保险精算人寿保险的精算现值讲解

合集下载

第二章人寿保险的精算现值

第二章人寿保险的精算现值
第二ቤተ መጻሕፍቲ ባይዱ人寿保险的精算 现值
2020年4月23日星期四
人身保险是以人的寿命和身体为保险标的的保险。
人寿保险是人身保险的一种。
人寿保险转嫁的是被保险人的生存或者死亡的风险 。它起源于古代的互助团体,其原理是通过集合具 有同质风险的大量被保险人,通过在这些被保险人 之间进行风险分散——即由所有的被保险人共同出 资给遭遇风险的少数被保险人——来达到降低突发 风险事故对遭遇风险事故的个体造成的财务冲击。
2020/4/23
第二章 人寿保险的精算现值
• 解 : 设 Zj 表示第 j 个被保险人的死亡给付在投保时的现值随机变量 , 则
勇于开始,才能找到成 功的路
2020/4/23
第二章 人寿保险的精算现值
设该项基金在最初时的数额至少是 h 元 , 依题意 , 则
勇于开始,才能找到成 功的路
即该项基金在最初时的数额至少要有 449.35 元 , 比所收取的 建缴纯保费建立的初始基金 400(=100 × 4) 元多出 49.35 元 , 即超过歪缴纯保费基金的 12.34% 。这说明 , 最初基 金 需有风险附加费 ( 即安全附加费 ) 的存在 , 即该基金超过保费 总额的那部分 (49.35 元 ) 是 安全附加基金。
1. 按算术数列续年递增的终身寿险 按算术数列{n} 续年递增的连续型的终身寿险 , 可分
称现值函数随机变量Z的数学期望为保险的精算现值,也是趸缴纯保费额
于是
2020/4/23
第二章 人寿保险的精算现值
则连续型的保险金额为 1 个单位的 n 年定期寿险
现值随机变量 ZT 的方差是
勇于开始,才能找到成 功的路
2020/4/23
第二章 人寿保险的精算现值

第二章人寿保险的精算现值

第二章人寿保险的精算现值


100 j1

j 1,2,,100
100 j1
从而可得EZ EZ j 400, VarZ VarZ j 900
• 第二章 人寿保险的精算现值 12
设该项基金在最初时的数额至少是 h 元 , 依题意 , 则
ZE Z h E Z 0 P .95 , r Z Var Z Var h400 近似服从于标准正态分 布,则 1 .645 30 故 h400 30 1 .645 449.35( 元 )
2 T 2 2 1 x :n


1 2 x :n
对于投保连续型的保险 金额为 1 个单位的终身寿险, 其趸缴纯保费是 A t)t pxuxtdt x v t pxuxtdt exp(t 0 0
• 第二章 人寿保险的精算现值 7


记A t)t pxuxtdt x exp(-2
t h h 2 n 0 2


2 记 tt px uxtdt h A x exp
Zh A 其现值随机变量 Z 的方差是 Var x hA x
• 第二章 人寿保险的精算现值

2
15

表示连续型的保险金额为 1 个单位的延期 h 年的 n 年期定期寿险和延期 h 年的 n 年期两全保险的趸缴 纯保费分别为
• 第二章 人寿保险的精算1 , t n v , T n t b ,v v , t 0 ,Z t t T 0 , t n 0 , T n
对于 (x) 投保连续型的保险金额为 1 单位的 n 年期定期寿 险 , 其有关函数是


第二章 人寿保险的精算现值

保险精算2人寿保险的精算现值分析

保险精算2人寿保险的精算现值分析

Z Z 0
1
2
Var(Z
)

Var(Z 1
)
Var(Z 2
)

A1 x:n|

A1 x:n|
延期m年的n年期两全保险
定义 保险人对被保险人在投保m年后的n年期内发生保险
责任范围内的死亡,保险人即刻给付保险金;如果被保 险人再生存至n年期满,保险人在第n年末支付保险金 的保险。
假定(x)投保延期m年的n年期两全保险,保额1元。
Z
b K
v K

