溶性部分。
(3) 利用增溶标签进行蛋白质重组表达和纯化通过增加连接体(Linker)而改变蛋白序列有可能改善蛋白折叠、提高蛋白的溶解性、增强抗蛋白酶降解性、增加蛋白产量以及在培养基中分泌表达. 而对于那些外源小分子量蛋白或某些分子量较大蛋白的片段,只能考虑构建融合蛋白才能顺利表达. 大肠杆菌麦芽糖结合蛋白(MBP)与目的蛋白融合表达,除了易于分离和提高目的蛋白稳定性外,还常具有在细胞周质分泌表达的优点。
大肠杆菌表达实验策略:首选pET系统, 如pET24/BL21(DE3)—1mM IPTG诱导—无表达—融合表达,T5, pBAD 系统—包涵体—IPTG浓度(1uM, 10uM, 100uM),降温低至18℃/LB TB培养基/与MBP 融合表达/共表达分子伴侣改善可溶性/定向进化缺点:分泌表达能力弱、二硫键形成困难、无翻译后修饰B.酵母表达系统毕赤酵母表达:有商品化宿主/载体,操作简便、真核表达系统、重组蛋白质可以以胞内或胞外形式表达、高密度发酵方便、有翻译后加工2、酶的制备细胞破碎(超声波、高压匀浆机、珠磨机、freeze-presses、渗透压冲击法、自发分解、酶裂解(溶菌酶,Lyticase, Zymolase,蜗牛酶)酶液体提取(超滤、硫酸铵沉淀、有机溶剂沉淀、热处理)胞内酶纯化(非特异性—硫酸铵沉淀、特异性—带正电荷材料(与核酸带负电的磷酸基团作用形成复合物)层析(离子交换、亲和、凝胶阻滞)酶的固定化(吸附、共价连接、包埋、膜限制)三、酶的改造新酶获得(自然界中获取、有理设计新酶、随机方法筛选新酶)酶改造(化学修饰、固定化、蛋白质工程、定向进化)1、蛋白质工程—理性设计(纯化目标酶分析氨基酸序列、分离基因并重组表达、结晶目标酶,X射线分析)常用提高稳定性方法:引入二硫键和/或盐桥广义的有理设计——融合蛋白组氨酸标签、谷胱甘肽合成酶、麦芽糖结合蛋白质、内含肽、各种信号肽——改善重组蛋白可溶性,便于亲和层析纯化2、定向进化—非理性设计酶分子定向进化,即人为地创造特殊的进化条件,模拟自然进化机制,对基因进行随机突变,从一个或多个已经存在的亲本酶(天然的或者人为获得的)出发,经过基因的突变和重组,构建一个人工突变酶库,通过一定的筛选或选择方法最终获得预先期望的具有某些特性的进化酶。
酶工程考试重点整理
第一章绪论:酶学(Enzymology)是研究酶的性质、酶的作用规律、酶的结构和功能、酶的生物学功能及酶的应用的科学。
酶工程(Enzyme engineering) 又称酶技术,是酶制剂的大批量生产和应用的技术。
是酶学、微生物学的基本原理与化学工程有机结合而产生的交叉科学技术。
生物催化剂(改变生化反应的速率,不改变反应的平衡点和性质以及反应方向,本身在反应前后也不发生变化的生物活性分子,外在因素),酶:酶是一种高效、高度专一、和生命活动密切相关的、蛋白质性质的生物催化剂(更高的催化效率,更高的反应专一性,温和的反应条件,具有调节能力,本质是蛋白质;)酶的本质(具有生物活性的蛋白质或RNA),第二章酶的分类和命名酶的分类(根据催化作用分为六大类:氧化还原酶类,转移酶类,水解酶类,裂合酶类,异构酶类,合成酶类)酶分子结构与功能:①酶的蛋白质本质为酶的催化活性提供了多种功能性残基。
②酶的一级结构一方面为酶准备了功能片段,另一方面又为酶形成特定的活性构象奠定基础。
③酶通过高级结构将相应的功能基团组织在酶分子的特定区域(如凹穴),形成活性中心;活性中心指直接参与和底物结合并参与催化底物转化的各有关氨基酸按特定构象分布组成的活性结构。
④活性中心的这种活性结构也要求活性中心以外的其他氨基酸残基共同维系;这些残基被修饰、改变,或相互间连接被破坏,活性中心就会瓦解,酶失活。
活性中心(与催化作用直接相关的少数氨基酸残基组成的催化区域,具有严格保守性,构象依赖于酶分子空间结构的完整性,活性中心各基团的相对位置得以维持,就可以保证全酶的活力)结合部位(binding site)和催化部位(catalytic site)。
催化过程:酶和底物的结合;催化底物进行转化。
酶分子是在一级结构基础上,通过二、三级的折叠盘绕,形成了具有催化功能的特定活性构象结构域;酶分子是以这个活性构象结构域参与和底物结合,参与对底物进行催化,这个结构域就是“活性中心”第三章酶促反应动力学:比活力specific activity(每毫克蛋白里面所含有的酶活力单位数U/mg),活力(又叫酶活力单位,一个标准单位:在特定条件下,如25摄氏度,pH和底物浓度等其他条件都是最适条件时,一分钟能转化一微摩尔底物所需的酶量),Km,米氏常数,在特定的反应条件下,是个特征常数,描述酶反应性质,反应条件对酶反应速度的影响。
酶工程考试重点整理
