北京邮电大学小学期数字基带传输系统实验报告

合集下载

实验一_数字基带传输实验_实验总结报告

实验一_数字基带传输实验_实验总结报告

数字基带传输实验总结报告目录一、实验目的 (3)二、实验原理 (3)三、实验内容 (4)(一)因果数字升余弦滚降滤波器设计 (4)1. 窗函数法设计非匹配形式的发送滤波器 (4)2. 频率抽样法设计匹配形式的发送滤波器 (6)(二)设计无码间干扰的二进制数字基带传输系统 (8)1、子函数模块 (8)2、无码间干扰的数字二进制基带传输系统的模拟 (11)四、实验总结: (145)一、实验目的1、提高独立学习的能力;2、培养发现问题、解决问题和分析问题的能力;3、学习Matlab 的使用;4、掌握基带数字传输系统的仿真方法;5、熟悉基带传输系统的基本结构;6、掌握带限信道的仿真以及性能分析;7、通过观测眼图和星座图判断信号的传输质量。

二、实验原理图1 基带系统传输模型1、信源信源就是消息的源,本实验中指数字基带信号,信源序列al 采用一个0、1等概率分布的二进制伪随机序列。

信源序列al 经在一比特周期中抽样A 点,即是序列al 每两点之前插A-1个零点,进行抽样,形成发送信号SigWave ,即是发送滤波器模块的输入信号。

2、发送滤波器匹配形式下的发送滤波器SF ,通过窗函数法对模拟升余弦滚降滤波器的时域单位冲激响应hd 进行时间抽样、截断、加窗、向右移位而得;非匹配形式下的发生滤波器SF ,通过频率抽样法对模拟升余弦滚降滤波器的频率响应Hd 进行频率抽样、离散时间傅里叶反变换、向右移位而得。

发送滤波器输出SFO 是由发送滤波器SF 和发送信号SigWave 卷积而得。

3、传输信道本实验中传输信道采用理想信道,即传输信道频率响应函数为1;传输信道输出信号Co 是由发送滤波器输出信号SFO 和加性高斯白噪声GN 叠加而成:Co=SFO+GN 。

4、噪声信道噪声当做加性高斯白噪声,给定标准差调用函数randn 生成高斯分布随机数GN 。

信源发送滤波器信道噪声接收滤波器抽样判决位定时提取输出5、接收滤波器匹配形式下,接收滤波器与发送滤波器单位冲激响应幅度相同,角度相反,均为平方根升余弦滚降滤波器。

通信原理_数字基带传输实验报告

通信原理_数字基带传输实验报告

基带传输系统实验报告一、 实验目的1、 提高独立学习的能力;2、 培养发现问题、解决问题和分析问题的能力;3、 学习matlab 的使用;4、 掌握基带数字传输系统的仿真方法;5、 熟悉基带传输系统的基本结构;6、 掌握带限信道的仿真以及性能分析;7、 通过观察眼图和星座图判断信号的传输质量。

二、 实验原理在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。

基带传输系统方框图如下:基带脉冲输入噪声基带传输系统模型如下:信道信号 形成器信道接收滤波器抽样 判决器同步 提取基带脉冲各方框的功能如下:(1)信道信号形成器(发送滤波器):产生适合于信道传输的基带信号波形。

因为其输入一般是经过码型编码器产生的传输码,相应的基本波形通常是矩形脉冲,其频谱很宽,不利于传输。

发送滤波器用于压缩输入信号频带,把传输码变换成适宜于信道传输的基带信号波形。

(2)信道:是基带信号传输的媒介,通常为有限信道,如双绞线、同轴电缆等。

信道的传输特性一般不满足无失真传输条件,因此会引起传输波形的失真。

另外信道还会引入噪声n(t),一般认为它是均值为零的高斯白噪声。

(3)接收滤波器:接受信号,尽可能滤除信道噪声和其他干扰,对信道特性进行均衡,使输出的基带波形有利于抽样判决。

(4)抽样判决器:在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。

(5)定时脉冲和同步提取:用来抽样的位定时脉冲依靠同步提取电路从接收信号中提取。

三、实验内容1采用窗函数法和频率抽样法设计线性相位的升余弦滚讲的基带系统(不调用滤波器设计函数,自己编写程序)设滤波器长度为N=31,时域抽样频率错误!未找到引用源。

o为4 /Ts,滚降系数分别取为0.1、0.5、1,(1)如果采用非匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。

数字基带传输系统实验报告

数字基带传输系统实验报告

数字基带传输系统实验报告数字基带传输系统实验报告引言:数字基带传输系统是现代通信领域中的重要组成部分,它在各个领域中起到了至关重要的作用。

本实验旨在通过搭建一个基带传输系统的模型,来研究数字信号的传输特性和误码率等参数。

通过实验,我们可以更好地理解数字基带传输系统的原理和应用。

一、实验目的本实验的主要目的是搭建一个数字基带传输系统的模型,并通过实验研究以下几个方面:1. 了解数字基带传输系统的基本原理和结构;2. 研究数字信号的传输特性,如传输速率、带宽等;3. 分析误码率与信噪比之间的关系;4. 探究不同调制方式对传输性能的影响。

二、实验原理数字基带传输系统由发送端、信道和接收端组成。

发送端将模拟信号转换为数字信号,并通过信道传输到接收端,接收端将数字信号转换为模拟信号。

在传输过程中,信号会受到噪声的干扰,从而引起误码率的增加。

三、实验步骤1. 搭建数字基带传输系统的模型,包括发送端、信道和接收端;2. 设计不同的调制方式,如ASK、FSK和PSK,并设置不同的传输速率和带宽;3. 测试不同调制方式下的误码率,并记录实验数据;4. 分析误码率与信噪比之间的关系,探究不同调制方式对传输性能的影响。