0,
其他
表示其趸缴纯保费。
E(Z)
死亡年末给付趸缴纯保费公式归纳
n1
A v p q 1
k 1
x :n|
k x xk
k 0

A v k1 p q
x
k x xk
k 0
A x:n
A1 x:n

A1 x:n
m
Ax

Ax

A1 x:m
A1
k0 0
sk x
xks
补充: 非整数年龄的生命分布假设
年龄内死亡均匀分布假设(UDD假设)
令:S(x t) (1 t)s(x) ts(x 1) 0 t 1
1、
t qx

s(x) s(x t) s(x)
s(x) [(1 t)s(x) ts(x 1)] s(x) s(x 1) t
同理,
i 1
1
A A x:n|
x:n|
对于两全保险有
A A A 1
1
x:n|
x:n|
x:n|
i1
1
A A x:n|

第二章 人寿保险的精算现值PPT课件

第二章 人寿保险的精算现值PPT课件

2.4 换算函数
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
Thank You
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
微分方程
2.2 离散型保险
等额保险
定期死亡保险 终身寿险 两全保险 延期保险
变额保险
递增保额保险 递减2.3 连续型保险与离散型保险之间的关 系
前面两节的讨论表明,离散型保险的趸缴纯 保费的计算要容易和简便很多,可编制如P467 的终身寿险精算现值表,而实务中使用的是连 续型保险,因而寻找连续型保险与离散型保险 之间的关系是有意义的。
变额保险
递增保额保险 递减保额保险
微分方程
等额保险
所谓等额保险,指保险利益的金额在保险 开始时就已经固定,只是支付的时间不确 定而已,支付时间与保险事故发生的时间 有关。
P59 2,11
作业
P59 4
作业
变额保险
变额保险,顾名思义,是指保险利益不是常 数,而是随着死亡发生的时间不同而不同的 保险。
第二章 人寿保险的精算现值
学习目标
熟悉人寿保险的数学模型 熟悉人寿保险现值随机变量及人寿保险精
算现值 掌握各种寿险产品趸缴净保费及人寿保险
现值随机变量方差的计算方法 了解趸缴净保费的实际意义及递推公式 熟悉利用换算函数计算人寿保险的趸缴净

第三章 人寿保险的精算现值

第三章 人寿保险的精算现值

(四)两全保险


两全保险是定期寿险与纯生存保险的组合 给付函数
bK 1 1, K 0,1, 2,

给付现值随机变量

趸缴净保费
v K 1 , K 0,1, , n 1 Z bK 1vK 1 n K n, n 1, v ,
1 x: n |
Ax:n| A
趸缴净保费
n 1
给付现值随机变量


k 1 1 1 ( DA)1 ( n k ) v p q A A k x xk x: n | x:1| x:2| k 0
A1 x: n |
一般变额寿险

给付现值随机变量
Z bK 1v

K 1
K 0,1, 2,
10000 vq40 v 2 1| q40 v3 2| q40 10000v 3 3 p40 1 1 1 10000 q40 p40 q41 p40 p41q42 2 3 (1 i ) (1 i) 1 i 1 10000 p40 p41 p42 3 (1 i) 49.28 8591.34 8640.62(元)
K 1

保险金给付在签单时的现值随机变量

v , K 0,1, , n 1 Z bK 1vK 1 0, K n, n 1, 趸缴净保费
A
1 x: n|
E (Z ) v
k 0
n 1
k 1
k | q x v
k 0
n 1
k 1
k p x q xk
n 1
n 1| A1 x :1|
(八)递减型寿险