标志酶:通常可以将只分布于细胞内某个特定组分的酶称为标志酶,可以将它作为细胞组分鉴别的依据,甚至可以判别组织或器官是否发生病变.必需水:在有机介质中,酶分子需要一层水化层以维持其完整的空间构象,一般将维持酶分子完整空间构象所必须的最低水含量称为必需水沉淀分离:是通过改变某些条件或添加某些物质,使酶的溶解度降低,从溶液中沉淀析出与其他溶质分离的技术过程超滤:需要增加流体的静压力,改变天然过程的方向,才可能发生含有低分子量化合物的溶剂流通过膜,此时的推动力是流体静压力与渗透压的压差差速离心:是指采用不同的离心速度和离心时间,使不同沉降速度的颗粒分批分离的方法非竞争性抑制:抑制剂与底物分别于酶分子上的不同点结合而引起酶活性降低的抑制作用反竞争性抑制:在底物与酶分子结合生成中间复合物后,抑制剂在于中间复合物结合而引起的抑制作用反渗透:是一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作,孔径范围在< 20Å;(由于分离的溶剂分子往往很小,不能忽略渗透压的作用,故而成为反渗透)反胶束:当体系中水浓度低于有机溶剂时,形成胶束的表面活性剂的极性端朝向胶束的中部,而非极性端则朝向胶束的外侧,水就被包在了胶束的内部,此时的胶束就叫反胶束固定化酶:与水不溶性载体结合,在一定的空间范围内起催化作用的酶.优点:纯化简单,提高产物质量,应用范围广,多次使用,可以装塔连续反应.缺点:首次投入成本高大分子底物较困难.方法:吸附法.包埋法(凝胶/半透膜包埋法).结合法(离子键/共价键结合法)交联法.热处理法。
影响固定化酶性质的因素:酶本身的变化.载体的影响.固定化方法的影响。
固定化酶活性损失的原因:酶本身的失活.酶从载体上脱落.载体的破碎或溶解。
固定化酶的性质:固定化对酶活性的影响.固定化对酶稳定性的影响.最适pH的变化.最适温度变化.底物特异性与游离酶不同.米氏常数Km的变化共阻遏物:酶催化作用的产物或代谢物途径的末端产物使该酶的生物合成受阻.引起反馈阻遏的物质,称为共阻遏物竞争性抑制:指抑制剂和底物竞争与酶分子结合而引起带的抑制作用,它与酶作用底物的结构相似,与酶分子结合以后,底物分子就不能与酶分子结合,从而对酶的催化到抑制作用金属离子置换修饰:把酶分子中的金属离子换成另一种金属离子,使酶的催化特性发生改变的修饰方法聚丙烯酰胺凝胶电泳(PAGE):是以聚丙烯酰胺凝胶作为支持介质的电泳方法PAGE应用广泛,可用于蛋白质.酶.核酸等生物分子的分离.定性.定量及少量的制备,还可测定分子量.等电点等酶工程:酶的生产.改性与应用技术过程酶活力:酶的催化能力,以酶促反应速度来衡量.测定条件:适宜的特定的反应条件,样品的适当处理,底物浓度足够大酶活力单位:指酶促反应在单位时间(s,min,h)内生成一定量(mg,μg,μmol)的产物或只记的分支结构可能消耗一定量的底物所需的酶量.酶活力测定方法如化学测定法,光学测定法,气体测定法等酶的抑制剂:能够使酶的催化活性降低或者丧失的物质,在抑制剂作用下,酶的催化活性降低甚至丧失,从而影响没的催化功能,有可逆和不可逆抑制剂,酶的可逆抑制剂分为竞争性抑制,非竞争抑制,反竞争抑制酶的发酵生产:经过预先设计,通过人工操作,利用微生物的生命活动获得所需的酶的技术过程,称为酶的发酵生产酶的提取:是指在一定的条件下,用适当的溶剂或溶液处理含酶原料,使酶充分溶解到溶剂或溶液中的过程.也称为酶的抽提酶的分离纯化:是采用各种生化分离技术,诸如:离心分离.过滤与膜分离.萃取分离.沉淀分离.层析分离.电泳分离.以及浓缩.结晶.干燥等,使酶与各种杂质分离,达到所需的纯度,以满足使用的要求酶反应器:酶和固定化酶在体外进行催化反应时,都必需在一定的反应容器中进行,以便控制酶催化反应的各种条件和催化反应的速度.用于酶进行催化反应的容器及其附属设备称为酶反应器.酶反应器是用于完成酶促反应的核心装置.它为酶催化反应提供合适的场所和最佳的反应条件,以便在酶的催化下,使底物(原料)最大限度地转化成产物.它处于酶催化应过程的中心地位,是连接原料和产物的桥梁.类别:分批搅拌反应器.连续流搅拌桶反应器.连续搅拌桶-超滤反应器.填充床反应器.循环反应器.流化床反应器酶传感器:是间接型传感器,它不是直接测定待测物质的浓度,而是利用酶的催化作用,在常温常压下将糖类.醇类.有机酸.氨基酸等生物分子氧化或分解,然后通过测定与反应有关的物质浓度,进而推出相应的生物物质浓度酶定向进化技术:是模拟自然进化过程,在体外进行基因的随机突变,建立突变基因库,通过人工控制条件的特殊环境,定向选择得到具有优良特性的酶的突变体的技术过程.