第四章 抽样及抽样分布

合集下载

统计学抽样与抽样分布ppt课件

统计学抽样与抽样分布ppt课件
4. 在大规模的抽样调查中,经常被采用的方法
精选
21
概率抽样(小结)
精选
22
非概率抽样
n也叫非随机抽样,是指从研究目的出发,根据调查者的 经验或判断,从总体中有意识地抽取若干单位构成样本。 n重点调查、典型调查、配额抽样(是按照一定标准或一 定条件分配样本单位数量,然后由调查者在规定的数额内 主观地抽取样本)、方便抽样(指调查者按其方便任意选 取样本。如商场柜台售货员拿着厂家的调查表对顾客的调 查)等就属于非随机抽样。 n优点:及时了解总体大致情况,总结经验教训,在进行 大规模抽样调查之前的试点。 n缺点:非随机抽样容易产生倾向性误差,并且误差不能 计算和控制 ,也就无法说明调查结果的可靠程度。
4. 特别是在标志值相差悬殊时,由于划分了类型,一
方面缩小了组内方差,另一方面也保证各组都能抽 取一定的样本单位,所以,分层抽样较之纯随机抽 样可以提高样本的代表性,能获得更为满意的效果
精选
16
分层抽样
(stratified sampling)续
Ü 优点:
Ü 除了可以对总体进行估计外,还可以对各层的子总 体进行估计
精选
23
概率抽样与非概率抽样
概率抽样
抽样类型
非概率抽样
简单随机抽样 分层随机抽样 整群抽样 系统抽样 多阶段抽样
方便抽样 判断抽样
其他非概率抽样
精选
24
重复抽样与非重复抽样
n重复抽样,又称回置抽样,是指从总体的N个
单位中,每次抽取一个单位后,再将其放回总 体中参加下一次抽选,连续抽n次,即得到一 个样本。
n重复:42=16个。它们是
n
AA AB AC AD; BA BB BC BD
n

教育与心理统计学 第四章 抽样理论与参数估计考研笔记-精品

教育与心理统计学  第四章 抽样理论与参数估计考研笔记-精品

第四章抽样理论与参数估计第一节抽样理论的基本知识分层抽样,又叫分层随机抽样,这种抽样方法是按照总体已有的某些特征,承认总体中已有的差异,按差异将总体分为几个不同的部分,每一部分称为一个层,在每一个层中实行简单随机抽样。

它充分利用了总体的已知信息,因而是一种非常适用的抽样方法,其样本代表性及推论的精确性一般优于简单随机抽样。

分层的原则是层与层之间的变异越大越好,各层内的变异要小。

试述分层抽样的原则和方法?分层抽样是按照总体上已有的某些特征,将总体分成几个不同部分,在分别在每一部分中随机抽样。

分层的总的原则是:各层内的变异要小,而层与层之间的变异越大越好。

在具体操作中,没有一成不变的标准,研究人员可根据研究需要依照多个分层标准,视具体情况而定。

⑷两阶段随机抽样两阶段随机抽样首先将总体分成M个部分,每一部分叫做一个"集团"(或"群"),第一步从M个集团中随机抽取m个"集团”作为第一阶段样本,第二步是分别从所选取的m个"集团”中抽取个体(g构成第二阶段样本。