四、实验结果与分析通过实验,我们得到了一系列的数据,并进行了分析。

我们发现,随着信噪比的增加,误码率逐渐减小,传输性能逐渐提高。

同时,不同调制方式对传输性能也有一定的影响。

例如,ASK调制方式在低信噪比下误码率较高,而PSK调制方式在高信噪比下误码率较低。

五、实验总结通过本次实验,我们对数字基带传输系统有了更深入的了解。

我们了解了数字基带传输系统的基本原理和结构,研究了数字信号的传输特性和误码率与信噪比之间的关系。

同时,我们也探究了不同调制方式对传输性能的影响。

通过实验,我们对数字基带传输系统的应用和优化提供了一定的参考。

六、实验存在的问题与改进方向在本次实验中,我们发现了一些问题,如实验数据的采集和分析方法可以进一步改进,实验中的噪声模型也可以更加精确。

北京邮电大学通信原理硬件实验报告

北京邮电大学通信原理硬件实验报告

北京邮电大学实验报告题目:基于SYSTEMVIEW通信原理实验报告班级:2011211127专业:信息工程姓名:成绩:实验三简单基带传输系统一、实验目的和要求目的:熟悉系统仿真软件systemview,掌握观察系统时域波形,特别是眼图的操作方法。

要求:自己构建一个简单的基带传输系统,进行系统性能的测试。

二、实验原理和内容实验内容:构造一个简单示意性基带传输系统。

以双极性 PN码发生器模拟一个数据信源,码速率为100bit/s,低通型信道噪声为加性高斯噪声(标准差=0.3v)。

要求:1.观测接收输入和滤波输出的时域波形;2.观测接收滤波器输出的眼图。

实验原理:简单的基带传输系统原理框图如下,该系统并不是无码间干扰设计的,为使基带信号能量更为集中,形成滤波器采用高斯滤波器。

系统框图三、主要仪器设备计算机、SystemView仿真软件四、实验步骤与操作方法第1步:进入SystemView系统视窗,设置“时间窗”参数:①运行时间:Start Time: 0秒; Stop Time: 0.5秒;②采样频率:Sample Rate:10000Hz。

第2步:调用图符块创建仿真分析系统,各模块参数如下:第3步:单击运行按钮,运算结束后按“分析窗”按钮,进入分析窗后,单击“绘制新图”按钮,分别显示出“PN码输出”、“信道输入”、“信道输出”和“判决比较输出”时域波形;第4步:观察信源 PN码和波形形成输出的功率谱;第5步:观察信道输入和输出信号眼图。

四、实验数据记录和处理1)运行实验软件,创建系统仿真电路如下图:2)搭建好系统后,运行后绘制得到的“PN码输出”、“信道输入”、“信道输出”和“判决比较输出”时域波形如下:信道输入判决比较输出通过比较可以看出,PN序列经过这样简单的基带传输系统后信号能够重建,在接收端获得了与发送端相同的信号,只是存在一定得延时,这与信号传输需要时间有关,该系统设计是合理成功的;发送序列经过成形滤波器后变为适合信道传输的波形,其实质是去掉信号中高品分量;信道的模拟为加性高斯白噪声信道,噪声与信号叠加,使输出产生错误,同时可能产生码间干扰;信道输出的信号经过抽样保持,最终判决恢复原信号。

北京邮电大学简单基带传输系统分析实验报告

北京邮电大学简单基带传输系统分析实验报告

北京邮电大学实验报告题目:简单基带传输系统分析学号:班级:学院:姓名:一、实验目的1. 结合实践,加强对数字基带通信系统原理和分析方法的掌握;2. 掌握系统时域波形分析、功率谱分析和眼图分析的方法;3. 进一步熟悉systemview 软件的使用,掌握主要操作步骤。

二、实验内容构造一个简单示意性基带传输系统。

以双极性PN 码发生器模拟一个数据信源,码速率为100bit/s ,低通型信道中的噪声为加性高斯噪声(标准差=0.3v )。

要求: 1.观测接收输入和低通滤波器输出的时域波形; 2.观测接收滤波器输出的眼图; 3.观测接收输入和滤波输出的功率谱;4.比较原基带信号波形和判决恢复的基带信号波形。

三、实验原理简单的基带传输系统原理框图如下图所示,该系统并不是无码间干扰设计的,为使基带信号能量更为集中,形成滤波器采用高斯滤波器。

四、实验仿真电路图简单基带传输系统组成框图五、实验结果和分析1.信源的PN码输出波形2.经高斯脉冲形成滤波器后的码序列波形3.滤波器输入端信号波形4.抽样判决器输出端恢复的基带信号波形5.对输入端PN码波形和输出端恢复的波形的区别的分析.对比两幅图可以看到,PN码经过实验仿真图所示的基带传输系统之后,经过抽样判决可以很好的恢复出源信号,从实验所得图中几乎找不到出现误码率的码元。

但是恢复波形相对于原波形产生了一定的延时,对此个人理解为系统自身由于非线性器件以及随参信道存在的多径效应都会产生延时。

严重的时候会产生码间串扰。

6. PN码和经高斯脉冲形成滤波器后的码的功率谱图及其分析。

下图为PN码的功率谱图.从PN码的功率谱图可以看到它包含连续谱, 功率分布比较宽,可以知道带宽比较宽,通过高斯滤波器后,功率分布集中在低频部分, 基带信号能量更为集中,限制了带宽,利于在高斯低通型信道中传输.7. 信道输入端信号和信号输出端信号的眼图及其分析。

上图为输入信号的眼图,从上图可以发现输入信号的眼图既清晰又大,显然不存在码间串扰,也可以看出PN码是双极性的。

数字基带传输技术实验报告

数字基带传输技术实验报告

实验报告课程名称通信原理实验名称实验一:数字基带传输技术班级学号姓名指导教师实验完成时间: 2014年 10 月 28 日一、熟悉实验平台二、数字基带传输系统实验1. 实验目的1.了解几种常用的数字基带信号。

2.掌握常用的数字基带出书码型的编码规则。

3.掌握CPLD实现码型变换的方法。

2.实验内容1.观察NRZ码,RZ码,AMI码,HDB3码,CMI码,BPH码的波形。

2.观察全0码或全1码时各码型的波形。

3.观察HDB3,AMI码的正负极性波形。

4.观察AMI码,HDB3码,CMI码,BPH码经过码型反变换后的输出波形。

5.自行设计码型变换电路,下载并观察波形。

3.实验仪器各功能模块(实验箱)20M双踪示波器一台频率计(可选)一台连接线若干2.实验原理二进制码元的数字基带传输系统参考使用模块:信号源模块、码型变换模块、信道模拟模块、终端模块。