它不需要是想了解酶的结构催化功能,作用机制等有关信息,应用面广,通过易错PCR,DNA重排,基因重排等技术,在体外人为的进行基因的随机突变,短时间内可以获得大量不同的突变基因,建立突变基因库,在人工控制条件的特殊环境下进行定向选择,进化方向明确,目的性强,酶的定向进化史一种快速有效的改进酶的催化特性的手段,通过每的定向进化,有可能获得具有优良特性的新酶分子酶分子修饰:通过各种方法使酶分子的结构发生某些改变,从而改变酶的某些特性和功能的技术过程称为酶分子修饰.即:在体外将酶分子通过人工的方法与一些化学基团(物质),特别是具有生物相容性的物质,进行共价连接,从而改变酶的结构和性质.其生物学意义提高酶的活力;增强酶的稳定性;降低或消除酶的抗原性;研究和了解酶分子中主链.侧链.组成单位.金属离子和各种物理因素对酶分子空间构象的影响pH记忆:将酶分子从水溶液转移到有机溶剂中,酶能保持原有的离子化状态,此时的环境因素也不能改变酶分子的这种状态,或者说酶在缓冲液中所处的pH状态仍被保持在有机溶剂中的这种现象琼脂糖凝胶电泳:主要用于分离.鉴定核酸,如DNA鉴定,DNA限制性内切酶图谱制作等,为DNA分子及其片段分子量测定和DNA分子构象的分析提供了重要手段琼脂糖凝胶电泳的基本操作:1配制缓冲液贮备液2水平型琼脂糖凝胶制备3样品的制备与点样4电泳5染色6样品回收提取分离法:是采用各种提取.分离.纯化技术从动物.植物的组织.器官.细胞或微生物细胞中将酶提取出来,再进行分离纯化的技术过程修饰:将带有活化基团的大分子修饰剂与经过分离纯化的酶液,以一定的比例混合,在一定的温度.pH值等条件下反应一段时间,使修饰剂的活化基团与酶分子的某侧链基团以共价键结合,对酶分子进行修饰盐析沉淀法:在高浓度的中性盐存在下,蛋白质类酶在水溶液中的溶解度降低,产生沉淀的过程有机溶剂沉淀法:在含有溶质的水溶液中加入一定量亲水的有机溶剂,降低溶质的溶解度,使其沉淀析出酶分子修饰包括金属离子置换修饰.大分子结合修饰.侧链基团修饰.肽链有限水解修饰.核苷酸链有限水解修饰.氨基酸置换修饰.核苷酸置换修饰和酶分子的物理修饰修饰剂的选择:大分子结合修饰采用的修饰剂是水溶性大分子.例如,聚乙二醇(PEG).右旋糖酐.蔗糖聚合物(Ficoll).葡聚糖.环状糊精.肝素.羧甲基纤维素.聚氨基酸等.要根据酶分子的结构和修饰剂的特性选择适宜的水溶性大分子修饰剂的活化:作为修饰剂中含有的基团往往不能直接与酶分子的基团进行反应而结合在一起.在使用之前一般需要经过活化,然后才可以与酶分子的某侧链基团进行反应金属离子置换修饰过程和作用:过程:1酶的分离纯化2除去原有的金属离子3加入置换离子作用:1阐明金属离子对酶催化作用的影响2提高酶催化效率3增强酶稳定性4改变酶的动力学特性影响酶催化作用的因素:底物浓度.酶浓度.抑制剂.温度.PH.激活剂酶发酵生产常用的微生物有哪些?简介产酶性质枯草芽孢杆菌.大肠杆菌.黑曲霉.米曲霉.青霉.木霉.根霉.毛霉.链霉菌.啤酒酵母.假丝酵母.特点:1酶的产量高2用以培养和管理3产酶稳定性好4利于酶的分离纯化5安全可靠,无毒性简述发酵工艺条件是如何调节控制的细胞活化与扩大培养(活化:使用以前,必须接种于新鲜的斜面培养基上,在一定条件下进行培养,以恢复细胞的生命活动能力.扩大培养:增加发酵时的数量,经过一级至数级扩大培养.培养基称为种子培养基).培养基的配制(培养基:广义上讲培养基是指一切可供微生物细胞生长繁殖,所需的一组营养物质和原料.同时培养基也为微生物培养提供除营养外的其它所必须的条件).pH值的调节控制(培养基中的pH值与微生物生命活动有着密切关系,各种微生物有其可以生长的和最适生长的pH范围).温度的调节控制(通常在生物学范围内每升高10℃,生长速度就加快一倍,所以温度直接影响酶反应,对于微生物来说,温度直接影响其生长和合成酶).溶解氧的调节控制(微生物对氧的需要不同,是由于依赖获得能量的代谢方面的差异).种龄与接种量(种子培养期应取菌种的对数生长期为宜,接种量的大小直接影响发酵周期)提高酶产量的措施有哪些首先要选育或选择使用优良的产酶细胞,打破酶合成调节限制的方法:1通过条件控制提高酶产量:添加诱导物.降低阻遏物浓度2通过基因突变提高酶产量:使诱导型变为组成型,使阻遏型变为去阻遏型3其它提高酶产量的方法:添加表面活性剂.添加产酶促进剂酶生物合成模式有哪些同步合成型:又称生长偶联型,是指酶合成与细胞生长同步进行,当细胞生长进入对数期时,酶也大量合成;当细胞进入稳定期时,酶的合成也停止.该类型酶的生物合成可以有其诱导生成,不受分解代谢物的阻遏和产物的反馈阻遏作用,mRNA很不稳定延续合成型:酶的合成伴随着细胞生长而开始,但在细胞生长进入稳定期后,酶的合成仍将延续较长一段时间.