一般周期的傅里叶级数
傅里叶级数和函数公式
傅里叶级数和函数公式
傅里叶级数的研究为我们提供了很多关于现代数学的宝贵资源。
它使数学家们可以利用加法、乘法和函数来表达复杂的数学模型。
这篇文章将介绍傅里叶级数和函数公式,包括傅里叶级数的定义,它的特征,以及函数公式。
**傅里叶级数的定义**
傅里叶级数(Fourier series)是一种代表周期性函数的函数和级数。
它可以描述周期性函数的形状和行为,并用简单的正弦和余弦级数来表示它,它的级数形式为:
a_0 + (a_1*sin(x) + b_1*cos(x)) + (a_2*sin(2x) +
b_2*cos(2x)) + ... + (a_n*sin(nx) + b_n*cos(nx))。
其中a_0表示直流分量,a_n和b_n表示振幅和相位移动,n表示频率。
**傅里叶级数的特征**
傅里叶级数具有三个重要的特点:
1.以用来表示任意周期性函数,并且只需要使用一组正弦和余弦函数。
2.度会随着频率的增加而减小,因此低频信号的振幅比高频信号的振幅大得多。
3.个频率成分都有其独特的相位移动。
**函数公式**
函数公式是傅里叶级数的一种更为一般的表示法。
它用函数公式
来表示傅里叶级数,公式为:
A(t) =(a_n*cos(n*ω*t +_n))
其中A(t)表示时域函数,a_n表示振幅,ω表示角频率,t表示时间,θ_n表示相位移动。
**结论**
傅里叶级数和函数公式是一种用来表示周期性函数的数学工具,它们可以有效地表示周期性函数的形状和行为。
傅里叶级数的研究为我们提供了大量的宝贵知识,使得数学家们能够更好地分析和理解复杂的数学模型。
周期函数的傅里叶级数
t
A:脉冲幅度
2 :三角函数公共周期 1
第一步:首先展开为三角形式的傅立叶级数
f(t)是偶函数
T 2 T 2
bn=0
a
0
2 T
2 2 2 A f (t ) dt 2 Adt T T
2 T an T 2T 2
n sin 2A n 2 A T 2 A Sa( n ) f (t ) cos n1tdt sin n n T T T T T
设 f (t ) 是周期为T的函数
a0 f (t ) 2 n 1
an cos n1t bn sin n1t
f ( t )dt
2 a0 T
2 an T 2 bn T
t1
t 1 T
t1
t 1 T
f ( t ) cos n 1 tdt f ( t ) sin n 1 tdt
a0 f (t ) 2 n 1
an cos n1t bn sin n1t
An an bn
2 2
a0 An cos(n1t n ) 2 n 1
an cos n1t bn sin n1t an bn An cos n1t An sin n1t An An An cos(n1t n )
T 2 0
§ 周期信号的傅立叶级数
An
E
11
31
51
4E 25 2
4 T 2E 2 2 an t cos n1tdt (1 ) 0 T T T T T 8E t 1 2 2 2[ sin n1t 0 sin 1tdt] 0 n T n1 1
周期信号的傅里叶级数表
分量e j0t 可表示为
1
0
cos 0t
1 2
(e
j0t
e
j0tபைடு நூலகம்
)
表示为
1
1
2
2
0 0 0
因此,当把周期信号 x(t)表示为傅里叶级数
x(t) ake jk0t时,就可以将 x(t) 表示为 k
a1a0 a1
a3a2
a2 a3
0 0
这样绘出的图
称为频谱图
18
频谱图其实就是将 a随k 频率的分布表示出来,
14
有 x(t) ake jk0t , k 0, 1, 2
k
显然 x(也t)是以
为2周 期的。该级数就是傅里叶级
0
数, 称为a傅k 立叶级数的系数。
这表明用傅里叶级数可以表示连续时间周期信号,
即: 连续时间周期信号可以分解成无数多个复指数谐 波分量。
例1:
x(t)
cos 0t
1 e j0t 2
6
3.1历史的回顾 (A Historical Perspective)
任何科学理论, 科学方法的建立都是经过许多人 不懈的努力而得来的, 其中有争论, 还有人为之献 出了生命。历史的经验告诉我们, 要想在科学的 领域有所建树,必须倾心尽力为之奋斗。今天我 们将要学习的傅立叶分析法,也经历了曲折漫长 的发展过程,刚刚发布这一理论时,有人反对, 也有人认为不可思议。但在今天,这一分析方法 在许多领域已发挥了巨大的作用。
即: x(t) akeskt
k
同理: x(n)
ak
Z
n k
k
y(t) ak H (sk )eskt
k
一般周期的傅里叶级数
2, 1 x 0,
f
(
x)
x3
,
0 x 1,
3 则f (x)的Fourier级数在x 1处收敛于____2_____.