一般而言,两阶段抽样相对于简单随机抽样,标准误要大些,但是,两阶段抽样简便易行,节省经草贼,因而它是大规模调查研究中常被使用的抽样方法。

例如,如果我们要了解全国城市初中二年级学生的身高,第一步我们可以从全国几百个城市中随机抽取几十个城市作为第一阶段的样本。

第二步,在第一阶段随机抽取出来的城市中再随机抽取初中二年级的学生。

(二)非旃抽样非概率抽样不是完全按随机原则选取样本,有方便抽样、判断抽样。

方便抽样是由调查人员自由、方便地选择被调查者的非随机选样。

判断抽样是通过某些条件过滤,然后选择某些被调查者参与调查的抽样法。

当采取非概率抽样的方法选取样本时,研究者要说明采用此种方取样的原因以及对研究结果可能造成的影响。

第二节抽样分布[统计量分布、基本随机变量函数的分布]总体:又称母全体、全域,指具有某种特征的一类事物的全体。

第四章 抽样

第四章 抽样
第四章 抽 样
主讲人: 张建鹏 要内容
一、抽样的意义与作用 二、概率抽样的原理与程序 三、概率抽样方法 四、非概率抽样方法 五、样本规模与抽样误差
2
一、抽样的意义与作用
1. 相关概念 (1). 总体(population):构成它的所有元素的集合 N 表示。元素则是构成总体的基本的单元。 如:海医学生新闻获得方式调查 某市居民家庭生活状况 (2). 样本(sample):从总体中按一定方式抽取的一部 分元素的集合。用n表示 如:从海医1万名学生中,按一定方式抽取300人进行 调查,这300人构成该总体的一个样本。
28
分层(最佳)抽样法
定义:又称非比例抽样法,根据各层样本标准差 的大小确定各层的样本数目的方法。 计算公式为:
ni = n * ( N i Si / ∑ N i Si )
(1)
式中:ni ----- 各类型应抽选的样本单位数 n ----- 样本单位数 Ni ----- 各类型的调查单位数 Si ----- 各类型调查单位数的样本标准差
14
抽样设计的五个步骤 1)定义目标总体 (如上述案例中正在上学的 年龄在8-17岁的年轻人) 2)制定抽样框 (例如上述案例中的所有县及 县内的城市和城镇) 3)选择一种抽样技术 (如上述案例中的三段 分层概率抽样) 4)实际抽取样本 (样本容量,1000名;执行 抽样过程和对调查员指令) 5)评估样本质量 (如检测样本平均年龄是否 与全国普查数据一致或接近)
33
整群抽样与分层抽样的比较
特征 样本来源 抽样目的 划分原则 整群抽样 一个或几个 不提高成本而提 高抽样效率 分层抽样 所有层 不提高成本而提 高精度
群中的个体异质, 层中个体同质, 群间同质 层间异质

(04)第4章+抽样与抽样分布

(04)第4章+抽样与抽样分布

4-6
统计学
STATISTICS
例题分析
♦ 假定我们刚刚已取了飞机制造所用的铆钉的25个 假定我们刚刚已取了飞机制造所用的铆钉的25个
一组的样本。检测铆钉的抗剪强度,破坏每个铆 钉所需的力是响应变量。对这组样本,可以求得 各种描述性的测量(均值、方差等)。 ♦ 然而,我们的感兴趣的是总体,并不是样本自身。 被测试的铆钉在测试时已被破坏,不能再用在飞 机的制造上,所以我们肯定不能测试所有的铆钉。 我们必须从这组样本或几组这样的样本来决定总 体的某些特性。 ♦ 因此,我们必须设法推断信息,也即基于样本的 观测结果作出总体的推断
(例题分析) 例题分析)
计算出各样本的均值,如下表。 计算出各样本的均值,如下表。并给出样本均 值的抽样分布
4 - 32
样本均值的抽样分布
统计学
STATISTICS
(例题分析) 例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 设一个总体,含有4个元素(个体) 数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4 。总 个个体分别为x 体的均值、 体的均值、方差及分布如下 总体分布
4 - 17
统计学
STATISTICS
分层抽样
分层抽样
统计学
STATISTICS
(stratified sampling) sampling)
♦ 分层抽样:在抽样之前先将总体的单位按 分层抽样:
某种特征或某种规则划分为若干层(类), 然后从不同的层中独立、随机地抽取一定 数量的单位组成一个样本,也称分类抽样 数量的单位组成一个样本,也称分类抽样 sampling) (stratified sampling) ♦ 在分层或分类时,应使层内各单位的差异 尽可能小,而使层与层之间的差异尽可能 大