第4章 人寿保险的精算现值

第4章 人寿保险的精算现值

第4章 人寿保险的精算现值人寿保险的精算现值也称为趸交纯保费。

4.2 死亡年末给付的人寿保险死亡年末给付的人寿保险是指保险金的支付是在死亡发生的(保险期)年末进行的人寿保险。

4.2.1 定期寿险的趸交纯保费设)(x 投保n 年期定期寿险,保险金额为1元,保险金在死亡年度末给付。

设K = ][T ,即取整余命随机变量,给付函数用b K 1+表示,则有 b K 1+ = 1,当K = 0,1,2,…,n-10, 其它相应的贴现因子用v K 1+表示,保险金给付额折换成购买保险合同签单时的现值用随机变量Z 表示。

Z 的可能取值为z K 1+(K = 0,1,2,…,n-1)z K 1+ = v b K K 11++⋅ = vK 1+定期寿险的趸交纯保费用统一的精算符号1x n A 表示,那么1x nA= )(Z E =∑-=++⋅⋅11n k kx xk qp vk)(Z Var = )]([22)(ZE Z E -=2211()x nx nAA-其中 21x nA= )(2Z E = ∑-=++⋅⋅1)1(2n k kx xk qp vk4.2.2 生存保险n 年期生存保险是当被保险人生存至n 年期满时,保险人在第n 年年末支付保险金的保险。

设)(x 投保n 年期生存寿险,保险金额为1元,保险金在第n 年年末给付。

精算中用1x nA表示该生存保险的趸交纯保费。

可以推出1x nA=pvnxn⋅相应的方差为)(Z Var = )]([22)(Z E Z E - = 2112()x nx n A A-= q pvn nxxn⋅⋅24.2.3 终身寿险的趸交纯保费Ax=1lim x nn A→∞=∑∞=++⋅⋅1k kx xk qp vk相应的方差为)(Z Var = )]([22)(ZE Z E -= )(22A Ax x-4.2.4 两全保险的趸交纯保费设)(x 投保n 年期两全保险,保险金额为1元,若)(x 在n 年内死亡,则在死亡年末给付保险金,若)(x 生存满n 年,则在第n 年年末支付满期保险金。

第二章: 人寿保险的精算现值(趸缴纯保费)

第二章: 人寿保险的精算现值(趸缴纯保费)

fT
(t)
1(均匀分布) 70
A1 30:10
10 t
0
fT
(t)dt
10 (1 0.1)t 1 dt 1
0
70 70
10 (1.1)tdt 0.092099
0
A 2 1
(2) 30:10
10 2t
0
fT
(t)dt
1 70
10 (1.1)2tdt 0.063803
0
Var(Z) 2A1 (A1 )2 0.055321
A1 xm:n
A1 x:m
Ax
1 m:n
A1 x:m
A xm:n
例 3.设生存函数 s(x) 1 x , (0 x 100) ,年利率 i 0.1,保额 1。 100
计算:(1)
A1 30:10
(2)Var(Z )
解:(1)
fT
(t)
s(x t) s(x)
1 100
x
,
代入
x 30 ,
Ax E(T ) E( K S ) E( K 1S1)
E( K 1)E( S1) Ax E[(1 i)1S ]
S ~U (0,1) Ax
1(1 i)1s ds i
0
Ax
例1. 证明:在 UDD 假设下: A1 i A1
x:n
x:n
证明:
A1 x:n
n
t
0
t
px xt dt
(1)
m m px
n
t
0
t
pxmxmt dt
A1 x:m
A1 xm:n
A1
(2) m x:n
mn mn px
m m px n n pxm