解
S(1)
f (1 0) 2
f
(1
0)
2 1 2
3 2
.
说明: 如果 f (x) 为奇函数, 则有 (在 f (x) 的连续点处)
其中 bn
f (x)sin n x d x
0
2
2 x sin n x 2 2 cos n x 2
n
2 n
20
4
n2
2
(1)n
1
f
(x)
x
1
8
2
k 1(2k
1 1) 2
cos
(2k
1) x 2 (0
x
2
)
内容小结
周期为2l 的函数的傅里叶级数展开公式
f (x) a0 2
(x 间断点)
其中
1 l
l
l
f
(x) cos
n
l
x
d
x
1 l
f (x) cos nπx dx l
, n N;
bn
1 l
l
l
f
(
x)
sin
nπx l
dx
或
1 l
2 0
l
f
(x) sin
nπx l
dx
,n Z;
f
(x)
~
a0 2
n1
an
cos
nπ l
x bn
sin
nπ l
x.
Dirichlet定理 设f (x)在[l, l]或[0, 2l](l 0)
傅里叶级数
u(t)的(傅1)里连叶续级或数只收有敛有于限个 E第m 一Em类 间Em 断 (点Em ) 0,
(2)至多只有有限个极值2点
2
当t k时, u(t)的傅里叶级数收敛于u(t).
a0
1
u(t )dt 1
0
( Em )dt
1
0 Emdt
0
1
an
1
u(t)cos ntdt
0
( Em )cos ntdt
2
a0
u(t )dt
0
2
E sintdt
0
2E
[ cos t]0
4E ,ห้องสมุดไป่ตู้
an
2
2
u(t)cos ntdt
0
E sint cos ntdt
0
E
[sin(n 1)t sin(n 1)t]dt
0
(n 1)
E
cos(n 1)t n1
cos(n 1)t n 1 0
[(
bn
1
f ( x)sin nxdx,
(n 1,2,)
傅里叶级数的收敛性
若周期为 2 的函数 f ( x) 可积,则
f
(x)
a0 2
(an cos nx
n1
bn
sin nx)
问题:
a0
2
(an cos nx
n1
bn sin nx)
?
f
(x)
要满足什么条件?
狄利克雷(Dirichlet)充分条件(收敛定理)
三角函数系的正交性
三角函数系
1,cos x,sin x,cos 2x,sin 2x,
cos nx,sin nx,
周期信号的傅里叶级数表
傅里叶级数与复变函数的关系
傅里叶级数可以看作是复数域中的三角函数,即复数域中的正弦和余弦。在复数域中,正弦和余弦函数表现为复指数函数的 形式。
复数的使用使得傅里叶级数的系数可以表示为实数,从而简化了计算。此外,复数的共轭也提供了相位信息,这在信号处理 中非常重要。
傅里叶级数与小波分析的关系
小波分析是傅里叶分析的进一步发展,它提供了更灵活的时频分析工具。小波变 换可以看作是傅里叶变换的一种扩展,它允许我们在不同的频率段使用不同的基 本函数。
三角函数形式
傅里叶级数的另一种表示形式,利用三角函数来表示周期信号。
傅里叶级数的三角函数形式
01
02
03
正弦形式
余弦形式
系数
傅里叶级数的正弦函数形式,用 于表示只包含正弦波的周期信号。
傅里叶级数的余弦函数形式,用 于表示只包含余弦波的周期信号。
在傅里叶级数中,每个正弦或余 弦函数都对应一个系数,表示该 函数在周期信号中的贡献程度。
03
傅里叶级数的性质
傅里叶级数的收敛性
傅里叶级数在数学上具有收敛性,意味着它可以将一个 周期函数表示为无穷级数,每个项都是正弦或余弦函数。
收敛的速度取决于函数的特性,例如,对于具有快速衰 减的周期函数,傅里叶级数收敛得更快。
傅里叶级数的对称性
傅里叶级数的对称性质是指,对于一个周期函数,其傅里叶级数的正弦和余弦项具有对称性。 这意味着,对于一个给定的周期函数,其傅里叶级数的正弦和余弦项的系数是相同的。
周期信号的傅里叶级 数表
目录
• 傅里叶级数简介 • 周期信号的傅里叶级数表示 • 傅里叶级数的性质 • 傅里叶级数的应用实例 • 傅里叶级数与其他数学工具的关系
01
一般周期函数的傅里叶级数
2 k12k 1
2
( x R,x 2m, m 0,1,2, )
a0 E, an 0 (n 1,2, )
二、定义在 [-l , l ]和[ 0, l ]区间上的函数 展成傅里叶级数
1. 将[–l , l ]上的函数展成傅里叶级数
思
周期延拓 F ( x) 傅里叶展开
想
T 2l
y y f (x)
例1 设f ( x) 的周期T 10,且当 5 x 5 时,
f ( x) x,将 f ( x) 展开成傅里叶级数.