第四章 抽样调查

第四章   抽样调查

抽样分布原理
(一)基本符号 1.总体 A = {a1 , a2 ,, aN }, A = N . 1.总体 2.从总体中抽取n个对象构成样本,共有k个样 2.从总体中抽取n个对象构成样本,共有k 本,设样本的符号为:
A1 , A2 ,, Ak , k = C , Ai = n, i = 1, 2,, k
本章复习思考题
1,什么叫抽样?从总体中抽样样本需满足哪些 条件? 2,简单随机抽样?机械抽样?抽样调查法的性 质?随机抽样的原则? 3,抽样误差?影响抽样误差大小的因素?抽样 误差与调查误差,系统误差的区别? 4,抽样分布?平均误差?抽样分布原理? 5,教材第三章课后习题P84的第二题,P85的第 ,教材第三章课后习题P84的第二题,P85的第 四题,P86的第六题. 四题,P86的第六题.
(三)问卷设计的原则 (三)问卷设计的原则 题意清楚,明确,易懂;口语化;避免一题两问;避免 诱导;公正客观;逻辑一致性;完整性(问题和备选 答案);不要用否定形式提问;不要直接询问敏感性 问题. (四)问卷的结构 1,四结构说:标题(简明扼要,概括专项调查的主 题);指导语(包括调查的目的和意义;问题及备选 答案的必要解释,调查须知及其他事项说明等;如涉 及需为被调查者保密的内容,需申明予以保密);主 体内容(内容不宜过多,过繁,应根据需要而确定); 结束语(提出几个开放性的问题或让被试提出对本研 究的建设性的意见;表示对被试合作的感谢). 2,六结构说:在四结构说的基础上,加上被调查者的 基本信息;作业证明的记载.
无限总体时, 有限总体时,
σ σx = n
σ N n σx = × N 1 n
对于有限总体,样本容量与总体容量的 比n/N称为抽样比例. n/N称为抽样比例. 一般认为,n/N<0.05时,就可以省略修 一般认为,n/N<0.05时,就可以省略修 正系数.

第四章 抽样技术

第四章 抽样技术

• (五)多阶段抽样
– 含义:multistage sampling-----即先抽大的调 查单元,在大单元中抽小单元,再在小单元 中抽更小的单元。如:我国的城市职工家计 调查,采用三阶段抽样,先城市-基层单位调查户。
第四章 抽样技术
– 应用:在复杂、大规模的市场调查中。
• (六)抽样技术的选用原则
• (四)常用术语
– 1.总体(population)与样本(sample) – 2.总体指标和样本指标
• 总体指标-------反映总体数量特征的指标,有总 体平均数µ,总体比例P, 总体方差 σ 2
第四章 抽样技术
– 样本指标------又称样本估计量或统计量,用 以估计和推断相应总体指标的综合指标,有 样本平均数 x ,样本比例p ,样本方差S2。
第四章 抽样技术
• 成数------分总体成数与样本成数 • 含义------总体中具有某种特征的单位占全部单 位的比例,称总体成数(总体比例) • 如:产品的合格率,市场占有率等。 • 样本成数的抽样分布
– 当从总体中抽出一个容量为n的样本时,样本中具有 某种特征的单位数x服从二项分布,即有x~B(n, π),且 有E(x)=n π V(x)=n π(1- π). – 因而样本比例p=x/n也服从二项分布,且有: – E(p)=E(x/n)= π – V(p)=V(x/n)=1/n π(1- π)
第四章 抽样技术
第四章 抽样技术
第四章 抽样技术
本章要点
• 1.抽样调查的含义、特点与程序; • 2.随机抽样技术的类型及其各自的特点、 方法; • 3.非随机抽样技术的类型及其各自的特 点、方法; • 4.抽样误差的含义及其计算方法 。
第四章 抽样技术

第四篇抽样和分布1(药学)PPT课件

第四篇抽样和分布1(药学)PPT课件
该法要求各层间差异尽可能大,才能得到有较 好代表性的样本,并便于各层间分析比较。
24
4、整群抽样 先将总体分成若干互不重叠部分(称为群),再 从各群中随机抽取某群或几群作为样本。 例:调查某年级学生上网情况
可把每班作为一群,从中随机抽取一班或几班作 为样本。
该法适用于大规模调查,易于组织,节省人 力物力,但误差较大,适于群体差异较小的调 查对象。
8
实例 研究某地区12岁儿童生长发育情 况,总体和个体应为什么? 显然,总体为该地区的全体儿童
个体为每一个儿童。
当然,衡量儿童生长发育情况要通过诸如身高、 体重等数量指标进行,所以对总体的研究实际上 是对该地区的全体儿童的这些指标值概率分布进 行研究。
9
根据研究指标的多少,总体分为 一维总体-研究一项描述指标,常用随机变量X表示; 多维总体-研究多项描述指标,常用随机向量表示,
14
一般地,对有限总体,应采用有放回抽样,对 无限总体(或数量较多),可采用无放回抽样 (近似看作有放回),否则违背独立性。
简单随机抽样具体实施的方法: 抽签法
随机数法
15
三、统计量(Statistic )
样本是对总体的代表和反映,抽样的目的是利用样本值对 总体进行统计推断。
而对总体进行统计推断,常根据需要的不同,利用样本构 造一些包含所需要的多种信息的量,就是关于样本 X1 ,X2 ,…,Xn的一些函数,这些函数统称为统计量。
3
例如,在几何学中要证明“等腰三角形底角相等”, 只须从“等腰”这个前提出发,运用几何公理,一步一 步推出这个结论.这是演绎推理。
而一个习惯于统计思想的人,可能这样推理: 做很多大小形状不一的等腰三角形,实地测量 其底角,看差距如何,根据所得资料看看可否作 出“底角相等”的结论. 这样做就是归纳式的方法.