该通信系统的框图如图1所示。

图1 二进制码元的数字基带传输系统该结构由信道信号形成器、信道、接收滤波器以及抽样判决器组成。

这里信道信号形成器用来产生适合于信道传输的基带信号,信道可以是允许基带信号通过的媒质(例如能够通过从直流至高频的有线线路等);接收滤波器用来接收信号和尽可能排除信道噪声和其他干扰;抽样判决器则是在噪声背景下用来判定与再生基带信号。

基带信号是代码的一种电表示形式。

在实际的基带传输系统中,并不是所有的基带电波形都能在信道中传输。

例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变。

单极性基带波形就是一个典型例子。

再例如,一般基带传输系统都从接收到的基带信号流中提取定时信号,而收定时信号又依赖于代码的码型,如果代码出现长时间的连“0”符号,则基带信号可能会长时间出现0电位,而使收定时恢复系统难以保证收定时信号的准确性。

归纳起来,对传输用的基带信号的主要要求有两点:(1)对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;(2)对所选码型的电波形要求,期望电波形适宜于在信道中传输。

数字基带传输系统--通信原理实验报告

数字基带传输系统--通信原理实验报告

实验3 数字基带传输系统一、实验目的1、掌握数字基带传输系统的误码率计算;2、熟悉升余弦传输特性的时域响应特征,观察不同信噪比下的眼图。

二、实验内容1、误码率的计算:画出A/σ和误码率之间的性能曲线;2、眼图的生成①基带信号采用矩形脉冲波形(选做)②基带信号采用滚降频谱特性的波形(必做)3、仿真码间干扰对误码率的影响(选做)三、实验步骤及结果1、误码率的计算10个二进制信息数据,采用双极性码,映射为±A。

随机产生高斯噪声(要求A/σ为0~随机产生612dB),叠加在发送信号上,直接按判决规则进行判决,然后与原始数据进行比较,统计出错的数据量,与发送数据量相除得到误码率。

画出A/σ和误码率之间的性能曲线,并与理论误码率曲线相比较。

(保存为图3-1)注意:信噪比单位为dB,计算噪声功率时需要换算。

Snr_A_sigma = 10.^(Snr_A_sigma_dB/20);1代码:clear all; clc;close all;A = 1;%定义信号幅度N = 10 ^ 6;%数据点数;a=A*sign(randn(1,N));Snr_A_sigma_dB = 0:12;Snr_A_sigma = 10 .^ (Snr_A_sigma_dB/20);sigma = A./Snr_A_sigma;ber = zeros(size(sigma));for n = 1 : length(sigma)rk = a + sigma(n) * randn(1, N);dec_a = sign(rk);ber(n) = length(find(dec_a~=a)) / N;endber_Theory = 1/2* erfc(sqrt(Snr_A_sigma.^2/2));semilogy(Snr_A_sigma_dB, ber, 'b-', Snr_A_sigma_dB, ber_Theory, 'k-*'); grid on;xlabel('A/\sigma'); ylabel('ber');legend('ber', 'ber\_Theory');title(' A/σ和误码率之间的性能曲线');2.绘制的图2、绘制眼图①设二进制数字基带信号{}1,1n a ∈-,波形()1,00,s t T g t ≤<⎧=⎨⎩其他,分别通过带宽为()15/4s B T =和()11/2s B T =两个低通滤波器,画出输出信号的眼图(保存为图3-2),并画出两个滤波器的频率响应。

数字基带传输 实验报告

数字基带传输 实验报告

数字基带传输实验报告数字基带传输实验报告1. 引言数字基带传输是现代通信系统中的重要组成部分,它负责将数字信号转换为模拟信号,以便在传输过程中进行传输。

本实验旨在通过搭建数字基带传输系统的实验平台,探索数字信号的传输特性和相关参数的测量方法。

2. 实验设备和方法实验所使用的设备包括信号发生器、示波器、传输线等。

首先,我们将信号发生器的输出连接到传输线的输入端,然后将传输线的输出端连接到示波器,以便观察信号的传输效果。

在实验过程中,我们会改变信号发生器的输出频率和幅度,以研究其对传输信号的影响。

3. 实验结果与分析通过实验观察和数据记录,我们发现信号发生器的输出频率对传输信号的带宽有着直接的影响。

当信号发生器的输出频率增加时,传输信号的带宽也随之增加。

这是因为高频信号具有更多的频率成分,需要更大的带宽来进行传输。

此外,我们还观察到信号发生器的输出幅度对传输信号的幅度衰减有着重要的影响。

当信号发生器的输出幅度增加时,传输信号的幅度衰减也随之增加。

这是因为高幅度信号在传输过程中容易受到噪声和衰减的影响。

4. 数字信号的传输特性数字信号的传输特性是指信号在传输过程中的失真情况。

在实验中,我们观察到信号的失真主要表现为幅度衰减和相位偏移。

幅度衰减是指信号在传输过程中幅度减小的现象,而相位偏移是指信号在传输过程中相位发生变化的现象。

这些失真现象会导致信号的质量下降,从而影响通信系统的性能。

5. 数字信号的传输参数测量在实验中,我们还对数字信号的传输参数进行了测量。

其中,最重要的参数是信号的带宽和信号的衰减。

带宽的测量可以通过观察传输信号在示波器上的频谱来进行,而衰减的测量可以通过比较信号发生器的输出幅度和传输信号的接收幅度来进行。

通过测量这些参数,我们可以评估数字基带传输系统的性能,并进行相应的优化。

6. 结论通过本实验,我们深入了解了数字基带传输的原理和特性。

我们发现信号的频率和幅度对传输信号的带宽和幅度衰减有着直接的影响。

数字基带传输系统实验(可编辑修改word版)