y
解 l 5, f ( x) : 奇函数,
an 0 n 0,1,2,
5 o 5
x
bn
2 l
0l
f
xsin nπx d x
l
2 5
05
x
sin
nπx d 5
x
2 nπ
x
l l
l
(n 0,1,2, )
bn
1 l
l F ( x)sin nx d x,
l
l
(n 1,2, )
1 l f ( x)sin nx d x.
l l
l
例3 将f x e x在 π, π 上展成傅里叶级数
解 f ( x)在 π,π上连续,且满足狄利克雷条件.
(周期延拓
傅里叶展开
傅里叶级数之和函数:
S( xm )
f ( xm ) 2
f
(
xm
)
E. 2
l 2,
当x xm 时,f ( x)连续
f
(
x)
S(
x)
a0 2
(an
n1
cos
nx 2l
bn
周期信号傅里叶级数
分析公式 (正变换)
连续时间傅里叶级数对:
称为傅里叶系数或频谱系数
综合公式 (反变换)
3.三角形式傅立叶级数
若 f (t)为实函数,则有 利用这个性质可以将指数Fourier级数表示写为 令 由于C0是实的,所以b0=0,故 由此可以推出:
三角形式傅立叶级数
傅里叶系数 连续时间周期信号三角形式傅立叶级数为:
建议同学多看国外电子与通信教材系列 ,先看翻译版,再看英文硬印版
集成电路版图基础(英文影印版) (4小时出库)
Layout Basics:A Practical Guide
作者: CHRISTOPHER SAINT,JUDY SAINT
市场价: ¥45.00
模拟CMOS集成电路设计(英文影印版) (4小时出库) sign of Analog CMOS Integrated Circuits 作者: (美)BEHZAD RAZAVI 市场价: ¥68.00
四、周期信号的功率谱
周期信号属于功率信号,周期信号f(t)在1欧姆电阻上消耗的平均功率为:
单击此处添加小标题
由下面关系可以推导出,帕什瓦尔(Parseval)功率守恒定理:
单击此处添加小标题
01
02
四、周期信号的功率谱
物理意义:任意周期信号的平均功率等于信号所包含的直流、基波以及各次谐波的平均功率之和。
[解] 周期矩形脉冲的傅立叶系数为
将A=1,T=1/4,=1/20,w0=2p/T=8p 代入上式 功率谱
信号的平均功率为 包含在有效带宽(0~2p/t)内的各谐波平均功率为 周期矩形脉冲信号包含在有效带宽内的各谐波平均功率之和占整个信号平均功率的90%。
求f (t)的功率。
傅里叶级数基础知识
傅里叶级数基础知识傅里叶级数是数学中的一个重要概念,它在信号处理、图像处理、物理学等领域有着广泛的应用。
本文将介绍傅里叶级数的基础知识,包括傅里叶级数的定义、性质以及应用。
一、傅里叶级数的定义傅里叶级数是一种将周期函数表示为正弦函数和余弦函数的无穷级数的方法。
对于一个周期为T的函数f(t),它可以表示为以下形式的级数:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中,a0、an、bn是系数,ω是角频率,n是正整数。
二、傅里叶级数的性质1. 周期函数的傅里叶级数是收敛的,即级数的和可以无限接近于原函数。
2. 傅里叶级数是唯一的,即给定一个周期函数,它的傅里叶级数是唯一确定的。
3. 傅里叶级数具有线性性质,即两个周期函数的线性组合的傅里叶级数等于它们各自的傅里叶级数的线性组合。
4. 傅里叶级数的系数可以通过积分计算得到,具体的计算公式为:an = (2/T) * ∫[0,T] f(t)*cos(nωt) dtbn = (2/T) * ∫[0,T] f(t)*sin(nωt) dt三、傅里叶级数的应用1. 信号处理:傅里叶级数可以将一个信号分解为不同频率的正弦波的叠加,从而实现信号的频域分析和滤波处理。
2. 图像处理:傅里叶级数可以将一个图像分解为不同频率的正弦波的叠加,从而实现图像的频域滤波和压缩等处理。
3. 物理学:傅里叶级数在物理学中有着广泛的应用,例如在波动现象、振动现象、电磁场等方面的研究中都可以使用傅里叶级数进行分析和计算。
