平面四杆机构的基本特性ppt
合集下载
平面四杆机构类型介绍课件
03
应用:汽车转向机构、自行车脚踏板机构等
04
优点:结构简单,运动可靠,易于实现各种运动规律
双摇杆机构
组成:两个摇杆和 一个连杆 1
特点:结构简单,运 动灵活,但运动轨迹 4 复杂,设计难度较大
运动:两个摇杆 2 可以同时摆动,
连杆随之运动
应用:汽车转向 3 系统、飞机起落
架等
3
平面四杆机构的 应用
构
05
平行四杆机构:由四个平行杆组成的机构
06
空间四杆机构:由四个空间杆组成的机构
平面四杆机构的特点
由四个构件组成,其中至少有一个构件是活 动构件 构件之间通过转动副或移动副连接
机构的运动是通过构件之间的相对运动实现 的
机构的运动具有确定的运动规律,可以通过 分析机构的几何关系和运动学原理来研究
2
平面四杆机构的 类型
曲柄摇杆机构
02
03
04
优点:结构简单、运动 平稳、易于控制和实现 自动化
应用:广泛应用于各种 机械设备中,如汽车、 飞机、船舶等
特点:曲柄和摇杆的 运动轨迹为圆弧
01
组成:曲柄、摇杆、 连杆和机架
双曲柄机构
01
组成:两个曲柄和一个连杆
02
特点:两个曲柄可以同时转动,连杆只能做摆动运动
能满足强度要求
设计合理的传动比,
2
避免过大的传动比导
致机构过载
优化结构设计,减少
3
应力集中和疲劳破坏
满足加工工艺要求
01
04
设计机构时,要考虑到成 本控制的要求,如采用何 种材料、加工方法等。
03
设计机构时,要考虑到维 修工艺的要求,如采用何 种维修方法、维修工具等。
《平面四杆机构》PPT课件
精选ppt
5
(二). 平面连杆机构的特点
1)低副连接,接触表面为平面或圆柱面,压强小,便于润滑, 磨损较小,寿命较长,适合传递较大动力;
2)结构简单,加工方便,易于制造,易于获得较高的运动精 度;
3)连杆易于做成较长的构件,可实现较远距离的操控; 4)能够实现的运动规律和运动轨迹多样;
5)传动 链长, 累计误 差大, 难于实 现精确 运动。
双摇杆机构
精选ppt
17
应用案例:港口鹤式起重机 、汽车转向机构、电风 扇摇头机构、飞机起落架等机构。
电风扇摇头机构
功能:将一种摆动转换为另一种摆
动。
精选ppt
汽车前轮转向机构 18
任务二 铰链四杆机构类型的判定
曲柄存在条件
1、铰链四杆机构存在曲柄的条件
机构中是否存在曲柄(相邻构件能否相对 转整周),由各构件长度间的关系决定。
第六章 常用机构
第二节:平面四杆机构
学习目标:
1.掌握铰链四杆机构的形式 2.掌握铰链四杆机构类型的判定 3.了解铰链四杆机构的演化 4.平面四杆机构的基本 铰链四杆机构的形式
任务导入
精选ppt
2
连杆机构应用举例
案例导入
案例分析:如图所示为缝纫机踏板机构,为其机 构运动简图和结构示意图。缝纫机传动路线为:操作者 踩踏踏板使摇杆(主动件)往复摆动→连杆→曲柄( 从动件)→带动带轮使机头主轴连续转动。
惯性筛机构
功能:将等速转动转换为不精选等pp速t 同向转动。
13
双曲柄机构的其他类型 (1)平行四边形机构:两相对构件互相平行,呈 平行四边形的双曲柄机构。 应用案例1:单盘秤机构等
功能:将等速转动转换为等精速选p同pt 向转动。 单盘秤机构
《平面四杆机构》课件
平面四杆机构
目 录
• 平面四杆机构简介 • 平面四杆机构的基本形式 • 平面四杆机构的运动特性 • 平面四杆机构的优化设计 • 平面四杆机构的实例分析 • 平面四杆机构的创新与发展
01
平面四杆机构简介
定义与特点
定义
平面四杆机构是指在平面内由四 个刚性构件通过低副(铰链或滑 块)连接而成的相对固定和相对 运动的机构。
总结词
随着科技的不断发展,平面四杆机构的设计 也在不断创新,新型的平面四杆机构在结构 、性能和应用方面都得到了显著提升。
详细描述
新型平面四杆机构采用了先进的材料和设计 理念,使得其具有更高的稳定性和耐用性。 同时,新型平面四杆机构在运动学和动力学 方面也进行了优化,能够实现更加精准和高
效的运动控制。
平面四杆机构的分类
根据连架杆的形状