第四章 人寿保险的精算现值(.3.27)共91页文档

第四章 人寿保险的精算现值(.3.27)共91页文档
已知未来给付的现值,再考虑该给付发生的概 率,就可以得出期望给付额
E(Zt)E(bK1vK1)= Zt.kqx E(Zt)E(bTvT) Zt.fT(t)dt
寿险精算
8
这个期望给付就等于被保险人的趸缴纯保费 也就是精算现值,即
精算现值= E ( Z t )
净均衡原理并不是指每个被保险人个人缴 纳的净保费恰好等于他个人得到的保险给 付金额。它的实质是把相同风险的人视作 一个总体,这个总体在统计意义上的收支 平衡
寿险精算
9
§4.1 死亡即付的人寿保险
• 死亡即刻赔付就是指如果被保险人在保障 期内发生保险责任范围内的死亡,保险公 司将在死亡事件发生之后,立刻给予保险 赔付。它是在实际应用场合,保险公司通 常采用的理赔方式。
• 由于死亡可能发生在被保险人投保之后的 任意时刻,所以死亡即刻赔付时刻是一个 连续随机变量,它距保单生效日的时期长 度就等于被保险人签约时的剩余寿命。
连续型寿险
寿险精算
10
主要险种的精算现值(趸缴纯保费)的厘定 1.n年定期保险 2.终身保险 3.生存保险 4.n年期两全保险 5.延期寿险 ——延期m年的终身保险 ——延期m年的n年定期保险 ——延期m年的n年期两全保险
寿险精算
11
一、n年定期保险的精算现值
1.定义——什么是定期保险
2.基础模型假定条件
寿险精算
5
• 为了解决以上问题,趸缴净保费的厘定给 出了以下三条假设:
假定一:同性别、同年龄、同时参保的被保 险人的剩余寿命独立同分布 假定二:被保险人的剩余寿命分布可以用经 验生命表进行拟合 假定三:保险人可以预测将来的投资收益
这三条假定将单个被保险人的风险事故转 化为一个同质总体的风险事故

保险精算学寿险精算现值

保险精算学寿险精算现值

K的概率分布函数为 : P K k k px qxk k qx.

Ax E Z vk 1 k qx .
k 0
在上式两边同乘lx , 得到lxBiblioteka Ax vk 1 d xk . k 0
给出直观解释.
引入转换函数:
D x v xlx, x岁 存 活 人 数 每 人 1单 位 元 在 0岁 的 现 值 ;
N x D x t , 从 x岁 起 到 生 命 最 大 值 1岁 上 存 活 t0
人 每 人 每 年1单 位 元 赔 付 在 0岁 的 现 值 。
Cx
v
x
1
d

x
x
x 1岁 死 亡 的 人 数 每 人 1 单 位 元 赔
付 在 0岁 的 现 值 ;
M x
C
x

t

x岁







4、延期n年的终身寿险
延期n年的终身寿险:用n Ax表示,某人x岁开始投保,延期n年 后死亡年末给付1单位元的延期终身寿险的现值。 现值随机变量为:
0 Z vK1
K 0,1,...,n1 K n,n1,.......
n Ax E
Z
vk1 k
kn
qx
Mxn Dx
或者
n
Ax
Ax
A1 x:n
证明:n Ax vn n pxAxn
1岁