四、总结傅里叶级数是一种将周期函数表示为正弦函数和余弦函数的无穷级数的方法。
它具有收敛性、唯一性和线性性质等基本性质,可以通过积分计算得到系数。
傅里叶级数在信号处理、图像处理、物理学等领域有着广泛的应用。
通过傅里叶级数的分析和计算,我们可以更好地理解和处理周期函数的特性,从而在实际应用中发挥作用。
以上就是傅里叶级数的基础知识的介绍。
希望本文能够帮助读者对傅里叶级数有一个初步的了解,并对其在实际应用中的重要性有所认识。
周期信号的傅里叶级数表示
弦波叠加起来,合成复杂的周期信号。
信号分析
02
对于给定的周期信号,可以利用傅里叶级数进行频谱分析,得
到信号中各个频率分量的幅度和相位信息。
频谱特性
03
通过傅里叶级数展开,可以清晰地展示信号在频域上的特性,
如主频、谐波分量等。
信号调制与解调
01 02
调制
在通信系统中,常常需要将低频信号调制到高频载波上进行传输。利用 傅里叶级数,可以将低频信号表示为一系列正弦波的叠加,进而实现调 制过程。
WENKU DESIGN
WENKU DESIGN
2023-2026
END
THANKS
感谢观看
KEEP VIEW
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
PART 01
傅里叶级数基本概念
周期信号与非周期信号
周期信号
具有固定时间周期的信号,即信 号在某个时间周期内重复出现。
非周期信号
不具有固定时间周期的信号,即 信号不会重复出现。
傅里叶级数定义及公式
傅里叶级数定义
将周期信号表示为一系列正弦波和余弦波的叠加,这些正弦波和余弦波具有不 同的频率和幅度。
数值计算与仿真实验
数值计算方法简介
01
离散傅里叶变换 (DFT)
将连续时间信号在时域上进行离 散化,并通过傅里叶变换得到频 域上的离散表示。
02
快速傅里叶变换 (FFT)
利用DFT中冗余计算的特点,采 用分治策略减少计算量,提高计 算效率。
03
迭代法
通过逐步逼近的方式求解傅里叶 系数,如雅可比迭代和高斯-赛 德尔迭代等。
第八节 一般周期的函数的傅里叶级数
6
例2. 把 (1) 正弦级数;
展开成 (2) 余弦级数. 在 x = 2 k 处级 数收敛于何值? 解: (1) 将 f (x) 作奇周期延拓, 则有 y
n x 2 2 dx bn x sin 2 2 0 2 n x 2 x cos n 2 n 4 cos n n
o
T 2 2
x
它的复数形式的傅里叶系数为
1 T c0 2 u( t ) d t T T 2
h T
16
1 T2 u(t ) e T
T 2
i
2 nt T
1 2 d t he T 2
i
2 nt T
dt
h T e T 2 n i
2 n t i T
h n sin n T
n i h 1 i nT 2 T e e n 2 i 2 ( n 1 , 2 , )
1 n i 2 nT t h h n sin T e u( t ) T n
( n 0 , 1 , 2 ,) ( n 1 , 2 , 3 ,)
1 F ( z ) sin nz dz bn
令z
x
l
1 l n x an f ( x ) cos d x ( n 0 , 1 , 2 ,) l l l 1 l n x bn f ( x ) sin d x ( n 1 , 2 , 3 ,) l l l
n0
17
内容小结
1. 周期为2l 的函数的傅里叶级数展开公式 a0 f ( x) 2 (x 间断点) 1 l n x l f ( x ) cos l d x (n 0 ,1,) l 其中 1 l n x f ( x ) sin d x ( n 1 , 2 ,) l l l 当f (x)为奇(偶) 函数时, 为正弦(余弦) 级数. 变换 2. 在任意有限区间上函数的傅里叶展开法 延拓 3. 傅里叶级数的复数形式 利用欧拉公式导出
一般周期的傅里叶级数
FFT具有高效性、稳定性和易于实现 等优点,是数字信号处理领域的重要 算法之一。