曲柄摇杆机构、双曲柄机构、双摇杆机构。
根据机架的长度
长机架四杆机构、短机架四杆机构。
02
平面四杆机构的基本形式ຫໍສະໝຸດ 曲柄摇杆机构总结词
曲柄摇杆机构是平面四杆机构中最常 见的形式之一,其中一根杆固定作为 曲柄,另一根杆作为摇杆,通过曲柄 的转动来驱动摇杆的摆动。
详细描述
特点
具有结构简单、工作可靠、传动 效率高、制造容易等优点,因此 在各种机械和机构中得到广泛应 用。
平面四杆机构的应用
01
02
03
曲柄摇杆机构
用于将曲柄的转动转化为 摇杆的往复摆动,如搅拌 机、榨汁机等。
双曲柄机构
用于实现两个曲柄的等速 转动,如机械式钟表的秒 针机构等。
双摇杆机构
用于将两个摇杆的往复摆 动转化为另一个摇杆的往 复摆动,如雷达天线驱动 机构等。
详细描述
目 录
• 平面四杆机构简介 • 平面四杆机构的基本形式 • 平面四杆机构的运动特性 • 平面四杆机构的优化设计 • 平面四杆机构的实例分析 • 平面四杆机构的创新与发展
01
平面四杆机构简介
定义与特点
定义
平面四杆机构是指在平面内由四 个刚性构件通过低副(铰链或滑 块)连接而成的相对固定和相对 运动的机构。
总结词
随着科技的不断发展,平面四杆机构的设计 也在不断创新,新型的平面四杆机构在结构 、性能和应用方面都得到了显著提升。
详细描述
新型平面四杆机构采用了先进的材料和设计 理念,使得其具有更高的稳定性和耐用性。 同时,新型平面四杆机构在运动学和动力学 方面也进行了优化,能够实现更加精准和高
效的运动控制。
平面四杆机构的分类
根据连架杆的形状
曲柄摇杆机构、双曲柄机构、双摇杆机构。
根据机架的长度
长机架四杆机构、短机架四杆机构。
02
平面四杆机构的基本形式ຫໍສະໝຸດ 曲柄摇杆机构总结词
曲柄摇杆机构是平面四杆机构中最常 见的形式之一,其中一根杆固定作为 曲柄,另一根杆作为摇杆,通过曲柄 的转动来驱动摇杆的摆动。
详细描述
特点
具有结构简单、工作可靠、传动 效率高、制造容易等优点,因此 在各种机械和机构中得到广泛应 用。
平面四杆机构的应用
01
02
03
曲柄摇杆机构
用于将曲柄的转动转化为 摇杆的往复摆动,如搅拌 机、榨汁机等。
双曲柄机构
用于实现两个曲柄的等速 转动,如机械式钟表的秒 针机构等。
双摇杆机构
用于将两个摇杆的往复摆 动转化为另一个摇杆的往 复摆动,如雷达天线驱动 机构等。
详细描述
平面四杆机构课件
LOGO
机械基础
平面连杆机构
1 B
4-1平面连杆机构
定义:若干个刚性构件用平面低副联接而成的机构,也可 称为平面低副机构。
优点:1.能够实现多种运动形式的转换,也可以实现各 种预定的运动规律和复杂的运动轨迹,容易满足生产中 各种动作要求;2.构件间接触面上的比压小、易润滑、 磨损轻、适用于传递较大载荷的场合;3.机构中运动副 的元素形状简单、易于加工制造和保证精度。
3、准备工作:硬纸板、美工刀、钉子、尺子;
4、制作步骤:(1)用尺子和美工刀裁出相应尺寸的纸 条,长度和宽度自定,并在纸条上注明尺寸;(2)按相 应顺序用钉子连接做成铰链四杆机构;(3)用手按住一 个杆件作机架,能够自由转动。
17 B
4-1平面连杆机构
评价:制作完毕后,组内先自评,让最好的上台演示, 教师再进行评价。
A
B1
2
4
1180
3
摆角 D
2 180
对应的时间
摇杆点C的 平均速度
t1 1/1
v1 C¼1C2 / t1
t2 2/1
v2 C¼2C1 /t2 7 B
4-1平面连杆机构
输出件的行程速度变化系数K:
从动件快行程平均速度v2与慢行程平均速度v1之比。
Kv2 v1
t1 t2
1 2
1188 00
180 K1
不满足杆长 之和条件
任意杆为机架
双摇杆机构(II)
15 B
4-1平面连杆机构 练习:判断下面四杆机构是什么机构
16 B
4-1平面连杆机构
三、制作铰链四杆机构
1、分组:4人为一组,共五组;
2、要求:每人做铰链四杆机构2个,一个为满足杆长和 条件,一个为不满足杆长和条件;每组派一位学生上台 演示,用自己所做的机构演示出曲柄摇杆机构、双摇杆 机构、双曲柄机构(组内学生要自评);