数字基带传输系统实验(可编辑修改word版)

接收滤波器 均衡器 4取样判决实验三数字基带传输系统实验一. 实验目的:1. 了解数字基带传输系统的组成和实时工作过程;2. 加深理解时域均衡系统的工作原理,基本特点及均衡器的主要作用;3. 学会按给定的均衡准则调整,观测均衡器的方法。

二. 实验内容:1. 在数字基带信号为单脉冲波形 —“测试信号”时, 按“迫零调整准则” ,手动调整均衡器的各抽头系数,获得最佳均衡效果;2. 在数字基带信号为伪随机序列 —“信码”时,按“眼图最大准则” ,手动调整均衡器的各抽头系数,获得最佳均衡效果;3. 改变信道特性后,重复 1,2 两内容。

三. 实验仪器:1. COS5020 型双踪示波器一台;2. 双路稳压电源一部;3. 数字基带传输实验系统一套。

四. 实验组成框图和电路原理图:可变手调图 1数字基带传输系统的组成框图数字基带传输系统的组成框图如图 1 所示,它是一个较完整的数字基带传输系统。

信号源产生 19.2 KHz 的基带信号时钟,经过乘 4 之后,提供均衡器所需的两信号源时 钟K测试信号 信 码信 道个互补驱动时钟 76.8 KHz 。

显然本实验系统的基带速率为 19.2 Kbit/s 。

测试信号和信码发生器按 19.2KHz 的时钟节拍,分别产生测试单脉冲波形及 63 位 M 序列,两种码分别作为均衡的对象,通过开关 K 予以选择。

可变信道滤波器是在实验室条件下用来模拟传输信道特性的,改变电位器即可改变滤波器的传输函数特性,进而模拟信道特性的变化。

均衡器是借助横向滤波器实现时域均衡的,它由延迟单元,可变系数电路和相加器三部分组成,如图 2 所示。

均衡入t = 0C -3C -2C-1C 0C 1C 2C 3均衡出图 2 横向滤波器图 2 中,横向排列的延迟单元是由电荷转移器件完成的。

本实验所采用的是国产斗链器件 BBD (Bucret Brrgades Device ),它有 32 个延迟抽头输出端, 因为我们抽样频率为 76.8KHz 是基带信号 19.2 Kbit/s 的 4 倍,故取 6,10,14,18, 22,26,30 等七个抽头输出端。

通信原理II实验报告_ 数字基带传输系统的设计

通信原理II实验报告_ 数字基带传输系统的设计

课程设计报告通信原理II题目:数字基带传输系统的设计学院:信息与通信工程学院专业:通信工程学生姓名:班级:学号:《通信原理II课程设计》任务书目录摘要-----------------------------------------------4 概述-----------------------------------------------5 设计原理-------------------------------------------5 设计过程------------------------------------------11 实验心得体----------------------------------------14 参考文献------------------------------------------14 附录----------------------------------------------14摘要输入:首先输入模拟信号,给出此模拟信号的时域波形。

数字化:将模拟信号进行数字化,得到数字信号,选择PCM编码。

信道编码:实现简单的信道编译码(7,3)循环码信源编码:实现基带码形变换(HDB3码)信道:采用加性高斯信道。

PCM解码:给出解码后的模拟信号的时域波形,并与输入信号进行比较。

系统性能分析:比较在不同调制方式下,该数字频带传输系统的性能指标,即该系统的输出误码率随输入信噪比的变化曲线。

关键词:PCM编码、解码,(7,3)循环码编码、解码,HDB3编码、解码一、概述通信原理II课程设计是《通信原理》课的辅助环节。

它以小型课题方式来加深、扩展通信原理所学知识,课程设计着重体现通信原理教学知识的运用,着重培养学生主动研究的能力。

通过课程设计,主要达到以下目的:⑴使我们增进对通信系统的认识,加深对通信原理知识的理解。

⑵使我们掌握通信系统仿真设计方法。

二、设计原理1、实验要求:(1)实现对给定信号PCM编码(单频正弦信号、模拟音频信号或其他信号):10分;(2)对基带传输系统:实现基带码形变换(HDB3码或密勒码),并正确画出码形变换前后的波形:30分;(3)实现简单的信道编译码(7,3)循环码20分;(4)仿真系统整体运行正常:20分;(5)正确设置信道仿真参数,仿真得出误码曲线,并画出接收信号波形:20分;之间均匀选取5其中系统误码率曲线基本要求为信道条件SNR值在 1.5dB 4.5dB个点进行仿真。

通信原理实验报告2

通信原理实验报告2

数字基带传输实验报告一、 实验目的1、提高独立学习的能力;2、培养发现问题、解决问题和分析问题的能力;3、学习 Matlab 的使用;4、掌握基带数字传输系统的仿真方法;5、熟悉基带传输系统的基本结构;二、 实验原理从消息传输角度看,该系统包括两个重要的变换,即消息与数字基带信号之间的变换;数字基带信号与信道传输信号之间的变换。

在数字通信中,有些场合可以不经过载波调制和解调过程而让基带信号直接进行传 输。

称为基带传输系统。

与之对应,把包括了载波调制和解调过程的传输系统称为频带传 输系统。

无论是基带传输还是频带传输,基带信号处理是必须的组成部分。

因此掌握数字 基带传输的基本理论十分重要,它在数字通信系统中具有普遍意义。

图 1数字通信系统模型1.带限信道的基带系统模型(连续域分析)x(t) y(t)三、实验内容1、如发送滤波器长度为N=31,时域抽样频率F0 为s 4 /T ,滚降系数分别取为0.1、0.5、1,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。