FFT广泛应用于语音识别、图像处理 、频谱分析、雷达和声呐信号处理等 领域。
小波变换(Wavelet Transform)
定义
小波变换是一种时频分析方法, 它通过小波基函数的伸缩和平移 来分析信号在不同尺度上的变化 特性。小波变换能够提供信号在 不同频率和时间尺度上的信息, 具有多分辨率分析的特点。
周期函数的傅里叶级数展开可以通过傅里叶变换来实现,傅里叶变换将 时域信号转换为频域信号,提供了一种分析信号频率成分的有效方法。
非周期函数的展开
非周期函数的特性
非周期函数没有固定的重复模式,其波形不具有周期性。
非周期函数的近似展开
对于非周期函数,傅里叶级数展开式中的正弦和余弦函数具有连续的频率,这些频率覆盖了整个频域。通过选取一定 数量的频率分量,可以对非周期函数进行近似展开。
三角恒等式
正弦和余弦函数的线性组合
对于任意的实数$a$和$b$,有$sin(a+b) = sin a cos b + cos a sin b$和$cos(a+b) = cos a cos b - sin a sin b$。
三角恒等式的应用
在傅里叶级数展开中,三角恒等式用于将一个复杂的周期函数表示为正弦和余弦函数的线性组合。
其中,a0、an和bn为常数,n为整数 ,Σ表示求和符号,x为自变量。
傅里叶级数的一般形式为:f(x) = a0 + Σ[(an * cos(nx)) + (bn * sin(nx))]
傅里叶级数的历史背景
傅里叶级数的起源可以追溯到18世纪 初,法国数学家让-巴蒂斯特·约瑟夫· 傅里叶在研究热传导问题时提出了该 理论。
傅里叶级数一般公式
傅里叶级数一般公式傅里叶级数是一种十分重要而且重要的数学概念,它具有普遍性和广泛应用,在工程、数学和物理等领域有深远的影响。
其实,傅里叶级数也被称为Fourier级数,它是1826年法国数学家傅里叶(Joseph Fourier)提出的数学公式,用于描述一个周期函数的重建。
它基于Fourier的发现,即任何周期函数都可以用正弦或余弦组合函数表示,并且可以用有限个正弦或余弦波来近似表示它。
傅里叶级数的一般公式如下:f(x)=a_0+∑_n=1_(A_n*Cos(nx)+B_n*Sin(nx))等价于f(x)=a_0+∑_n=1_(A_n*Cos(ωx+φ_n))其中,A_n和B_n是傅里叶系数,a_0是偏移量,ω是周期,而φ_n表示相位。
由于某些科学应用需要近似表达函数,因此傅里叶级数的概念被广为应用,在工程中表现为有限个正弦以及余弦函数的线性组合。
例如,在水波动力学中,可以用傅里叶级数来描述海浪的高度和速度。
并且,由于傅里叶级数拥有许多优点,如解析性、小数量级、计算简便、便于理解,因此它也可以被用来模拟金融市场和力学系统等机械系统。
此外,傅里叶级数也被用于数据压缩,如在视频压缩领域中,可以使用它来表示连续的图像数据,用有限的数据点捕捉大量的细节,从而实现空间压缩;另外,在声音处理中,傅里叶级数也可用来表示声音,从而压缩声音文件。
最后,在模式识别和信号处理领域,傅里叶级数的运用是极其重要的,它可以完成复杂的分析,比如形状识别和振动分析等,从而促进机械化。
综上所述,傅里叶级数一般公式对于系统分析和数据处理是十分重要的,它也被广泛应用于工程、数学和物理等领域,用以模拟实际系统,提高系统特性识别和数据压缩的性能,从而更好地分析数据。
傅里叶变换(周期和非周期信号)
例1的频谱图
周期信号的傅里叶变换——傅里叶级数
2、指数形式的傅里叶级数
式中,
f (t) Fne jn0t n
1
Fn T
T
2 T
f (t )e jn0tdt
2
证明
- n
傅里叶复系数
周期信号的傅里叶变换——傅里叶级数
2、指数形式的傅里叶级数
式中,
f (t) Fne jn0t n
1
Fn T
A
T1
2 A sin n1
n1 n
2
cos n1t
A
T1
2A sin
1
2
cos1t
A
sin
1
cos 21t
2A sin
3
31
2
cos 31t
......