机械基础
平面连杆机构
1 B
4-1平面连杆机构
定义:若干个刚性构件用平面低副联接而成的机构,也可 称为平面低副机构。
优点:1.能够实现多种运动形式的转换,也可以实现各 种预定的运动规律和复杂的运动轨迹,容易满足生产中 各种动作要求;2.构件间接触面上的比压小、易润滑、 磨损轻、适用于传递较大载荷的场合;3.机构中运动副 的元素形状简单、易于加工制造和保证精度。
3、准备工作:硬纸板、美工刀、钉子、尺子;
4、制作步骤:(1)用尺子和美工刀裁出相应尺寸的纸 条,长度和宽度自定,并在纸条上注明尺寸;(2)按相 应顺序用钉子连接做成铰链四杆机构;(3)用手按住一 个杆件作机架,能够自由转动。
17 B
4-1平面连杆机构
评价:制作完毕后,组内先自评,让最好的上台演示, 教师再进行评价。
A
B1
2
4
1180
3
摆角 D
2 180
对应的时间
摇杆点C的 平均速度
t1 1/1
v1 C¼1C2 / t1
t2 2/1
v2 C¼2C1 /t2 7 B
4-1平面连杆机构
输出件的行程速度变化系数K:
从动件快行程平均速度v2与慢行程平均速度v1之比。
Kv2 v1
t1 t2
1 2
1188 00
180 K1
不满足杆长 之和条件
任意杆为机架
双摇杆机构(II)
15 B
4-1平面连杆机构 练习:判断下面四杆机构是什么机构
16 B
4-1平面连杆机构
三、制作铰链四杆机构
1、分组:4人为一组,共五组;
2、要求:每人做铰链四杆机构2个,一个为满足杆长和 条件,一个为不满足杆长和条件;每组派一位学生上台 演示,用自己所做的机构演示出曲柄摇杆机构、双摇杆 机构、双曲柄机构(组内学生要自评);
平面四杆机构基本特性精品PPT课件
锐角α称为机构的压力角。 F的两个分力: Fn=Fsinα—引起摩擦力,有害分力 Ft=Fcosα—有效分力 2、传动角(γ):压力角α
的余角即α+γ=90º称为传动角。
讨论:压力角α↑(传动角γ↓) → Fn↑→传力性能差。
压力角α↓(传动角γ↑ )→ Fn ↓→传力性能好。
三、压力角、传动角和死点
位置之间所夹的锐角。
B
1
1
A
1
B
2
1
C
2
1
B2
4
C C2
3 v1
v2 j
D
2)急回运动机理
a)曲柄转过 1 180
摇杆上C点摆过: C1C2
所用时间: t1
1 1
180 1
b)曲柄转 2 180
过 摇杆上C点摆过: C2C1
所用时间:t2
2 1
180 1
1 2 t1 t2
c)设两过程的平均速度为V1、V2:V1
缝纫机的脚踏机构
火车车轮联动装置
4.3 铰链四杆机构的基本特性
想一想 练一练 请问摆动导杆机构、对心曲柄滑块机构以哪个构件为原动件时,机构存在
死点位置(滑块)?
K
v2
C1C2 / t2
t1
j1
180
v1 C2C1 / t1 t2 j2 180
或 180 K 1 K 1
4.3 铰链四杆机构的基本特性
极位夹角为: 180 K 1
K 1
讨论:a、θ>0º→K>1→此时机构具有急回特性,θ↑ → K↑ →急
回特性越显著。 b、θ=0º→K=1,此时机构无急回特性。
偏置曲柄滑块机构
0 ,无急回特性。
的余角即α+γ=90º称为传动角。
讨论:压力角α↑(传动角γ↓) → Fn↑→传力性能差。
压力角α↓(传动角γ↑ )→ Fn ↓→传力性能好。
三、压力角、传动角和死点
位置之间所夹的锐角。
B
1
1
A
1
B
2
1
C
2
1
B2
4
C C2
3 v1
v2 j
D
2)急回运动机理
a)曲柄转过 1 180
摇杆上C点摆过: C1C2
所用时间: t1
1 1
180 1
b)曲柄转 2 180
过 摇杆上C点摆过: C2C1
所用时间:t2
2 1
180 1
1 2 t1 t2
c)设两过程的平均速度为V1、V2:V1
缝纫机的脚踏机构
火车车轮联动装置
4.3 铰链四杆机构的基本特性
想一想 练一练 请问摆动导杆机构、对心曲柄滑块机构以哪个构件为原动件时,机构存在
死点位置(滑块)?