酶的生物合成可以受诱导物的诱导,不受分解代谢物阻遏,mRNA相当稳定中期合成型:酶的合成在细胞生长一段时间后才开始,而在细胞生长进入稳定期后,酶的合成也终止.酶的生物合成受到产物反馈阻遏作用或分解代谢物阻遏作用,mRNA稳定性较差滞后合成型:只有当细胞生长进入稳定期后才开始酶的合成并大量积累,主要受培养基中存在的阻遏物的阻遏作用,mRNA稳定性较好影响酶生物合成模式的因素主要是什么mRNA的稳定性和培养基中存在的阻遏物:mRNA稳定性高的,可以在细胞停止生长后继续合成相应的酶;mRNA稳定性差的,随着细胞生长停止而终止酶的合成;不受阻遏物阻遏的,可随着细胞生长而开始酶的合成;受阻遏物阻遏的,要在细胞生长一段时间或进入稳定期后解除阻遏,才能开始酶的合成简述固定化细胞发酵产酶的特点以及工艺条件的控制优点:提高产酶率;基因工程菌的质粒稳定,不易丢失;不溶于水,易于与产物分离纯化;可反复使用或连续使用较长时间;可连续化生产;发酵稳定性好;适用于胞外酶等胞外产物的生产;缩短发酵周期,提高设备利用率.缺点:固定化过程中往往会引起酶的失活工艺条件控制:固定化细胞的预培养(为了使固定化细胞生长良好,预培养应该采用适合细胞生长的生长培养基和工艺条件然后改换成适合产酶的发酵培养基和发酵工艺条件)溶解氧的供给(必须增加溶解氧的量才能满足细胞生长和产酶需要)温度的控制(一般培养液在进入反应器之前,必须预先调节至适应的温度)培养基组分的控制(固定化细胞好氧发酵过程中,溶解氧的供给时关键限制性因素,为了有利于氧的溶解和传递,培氧基的浓度不宜过高,特别是培养基的年度应尽量低一些好)细胞破碎法:机械法(捣碎.研磨.匀浆).物理法(温度差.压力差.超声波).化学法(添加有机溶剂.表面活性剂).酶促法(自溶法.外加酶制剂法)等酶的主要提取方法:盐溶液提取.酸溶液提取.碱溶液提取.有机溶剂提取影响提取的因素:温度.PH.提取液体积什么是沉淀分离?常用蛋白质沉淀方法有哪些沉淀分离是通过改变某些条件或添加某些物质,使酶的溶解度降低,从溶液中沉淀析出与其他溶质分离的技术过程.特点:操作简单.经济.浓缩倍数高.种类:盐析沉淀法.等电点沉淀法.有机溶剂沉淀法.复合沉淀法.选择性变性沉淀法等.缺点:针对复杂体系而言,分离度不高,选择性不强沉淀分离的一般操作步骤是什么在经过滤或离心后的样品中加入沉淀分离剂;沉淀物的陈化,促进晶体生长;离心或过滤,收集沉淀物盐析操作时常用的盐是什么通常采用中性盐,有硫酸铵,硫酸钠,硫酸钾,硫酸镁,氧化钠和磷酸钠等,其中硫酸铵最为常用,只是由于硫酸铵在水中的溶解度大而且温度系数小,不影响酶的活性,分力效果好,而且廉价易得然而用硫酸铵进行盐析是,缓冲能力较差,而且铵离子的存在会干扰蛋白质的测定,所以有时也用其他中性盐进行盐析影响盐析的主要因素有哪些质种类的影响:Ks和β值;溶质浓度的影响:蛋白质浓度大,盐的用量小,但共沉作用明显,分辨率低;蛋白质浓度小,盐的用量大,分辨率高;pH值:影响蛋白质表面净电荷的数量,通常调整体系pH值,使其在pI附近;盐析温度:大多数情况下,高盐浓度下,温度升高,其溶解度反而下降机溶剂沉淀法的原理是什么?影响有机溶剂沉淀的主要因素有哪些原理:1降低了溶质的介电常数,使溶质之间的静电引力增加,从而出现聚集现象,导致沉淀2由于有机溶剂的水合作用,降低了自由水的浓度,降低了亲水溶质表面水化层的厚度,降低了亲水性,导致脱水凝聚特点:分辨率高;溶剂容易分离,并可回收使用;产品洁净;容易使蛋白质等生物大分子失活;应注意在低温下操作;成本高影响因素:1温度:低温有利于防止溶质变性;有利于提高收率(溶解度下降)2搅拌速度:散热3溶液pH值:原则是避免目标蛋白与杂质带有相反的电荷,防止共沉现象4(pI);离子强度:离子强度低有利于沉淀,0.01~0.05mol/L;5样品浓度:0.5~2%稀:溶剂用量大,回收率低,但共沉淀作用小,浓:节省溶剂用量,共沉淀作用强,分辨率低6金属离子的助沉淀作用:Zn2+、Ca2+等电点沉淀的工作原理是什么蛋白质是两性电解质,当溶液pH值处于等电点时,分子表面净电荷为0,双电层和水化膜结构被破坏,由于分子间引力,形成蛋白质聚集体,进而产生沉淀分配层析原理:利用溶质在固定相和流动相之间的分配系数不同而分离的方法;要素:固定相.载体.流动相凝胶层析的原理和特点是什么在样品通过一定孔径的凝胶固定相时.由于流经体积的不同.使不同相对分子质量的组分得以分离.优点:操作简便,分离效果好.重复性高.回收率高.分离条件温和应用广泛/适用于生物大分子的初级分离.脱盐分辨率低亲和层析的原理和特点是什么亲和层析分离是利用溶质和吸附剂之间特殊的化学作用.从而实现分离.吸附剂由载体和配位体组成.效率高:利用亲和层析可以从粗提液中一次性分离得到高纯度的活性物质.