以此发送滤波器构成最佳基带系统,计算并画出接收滤波器的输出信号波形和整个基带系统的频率特性,计算第一零点带宽和第一旁瓣衰减。

close allN=31;n=-15:15;%抽样点数31Ts=4;for alpha=[0.1,0.5,1];Fs=4/Ts;%抽样频率f=n*Fs;z=(n/Ts)+eps;t1=sin(pi*z)./(pi*z);t2=cos(alpha*pi*z);t3=1-4*alpha*alpha*z.*z;h=t1.*t2./(t3);figure;plot(n,h)gridxlabel('Time');ylabel('Amplitude');%时域作图title('发送滤波器时域响应');tmp=fft(h)/Fs;H(1:(N-1)/2)=tmp((N+3)/2:N);H((N+1)/2+1:N)=tmp(2:(N+1)/2); H((N+1)/2)=tmp(1);figure;plot(f,abs(H));%频域作图gridxlabel('Frequency');ylabel('Amplitude');title('发送滤波器频域响应');db=real(20*log10(H/max(H))) end其结果如下:*注:以下实验因为程序子函数太多,故以.m格式压缩打包发过去。

基带传输系统实验报告

基带传输系统实验报告

基带传输系统实验——CMI线路编码通信系统综合实验一、实验原理及电路组成框图为了让学生能比较全面的、牢固的掌握CMI编码的技术,加深了解CMI编码性能和用途,熟悉CMI线路编译码器在一个传输系统中的性能、作用及对相关通信业务的影响,本节实验将音乐和话音信号通过CMI线路编译码模块传输,测量CMI线路编译码器在传输信道有误码的环境下对数据和话音业务的影响。

本实验是在两路PCM时分复的基础上增加了CMI编码和译码模块,实验的系统连接框图如下图一所示。

两路信号在256K时钟控制下完成PCM编码工作,PCM编码统一选择“A律”编码方式。

编码后两路信号在模块8进行复用,模块8的FPGA工作时钟CLK为信号源提供的256K 时钟。

复用后的信号到模块6进行CMI编译码,模块6的拨码开关S1设置为“00100000”CMI编码。

编码之后的结果由DOUT1口输出。

译码时钟由模块7锁相环法位同步提取。

译码后的结果由NRZ-OUT口输出至模块8进行解复用,解复用所需帧同步信号由FPGA内部提供,位同步信号同为模块7锁相环法位同步提取。

解复用输出后到模块2进行PCM译码,译码后的两路信号交换后分别输出至耳机和喇叭。

二、实验前准备工作1、本实验在码型变换实验以及两路PCM时分复用基础上进行,先温习上述实验原理及内容。

2、熟悉本实验的电路原理、开关及各测试点的作用。

三、实验仪器1、L TE-TX-02E通信原理综合实验系统一台2、50MHz双踪示波器一台3、耳麦一副四、实验目的1、熟悉CMI编译码器在基带传输系统中位置及发挥的作用2、了解CMI码对通信系统性能的影响五、实验内容实验前的准备工作:在不加电的情况下,按照原理框图的加粗线连接各模块。

图1准备工作:1、将信号源模块上S4、S5都拨到“0111”,输出时钟信号为256K。

2、2号模块PCM编码方式选择A律。

3、6号模块S1设为“00100000”,进行CMI编译码。

基带传输系统实验报告

基带传输系统实验报告

数字基带传输系统实验名称:数字基带传输系统systemview 仿真 实验条件:systemview 仿真软件破解版,电脑实验原则:力求条理清晰,结构分明,层次紧致,尽量将应有的模块打包放入子系统,方便以后的模块修改,每个模块对其余模块全部是透明的,定义每个模块的需要设置的参数,根据其余模块或者整个系统对参数进行修改,任何一个子系统的控制用时钟信号都必须从外面引入,方便系统的参数设计!对每一个关键的部位加上应有的注释!实验模块:信源子系统,CMI 编码,CMI 译码,位同步子系统,帧同步子系统,帧复用解调模块!实验模块简介:① 信源子系统 : 将多路信号按帧的大小进行复用并加入控制帧,控制帧采用巴克码,方便在解调时对巴克码的识别.本实验中采用的是三路信号的复用,其中一路为巴克码!② CMI 编码: 用可变分频器的实现方法:一般分频器是通过计数器完成,计数器的范围为0~(N -1),这里N 为分频数。

当计数器达到(N -1)是地,对计数器进行复位,进入下一轮计数。

通过改变N 的大小,从而达到可变分频计数的目的。

对于可变计数器的输出,输出占空比为50%的方波信号。

这是通过判决电路实现的:当计数器计数小于N/2时输出为1,其它为0。

③ CMI 译码:根据CMI 码的特点,11与00表示1,用10表示0,这样可以用相邻的两位进行异或就可以得到原编码的的反码,然后取反就是!设计思路就是让相邻的两位异或就可以得到原来的数据!④位同步子系统:位同步子系统是根据相位加减设计的,当同步信息和码元不同步时,可以根据码元与同步信息是否超前或者滞后来决定是采取打开扣除门还是附加门来增加或者减少相位,来达到同步!⑤帧同步子系统:本模块可分为巴克码识别器及同步保护两部分。

巴克码识别器包括移位寄存器、相加器和判决器组成,而其余部分为同步电路保护部分.基带信号里的帧同步码无错误时(七位全对),把位同步信号和数字基带信号输入给移位寄存器,识别器就会有帧同步识别信号输出!⑥时分复用解调子系统:通过帧同步提取同步信息,并通过电路去除同步帧巴克码,然后再位同步信息作为时钟信号的前提下将两路数据信号分离开来,然后通过串并转换将信号转换为并行信号并输出!实验模块详细设计介绍信源子系统电路设计思路帧信息设计详细图时钟信号通过4分频和8分频以及16分频以后形成控制信号,用信号来控制三个8位选择器的选择输出!三个波形如下图所示:可以看出反相之后就可以形成000 001 010 011 100 101 110 111的八个信号选择八位选择器选择输出,八路信号选通输出的周期为8*e-6HZ从而达到了串并转换的目的!选择时钟有时钟信号1的八位组成!所以八位选择器的时钟频率为1/32*e+6HZ!三路信号的输出,从输入的时钟信号是八路选择器选通八路信号的时钟,这样可以保证三选一电路每次选通到下一次选通都可以使八路选择器进入一个新的循环!如上图产生的信号为10,11,00用来选通三路信号,时间刚好是上面加在八选一上面的八倍!当三路信号生成之后再经过一个八路选择器按相关方式选择输出三个信号中的一个,所需要的时钟频率必须为前面所产生的数据信号的长度,及控制时钟频率应该为1/32*e+6HZ!巴克码序列作为帧同步信号加到数据帧的最前面,用来做帧同步信号,本信源子系统中使用的巴克码是111001再在巴克码前面加一位保护码元0一起构成帧同步码元!在上述系统中使用的数据是自定义数据。