K
v2
C1C2 / t2
t1
j1
180
v1 C2C1 / t1 t2 j2 180
或 180 K 1 K 1
4.3 铰链四杆机构的基本特性
极位夹角为: 180 K 1
K 1
讨论:a、θ>0º→K>1→此时机构具有急回特性,θ↑ → K↑ →急
回特性越显著。 b、θ=0º→K=1,此时机构无急回特性。
偏置曲柄滑块机构
0 ,无急回特性。
四连杆机构 PPT课件
四、运动的连续性
连杆机构的运动连续性:指该机构在运动中能够连续 实现给定的各个位置。
(B’)B
C1
C C2
1
C1 C3 C2
A
D
B1 B3
2
A
B2
D
C’1 C’ C’2
连杆机构的运动不连续的问题:错位不连续;错 序不连续。
§2-3平面四杆机构的设计
一、平面连杆机构的功能及应用 1、实现刚体给定位置的设计: 机构具有能引导刚
连杆
在连架杆中,能
连架杆 1
2
绕其轴线回转360° 3 连架杆 者称为曲柄;仅能
4 机架
绕其轴线往复摆动 者称为摇杆。
1)曲柄摇杆机构:两连架杆中,一个为曲柄,而 另一个为摇杆。 2)双曲柄机构 两连架杆均为曲柄。 3)双摇杆机构 两连架杆均为摇杆。
三、平面四杆机构的演变
1)取不同构件为机架(机构的倒置)
2)若不满足杆长和条件,该机构只能是双摇杆
机构。
注意:铰链四杆机构必须满足四构件组成的封闭多边形
条件:最长杆的杆长<其余三杆长度之和。
曲柄滑块机构有曲柄的条件
B’ B
b e
Ea
Bb
C”
b
A
C
B’’ D ∞
B 1)a为最短杆
2) a+e≤b.
导杆机构有曲柄的条件
a A
d
C
摆动导杆机构 B
1)a为最短杆,a+ed
dd
a b
b a
c c
d c a b
(b c) (c b)
dd
a b
d c
平面连杆机构有曲柄的条件: 1)连架杆与机架中必有一杆为四杆机构中的最 短杆;
平面四杆机构ppt课件
平面四杆机构ppt课件
contents
目录
• 平面四杆机构简介 • 平面四杆机构类型 • 平面四杆机构的设计与优化 • 平面四杆机构的特性分析 • 平面四杆机构的实例分析 • 平面四杆机构的未来发展与挑战
01 平面四杆机构简介
定义与特点
定义
平面四杆机构是一种由四个刚性 杆通过铰链连接形成的平面机构 。
3D打印技术
利用3D打印技术,实现复杂结构的设计和快速原型制造。
智能化与自动化
传感器和执行器的集成
01
在机构中集成传感器和执行器,实现实时监测和控制。
智能化控制算法
02
采用先进的控制算法,如模糊控制和神经网络控制,以提高机
构的动态性能和稳定性。
自动化系统集成
03
将机构与自动化系统集成,实现远程监控、故障诊断和预测性
详细描述
摄影升降装置中的平面四杆机构由支架、滑轨、连杆和摄像设备组成。通过电机驱动,滑轨带动连杆运动,使摄 像设备实现升降。平面四杆机构在摄影升降装置中保证了摄像设备的稳定性和精确性,为拍摄高质量的画面提供 了保障。
06 平面四杆机构的未来发展 与挑战
新材料的应用
高强度轻质材料
采用高强度轻质材料,如碳纤维复合材料和铝合 金,以提高机构的强度和减轻重量。
运动特性分析
运动特性
分析平面四杆机构的运动特性, 包括运动范围、运动速度和加速 度等,以及各杆件之间的相对运
动关系。
运动轨迹
研究平面四杆机构中各点的运动轨 迹,包括曲线的形状、变化规律和 影响因素。
运动学分析
通过建立平面四杆机构的运动学方 程,分析其运动规律,为机构的优 化设计提供理论依据。
受力特性分析
实例二:搅拌机
contents
目录
• 平面四杆机构简介 • 平面四杆机构类型 • 平面四杆机构的设计与优化 • 平面四杆机构的特性分析 • 平面四杆机构的实例分析 • 平面四杆机构的未来发展与挑战
01 平面四杆机构简介
定义与特点
定义
平面四杆机构是一种由四个刚性 杆通过铰链连接形成的平面机构 。
3D打印技术
利用3D打印技术,实现复杂结构的设计和快速原型制造。
智能化与自动化
传感器和执行器的集成
01
在机构中集成传感器和执行器,实现实时监测和控制。
智能化控制算法
02
采用先进的控制算法,如模糊控制和神经网络控制,以提高机
构的动态性能和稳定性。
自动化系统集成
03
将机构与自动化系统集成,实现远程监控、故障诊断和预测性
详细描述