t0
1单 位 元 赔 付 在 0岁 的 现 值 。

Ax
Mx Dx
对于赔付现值随机变量Z,计算方差:
VarZ EZ2 [EZ]2
2Ax E Z2 v2k1 k qx e2k1 k qx

保险精算中的人寿保险的精算现值的模型

保险精算中的人寿保险的精算现值的模型

保险精算中的人寿保险的精算现值的模型一、人寿保险简介保险精算学主要分为两大类:一个是所谓的人寿保险(寿险精算),另一个是非人寿保险。

前者主要以人的寿命、身体或健康为“保险标的”的保险。

非人身保险主要包括:汽车保险、屋主保险、运输保险、责任保险、信用保险、保证保险等。

而这次我们主要讨论人寿保险。

狭义的人寿保险是以被保险人在保障期是否死亡作为保险标的的一种保险。

广义的人寿保险是以被保险人的寿命作为保险标的的一种保险。

它包括以保障期内被保险人死亡为标的的狭义寿险,也包括以保障期内被保险人生存为标底的生存保险和两全保险。

人寿保险的分类根据不同的标准,人寿保险有不同的分类:(1)以被保险人的受益金额是否恒定进行划分,可分为:定额受益保险,变额受益保险。

(2)以保障期是否有限进行划分,可分为:定期寿险和终身寿险。

(3)以保单签约日和保障期是否同时进行划分分为:非延期保险和延期保险。

(4)以保障标的进行划分,可分为:人寿保险(狭义)、生存保险和两全保险。

人寿保险的特点1:保障的长期性这使得从投保到赔付期间的投资收益(利息)成为不容忽视的因素。

2:保险赔付金额和赔付时间的不确定性人寿保险的赔付金额和赔付时间依赖于被保险人的生命状况。

被保险人的死亡时间是一个随机变量。

这就意味着保险公司的赔付额也是一个随机变量,它依赖于被保险人剩余寿命分布。

3:被保障人群的大多数性保险公司可以依靠概率统计的原理计算出平均赔付并可预测将来的风险。

人寿保险趸缴纯保费厘定的原理1、假定传统的人寿保险产品的趸缴纯保费是在如下假定下厘定的:假定一:同性别、同年龄、同时参保的被保险人的剩余寿命独立同分布。

假定二:被保险人的剩余寿命分布可以用经验生命表进行拟合。

假定三:保险公司可以预测将来的投资受益(即预定利率)。

2、原理保险公司在上面三个假定条件下,按照净均衡的原则来厘定趸缴纯保费的数额。

而趸缴纯保费是指在保单生效日一次性支付将来保险赔付金的期望现时值。

保险精算 第4章2 人寿保险的精算现值

保险精算 第4章2 人寿保险的精算现值
k 0 n 1
例6
55岁的男性投保5年期的定期保险,保险金额为 1000元,保险金在死亡年末给付,按中国人寿保险 业 经验生命表 (2000-2003年)非养老业务男表和利率 6%计算趸缴纯保费。 4 d 55k 1 k 1 1000 v 解:A55: 5| l k 0
55
vd55 v d 56 v d 57 v d 58 v d 59 1000 l55
2 3 4 5
26.981485(元)
注:
令n 1, 在符号Ax1: n|中, Ax1: 1| 在人寿保险中又称为自然保费, 或记作符号 c x
根据每一保险年度,每一被保险人当年年龄的预 定死亡率计算出来的该年度的死亡纯保费。 1 dx cx vqx 1 i lx “均衡保费制”
n年定期寿险的趸缴纯保费
基本函数关系 记 K ( x) [T ] k 为被保险人的取整余命,则
保险金给付在签单时的现值随机变量为
v , Z bK vK 0,
K 1
K 0,1,, n 1 其他
A1 x:n 表示其趸缴纯保费。

E ( Z ) v k p x q xk
T v , T n 0, T n 其中Z1 , Z2 n 0, T n v , T n
Z1 Z 2 0
1 Var(Z ) Var(Z1 ) Var(Z2 ) A1 A x:n| x:n|
延期m年的n年期两全保险
定义 保险人对被保险人在投保m年后的n年期内发生保险 责任范围内的死亡,保险人即刻给付保险金;如果被保 险人再生存至n年期满,保险人在第n年末支付保险金 的保险。 假定(x)投保延期m年的n年期两全保险,保额1元。 基本函数关系 0, t m 0 , t m bt t 1, t m z b v v , m t m n

第三章 人寿保险的精算现值

第三章  人寿保险的精算现值
1

A 1 =E(Zt ) =v .n px =e .n px
n xn :
−δn
寿险精算
23
5.赔付现值变量的方差 赔付现值变量的方差
Var ( Z ) = E ( Z ) − [ E ( Z )] = E ( Z ) − ( A 1 )
2 2 2 x:n
2
E (Z ) = v .n px = e
x t

0 t T
t
=∫ v t pxµx+tdt
t 0

=∫ e t pxµx+tdt
−δt 0
寿险精算 19

5.赔付现值变量的方差 赔付现值变量的方差
Var ( Z ) = E ( Z ) − [ E ( Z )] = E ( Z ) − ( Ax )
2 2 2
2
E (Z ) =
2