实验报告-数字信号基带传输系统的实现

实验报告-数字信号基带传输系统的实现

数字信号基带传输系统————用根升余弦滤波器实现一、实验目的1.熟悉使用System View软件,了解各功能模块的操作和使用方法。

2.通过实验进一步掌握、了解数字基带传输系统的构成及其工作原理。

3.观察数字基带传输系统接受端的眼图,掌握眼图的主要性能指标。

二、实验内容用System View建立一个数字基带传输系统仿真电路,信道中加入高斯白噪声(均值为0,均方差可调),分析理解系统各个模块的功能,并通过观察眼图,判断系统信道中的噪声情况。

三、实验原理(一)数字信号基带传输系统原理通信的根本任务是远距离传递信息,因而如何准确地传输数字信息是数字通信的一个重要组成部分。

在数字传输系统中,其传输对象通常是二进制数字信息,它可能来自计算机、网络或其它数字设备的各种数字代码。

也可能来自数字电话终端的脉冲编码信号,设计数字传输系统的基本考虑是选择一组有限的离散的波形来表示数字信息。

这些离散波形可以是未经调制的不同电平信号,也可以是调制后的信号形式。

由于未经调制的脉冲电信号所占据的频带通常从直流和低频开始。

因而称为数字基带信号。

在某些有线信道中,特别是传输距离不太远的情况下,数字基带信号可以直接传送,我们称之为数字信号的基带传输。

而在另外一些信道,特别是无线信道和光信道中,数字基带信号则必须经过调制,将信号频谱搬移到高频处才能在信道中传输。

我们把这种传输称为数字信号的调制传输(或载波传输)。

如果把调制与解调过程看作是广义信道的一部分,则任何数传输系统均可等效为基带传输系统。

因此掌握数字信号的基带传输原理是十分重要的。

通过SystemView 提供的仿真环境对数字基带传输中的某些问题加以仿真、分析,能帮助我们进一步加深对这些抽象概念的理解,并加深感性认识。

二进制数字基带波形都是矩形波,在画频谱时通常只画出了其中能量最集中的频率范围,但这些基带信号在频域内实际上是无穷延伸的。

如果直接采用矩形脉冲的基带信号作为传输码型,由于实际信道的频带都是有限的,则传输系统接收端所得的信号频谱必定与发送端不同,这就会使接收端数字基带信号的波形失真。

(完整word版)数字基带传输实验实验报告

(完整word版)数字基带传输实验实验报告

实验一数字基带传输实验一、实验目的1提高独立学习的能力;2、 培养发现问题、解决问题和分析问题的能力;3、 学习Matlab 的使用;4、 掌握基带数字传输系统的仿真方法;5、 熟悉基带传输系统的基本结构;6、 掌握带限信道的仿真以及性能分析;7、 通过观测眼图和星座图判断信号的传输质量。

二、实验原理1. 数字通信系统模型数字通信系统模型2 •数字基带系统模型发送滤波器口 f 前俞信道心接受滤56器*'图中各方框功能简述如下: 信道:是允许基带信号通过的媒质, 为均值为零的高斯白噪声。

发送滤波器:用于产生适合信道传输的基带信号波形,若采用匹配滤波器, 则它与接收滤波信源信源编码器信道 编码器数字 调制器数字信源噪声信道信道 译码器数字- 解调器编码信道通常会引起传输波形的失真并且引入噪声, 实验中假设器共同决定传输系统的特性。

接收滤波器:用来接收信号,尽可能滤除信道噪声和其他干扰,使输出波形有利于抽样判决。

若采用非匹配滤波器,则接收滤波器为直通,不影响系统特性。

抽样判决器:在传输特性不理想及噪声背景下,在规定时刻对接收滤波器的输出波形进行抽样判决以恢复或再生基带信号。

位定时提取:用来位定时脉冲依靠同步提取电路从接收信号中提取,其准确与否直接影响判决结果。

传输物理过程简述如下:假设输入符号序列为畑紆,在二进制的情况下,符号.■:的取值为0,1或-1,+1。

为方便分析,我们把这个序列对应的基带信号表示成这个信号是由时间间隔为Tb的单位冲激响应燉:「构成的序列,其每一个懿厂强度则由二决离散域发送信号一一I:.,比特周期,二进制码元周期d〔叹〕=戈曾®哄咲一丛7訂设发送滤波器的传输特性絲敝蠅或伉廳口贝U的何"二爲09評时谢当曲・;•激励发送滤波器时,发送滤波器产生的输出信号为x(0 = d(t) x=略饰逾「課:冷力総=总叫岛欲场強离散域发送滤波器输出:癌礙戦和加綽溢=_ 「- - •- = z. 一 --信道输出信号史匸亠•忒;:}(信道特性为1)离散域信道输出信号或接收滤波器输入信号一一呼;』一心•:>斗疥氏:J険純或喙灣或.血-『」泌门以处加则接收滤波器的输出信号说对「肿"匸心、=:魚-一. .-- --其中.①一匚忌㈡弋门®⑺洱W 离散域接收滤波器的输出信号r (7iT 0) = y(nT D ) * 弘(nT 0)=的蠶:魅树補-曲畤:沁隸吓:辭緒:=:-. ------其中g( 一)=臥心二〕n 船垃J如果位同步理想,则抽样时刻为".■=抽样点数值为_ .=〕一-:判决为 {「一匕J 比较即可得到误码率,分析传输质量。

通信原理概论实验 数字基带传输系统-数字基带信号的码型(一)

通信原理概论实验 数字基带传输系统-数字基带信号的码型(一)