摄影升降装置中的平面四杆机构由支架、滑轨、连杆和摄像设备组成。通过电机驱动,滑轨带动连杆运动,使摄 像设备实现升降。平面四杆机构在摄影升降装置中保证了摄像设备的稳定性和精确性,为拍摄高质量的画面提供 了保障。
06 平面四杆机构的未来发展 与挑战
新材料的应用
高强度轻质材料
采用高强度轻质材料,如碳纤维复合材料和铝合 金,以提高机构的强度和减轻重量。
运动特性分析
运动特性
分析平面四杆机构的运动特性, 包括运动范围、运动速度和加速 度等,以及各杆件之间的相对运
动关系。
运动轨迹
研究平面四杆机构中各点的运动轨 迹,包括曲线的形状、变化规律和 影响因素。
运动学分析
通过建立平面四杆机构的运动学方 程,分析其运动规律,为机构的优 化设计提供理论依据。
受力特性分析
实例二:搅拌机
平面四杆机构课件
滑块机构
介绍滑块机构的结构和运动方式,以及在传 动系统中的应用。
运动分析
分析平面四杆机构的转角、转速和加速度,以了解其运动特性和性能。
拉格朗日动力学方程
使用拉格朗日动力学方程来描述平面四杆机构的运动方程,并探讨其动力学特性。
运动规律和行程设计
讲解平面四杆机构的运动规律和行程设计
本课件介绍平面四杆机构的基本概念、定义、特点以及常见类型。包括运动 副和约束副,运动分析和转角、转速、加速度分析,以及结构设计和齿轮传 动设计。展示实例和应用领域。
基本概念
介绍平面四杆机构的基本概念,包括其构成要素、运动方式和作用。
四杆机构的定义
详细解释四杆机构的定义,并讨论其在机械工程中的重要性。
结构设计
讨论平面四杆机构的连杆参数设计,轴承选型和布置设计,以及齿轮传动设 计和杆件配重设计。
实例演示
通过实例演示,展示平面四杆机构在工程实践中的应用,以及解决的具体问 题。
案例分析和实验
通过案例分析和实验,深入了解平面四杆机构的工作原理和性能,以及应用 的局限性。
展示动画演示
使用动画演示的方式展示不同类型平面四杆机构的运动特性和工作过程。
平面四杆机构的基本特点
探讨平面四杆机构的基本特点,如连杆长度比例、工作空间和运动自由度。
常见类型
平行四杆机构
介绍平行四杆机构的结构和运动特点,以及 在工程领域中的应用。
摺线机构
讨论摺线机构的设计原理和运动特性,以及 在汽车工程中的应用。
菱形机构
解释菱形机构的结构和运动原理,以及其在 工业制造中的应用。
数据结果展示
展示通过实验和仿真获得的数据结果,以评估平面四杆机构的性能和效果。
总结
介绍滑块机构的结构和运动方式,以及在传 动系统中的应用。
运动分析
分析平面四杆机构的转角、转速和加速度,以了解其运动特性和性能。
拉格朗日动力学方程
使用拉格朗日动力学方程来描述平面四杆机构的运动方程,并探讨其动力学特性。
运动规律和行程设计
讲解平面四杆机构的运动规律和行程设计
本课件介绍平面四杆机构的基本概念、定义、特点以及常见类型。包括运动 副和约束副,运动分析和转角、转速、加速度分析,以及结构设计和齿轮传 动设计。展示实例和应用领域。
基本概念
介绍平面四杆机构的基本概念,包括其构成要素、运动方式和作用。
四杆机构的定义
详细解释四杆机构的定义,并讨论其在机械工程中的重要性。
结构设计
讨论平面四杆机构的连杆参数设计,轴承选型和布置设计,以及齿轮传动设 计和杆件配重设计。
实例演示
通过实例演示,展示平面四杆机构在工程实践中的应用,以及解决的具体问 题。
案例分析和实验
通过案例分析和实验,深入了解平面四杆机构的工作原理和性能,以及应用 的局限性。
展示动画演示
使用动画演示的方式展示不同类型平面四杆机构的运动特性和工作过程。
平面四杆机构的基本特点
探讨平面四杆机构的基本特点,如连杆长度比例、工作空间和运动自由度。
常见类型
平行四杆机构
介绍平行四杆机构的结构和运动特点,以及 在工程领域中的应用。
摺线机构
讨论摺线机构的设计原理和运动特性,以及 在汽车工程中的应用。
菱形机构
解释菱形机构的结构和运动原理,以及其在 工业制造中的应用。
数据结果展示
展示通过实验和仿真获得的数据结果,以评估平面四杆机构的性能和效果。
总结
平面四杆机构的基本形式及其演化PPT(最新)
BB
C
B
C
B
设计:潘存云
A
D
设计:潘存云
D C
耕地
设计:潘存云
料斗
平行四边形机构在共线位置出现运动
不确定。 采用两组机构错开排列。