2. 指数形式的傅里叶级数
周期矩形脉冲
f (t) Fne jn1t n
Fn
1 T1 A T1
T1
2 T1
f (t )e jn1tdt
2. T不变,τ减小,则频谱的幅度也将减小,谱线密度 保持不变,但包络过零点的间隔将增大。
A
F0 T
Back
非周期信号的傅立里叶变换
两个重要公式:
f ( t ) F( ) : F( ) f ( t )e jtdt
F( ) f (t ):
F -1F( ) f ( t ) 1 F( )e jtd
1、 三角函数式傅里叶级数
若周期函数 f (t) 满足狄里赫利( Dirichlet)条件:
(1)在任意周期内存在有限个第一类间断点; (2)在任意周期内存在有限个的极值点; (3)在任意周期上是绝对可积的,即
傅里叶变换基础知识
傅里叶变换基础知识1•傅里叶级数展幵最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。
1.1周期信号的傅里叶级数在有限区间上,任何周期信号双/)只要满足狄利克雷(dmclilet)条件,都可以展开成傅里叶级数。
1・1・1狄利克雷(duichlet)条件狄利克雷(duichlet)条件为:(1)信号双/)在一个周期内只有有限个第一类间断点(当t从左或右趋向于这个间断点时,函数有左极限值和右极限值);(2 )信号/ (t)在一周期内只有有限个极人值和极小值;(3 )信号在一个周期内是绝对可积分的,即应为有限值。
1.1.2间断点在非连续函数y二f{・x)中某点处心处有中断现彖,那么,兀就称为函数的不连续点。
(1)第一类间断点(有限型间断点):a.可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义(兀令分母为零时等情况);b.跳跃间断点:函数在该点左极限、右极限存在,但不相等(y = lxl/x°在点x = 0处等情况)。
(2)第二类间断点:除第一类间断点的间断点。
1.13傅里叶级数三角函数表达式傅里叶级数三角函数表达式为X X0=仇+乞(①cos“q/ +加• • •J1-1式中:心为信号的常值分量;色为信号的余弦信号幅值:你为信号的正弦信号幅值。
%、心、》分别表示为:==J :) cosncootdtx{ t )sinncootdt式中:7;为信号的周期;。
为信号的基频,即角频率,$=2龙/7;「=1,2,3...。
合并同频项也可表示为X (t)二% + 艺 A cos (gf + q)H-l式中:信号的幅值人和初相位q分别为人=虫+丐2 =arcnm (・b” /心)1.1.4频谱的相矢概念(1) 信号的频谱(三角频谱):构成信号的各频率分量的集合,表征信号的幅值和相位随频率的变化矢系,即信号的结构,是(或&・/)和q 厂3 (或2・/)的统称;(2) 信号的幅频谱:周期信号幅值人随e (或/)的变化尖系,用(或A ・/>表示; (3) 信号的相频谱:周期信号相位仇随e (或f )的变化矢系,用0,弋。
一般周期函数的傅里叶级数
2020年6月30日星期二
(Spring 2010,10ppt. L.G.YUAN)
2
定理. 设周期为2l 的周期函数 f (x)满足收敛定理条件, 则它的傅里叶展开式为
其中
(在 f (x) 的连续点处)
an
1 l
l f (x) cos n x d x
l
l
(n 0, 1, 2, )
bn
1 l
1 n1 n2
2
6
(Spring 2010,10ppt. L.G.YUAN)
6
内容小结
1. 周期为2l 的函数的傅里叶级数展开公式
f (x) a0 2
其中
1 l
l
l
f
(x) cos
n
l
xd
x
1 l
l
l
f
( x) sin
n
l
xd
x
(x 间断点)
(n 0,1, ) (n 1, 2, )
当f (x)为奇(偶) 函数时, 为正弦(余弦) 级数.