《通信原理概论实验》实验报告班级:学号:姓名:日期:2013年5月7日实验名称:数字基带传输系统—数字基带信号的码型(一)实验目的:(1)使用MATLAB产生各种简单的数字基带信号码型。

(2)通过实验进一步熟悉和掌握各种码型的编码规则。

实验要求:请按照本实验说明的实验内容部分的信息独立完成本实验,并提交实验报告,实验报告请参照实验报告模板的格式。

实验内容:1、编制以下函数,实现将输入的一段二进制代码编为相应的单极性不归零码输出。

参考程序如下:%snrz.mfunction y=snrz(x)%输入x为二进制码,输出y为编好的码t0=200; %每个码元200个点t=0:1/t0:length(x); %时间序列for i=1:length(x) %计算机码元的值if x(i)==1for j=1:t0%如果输入信息为1,码元对应的点值取1y((i-1)*t0+j)=1;end;elsefor j=1:t0%如果输入信息为0,码元对应的点值取0y((i-1)*t0+j)=0;endendendN=length(y);temp=y(N);y=[y,temp];plot(t,y);axis([0,i,-0.1,1.1]);title('单极性不归零码');说明:该函数编制好后,在MATLAB的命令窗口输入:x=[1 1 1 0 1 0 0 1 0 0 0 1 1 0]; %这个二进制序列可以任意修改snrz(x) %执行函数,输出显示对应的码型结果如图所示:2.编制另一个函数,用于产生双极性不归零码。

双极性不归零码的实现同单极性基本一样,只需将snrz.m中判断得到0信息后的语句“y((i-1)*t0+j)=0;”改为“y((i-1)*t0+j)=-1;”。

此外,双极性波形显示的时候,需要将“axis([0,i,-0.1,1.1]);”改为“axis([0,i,-1.1,1.1]);”3.编制以下函数,用于产生单极性归零码。

数字基带通信系统实验报告

数字基带通信系统实验报告

数字基带通信系统实验报告摘要本实验旨在通过搭建数字基带通信系统的实际硬件实验平台,理解和掌握数字基带通信系统的基本原理和实现方法。

通过实验,我们验证了数字基带通信系统的性能,并对系统中的关键参数进行了优化和调整。

本文详细介绍了实验平台的搭建过程、系统参数的调整,以及实验结果的分析和讨论。

1. 引言数字基带通信系统是现代通信系统中的关键组成部分,它是将原始信号进行数字化处理后通过传输介质进行传递的系统。

数字基带通信系统在无线通信、光纤通信等领域具有广泛的应用。

本实验通过搭建数字基带通信系统的实际硬件平台,对系统进行调试和优化,以提高系统的性能和可靠性。

2. 实验平台搭建本实验使用了一套数字基带通信系统的实际硬件平台。

平台包括了发送端和接收端两个部分。

发送端包括信号源、调制器和DAC(数字-模拟转换器),接收端包括ADC(模拟-数字转换器)、解调器和信号检测器。

信号源产生了原始信号,经过调制器和DAC转换为模拟信号后送入传输介质。

接收端接收到模拟信号后,经过ADC转换为数字信号,再经过解调器解调和信号检测器进行信号恢复。

实验平台的搭建过程如下:1.将信号源与调制器相连,调制器与DAC相连,形成发送端。

2.将传输介质与DAC相连,传输介质与ADC相连,ADC与解调器相连,解调器与信号检测器相连,形成接收端。

3.通过相关的接口和电缆连接发送端和接收端。

4.系统参数调整在搭建好实验平台后,我们进行了一系列的参数调整和优化,以提高系统的性能。

具体包括以下几个方面的调整:1.信号源的频率和幅度调整:根据实际需求,调整信号源的频率和幅度,以适应不同的通信场景和条件。

2.调制器的调整:根据传输介质和系统要求,选择合适的调制方式,调整调制器的参数,以提高系统的传输效率和可靠性。

3.DAC和ADC的采样率和分辨率调整:根据信号源的频率和系统要求,选择合适的采样率和分辨率,以保证信号的准确传输和恢复。

4.解调器和信号检测器的参数调整:根据传输介质和调制方式,调整解调器和信号检测器的参数,以提高系统的解调和信号恢复能力。

通信原理_数字基带传输实验报告

通信原理_数字基带传输实验报告

基带传输系统实验报告一、实验目的1、提高独立学习的能力;2、培养发现问题、解决问题和分析问题的能力;3、学习matlab的使用;4、掌握基带数字传输系统的仿真方法;5、熟悉基带传输系统的基本结构;6、掌握带限信道的仿真以及性能分析;7、通过观察眼图和星座图判断信号的传输质量。

二、实验原理在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。

基带传输系统方框图如下:基带脉冲输入噪声基带传输系统模型如下:各方框的功能如下:(1)信道信号形成器(发送滤波器):产生适合于信道传输的基带信号波形。

因为其输入一般是经过码型编码器产生的传输码,相应的基本波形通常是矩形脉冲,其频谱很宽,不利于传输。

发送滤波器用于压缩输入信号频带,把传输码变换成适宜于信道传输的基带信号波形。

(2)信道:是基带信号传输的媒介,通常为有限信道,如双绞线、同轴电缆等。

信道的传输特性一般不满足无失真传输条件,因此会引起传输波形的失真。

另外信道还会引入噪声n(t),一般认为它是均值为零的高斯白噪声。

信道信号形成器信道接收滤波器抽样判决器同步提取基带脉冲(3)接收滤波器:接受信号,尽可能滤除信道噪声和其他干扰,对信道特性进行均衡,使输出的基带波形有利于抽样判决。

(4)抽样判决器:在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。

(5)定时脉冲和同步提取:用来抽样的位定时脉冲依靠同步提取电路从接收信号中提取。

三、实验内容1采用窗函数法和频率抽样法设计线性相位的升余弦滚讲的基带系统(不调用滤波器设计函数,自己编写程序)设滤波器长度为 N=31,时域抽样频率错误!未找到引用源。

o为 4 /Ts,滚降系数分别取为 0.1、0.5、1,(1)如果采用非匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。