第四章 抽样

第四章 抽样

• 3.设计抽样方案 • 4.制定抽样框
– 制定抽样框就是依据已经明确界定的总体范围,收集总体中全部抽样单位 的名单,并统一编号。
• 5.实际抽取样本 • 6.样本评估
– 样本评估就是对样本的质量和代表性进行检验,其目的是防止因样本的偏 差过大而导致的失误。
– 实际抽取样本就是在上述几个步骤的基础上,严格按照所选定的抽样方法, 从抽样框中抽取一个个的抽样单位,构成样本。
运用:
• 从侨光分校的7000位学生中,抽取100位学 生进行调查查,以研究学生对学校教学条 件的满意度。之前所做的普查表现出的对 学校教学条件的平均满意度为85%,现通 过抽查统计后的满意度为80%。 • 请说出本次抽查中的总体、样本、抽样元 素、抽样单位、抽样框、参数值、统计值、 抽样误差。
二、抽样的作用
• 分类抽样有着突出的优点: 第一,分类抽样能够克服简单随机抽样的缺 点,适用于总体内个体数目较多,结构较复杂, 内部差异较大的情况。 第二,精确度较高。 第三,便于对不同层面的问题进行探索。 第四,便于分工,使工作效率提高。 分类抽样的缺点是,如何分类通常由人们主 观判定,因此要求调查者具备较高的素质与能力, 并且必须事先对总体各单位的情况有较多的了解, 而它们在实际工作中有时难以完全实现,这就会 影响分类的科学性和精确性。
三、抽样的类型
• 概率抽样 • 非概率抽样
– 根据抽取对象的具体方式,人们把抽样分为许多不同 的类型。总的来说,各种抽样都可以归为概率抽样与 非概率抽样两大类。这是两种有着本质区别的抽样类 型。概率抽样是依据概率论的基本原理,按照随机原 则进行的抽样,因而它能够避免抽样过程中的人为误 差,保证样本的代表性;而非概率抽样则主要是依据 研究者的主观意愿、判断或是否方便等因素来抽取对 象,它不考虑抽样中的等概率原则,因而往往产生较 大的误差,难以保证样本的代表性。 概率抽样与非概率抽样又各自包括了许多具体类 型。分别适用于不同调查对象。联系实际认识概率抽 样的不同类型及其适用性是掌握抽样方法的关键。

第四章 抽样

第四章 抽样
抽样的类型
(1)概率抽样:简单随机抽样、系统抽样、 分层抽样、整群抽样、多段抽样、PPS抽样、 户内抽样 (2)非概率抽样:偶遇抽样、判断抽样、 定额抽样、雪球抽样
二、概率抽样的原理与程序
(一)概率抽样的基本原理 1、总体的同质性与异质性 同质性:如果某个总体中的每一个成员在所有方 面都相同,那么,我们就说这个总体具有完全的 同质性。 否则,就存在不同程度的异质性。 同质性总体不需要抽样。 社会各种总体的异质性决定了严格的概率抽样的 必要性。
(二)系统抽样
3、系统抽样优缺点: <1>优点: ①易于实施,工作量少。 ②样本在总体中分布更为均匀,抽样误差 小于或至多等于简单随机抽样。
(二)系统抽样
<2>系统抽样缺点: ①系统抽样是以总体的随机排列为前提, 如果总体的排列出现有规律分布时,会使 系统抽样产生极大误差。 ②当总体内个体类别之间的数目悬殊过大 时,样本的代表性可能较差。 <3>适用范围:系统抽样最适用于同质性较 高的总体。
人们通常采用下列几组数字
有90%的样本统计值落在u〒1.65SE(样本 平均数的标准差)之间; 有95%的样本统计值落在u〒1.96SE之间; 有98%的样本统计值落在u〒2.33SE之间; 有99%的样本统计值落在u〒2.58SE之间。 其中,百分数表示置信水平,u〒1.65SE等 表示置信区间。
随机数表抽样举例
3、简单随机抽样方法
①当总体元素较少时:常用的办法类似于 抽签,即把总体中每一个单位都编号,将 这些号码写在一张张小纸条上,然后放入 一容器如纸盒、口袋中,搅拌均匀后,从 中任意抽取,直到抽够预定的样本数目。 这样,由抽中的号码所代表的元素组成就 是一个简单随机样本。