分离精度高:可用于分离含量极低,结构相近的化合物但通用性较差,洗脱条件苛刻吸附层析吸附是利用吸附剂对液体或气体中某一组分具有选择性吸附的能力,使其富集在吸附剂表面的过程.吸附过程通常包括:待分离料液与吸附剂混合.吸附质被吸附到吸附剂表面.料液流出.吸附质解吸回收等四个过程什么是萃取过程?常用萃取设备利用在两个互不相溶的液相中各种组分(包括目的产物)溶解度的不同,从而达到分离的目的.物理萃取;化学萃取设备:混合-沉降器;旋转圆筒萃取塔;离心萃取器;填充塔;喷雾塔;旋转圆盘塔液-液萃取从机理上分析可分为哪两类萃取机理来讲,液-液萃取可分为:利用溶剂对需分离组分有较高的溶解能力,分离过程纯属物理过程的物理萃取;溶剂首先有选择性地与溶质化合成络合,从而在两相中重新分配而达到分离目的的化学萃取何谓超临界流体萃取?其特点有哪些超临界流体:当一种流体处于其临界点的温度和压力之下,则称之为超临界流体.利用超临界流体的特殊性质,使其在超临界状态下,与待分离的物料接触,萃取出目的产物,然后通过降压或升温的方法,使萃取物得到分离优点:临界条件温和产;品分离简单;无毒.无害;不燃;无腐蚀性;价格便宜;缺点:设备投资大何谓双水相萃取?常见的双水相构成体系有哪些利用物质在不相溶的两水相间分配系数差异进行萃取的方法;可以构成双水相的体系有:离子型高聚物-非离子型高聚物;PEG-DEXTRAN(-右旋糖;高聚物-相对低分子量化合物;PEG-硫酸铵反胶团的构成以及反胶团萃取的基本原理?反胶束的优点表面活性剂在非极性有机溶剂中形成的一种聚集体当表面活性剂浓度超过临界微团浓度时,表面活性剂会在水溶液中形成聚集体何谓酶定向进化?有何特点酶分子定向进化简称酶定向进化,是模拟自然界进化过程(随即突变和自然选择),在体外进行酶基因的人工随机突变,建立突变基因文库,在人工控制条件的特殊环境下,定向选择得到具有优良催化特性的酶的突变体的技术过程.特点:1适应面广:可广泛应用各种蛋白质酶和核算类酶的改性,因为不需要事先了解酶的结构,催化作用机制等2目的性强:因为进化方向明确3效果显著:可以在几年几个月完成几万年几十万年完成的进化历程什么是酶的活性中心?其构成有什么特点通常将氨基酸集中的.与酶活性相关的区域称为酶的活性中心.构成酶的活性中心的氨基酸残基主要是接触残基和辅助残基,构成酶的活性中心的各基团在空间构象上的相对位置对酶活性是至关重要的,维持酶的活性中心构象主要依赖于酶分子空间结构的完整性固定化酶有哪些优点1极易将固定化酶与底物,产物分开2可以在较长时间内进行反复分批反应和装柱连续反应3在大多数情况下,能够提高酶的稳定性4酶反应过程能够加以严格控制5产物溶液中没有酶的残留.简化了提纯工艺6较游离酶更适合于多酶反应7可以增加产物收率,提高产物质8酶的使用效率提高,成本降低酶分子有哪些侧链基团,可以发生哪几种修饰反应基团:氨基,羧基,巯基,咪唑基,酚基,吲哚基,胍基,甲硫基等;修饰反应:酰化反应.烷基化反应.氧化和还原反应.芳香环取代反应等用于酶催化的非水介质主要有哪几种1含微量水的有机溶剂2与水混溶的有机溶剂和水形成的均一体系;3.水与有机溶剂形成的两相或多相体系4胶束和反胶束体系;5.超临界流体;6.气相非水介质中的酶催化反应有哪些特点1可进行水不溶或水溶性差化合物的催化转化,大大拓展了酶催化作用的底物和生成产物的范围2改变了催化反应的平衡点,使在水溶液中催化水解反应的酶在非水介质中可有效催化合成反应的进行3使酶对包括区域专一性和对映体专一性在内的底物专一性大为提高,使对酶催化作用的选择性的调控有可能实现4大大提高了一些酶的执稳定性5由于酶不溶于大多数的有机溶剂,使催化后酶易于回收和重复利用6可有效减少或防止由水引起的副反应的产生7可避免杂水溶液中的进行长期反应时微生物引起的污染8可方便地利用对水分敏感的底物进行相关的反应9当使用挥发性溶剂作为介质时,可使反应后的分离过程能耗降低。
酶工程要点总结
酶工程要点1、酶:具有生物催化功能的生物大分子。
酶工程:由酶学与化学工程技术、基因工程技术、微生物学技术相结合而产生的一门新的技术科学。
从应用目的出发,研究酶的产生、酶的制备与改造、酶反应器以及酶的各方面应用。
2、酶的活性中心:①指酶与底物结合并之反应的区域,一般位于酶分子表面的裂缝或凹槽,往往是疏水区,可容纳一个或多个小分子底物或大分子底物的一部分。
②酶的必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异地结合,并将底物转化为产物,这一区域称为酶的活性中心。
3、酶的必需基团:①包含结合基团和催化基团;结合基团具有与底物特异结合的作用,催化基团则直接参与催化,可使底物敏感键断裂。