∞ 0
z t2 f T ( t ) d t
= =
2 ∞
∫ ∫
∞ 0 ∞ 0
v 2t t p x µ x+t d t e −2δ t t p x µ x + t d t
记 Ax = ∫ e−2δ t t px µx+t dt ,则 0
Var(Z) = Ax −(Ax )
2
寿险精算
2
20
6.用替换函数表示趸缴纯保费 引入替换函数: 引入替换函数:
寿险精算 5
• 保费净均衡原理的思想很好理解,但在保 险经营过程中要落实这条原理,保险公司 必须要解决以下几个问题: 1.什么时候会发生索赔事件? 2.发生索赔的概率有多大? 3.发生的索赔额等于多少? 4.钱的时间价值如何测量?

保险精算课件第3章寿险精算现值

保险精算课件第3章寿险精算现值

解:
fT
Z 0,
k n, n 1,
精算现值以 A1 表示,有 x:n
n1
A1 E(Z ) x:n
vk1 k qx
k 0
Z的方差为
其中
Var(Z ) 2 A1 ( A1 )2
x:n
x:n
n1
2 A1 E(Z 2 ) x:n
v2(k 1) k qx
10
e t
fT
(t)dt

e0.06t 0.04e0.04t dt
10
0.04e0.1tdt 0.4e1(万元) 10
2.定期寿险
1单位元死亡即付n年定期寿险的精算现值为
A1 x:n

n 0
vt
fT
(t)dt

n 0
vt
t
px
x t dt
①在死亡均匀分布假设下,有
k 0
qx

1 lx
x 1
d xk v k 1
k 0
●赔付现值随机变量的方差:
Var(Z ) E(Z 2 ) [E(Z )]2


E(Z 2)
v2(k1) k qx
e q 2 (k 1) kx
k 0
k 0
E(Z 2) 相当于以计算趸缴净保费利息力
A1 x :n j
k 1
j0
例:计算保险金额为10000元的下列保单,在 30岁签发时的趸缴净保费。假设死亡给付发生 在保单年度末,利率为6%。
(1)终身寿险
(2)30年定期寿险
(3)30年两全保险。
例:现年35岁的人购买了一张终身寿险保单。 该保单规定,被保险人在第1年内死亡,给付 1000元,以后每年的死亡赔付额以6%的增长 率递增。假设死亡给付发生在保单年度末,利 率为6%。试求其趸缴纯保费。

保险精算-第4章1-人寿保险的精算现值

保险精算-第4章1-人寿保险的精算现值
例如, 一个26岁的人考虑用保险金支付他退休之后死亡时 的丧葬费用,于是,他投保了一份延期34年的终身 寿险。如果人在退休前死亡,他工作期间的丰厚收 入会解决其丧葬费用,如果在退休之后死亡,则保 险公司会为他的一个很体面的葬礼支付保险金。这 就是一份终身寿险,但延期了34年。
延期m年的终身寿险
定义 保险人对被保险人在投保m年后发生的保险责任 范围内的死亡均给付保险金的险种。
zt btvt vt , t 0
Z bv TT
vT
t0
Ax 表示终身寿险的趸缴纯保费。
Ax
E(Z)
z f (t)dt
0t
T
vt p dt e t p dt
0
tx
xt
0
tx
xt
方差为
Var(Z )
例2
设 (x)要投保终身寿险,保险金额1元,签单时其未
来寿命 T 的概率密度函数为
0
T
v e
1
A x:n
表示n年期死亡保险的精算现值。
方差公式:
Var(Z ) E(Z 2 ) [E(Z )]2 E(Z 2 ) (A1 )2 x: n|
E(Z 2 ) n z 2 f (t)dt 0t T
n
n
v2t f (t)dt e f 2 t (t)dt
0
T
0
T
记为
(相当于利息力翻倍以后求n年期寿险的趸缴保费)
f T
(t)
1 60

0
t
60
0, 其他
利息强度为 ( 0) ,在签单时的保险金给付现值随机
变量为 Z,试计算: (1) A x
(2)Var(Z )
(3)满足P(Z ) 0.9的 .