抽样及抽样分布

抽样及抽样分布

分层抽样 概念:分层抽样又称类型抽样。首先将总体单
位按某一个标志分层;然后在各层按随机抽样的方 法分别抽出各层的样本。
特点:分层抽样在层内是抽样调查,层间是全面调
查,所以分层时应该尽量让每层内的变异程度小,
而层间的变异程度大。分层抽样的抽样误差较简单 随机抽样小,样本具有很好的代表性。
抽样平均误差的计算公式:
z
(
X 1
X
)
2
( 1
2
)
s2 1
s2 2
n1 n2
渐近服从标准正态分布。
如果: X1 和 X2 是两个非正态总体,当和样本容
量足够大,
z
(
X1
X
2
)
(1
2
)
s2 1
s2 2
n1 n2
渐近服从标准正态分布。
NEXT
二、样本成数及成数差的抽样 分布
成数的概念 样本成数的分布 两个总体样本成数差的分布
,则样本的成数为p n1
n

例如,某工厂生产某种电子元件,某批产品
共10000件,其中不合格品100件原则抽100件,其中
有3件不合格品,则样本的成数为p 3% 。
NEXT
样本成数的分布
用途:推断或估计总体的成数。例如某项改革 方案工人的支持率,产品的正品率等。
假设A、B、C、D、E5位同学的统计学成绩分别为: 80、 86、90、92、96。可计算得总体均值为88.8,总体方 差为29.76。现在随机从中抽容量为2的样本。
重复抽样的所有可能的样本:
样本(AA)(AB)(AC)(AD)(AE)
均值 80 83 85
86 88
样本 (BA)(BB) (BC) (BD)(BE)

4.3抽样分布

4.3抽样分布

(3) X与S2相互独立
(4) X ~ t(n 1)
Sn
已知, 2未知
(5) n ( Xi )2 ~ 2 (n)
i1
已知
LOGO
例1 设总体X 服从正态分布N (12, 2 ), 抽取容量为
25的样本,求样本均值X大于12.5的概率.如果(1)已
知 12;(2)未知,但已知样本方差S2 3.6.
n1 n2


F(n1,
n

2


.
LOGO
4.3.2 正态总体的抽样分布
由于要求具体抽样分布是困难的,有时甚至是不可 能的。正态总体的抽样分布有详尽的研究,本节主要 学习正态总体的抽样分布。
掌握正态分布、 2分布、t分布、F分布的一些结论
对于正态总体抽样分布的学习非常有用. 主要学习单个正态总体的抽样分布以及多个正态总
i1
于是P
10
i1
Xi 2
4
P
1 0.52
10 i1
Xi2
16
查表求02.10(10) 16.由此可得
P
10 i1
Xi
2
4
0.10.
(2) 由题设及定理4.3.2, 9S 2
0.52
10
P i1
(Xi
X )2
1
2.85
P
0.52
10 i1
查表得02.25(9) 11.4,由此可求得
n
n
该定理的证明由正态分布的性质3.1.10可得。
注意:当样本来自非正态总体时,若总体均值为,方差 为 样 本量2(充有分限大且时不,X为近零似)服,从由N中(心, 极)2.限定理可以证明当