两者组成酶的活性中心。
②酶分子中氨基酸残基的侧链由不同的化学基团组成,其中一些与酶的活性密切相关的一类化学基团称为酶分子的必需基团。
4、辅酶(coenzyme):与酶蛋白结合疏松(不形成共价键,能通过透析、超滤方法去除)。
5、辅基(prosthetic group):与酶蛋白结合紧密(以共价键相连,不能通过透析、超滤方法去除) 辅酶与辅基无严格区别。
7、酶催化作用的特点:(1)专一性;(2)高效性;(3)作用条件温和;(4)酶活受到很多因素影响。
8、酶的专一性:(1)绝对专一性:酶只作用于特定结构的底物,进行一种专一的反应,生成一种特定结构的产物;(2)相对专一性:酶作用于一类结构相似的化合物进行某种相同类型的反应;分为1)键专一性:有的酶只作用于一定的键,而对键两端的基团并无严格要求;2)基团专一性:另一些酶,除要求作用于一定的键以外,对键两端的基团还有一定要求,往往是对其中一个基团要求严格,对另一个基团则要求不严格。
(3)立体结构专一性:酶仅作用于立体异构体中的一种。
9、影响酶催化作用的主要因素:(1)底物;(2)酶浓度;(3)温度;(4)pH;(5)抑制剂;(6)激活剂10、抑制剂:凡能使酶的催化活性下降而不引起酶蛋白变性的物质统称为酶的抑制剂。
《酶工程》总复习整理
《酶工程》总复习整理生物酶工程主要研究内容(1)用基因工程技术大量生产酶(克隆酶)如:尿激酶原和尿激酶是治疗血栓病的有效药物。
用DNA重组技术将人尿激酶原的结构基因转移到大肠杆菌中,可使大肠杆菌细胞生产人尿激酶原,从而取代从大量的人尿中提取尿激酶。
(2)用蛋白质工程技术定点改变酶结构基因(突变酶)如:酪氨酰-tRNA合成酶,用Ala5(第5位的丙氨酸)取代Thr51(第51位的丝氨酸),使该酶对底物ATP的亲和力提高了100倍。
(3)设计新的酶结构基因,生产自然界从未有过的性能稳定、活性更高的新酶。
酶工程原理和基本过程菌种→扩大培养→发酵→发酵酶液→酶的提取→酶成品↓原料→前处理→杀菌→酶反应器←酶的固定化↓反应液→产品提取→产品●世界三大酶制剂公司Novo Nordisk (丹麦)Genencor International(美国杰能科国际公司)Cuitor(芬兰)●三大公司销售额占世界总额的70%2、米氏常数的意义Km:米氏常数,物理意义为反应速率为最大速率Vmax一半时底物的浓度,单位与底物浓度同(1)Km 是酶的一个特性常数,Km大小只与酶性质有关,而与酶浓度无关。
当底物确定,反应温度,pH及离子强度一定时,Km值为常数,可用来鉴别酶。
Km一般在1×10-6~10-1mol/L之间不同的酶Km 值不同,测定Km要在相同测定条件(pH、温度、离子强度)下进行。
(2)Km 值可用于判断酶的专一性和天然产物,若一个酶有几种底物就有几个Km值,其中Km值最小的底物称为该酶的最适底物,又称天然底物。
(3)可近似表示酶与底物亲和力的大小。
真正表示酶与底物亲和力为Ks =k2/k1(注 Km = k2+k3/ k1)(4)已知Km可由[S]计算v,或由v计算[S]。
酶活力是指一定条件下,酶所催化的反应初速度;酶催化反应速度用单位时间内底物的减少量或产物的增加量来表示。
V=-dS/dt=dP/dt二、酶的活力单位:表示酶活力大小所用的两个国际单位1IU:在最适反应条件下,每分钟催化1μmol底物转化为产物所需的酶量,称一个IU。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.第一章绪论1、何为酶工程,试述其主要内容和任务。
答:(1)酶工程:酶的生产、改性与应用的技术过程称为酶工程。
(2)主要内容:微生物细胞发酵产酶,动植物细胞培养产酶,酶的提取与分离纯化,酶分子修饰,酶、细胞、原生质体固定化,酶非水相催化,酶定向进化,酶反应器和酶的应用等。
(3)主要任务:经过预先设计,通过人工操作获得人们所需的酶,并通过各种方式使酶的催化特性得以改进,充分发挥其催化功能。
2、酶有哪些显著的催化特性?答:(1)酶催化作用的专一性强(①绝对转移性:一种酶只能催化一种第五进行一种反应;②相对专一性:一种酶能够催化一类结构相似的底物进行某种相同类型的反应);(2)酶催化作用的效率高(10~10倍);137(3)酶催化作用条件温和。
3、简述影响酶催化作用的主要因素。
答:(1)底物浓度的影响:决定酶催化作用的主要因素。
酶催化反应速度随底物浓度增加现增加在逐步趋向平衡再反而下降。
(2)酶浓度的影响:底物浓度足够高的条件下,酶催化反应速度与酶浓度成正比。
(3)温度的影响:适宜温度范围内,酶能进行催化反应,最适温度条件下,酶的催化反应速度达到最大。