保险精算课件 第3章寿险精算现值

保险精算课件  第3章寿险精算现值
0 k= 0 k=
ω−x− 1
ω−x− 1
延期m年的 延期 年的n 年的 年定期寿险 延期m年的 延期 年的 终身寿险 n年期两全 年期两全 保险
A =A m
1 xn :
1 xm n : +
−A
1 xm :
1 xm :
m
A = A −A x x
1 xn :
A: = A +A xn
1 xn :
死亡年末给付趸缴纯保费公式归纳 延期m年的 延期 年的n 年的 年期两全保险
k+ 1
(x) 的1单位元 年两全保险的精算现值为 单位元n年两全保险的精算现值为 单位元
A:n =∑ ⋅ k q +v ⋅ n p v x x x
k+ 1 n k= 0
n− 1
=A +A
1 x:n
1 x: n
其中 A 精算现值。 精算现值。
1 x: n
表示1单位元给付纯生存险的 表示 单位元给付纯生存险的 单位元给付
☆两全保险现值随机变量的方差 为两全保险现值随机变量, 设Z为两全保险现值随机变量,Z1为n年 为两全保险现值随机变量 年 定期现值随机变量, 定期现值随机变量,Z2为n年纯生存保险现值 年纯生存保险现值 随机变量, 不会同时发生, 随机变量,则Z1和Z2不会同时发生,我们有
V r(Z) =V r(Z +Z ) a a 1 2 =V r(Z )+V r(Z )−2E Z )⋅ E Z ) a 1 a 2 ( 1 ( 2
1. 终身寿险
对 (x 的1单位元死亡年末赔付终身寿 ) 表示。 险,其精算现值以 A 表示。 x 记 K(x) =k 为 x岁投保人的整值剩余寿命, 下面计算 A x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

e n n px
现值随机变量的方差:
Var(zt ) v2n n px (vn n px )2

21
Ax:n
1
( Ax:n
)2
n年定期两全保险
定义
被保险人投保后如果在n年期内发生保险责任范围内的死亡,保 险人即刻给付保险金;如果被保险人生存至n年期满,保险人在 第n年末支付保险金的保险。它等价于n年生存保险加上n年定期 寿险的组合。
主要险种的精算现值(趸缴纯保费)的厘定
n年期定期寿险 终身寿险 延期寿险
延期m年的终身寿险/延期m年的n年定期寿险 n年期生存保险 n年期两全保险
4.1.2 n年定期寿险
定义
保险人只对被保险人在投保后的n年内发生的保险责任范围内的死亡给付 保险金的险种,又称为n年死亡保险。
保险精算
第四章 人寿保险的精算现值
第四章 人寿保险的精算现值
4.1 死亡即付的人寿保险 4.2 死亡年末给付的人寿保险 4.3 死亡即付人寿保险与死亡年末付人寿保
险的精算现值的关系 4.4 递增型人寿保险与递减型人寿保险
4.1 死亡即付的人寿保险
死亡即刻赔付的含义
死亡即刻赔付就是指如果被保险人在保障期内发 生保险责任范围内的死亡 ,保险公司将在死亡事 件发生之后,立刻给予保险赔付。它是在实际应 用场合,保险公司通常采用的理赔方式。
死亡年末给付的计算原理同死亡即刻给付 4.2.1 定期寿险 4.2.2 终身寿险 4.2.3 两全保险 4.2.4 延期寿险
延期m年的终身寿险
延期m年的n年定期寿险 延期m年的n年两全保险
4.3 死亡即付人寿保险与死亡年末副人寿 保险的精算现值的关系