B’
F’
C’
A’
E’
D’
G’
设计:潘存云
A
E D 设计:潘存云
G
B
F
C
反平行四边形机构 ——车门开闭机构
设计:潘存云
设计:潘存云
反向
(3)双摇杆机构 特征:两个摇杆 应用举例:铸造翻箱机构、 风扇摇头机构、
应用实例:如叶片泵、惯性筛等。
1
A D C 设计:潘存云
B 2
3
旋转式叶片泵
A 1B
4 D
2
C3
C 2 3 设计:潘存云
B 1
4D A
6E
惯性筛机构
特例:平行四边形机构
特征:两连架杆等长且平行, 连杆作平动
实例:火车轮 摄影平台
播种机料斗机构
天平
A
B B’
C C’
A
D 设计:潘存云
AB = CD BC =AD
C2
4 C1
1
A
牛头刨床
(3)选不同的构件为机架
B
1
2 3
A
4C
曲柄滑块机构
B
1
2 3
A
4C
导杆机构
B
1
2 3
A
4C
摇块机构
C3
4
2
B
A 1
应用实例 应用实例
44
A
4AAAAφ
111 11
C
B
C
B
设计:潘存云
A
D
设计:潘存云
D C
耕地
设计:潘存云
料斗
平行四边形机构在共线位置出现运动
不确定。 采用两组机构错开排列。
B’
F’
C’
A’
E’
D’
G’
设计:潘存云
A
E D 设计:潘存云
G
B
F
C
反平行四边形机构 ——车门开闭机构
设计:潘存云
设计:潘存云
反向
(3)双摇杆机构 特征:两个摇杆 应用举例:铸造翻箱机构、 风扇摇头机构、
应用实例:如叶片泵、惯性筛等。
1
A D C 设计:潘存云
B 2
3
旋转式叶片泵
A 1B
4 D
2
C3
C 2 3 设计:潘存云
B 1
4D A
6E
惯性筛机构
特例:平行四边形机构
特征:两连架杆等长且平行, 连杆作平动
实例:火车轮 摄影平台
播种机料斗机构
天平
A
B B’
C C’
A
D 设计:潘存云
AB = CD BC =AD
C2
4 C1
1
A
牛头刨床
(3)选不同的构件为机架
B
1
2 3
A
4C
曲柄滑块机构
B
1
2 3
A
4C
导杆机构
B
1
2 3
A
4C
摇块机构
C3
4
2
B
A 1
应用实例 应用实例
44
A
4AAAAφ
111 11
平面四杆机构的基本特性
1、克服死点的办法
采用多套机构错位排列,使死点相互错开。
平面四杆机构的基本特性
三、死点
2、死点的应用
A D
B1 C1
地面
飞机起落架收放机架
平面四杆机构的基本特性
三、死点
2、死点的应用 (夹紧工件)
F
FN
总结
运动特性
基本特性
传力特性
曲柄存在的条件及推论
(铰链四杆机构类型判别)
压力角和传动角(最小值) 死点位置
平面四杆机构的 基本特性
平面四杆机构的基本特性
一、急回特性
1、什么是急回特性:
从动件空回行程比工作 行程的速度大的特性。
可以缩短非生产时间, 提高生产效率时.
观察现象:
平面四杆机构的基本特性
一、急回运动
观察:
2、急回特性产生的原因:
极位夹角
工作行程:
摇杆 C1 C2 1
空回行程
摇杆 C2
C1
2
0 (即 90 )
时的位置。
曲柄与连杆共线的两个位置
平面四杆机构的基本特性
三、死点
注意:曲柄为从动件,才会出现死点
BHale Waihona Puke AB1脚C2
踏板 D
C1 缝纫机主运动机构
平面四杆机构的基本特性
三、死点
1、克服死点的办法
安装飞轮加 大惯性,借惯性 作用使机构闯过 死点。
平面四杆机构的基本特性
三、死点
冲压机构
平面四杆机构的基本特性
四、死点 例:缝纫机 –踏板机构 属曲柄摇杆机构
平面四杆机构的基本特性
问题1:对踏板机构操作不熟练会怎样? 踏板易卡死,不能动或出现飞轮倒转。
采用多套机构错位排列,使死点相互错开。
平面四杆机构的基本特性
三、死点
2、死点的应用
A D
B1 C1
地面
飞机起落架收放机架
平面四杆机构的基本特性
三、死点
2、死点的应用 (夹紧工件)
F
FN
总结
运动特性
基本特性
传力特性
曲柄存在的条件及推论
(铰链四杆机构类型判别)
压力角和传动角(最小值) 死点位置
平面四杆机构的 基本特性
平面四杆机构的基本特性
一、急回特性
1、什么是急回特性:
从动件空回行程比工作 行程的速度大的特性。
可以缩短非生产时间, 提高生产效率时.