一般60°C以上易失活,5°C以下活性极低,Taq聚合酶95°C下仍稳定。
(4)PH的影响:适宜PH范围内,酶才能显示其催化活性,最适pH条件下,酶催化反应速度达到最大。
(5)抑制剂的影响:在抑制剂的影响下,酶的催化活性降低甚至丧失,从而影响酶的催化功能,有竞争性抑制、非竞争性抑制、反竞争性抑制。
(6)激活剂的影响:在激活剂的作用下,酶的催化活性提高或者由无活性的酶生成有催化活性的酶。
如Ca、Mg、Co、Zn、Mn、等金属离子和Cl等无机负离子。
5、简述酶活力单位的概念和酶活力的测定方法。
答:概念:在特定条件下(温度可采用25°C,pH等条件均采用最适条件),每1min催化1μmol 的底物转化为产物的酶量定义为1个酶活力单位(IU)。
或在特定条件下,每秒催化1mol底物转化为产物的酶量定义为1Kat. 测定方法:化学测定法,光学测定法,气体测定法。
6、*酶的发展历史:①我国在4000多年前的夏禹时代就已经掌握了酿酒技术;②在3000多年前的周朝,就会制造饴糖、食酱等食品,2500多年前的春秋战国时期,就懂得用麥菊来治疗消化不良等疾病;③1833年。
佩恩和帕索兹从麦芽的水抽提物中用乙醇沉淀得到一种可使淀粉水解生成可溶性糖的物质称之为淀粉酶;④19世纪中叶,巴斯德对酵母的乙醇发酵进行大量研究,认为活酵母细胞内有一种可以将糖发酵成乙醇的物质。
1878年昆尼首次将酵母中进行乙醇发酵的物质称之为酶;⑤1896年,巴克纳兄弟发现酵母的无细胞抽提液也能将糖发酵成乙醇;⑥1902年亨利根据蔗糖酶催化蔗糖水解的实验结果,提出了中间产物学说;⑦1913年,米彻利斯和曼吞根据中间产物学说,推导出酶催化反应的基本动力学方程——米氏方程;⑧1926年,萨姆纳首次从刀豆提取液中分离纯化得到脲酶结晶,并证明它有蛋白质的性质;⑨1960年,雅各和莫诺德提出操纵子学说;⑩1982年切克发现SsRNNA前体具有自我剪接功能,认为RNA也具有催化活性,将这种有催化活性的RNA成为核酸类酶;1983年,阿尔特曼等发现核酸酶。
7、*2种命名法:国际酶学委员会与1961年在“酶学委员会的报告”中提出了酶的分类与命名方案,获得了“国际生物化学与分子生物学联合会”的批准。
此后经过多次修订,不断得到补充和完善。
根据国际酶学委员会的建议,每一种具体的酶都有其推荐名和系统命名:①推荐名是在惯用名称基础上,加以选择和修改,一般由两部分组成:底物名称+催化反应的类型+酶,不管酶催化的反应是正反应还是逆反应,都用一个名称,对于水解酶类,可省去“水解”;②系统命名法更详细、更准确的反映出该酶所催化的反应,系统命名包括了酶的作用底物、酶作用的基团及催化反应的类型。
8、*(1)蛋白类酶分为六大类:氧化还原酶、转移酶、水解酶、裂合酶、异构酶、合成酶或连接酶。
(2)核酸类酶:①分子内催化R酶:自我剪切酶、自我剪接酶;②分子间催化R酶:RNA 剪切酶、DNA剪切酶、多肽剪切酶、多糖剪接酶、氨基酸酯剪切酶、多功能酶。
9、*固定化酶的活力测定方法:振荡测定法、酶柱测定法、连续测定法、固定化酶的比活力测定、酶结合效优质范文..率与酶活力回收率的测定。
10、*酶的生产方法:提取分离法、生物合成法、化学合成法。
第二章微生物发酵产酶1、试述酶生物合成的基本过程。
答:(1)RNA的生物合成—转录:转录的起始、RNA链的延伸、RNA链合成的终止、RNA前体的加工;(2)蛋白质的生物合成—翻译:氨基酸活化生成氨酰-tRNA、肽链合成的起始、肽链的延伸、肽链合成的终止、蛋白质前体的加工。
2、何谓酶生物合成的诱导作用?简述其原理。
答:加入某些物质使酶的生物合成开始或加速进行的现象,称为酶生物合成的诱导作用。
能够引起诱导作用的物质称为诱导物,诱导物一般是酶催化作用的底物或底物类似物。
原理:一般来说,不同的酶有各自不同的诱导物,但有些诱导物可以诱导同一酶系的若干种酶,如β半乳糖苷可以同时诱导β半乳糖苷酶、透过酶和β半乳糖乙酰化酶3种酶,而一种酶往往有多种诱导物,可以根据需要进行选择。
当培养基中以乳糖为惟一碳源时,细胞吸收乳糖为别乳糖。
别乳糖作为诱导物与阻遏蛋白结合,使阻遏蛋白的结构发生改变,从而使它与操纵基因的结合力减弱,阻遏蛋白不能与操纵基因结合,就使RNA聚合酶可以与启动基因结合,进行转录而合成结构基因所对应的酶。
3、什么是酶生物合成的反馈阻遏作用?简述其原理。
答:又称产物阻遏作用,指酶催化反应的产物或代谢途径的末端产物使该酶的生物合成受到阻遏的现象。
引起反馈阻遏作用的物质称为阻遏物,阻遏物一般是酶催化反应的产物或是代谢途径的末端产物。
原理:当环境中色氨酸浓度增加,阻遏物达到一定程度时,阻遏蛋白与阻遏物结合,使其结构发生改变,从而使阻遏蛋白与操纵基因的结合力增强。