n vt
0
t
px xt dt

n et
0
t
px xt dt
方差公式:
Var(zt ) E(zt2 ) E(zt )2
n 0
e2t
fT
(t)dt

E ( zt
)2

2 A1 x:n

n 0
e2t
fT
(t)dt
(相当于利息力翻倍以后求n年期寿险的趸缴保费)
v mn t
m
fT
t
dt

mn m
e t

t
px

xt dt
(为常数时)

mn 0
e t

t
px

xt dt

m et
0

t
px

xt dt
4.1.5 生存保险与两全保险的趸缴纯保费 n 年定期生存保险
定义 被保险人投保后生存至n年期满时,保险人在第n年末 支付保险金的保险。
假定:(x)岁的人,保额1元n年定期寿险
基本函数关系
vt vt , t 0
vt , t n
1 , t n bt 0 , t n

zt
btvt
0
,
tn
符号:
1
A x:n
厘定:
1
n
Ax:n E(zt ) 0 zt fT (t)dt
假定: (x)岁的人,保额1元,n年定期生存保险 基本函数关系
vt vn , t 0
vn , t n
1 , t n bt 0 , t n

zt btvt 0 , t n
符号:
1
A x:n
趸缴纯保费厘定:
1
Ax:n
E(zt ) vn n px
假定(x)岁的人,保额1元,n年定期两全保险
基本函数关系
vt

vt
v
n
, ,
tn tn
bt 1 , t 0

zt

bt vt

vt , t n vn , t n
符号及保费厘定:
A x:n
A1 x:n

A1 x:n

n 0
vt

t
px

xt dt
所以方差等价为
Var(
zt
)2A1 x:n
(A1 x:n
)2
4.1.3 终身寿险
定义
保险人对被保险人在投保后任何时刻发生的保险责任范围内的死亡均给 付保险金的险种。
假定:(x)岁的人,保额1元终身寿险 基本函数关系
vt vt , t 0 bt 1 , t 0
fT
(t)dt

E(zt
)2

2 Ax
0
e2 t
fT
(t )dt
所以方差等价为
Var(zt )2Ax ( Ax )2
4.1.4 延期终身寿险
定义
保险人对被保险人在投保m年后发生的保险责任范围内的死亡均 给付保险金的险种。
假定: (x)岁的人,保额1元,延期m年的终身寿险 基本函数关系
vt vt , t 0
vt , t m
1 , t m bt 0 , t mΒιβλιοθήκη ztbt vt

0
,
tm
符号: m Ax
厘定:
m| Ax
m
vt
fT
t
dt

et
m
fT
t
dt
延期m年的n年定期寿险:
A m| x:n

zt btvt vt , t 0
符号: Ax
厘定:

Ax E(zt ) 0 zt fT (t)dt


0
vt
t
pxxt dt


0
e t
t
pxxt dt
方差公式
Var(zt ) E(zt2 ) E(zt )2
0
e2 t

vn
n
px
4.2 死亡年末给付的人寿保险
死亡年末赔付的含义
死亡年末陪付是指如果被保险人在保障期内发 生保险责任范围内的死亡 ,保险公司将在死亡事 件发生的当年年末给予保险赔付。
由于赔付时刻都发生在死亡事件发生的当年年末, 所以死亡年末陪付时刻是一个离散随机变量,它 距保单生效日的时期长度就等于被保险人签约时 的整值剩余寿命加一。这正好可以使用以整值年 龄为刻度的生命表所提供的生命表函数。所以死 亡年末赔付方式是保险精算师在厘定趸缴保费时 通常先假定的理赔方式。
由于死亡可能发生在被保险人投保之后的任意时 刻,所以死亡即刻赔付时刻是一个连续随机变量, 它距保单生效日的时期长度就等于被保险人签约 时的剩余寿命。
4.1.1 精算现值的概念
精算现值即趸缴纯保费,未来保险金给付 在签单时的现值,即一次性缴清的纯保费, 它是以预定利率和预定死亡率为基础计算 的。
相关文档
最新文档