四章样本及抽样分布

四章样本及抽样分布

E(X )
1 n
n i 1
E( X i )
D(X )
1 n2
n
2
D(Xi )
i 1
n
X ~ N(, 2 )
n
X ~ N (0, 1) / n
iid
2.若X1,,X n ~ N (, 2 ), 则 (1) X与S 2相互独立; (2) 2
(n 1)S 2
2
~
2 (n 1);
(3)T X ~ t(n 1).
第四 章 样本及抽样分布
引言 run 随机样本 抽样分布
4.1 随机样本 一、总体与样本
1. 总体:研究对象旳全体。 一般指研究对象旳某项数量指标。 构成总体旳元素称为个体。
从本质上讲,总体就是所研究旳随机变量或 随机变量旳分布。
2. 样本:来自总体旳部分个体X1, … ,Xn 假如满足: (1)同分布性: Xi, i=1,…,n与总体同分布. (2)独立性: X1,… ,Xn 相互独立; 则称为容量为n 旳简朴随
P{ 1
1
P{ 1 F
F (n2 , n1)}
} 1
F F1 (n1, n2 )
P{ 1
1 }
得证!
F F1 (n1, n2 )
4.3 正态总体旳抽样分布定理
iid
1.若X1 ,,Xn ~ N(, 2 ), 则U
X / n
~
N(0, 1)
证明:
X
1 n
n i 1
Xi
是n 个独立旳正态随 机变量旳线性组合,故 服从正态分布
i 1
称为自由度为n的 2 分布.
2.2—分布旳密度函数f(y)曲线
f
(y)

统计学第四章抽样与参数估计

统计学第四章抽样与参数估计

疗效评价
通过参数估计和假设检验等方法,评价药物 的疗效和安全性。
案例三:工业生产过程质量控制
抽样检验计划制定
根据产品特性和质量要求,制定合适的抽样 检验计划。
不合格品控制
对不合格品进行统计分析和处理,找出原因 并采取措施加以改进。
过程能力分析
收集生产过程中的质量数据,进行过程能力 分析和参数估计。
抽样作用
通过样本信息推断总体特征,为决策提供依据。
抽样方法分类
随机抽样
按照随机原则从总体中抽取样本,每个个体 被抽中的概率相等。
系统抽样
按照某种规则从总体中抽取样本,如每隔一 定距离或时间抽取一个样本。
分层抽样
将总体分成若干层,然后从各层中随机抽取 样本。
整群抽样
将总体分成若干群,然后随机抽取若干群作 为样本。
05
案例分析:实际场景下抽样 与参数估计问题探讨
案例一:市场调查中消费者满意度测评
01
抽样方法选择
根据市场调查的目的和预算,选 择合适的抽样方法,如简单随机 抽样、分层抽样或整群抽样。
03
数据收集与处理
设计调查问卷,收集消费者满意 度数据,并进行数据清洗和整理

02
样本量确定
综合考虑调查的精度要求、总体 规模、抽样误差等因素,合理确
运用统计学方法进行假设检验和参数估计,验证研究假 设的可靠性。
THANKS
定样本量。
04
参数估计
运用统计学方法,对消费者满意 度进行参数估计,如计算满意度
均值、标准差等。
案例二:医学研究中药物疗效评价
试验设计
采用随机对照试验等方法,确保试验组和对 照组的可比性。
样本量计算

抽样分布

抽样分布

x
/ n
x s/ n
N (0,1)
t=
N ( , )
2
t分布
总体方差未知或样本容量n小于30时,标准离差的分布呈t分布。
四、 t 分布
对于不同的自由度,t分布有不同的曲线。
四、 t 分布
( 1 ) t分布曲线左右对称,围绕平均数μt =0 向两侧递降。 (2)t分布受自由度df=n-1制约,每个df都有一条t分布曲线。 (3)df小,t值离散程度大。 (4)和正态分布相比,t分布的顶端偏低,尾部偏高,自由度
2 s1 F 2 s2
此F值具有s12的自由度df1=n1-1和s22的自由度 df2=n2-1。
六、 F 分布
df1 df1 df2 1 ( ) df1 df 2 2 F 2 2 2 f (F ) df1 df2 df1 df 2 df1 df2 ( ) ( ) (df1 F df2 ) 2 2 2
F分布是随自由度df1和df2进行变化的一组曲线。
F分布的概率累积函数
f (F )

F
0
f ( F )dF
六、F 分布
1
F分布的平均数μF=1 ,F的取值区间为[0,+∝ )
F分布曲线的形状仅决定于df1和df2。在df1=1或2时, 2 F分布曲线呈严重倾斜的反向J型,当df1≧ 3时,转
为左偏曲线。
第四章:统计数的分布——抽样分布
从总体中抽取的样本提供的信息仅是总体的一部分,它不能 提供完全准确的信息,必然存在着一定的误差。 对于样本容量相同的多次随机抽样样本,其统计量是变异的, 且其取值有一定的概率,即样本统计量也是一个随机变量,此 分布规律称为抽样分布(sampling distribution)。