(在 f (x) 的连续点处)
其中 an
f (x) cos n x d x
l
(n 0, 1, 2, )
注: 无论哪种情况 , 在 f (x) 的间断点 x 处, 傅里叶级数
收敛于
2020年6月30日星期二
(Spring 2010,10ppt. L.G.YUAN)
4
例. 把
展开成
(1) 正弦级数; (2) 余弦级数.
第十章
一般周期函数的傅里叶级数
以2 l 为周期的函数的 傅里叶展开
2020年6月30日星期二
(Spring 2010,10ppt. L.G.YUAN)
周期信号的傅里叶变换
二、一般周期信号的傅里叶变换
令周期信号f(t)的周期为T1,角频率为1=2f1
e 一般周期信号:f (t)
F jn1t n
n
F 2 Fn n1 n
其中:
Fn
1 T1
T1
2 T1
f (t)e jwtdt
2
1.单脉冲信号的傅里叶变换
单脉冲信号:从周期脉冲信号f(t)中截取一个周 期,得到单脉冲信号。
思考题
1.正弦、余弦信号的傅里叶变换公式? 2. 一般周期信号的傅里叶变换公式?
n
又
1 Fn T1
fT (t) T (t) FT w1 (w nw1) n
可见,在周期单位冲激序列的傅里叶变换中只包含位于 =0,1, 21, n1, 频率处的冲激函数,其强度大 小相等,均等于1 。
例3-11
求周期矩形脉冲信号的傅里叶级数和 傅里叶变换。
f (t)
E
…
…
T
0
T
一、正弦、余弦周期信号的傅里叶变换
e Q f (t) j0t F F( m0 ), 0 0 1F2 (t) e j0t F 2 ( m0 ), 0 0
余弦信号:cos(1t) F ( 1) ( 1) 正弦信号:sin(1t) F j ( 1) ( 1)
1 f (t) cos w1t
2
f
(t
)e
jwt
dt
wnw1
周期信号的傅里叶级数的系数Fn等于单脉冲信号的傅里 叶变换F0()在n1频率点的值乘以1/T1。
可利用单脉冲的傅里叶变换方便求出周期性信号的傅里 叶级数的系数。
例3-10 单位冲激函数的间隔为T1,用符号T(t)
表示周期单位冲激序列:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2l 4
(0x2)
机动 目录 上页 下页 返回 结束
(2) 将
作偶周期延拓, 则有
a0 2202xdx
y
o2
x
an
2 2
2x cosn xdx
0
2
n 2 x sn i 2 n x n 2 2 cn o 2 x s 0 2
4
n22
(1)n
1
f(x)x18 2k 1(2k1 1 )2co (2ks 2 1)(x0x2) 精品课件 机动 目录 上页 下页 返回 结束
说明: 如果 f (x) 为奇函数, 则有
(在 f (x) 的连续点
处)
其如中果b n f (x)为f 偶(x 函)s 数,n iln x d x(n 1 ,2 , )
则有
(在 f (x) 的连续点
处)
其中
注:
a 无n 论 哪an种情1f l ( 况x l) lc 在f,(xn f)o cl(x xod )ns sx l的x间d( n x断 (点n 0 , 1 x0 ,2 ,处1 , ,,2) ,傅 里)
2E
(1 4k 2 )
,
精品课件
n2k
机动 目录 上页 下页 返回 结束
0Esintsinntdt
E 20 cn o 1 )s t ( cn o 1 )s td ( t
b 1 0 E sin tsin tdt
E 2tsi22 nt0
n>1
时bnE 2si(nnn(11) )t si(nnn(11))t00
精品课件
机动 目录 上页 下页 返回 结束
由于半波整流函数 f
(t)
由收
f (t)
敛定理可得
2 o 2 t
f (t) E
E sin t
2
2Ek 1114k2co2skt
直流部分
交流部分
说明: 上述级数可分解为直流部分与交流部分的和.
精品课件
机动 目录 上页 下页 返回 结束
例2. 把
收敛于
bn1 l ll叶f(级x精)s数品课i件nnlxdx (n1,2, )
机动 目录 上页 下页 返回 结束
例1. 交流电压
失,试求半波整流函数的
傅里叶级数.