数字基带通信系统实验报告

数字基带通信系统实验报告

数字基带通信系统实验报告数字基带通信系统实验报告导言:数字基带通信系统是现代通信领域的重要研究方向之一。

它利用数字信号处理技术将模拟信号转换为数字信号,并通过信道传输,实现高效的信息传递。

本实验旨在通过搭建数字基带通信系统的实验平台,深入了解数字基带通信系统的工作原理和性能特点。

一、实验目的本实验的主要目的是通过搭建数字基带通信系统的实验平台,实现以下几个方面的目标:1. 掌握数字基带通信系统的基本原理和工作流程;2. 了解数字信号的产生和处理方法;3. 学习调制和解调技术在数字基带通信系统中的应用;4. 理解信道编码和纠错编码在通信系统中的作用;5. 实验验证数字基带通信系统的性能指标。

二、实验原理数字基带通信系统主要包括信号产生、调制、传输、解调和信号恢复等环节。

在信号产生阶段,通过数字信号处理器(DSP)生成模拟信号的数字表示;在调制阶段,将数字信号转换为模拟信号,并通过信道传输;在解调阶段,将接收到的模拟信号转换为数字信号;在信号恢复阶段,通过数字信号处理器对接收到的数字信号进行处理,以恢复原始信号。

三、实验步骤1. 搭建实验平台:将数字信号处理器与模拟信号处理器连接,构建数字基带通信系统实验平台。

2. 信号产生:通过数字信号处理器生成模拟信号的数字表示,包括语音信号、图像信号等。

3. 调制:将数字信号转换为模拟信号,常用的调制方式有幅移键控(ASK)、频移键控(FSK)和相移键控(PSK)等。

4. 传输:将调制后的模拟信号通过信道传输,可以选择有线传输或者无线传输方式。

5. 解调:接收到传输的模拟信号后,将其转换为数字信号,与调制前的数字信号进行比较。

6. 信号恢复:通过数字信号处理器对接收到的数字信号进行处理,以恢复原始信号。

7. 性能指标测量:对实验平台进行性能指标测量,包括误码率、信噪比等。

四、实验结果与分析通过搭建实验平台,我们成功实现了数字基带通信系统的各个环节。

在信号产生阶段,我们通过数字信号处理器生成了不同类型的模拟信号的数字表示,包括语音信号和图像信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年小学期电路综合实验
——数字基带传输系统
学院:信息与通信工程学院
班级:
学号:
序号:
姓名:
复杂:采样判决
一、实验目的
(1)理解数字语音传输系统的原理和构成,以及各个功能模块的功能和实现原理。

(2)掌握FPGA的设计流程和设计方法,熟练掌握应用软件Quartus II和Modelsim的使用。

(3)学习并掌握FPGA的自顶向下的设计思想,并熟练使用VHDL语言编程设计芯片。

(4)学会借助Matlab仿真系统进行系统各项性能的验证。

(5)锻炼自身调试硬件电路板的能力,培养独立解决问题的能力。

二、实验内容与实验原理
主要完成对接收到的信号进行采样,并对采样值进行判决。

在这次仿真设计中,噪声是当输入信号过来之后才加上的,故采样时刻取第一个非零值到来的时刻,此后每隔一定时间进行一次抽样。

抽样后就进行判决,发送信号是采用双极性码,最佳的判决准则是;如果采样值大于零,则判为+1,对应单极性码的0,
如果采样值小于零,则判为-1,对应1。

由图2-17所示的接收信号的眼图也可以看出,判决的最佳门限为零,和理论值相同。

采样判决模块的Modelsim仿真的参考结果如图2-17:
图2-17 采样判决模块的Modelsim仿真结果
其中din是输入的34bit的信号,dout是判决输出的信号,clk是总时钟,clk_5是采样时钟,这个时钟在第一个采样点确定后才开始产生,并且频率是总时钟的五分之一,从仿真图中看出红线消失的地方就是开始采样的时刻,并且以后每五个时钟采一次样。

三、实验设计
以下为一个模5的加法计数器。

因为滤波器要插零,所以需要一个加法器来实现对应的采样周期。

其中clear为复位清零。

b为输出端。

architecture count of cypj is
signal b_temp:std_logic_vector(2 downto 0):="000";
signal c:std_logic:='0';
begin
p1:process(clk)
begin
if(c='1')then
if(clk'event and clk='1')then
if clear='0'then
b_temp<="000";
elsif b_temp="100"then
b_temp<="000";
else
b_temp<=b_temp+1;
end if;
b<=b_temp;
end if;
end if;
end process p1;
为使程序在遇到第一个非零值时才执行后续操作所以还应设计p2如下:p2:process(clk)
begin
if(c='0')then
if(a="00000000000000000000000000000000")then
c<='0';
else
c<='1';
end if;
end if;
end process p2;
判决:当前面条件满足后,如输入a为正,则使输出赋为1,如a为负,则输出赋为0
p3:process(b)
begin
if(c='1')then
if(b="100")then
if(a(31)='1')then
x<="0001";
elsif(a(31)='0')then
x<="0000";
end if;
end if;
end if;
end process p3;
end count;
四、仿真结果
五、实验中的问题及解决
本次实验遇到了很多的问题,首先是对实验目的的不明确。

因为整个实验包含着4各组员不同的部分,所以一开始比较混乱。

后面经过老师的解释,终于明确了实验的方向。

其次是实验编程过程中对vhdl语言的不理解。

经过很多岔路而后看了很多相关语言的书籍后终于有了一点感觉和头绪。

因为vhdl的格式与语法与以往学过的语言也有不同,所以花费了挺长的时间来适应。

最后面是关于仿真知识的理解的不透彻。

对于modelsim的使用方不熟悉。

后面渐渐熟悉后才开始上手六、实验总结
经过此次试验渐渐熟悉了fpga的设计流程和设计方法,并相应的熟悉了quartus2和modelsim等软件。

锻炼了自己的编程能力以及团队协作能力。

尤其是当遇到困难时千方百计找方法解决,找同学互相帮助的过程,这将会对我的以后的编程以及学习甚至以后的人生都会有很大的帮助。

相关文档
最新文档