第四章 抽样调查

第四章 抽样调查

p
p1 p
n
0.2 0.8 0.02 400
即:根据样本资料推断全部学生中戴眼镜的学 生所占的比重时,推断的平均误差为2%。
例: :
一批食品罐头共60000桶,随机抽查300桶,发 现有6桶不合格,求合格品率的抽样平均误差?
解: 已知 N 60000 n 300 n1 6
解:
x xf 12600 126件 f 100
s x x 2 f 4144 6.47件
f 1
99
x
s 2 1 n n N
6.472 1 100 0.614件
100 1000
x
通过例题可说明以下几点:
①样本平均数的平均数等于总体平均数。 ②抽样平均数的标准差仅为总体标准差的 1
n
③可通过调整样本单位数来控制抽样平均误差。
例:假定抽样单位数增加 2 倍、0.5倍时, 抽样平均误差怎样变化?
解:抽样单位数增加 2 倍,即为原来的 3 倍
则:
x

3n
1 0.577 3
二、抽样调查的特点
1、 是专门组织的一次性的非全面调查 2、 抽选样本单位遵循随机原则 3、 用样本指标数值去推断总体指标数值 (与重点调查的区别) 4、 抽样误差可计算并控制在一定范围内 (与典型调查的区别)
三、抽样调查的几个基本概念 (一) 全及总体和抽样总体
全及总体 指研究对象的全体。其单位数 (总体) 用N 表示。
即:当根据样本学生的平均体重估计全部学生的平均 体重时,抽样平均误差为1公斤。
例: 某厂生产一种新型灯泡共2000只,随机抽出 400只作耐用时间试验,测试结果平均使用寿 命为4800小时,样本标准差为300小时,求抽 样推断的平均误差?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.抽样误差
2.1 抽样误差
抽样误差是指不包括登记性误差和系统性误差 在内的随机误差,它衡量了抽样估计的精确度。
2.2 与抽样误差有关的三个概念 (1)抽样实际误差:指某一次具体抽样中,样本指标 值与总体参数真实值之间的偏差。 (2)抽样平均误差:是指所有可能的样本指标与总体 指标之间的平均差异程度,即样本估计值的标准差。 (3)抽样极限/允许误差:又称置信区间,是指一定 概率下抽样误差的可能范围,说明样本估计量在总体参 数周围变动的范围,记作Δ。
(2)不对称。但其形态随 n1和n2的 增大而逐渐趋于对称。
• 查F表 表中横向为大方差数据的自由度;纵向为 小方差数据的自由度(横是处理自由度; 纵为误差自由度),将自己计算出来的F值 与查表得到的F表值比较,如果 F < F表 表明两组数据没有显著差异; F ≥ F表 表明两组数据存在显著差异
由表中资料可求出: 样本平均数 x 的平均数 x =36/9=4= 2 2 样本方差 s 的平均数 s 2 =6/9=0.6667= 样本标准差 s 的平均数 s =5.6568/9=0.6285