阻遏蛋白与操纵基因结合,就排挤RNA聚合物与启动基因的结合,使转录无法进行,酶的生物合成因此受到阻遏。
4、简述分解代谢物阻遏作用的原理和解除方法。
答:指某些物质经过分解代谢产生的物质阻遏某些酶(主要是诱导酶)生物合成的现象。
原理:某些物质经过分解放出能量,有一部分能量储存在ATP中。
ATP是由AMP和ADP通过磷酸化作用产生的。
细胞内的ATP浓度增加,ADP浓度降低,存在于细胞内的cAMP就通过磷酸二酯酶的作用水解生成AMP。
同时腺苷酸环化酶的活化受到抑制而使cAMP 的生成受阻,从而导致细胞内cAMP 的浓度降低。
这就必然使cAMP-CAP的复合物浓度降低,结果启动基因的相应位点上没有足够的cAMP-CAP复合物结合,RNA聚合酶也就无法结合到其在启动基因的相应位点上,转录无法进行,酶的生物合成收到阻遏。
解除方法:分解代谢物阻遏作用以及该阻遏作用的解除,实质上是cAMP 通过启动基因对酶生物合成进行调节控制。
在培养环境中控制好某些降解物质的量,或在必要时添加一定量的cAMP,均可减少或解除分解代谢物阻遏作用。
5、酶的生物合成有哪几种模式?答:(1)同步合成型:酶的生物合成与细胞生长同步进行。
(2)延续合成型:酶的生物合成在细胞的生长阶段开始,在细胞生长进入平衡期后酶还可以延续合成一段较长时间。
(3)中期合成型:酶在细胞生长一段时间以后才开始,而细胞生长进入平衡期以后,酶的生物合成也随之停止。
(4)滞后合成型:在细胞生长一段时间或进入平衡期以后才开始其生物合成并大量积累,又称为非生长偶联型。
6、如何控制微生物发酵产酶的工艺条件?答:(1)细胞活化与扩大培养;(2)培养基的配制;(3)pH的调节控制;(4)温度的调节控制;(5)溶解氧的调节控制:调节通气量、调节氧分压、调节气液接触时间、调节气液接触面积、改变培养液性质。
7、提高酶产量的措施有哪些?答:(1)添加诱导物(2)控制阻遏物的浓度(3)添加表面活性剂(4)添加产酶促进剂。
10、简述固定化微生物细胞发酵产酶的特点。
答:①提高产酶率;②可以反复使用或连续使用较长的时间;③基因工程菌的质粒稳定,不易丢失;④发酵稳定性好;⑤缩短发酵周期,提高设备利用率;⑥产品容易分离纯化;⑦适用于胞外酶等胞外产物的生产。
优质范文..(固定化细胞发酵产酶的工艺条件及其控制:①固定化细胞的与培养;②溶解氧的供给;③温度的控制;④培养基组分的控制。
)11、固定化微生物原生质体发酵产酶的特点。
答:①变胞内产物为胞外产物;②提高产酶率;③由于有载体的保护作用,稳定性较好,可以连续或重复使用较长时间;④易于分离纯化(固定化原生质体发酵产酶的工艺条件极其控制:①渗透压的控制;②防止细胞壁再生;③保证原生质体的浓度。
)。
12、*优良的产酶微生物应当具备的条件:①酶的产量高;②产酶稳定性好;③容易培养和管理;④利于酶的分离纯化;⑤安全可靠、无毒性。
13、*酶的发酵根据微生物培养方式不同:固体培养发酵、液体深层发酵、固定化微生物细胞发酵、固定化微生物原生质体发酵。
14、*酶生物合成的调节:分解代谢物阻遏作用、酶生物合成的诱导作用、酶生物合成的反馈阻遏作用。
15、*组成型酶:在细胞中的量比较恒定,环境因素对这些酶的合成速率影响不大。
适应型酶/调节型酶:在细胞中含量变化大,其合成速率明显受到环境因素的影响。
16、*在DNA分子中,与酶的生物合成有密切关系的基因有4种:①结构基因:与多肽链有各自的对应关系。
②操纵基因:可以与调节基因产生的变构蛋白(阻遏蛋白)中的一种结构结合从而操纵酶生物合成的时机和合成速度。
③启动基因:决定酶的合成能否开始,有两个位点,RNA聚合酶结合位点和cAMP-CAP结合位点。
④调节基因:可以产生一种阻遏蛋白。
结构基因、操纵基因、启动基因一起组成操纵子。
17、*常用的产酶微生物:①细菌:大肠杆菌;枯草芽孢杆菌:(最广泛)α淀粉酶、蛋白酶、β葡聚糖酶、5'-核苷酸酶和碱性磷酸酶。
②放线菌:链霉菌:葡萄糖异构酶。
③霉菌:红曲霉可用于生产α淀粉酶、糖化酶、麦芽糖酶、蛋白酶;黑曲霉;米曲霉;青酶;木霉;根酶;毛酶。
⑤酵母:啤酒酵母;假丝酵母。
18、*常用的保藏方法:斜面保藏法、沙土管保藏法、真空冷冻干燥保藏法、低温保藏法、石蜡油保藏法。
19、*培养基:碳源、氮源、无机盐、生长因子。
20、*最适pH:细菌、放线菌6.5~8.0;酵母、霉菌4~6 偏酸;植物细胞5~6.21、*诱导物一般分为三类:酶的作用底物、酶的催化反应产物、作用底物的类似物。
22、*发酵动力学包括:细胞生长动力学、产酶动力学/产物生成动力学、机制消耗动力学。
产酶动力学主要研究发酵过程中细胞产酶速率以及各种因素对产酶速率的影响规律。