观察现象:
平面四杆机构的基本特性
一、急回运动
观察:
2、急回特性产生的原因:
极位夹角
工作行程:
摇杆 C1 C2 1
空回行程
摇杆 C2
C1
2
0 (即 90 )
时的位置。
曲柄与连杆共线的两个位置
平面四杆机构的基本特性
三、死点
注意:曲柄为从动件,才会出现死点
BHale Waihona Puke AB1脚C2
踏板 D
C1 缝纫机主运动机构
平面四杆机构的基本特性
三、死点
1、克服死点的办法
安装飞轮加 大惯性,借惯性 作用使机构闯过 死点。
平面四杆机构的基本特性
三、死点
冲压机构
平面四杆机构的基本特性
四、死点 例:缝纫机 –踏板机构 属曲柄摇杆机构
平面四杆机构的基本特性
问题1:对踏板机构操作不熟练会怎样? 踏板易卡死,不能动或出现飞轮倒转。
平面四杆机构的基本特性
机械设计基础
Machine Design Foundation
2 B
平面四杆机构的基本特性
Fn
F
C″ C
C′ Ft vC
″
′
3
1A
B″
B′ 4
D
图6 – 19 传力特性分析
机械设计基础
Machine Design Foundation
平面四杆机构的基本特性
在机构的运动过程中, 传动角同样也是随着机构
机械设计基础
Machine Design Foundation
平面四杆机构的基本特性
如图6 - 19所示的导杆机构, 其极位夹角θ>0°,
因此导杆机构也具有急回特性。
综上所述, 平面四杆机构具有急回特性的条件可归 纳如下:
(1) 主动件以等角速度作整周转动;
(2) 输出从动件具有正行程和反行程的往复运动;
(3) 机构的极位夹角θ>0°。
机械设计基础
Machine Design Foundation
平面四杆机构的基本特性
快速
慢速
A
C2
=
C1
D
图6 - 19 导杆机构的极位夹角
机械设计基础
Machine Design Foundation
平面四杆机构的基本特性
1.2 传力特性
1. 压力角和传动角
在图6 - 19所示的曲柄摇杆机构中, 如果不考虑各个构件的质量和运动副中的摩擦力, 则连
Ft=F cosα Fn=F sinα
(6 - 2)
机械设计基础
Machine Design Foundation
平面四杆机构的基本特性
压力角α的余角称为传动角, 用γ表示。 传动角 γ与压力角α的关系如下:
平面四杆机构ppt课件
摄影三脚架中的平面四杆机 构通常由三根支撑杆和若干 个连接杆组成。
三根支撑杆通常具有较好的 弹性和韧性,可以适应不同 地形和环境,提供稳定的支 撑效果。连接杆则将三根支 撑杆连接在一起,形成稳定 的三角形结构。
挖掘机机构
挖掘机是一种广泛应用于建筑、道路 、矿山等领域的工程机械设备。它的 主要功能是通过挖掘斗的升降、旋转 和移动来实现挖掘作业。
作用
03
连杆在机构中起到传递运动和动力的作用,还可以改变运动的
方向。
转动副
定义
转动副是平面四杆机构的基本组成之一,是一种 连接两个构件的相对转动的运动副。
特点
转动副由两个构件组成,一个构件作为固定轴, 另一个构件围绕固定轴旋转。
作用
转动副在机构中起到传递运动和动力的作用,同 时也可以改变运动的方向。
双摇杆机构
由两个摇杆和两个连架杆组成的平面四杆机构。双摇杆机构中,两个摇 杆长度相等且平行,连架杆相对摇杆做往复摆动,可以实现将摇杆的往 复摆动转换为连架杆的往复摆动。
平面四杆机构的应用
实例1
缝纫机踏板机构。当脚踏板低速转动时,通过一个曲柄摇杆 机构将脚踏板的往复摆动转换为缝针的上下摆动;当脚踏板 快速转动时,通过一个双曲柄机构将脚踏板的往复摆动转换 为缝针的上下摆动。
利用计算机辅助设计软件进行 数值仿真,通过对机构参数的
调整,实现最优设计。
基于实验设计的优化
通过实验测试机构的性能,利 用实验设计方法对机构进行优 化。
基于人工智能的优化
利用人工智能算法,如神经网 络、遗传算法等,对机构的参 数进行优化。
多学科优化方法
综合考虑机构的多学科因素, 如结构、运动、动力学等,实
转向机构是汽车底盘的一个重要组成部分,它的 主要功能是控制汽车的行驶方向,使车辆能够按 照驾驶员的意愿进行转弯或者改变行驶方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题:摇杆在两个极限位置时, 所对应的曲柄和连杆处于怎样 的位置关系?