解: 这个半波整流函数
的周期是
2l
2
,它在
经半波整流后负压消
f (t)
2 o 2 t
上的表达式为
an
1 l
l l
f (t)c0 oss nl itn dn t1 ) (t s0 E in sn i1 ) n (ttcd otnstdt
ex6, P239, SCU
F ( z ) f ( x ) f ( z 1 ) z 0 ( 5 z 5 )
将F(z) 延拓成周期为 10 的周期函数则,它满足收敛定
理条件.由于F(z) 是奇函数,
FБайду номын сангаасz)
故
bn
5205
z
sinn
5
z
dz
(1)n 10
n
5
5z
(n1,2, )
F(z)10 n 1(n 1)nsin n5z (5z5)
精品课件
机动 目录 上页 下页 返回 结束
0sin2 tdt
0
0
n 1时
an
E 2
0 sin n 1 ) (tsin n 1 ) (tdt
E 2
(n11)cons(1)t(n11)cons(1)t
0
2 E (n 1 )1 nn1 1( n 1 )n 1 1n 1 1
((1n)2n11)1E
令
即 z x a
F ( z ) f( x ) f( z a ) , z 0,ba
奇或偶式周期延拓 周期为2(ba)
F(z) 在 0,ba上展成正弦或余弦级数
将 z x a 代入展开式
在
上的正弦或余弦级数
精品课件
机动 目录 上页 下页 返回 结束
例3. 将函数
解: 令
设
展成傅里叶级数.
第八节
第十一章 Section 7.3.3,
一般周期函数的SCU傅里叶级数
一、以2 l 为周期的函数的
傅里叶展开
精品课件
机动 目录 上页 下页 返回 结束
一、以2 l 为周期的函数的傅里叶展
开
周期为 2l 函数 f
(x)
变量代换 z x
l
周期为 2 函数 F(z)f(x)
将F(z) 作傅氏展开
f (x) 的傅氏展开
式
精品课件
机动 目录 上页 下页 返回 结束
定理. 设周期为2l 的周期函数 f (x)满足收敛定理条
则它的傅件里,叶展开式为
(在 f (x) 的连续点
其中
处)
an
1 l
l f(x)consxdx (n0,1,2, )
l
l
bn1 l llf(x)sinnlxdx (n1,2, )
当函数定义在任意有限区间上时, 其傅里叶展开方法
方法1
:
令 xzba, 即 z xba
2
2
F (z)f(x)f(zba ),z ba,ba
2
22
周期延拓 T2lba
F(z) 在 ba,ba上展成傅里叶级数
22
将 z xba 代入展开式 2
在
上的傅里叶级数
精品课件
机动 目录 上页 下页 返回 结束
方法2
精品课件
机动 目录 上页 下页 返回 结束
证明: 令z x , 则
l
令
f (x) f ( lz) , 则
F(z2)f(l(z 2))
f
( lz
2l)
f ( lz)
所以
是以 2 为周期的周期函数 且, 它满足收敛
定理条件, 将它展成傅里叶级数:
( 在 F(z) 的连续点
处 精品课件 )
机动 目录 上页 下页 返回 结束
展开成
(1) 正弦级数;
(2)
解: 余(1弦) 级将数f. (x) 作奇周期延拓,
则有
在 x = 2 k 处级 数收敛于何值?
y
bn 2202xsinn2xdx
o2
x
2x cn ox s22 sn in x2
n 2 n
20
4 cosn n
f(x)4n 1 (1n)n1sinn2x 精品课件
其中
an 1 F(z)co nzd sz bn1 F(z)sinn zdz
(n0,1,2, ) (n1,2,3, )
令z x
l
an
1 l
l
l
f(x)consxdx
l
(n0,1,2, )
bn1 l llf(x)sinnlxdx (n1,2,3, )
( 在 f (x) 的 连续点 证毕
处精品课)件
机动 目录 上页 下页 返回 结束
f(x ) x 1 8 2k 1 (2 k1 1 )2c( o 2 k s 2 1 )x(0x2)
说明: 此式
也成立,
对 据此有
1
k1(2k 1)2
2
8
由此还可导出
y
o2
x
x0是 F (x)的 连 续 点
1
n1 n 2
1 n1n2
2
6
精品课件
2 8
机动 目录 上页 下页 返回 结束