根据上述计算结果可得: • 样本平均数是总体平均数的无偏估计值; • 样本方差是总体方差的无偏估计值; • 样本标准差不是总体标准差的无偏估计值。
2 1 2 2
它服从自由度分别为 n1 1和n2 1的分布,记为Fn1 1,n2 1
定理:
s / ~ Fn1 1,n2 1 s /
2 1 2 2 2 1 2 2
F分布的取值范围是( 0, ) .
• F分布的密度函数曲线的特点:
(1) F分布的密度曲线是受两 个 自由度df1 n1 1, df2 n2 1的 影响;自由度不同,曲 线的 形状也不同。
s/ n 而是服从自由度为 df n 1的t分布。
u
x x t sx s/ n
式中 x 为样本平均数的标准误, s x 为 X 的估计值。
s
s sx n
• t分布的密度函数曲线的特点:
(1) t分布受自由度 df的制约,每一个自 由度对应一条密度函数 曲线;
(2)关于t 0对称;
为总体方差;
N n N 1 为不重复抽样的修正因子。
5.抽样分布的概念和种类
5.1 概念
抽样分布是样本统计量的概率分布。从一个总体中 随机抽取容量相等的样本,根据样本资料计算某一统 计量所有可能的概率分布,称为这个统计量的抽样分 布。
精确分布/小样本分布:大多数是在正态 分布总体条件下得到的,但应用不广泛
4. 样本平均数的分布 将上述试验所得的9个样本平均数整理成 次数分布表:
样本平均数的分布与其它分布一样,有两个重 要参数,一个是样本平均数的平均数,记作 x 另一个是样本平均数的标准差,记作 X ,
x
X2
f x 36 4 n N 9
( f x) 2 2 2 1 1 362 n ( f x ) (147 ) 0.3333 n N N 9 9 n
6.3 两个样本方差比的分布-F分布
2 从N ( 1 , 12 )和N ( 2 , 2 )两个正态总体中,抽出 含量为n1和n2的样本, 2 分别求它们的方差 s12和s2 。
s12 / 12 s / s 是一个随机变量,在研 究它的分布前,一般先 标准化 2 2 , s2 / 2
因为从原总体中可抽出很多含 量为n的样本,由这些样本算出 的平均数有大有小
由样本平均数x 所有可能值构成的总体 称为样本平均数的抽样总体 , 其平均数和标准差分别 记为 x 和 x。 x 是样本平均数抽样总体 的标 准差,简称为标准误差 ,它表示平均数数值之 间的离散程度。
设有一N=3的近似正态总体,具有变量3,4, 5,根据平均数,方差和标准差的计算公式可 求的 =4, 2=0.6667, =0.8165.现以 n=2作独立的有放回抽样,总共可得 N n = 32 9个样本,其抽样结果列于表:
(3)形状同标准正态曲线 类似。与标准正态曲线 相比, t分布曲线的顶部略低, 两尾部稍高而平。 df越小,这种 趋势越明显。 n 时,t分布与标准正态分布完 全一致。
(4) t分布的平均数和标准差 为t 0, t df /(df 2)
• t分布表怎么查
第一,要知道自己的实验的自由度。 第二,要确定下自己的置信度。 比如置信度在95%,自由度为6的一组数据, 查阅t分布表的时候就是查阅α=0.05(双 侧),n=6的一个数字。
由以上抽样试验,可得出样本平均数分布 有以下基本性质: • 样本平均数分布的平均数等于总体平均数, • 样本平均数分布的方差等于总体方差除以 样本容量。
实际抽样推断中采用的公式
重复简单随机抽样: ( x)
2
n
不重复简单随机抽样: ( x)
Hale Waihona Puke N nn ( N 1)
其中,
2
6.2
2分布
设 x1 , x2 ,, xn 是独立同分布的随机变量,且 每个随机变量都服从标准正态分布,即 x i ~N(0, 1),则随机变量
=
2
2 x i 的分布称为自由度为 n 的 2 分布, i 1
n
记作:
2 n ( ) 2 2 当 n ∞时, 分布趋近于正态分布,即 ( n ) ~N( n ,2 n )。
3. 无偏估计 在统计上,如果所有可能样本的某一统计 数的平均数等于总体的相应参数,则称该 统计数为总体相应参数的无偏估计值。
总体标准差σ已知时的平均数的分布
设有一个总体,总体平 均数为,总体标准差为 ,将此总体称为 原总体 。
现在从原总体中随机抽 取含量为n的样本,样本平均数记 为x。 很明显,样本平均数 x是一个随机变量。
5.2 种类
渐近分布/大样本分布:样本容量无限增 大时统计量的极限分布,可看作是抽样 分布的一种近似
6. 常见的抽样分布
6.1 t分布 前面在计算样本平均数分布概率时,需要总体方差为已 知,或者总体方差未知但样本容量较大,用样本方差估 计总体方差。但实际研究中,经常遇到总体方差未知且 样本容量不大的情况,如果仍用样本方差来估计,此时 x 就不正态分布了, 标准离差
第四章 抽样及抽样分布
1. 抽样及抽样估计的概念 1.1 抽样即抽样调查,是指在总体中选取部分单位组成
样本并收集样本单位的数据资料的过程。在抽样中不 可能获得全部样本,在实践中则是仅抽取一部分样本 或对小的有限总体进行有放回的抽样。
1.2 抽样估计是在抽样调查的基础上,利用样本的数据
资料计算样本指标,以样本特征值对总体特征值做出 具有一定可靠程度的估计和判断。
相关文档
最新文档