A图
B图
C图
第一步:在曲柄摇杆机构中,当曲柄与连杆两次共线时,摇杆位 于两个极限位置,简称极位;
此时输入构件曲柄相对应位置之间所夹角的锐角θ 称为 极位夹角。
第二步:已知主动件曲柄作匀速圆周运动,速度为v
运动行程 工作行程 返回行程
例2:飞机起落架 BC、CD共线,机构处于死点位置,承受着陆时的地面反力,作用于CD
的力通过其铰链中心D,故起落架不会反转(摇杆CD不会转动),从而使飞 机的降落更加安全可靠。
小结:
平面四杆机构具有急回特性的条件: ① 主动件作整周回转运动; ② 从动件往返运动且有极位; ③ 从动件存在两极位时,主动件相应的有极位夹角θ ,且极位 夹角θ ≠0。
机构具有死点位置的条件: ① 主动件为摇传动角
γ =0°。
Thank you
And best wishs!!
曲柄转 角
φ1
摇杆摆 角
ψ
φ2
ψ
工作时间 t1= φ1/v t2 = φ2/v
摇杆的运动 速度
V1= ψ/ t1
V2= ψ/ t2
第三步:归纳推导
分析:由于φ1 >φ2 t1> t2
V1< V2
当主动件曲柄作匀速圆周运动时,从动件摇杆返回行程 速度比工作行程速度快—急回特性
急回特性产生的条件:
给出定义:行程速比系数K K=V2/V1
2.总结 机构具有死点位置的条件: a、主动件为摇杆; b、从动件与连杆共线,即:压力角为α =90°、传动角γ =0°。
3.克服死点位置的方法 利用惯性、添加辅助机构、借助外力等。
4.死点位置的利用
例1:工件加紧机构 连杆2与连架杆3共线,此时 不管N多大,作用在1上的力 由2传给3时总是通过3的回转 中心D,无法使其转动。
急回条件:K>1
表达式:K=(180°+θ )/ (180°-θ ) K与θ 的关系 :θ 值越大急回特性越明显
急回特性在实际生产中的意义: 缩短非工作时间,提高工作效率
第二个特性——死点位置摇杆 机构
1.死点的概念 曲柄摇杆机构中,摇杆为主动件,曲柄为从动件,当连杆与从动曲
柄共线时,机构的传动角 γ =0 , =90°此时摇杆CD 通过连杆作用 于从动曲柄AB上的力恰好通过曲柄回转中心,故出现了不能使曲柄AB转 动的卡死现象,机构的这种连杆与从动件共线、传动角为零时的位置称 为机构的死点位置或死点。
平面连杆机构
知识准备2:铰链四杆机构具有曲柄的条件?
1、最短杆与最长杆长度之和小于或等于其它两杆长度之和 (称为杆长之和条件); 2、连架杆和机架中必有一杆是最短杆。
含有一个曲柄的四杆机构
含有两个曲柄的四杆机构
没有曲柄的四杆机构
第一个特性——急回特性 第一步:演示曲柄摇杆机构
上图为曲柄摇杆机构,曲柄为主动件做逆时针匀速转动,当摇杆从 右向左摆动时速度较慢,从左向右摆动时速度较快。也就是说摇杆的返 回速度较快,我们称它具有急回运动特性。为什么会出现这种现象呢? 下面我们来分析:
问题1:摇杆在空回行程和工作 行程往复摆动的过程中,哪个行 程运动速度较快?为什么?
问题2:你用过缝纫机吗? 当你踩缝纫机踏板时,由 于操作不当,遇到过踩不 动或使缝纫机飞轮反转的 情况吗?这是为什么呢?
重点:急回特性和死点 位置的概念
知识准备1:平面连杆机构的定义、组成?
1、定义:平面连杆机构是通过若干构件用平面低副连接而成的 机构。 2、组成:固定不动的杆件AD称为机架,与机架相连的杆AB和杆 CD称为连架杆;不与机架相连的杆BC称为连杆。