用一元二次方程解决几何图形问题PPT课件
一元二次方程的应用-几何问题数学九年级上册同步教学课件(人教版)

D.x2+3x+16=0
21.3.3 一元二次方程的应用(几何问题)
3. 如图所示,在△ABC中,∠C=90°, AC=6cm,BC=8cm.点P
沿AC边从点A向终点C以1cm/s的速度移动;同时点Q沿CB边从 点C向B以2cm/s的速度移动,且当其中一点到达终点时,另一点 也随之停止移动.问点P,Q出发几秒后可使△PCQ的面积为9 cm²?
21.3.3 一元二次方程的应用(几何问题)
变式 如图,要利用一面墙 (墙长为 25 m) 建羊圈,用 80 m 的
围栏围成面积为 600 m2 的矩形羊圈,则羊圈的边 AB 和 BC 的
长各是多少米?
25 m
解:设 AB 的长是 x m. 列方程,得
A
D
(80 − 2x)x = 600.
整理得 x2 − 40x + 300 = 0,
方法点拨
我们利用“图形经过移动,它的面积大小不会改变”的 性质,把纵、横两条路移动一下,使列方程容易些(目的是 求出小路的宽,至于实际施工,仍可按原图的位置修路).
21.3.3 一元二次方程的应用(几何问题)
例2 如图,要利用一面墙(墙足够长)建羊圈,用 58 m的围栏围
成面积为 200 m2 的矩形羊圈,则羊圈的边 AB 和 BC 的长各是
B
C
解得 x1 = 10,x2 = 30. 当 x = 10 时,80 − 2x = 60 > 25(舍去);
当 x = 30 时,80 − 2x = 20 < 25.
答:羊圈的边 AB 和 BC 的长各是 30 m,20 m.
21.3.3 一元二次方程的应用(几何问题)
变式 如图,一农户要建一个矩形鸡场,鸡场的一边利用长为 12
2019年秋九年级数学华师大版上册课件:22.3 实践与探索第1课时 用一元二次方程解简单问题

长率为x,则可列方程为( A )
A.80(1+x)2=100
B.100(1-x)2=80
C.80(1+2x)=100 D.80(1+x2)=100
5.(2018·眉山)我市某楼盘准备以每平方6000元的均价对外销售,
由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快
资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方
13.如图,要设计一幅宽20 cm,长30 cm的矩形图案,其中有两横两竖的 彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形 图案面积的三分之一,应如何设计每个彩条的宽度?
解:设每个横彩条的宽为 2x cm,则每个竖彩条的宽为 3x cm,根 据题意得(20-6x)(30-4x)=(1-13)×20×30.整理得 6x2-65x+50=0, 解得 x1=56,x2=10(不合题意,舍去).则 2x=53,3x=52.
答:每个横、竖彩条的宽度分别为街有店面房共100间,2015年平均每间店面房的年租金为1万 元,由于物价上涨,到2017年平均每间店面房的年租金上涨到了1.21万元, 据预测,当每间的年租金定为12100元时,可全部租出;若每间的年租金每 增加0.1万元,就要少租出10间,该商业街管委会要为租出的商铺每间每年 交各种费用0.1万元,未租出的商铺每间每年交各种费用0.05万元.
3.(原创题)直角三角形的周长为 14,其斜边长为 6,则两条直角边 长分别为__4_+___2____,__4_-___2____.
知识点2:用一元二次方程解增长(下降)率问题
4.(2018·广西)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜
产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增
北师版九年级数学上册 第二章 一元二次方程 应用一元二次方程 第1课时 利用一元二次方程解决几何问题

12.如图,已知一艘轮船以 20 海里/时的速度由西向东航行,途中接到台风警 报,台风中心正以 40 海里/时的速度由南向北移动,距台风中心 20 10 海里的 圆形区域(包括边界)都属台风区.当轮船航行到 A 处时,测得台风中心移到位 于点 A 正南方向的 B 处,且 AB=100 海里,若这艘轮船自 A 处按原速度继续 航行,在途中会不会遇到台风?若会,试求经过多长时间轮船最初遇到台风; 若不会,=90°,AB=5 cm,BC=7 cm,点P 从点A开始沿AB边向点B以1 cm/s的速度移动,同时点Q从点B开始沿 BC边向点C以2 cm/s的速度移动,当其中一点到达终点时,另外一点也 随之停止. (1)几秒后,△PBQ的面积等于4 cm2? (2)几秒后,PQ的长度等于5 cm? (3)△PBQ的面积能否等于7 cm2?
4.(2020·西藏)列方程(组)解应用题 某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下, 围一块面积为600 m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶 园一面靠墙,墙长35 m,另外三面用69 m长的篱笆围成,其中一边开有一扇1 m宽的门(不包括篱笆).求这个茶园的长和宽.
知识点二:用一元二次方程解决动态几何图形问题 5.如图,AB⊥CB,AB=10 cm,BC=8 cm,一只螳螂从A点出发, 以2 cm/s的速度向B爬行,与此同时,一只蝉从C点出发,以1 cm/s的速 度向B爬行,当螳螂和蝉爬行x s后,它们分别到达了点M,N的位置, 此时,△MNB的面积恰好为24 cm2,根据题意可得方程( D )
A.2x·x=24 B.(10-2x)(8-x)=24 C.(10-x)(8-2x)=24 D.(10-2x)(8-x)=48
6.(教材 P53 习题 2.9T2 变式)如图,在矩形 ABCD 中,AB=6 厘米,BC=12 厘米,点 P 从点 A 开始沿 AB 边向点 B 以 1 厘米/秒的速度移动(到点 B 终止), 点 Q 从点 B 开始沿 BC 边向点 C 以 2 厘米/秒的速度移动(到点 C 终止),若两
21.3 实际问题与一元二次方程(第二课时)几何图形问题和数字问题(课件)九年级数学上册(人教版)

分层作业
【基础达标作业】 5.某学校计划利用一片空地建一个学生自行车车棚,其中一面靠墙 (墙的长度不限),另外三面用总长为20米的护栏围成.若计划建造 车棚的面积为50平方米,则这个车棚的长和宽分别应为多少米.
分层作业
【能力提升作业】 1.(2023·广东揭阳·统考一模)如图,有一面积为600m2的长方形 鸡场,鸡场的一边靠墙(墙长35m),另三边用竹篱笆围成,其中一 边开有1m的门,竹篱笆的总长为69m.设鸡场垂直于墙的一边长为 xm,则列方程正确的是( )
中考链接
3.(2023·东营)如图,老李想用长为70m的栅栏,再借助房屋的外墙 (外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门 (建在EF处,另用其他材料). (1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈? (2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能 ,请说明理由.9 = 0 【提问】为什么舍去2.8?请说明原因?
所以9y=1.8 cm,7y=1.4 cm 答:上、下边衬的宽度为1.8cm,左、右边衬的宽度为1.4cm
27 21
典例解析
要设计一本书的封面,封面长 27 cm,宽 21 cm,正中央是一个与整个封面长宽比例相同 的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边 衬等宽,应如何设计四周边衬的宽度?
A.24 B.35 C.42 D.53 4.2021年7月1日是建党100周年纪念日,在本月日历表上可以用小方框圈出四个数( 如图所示),圈出的四个数中,最小数与最大数的乘积能否为33或65,若能求出最小 数:若不能请说明理由.
当堂测试
5.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙, 另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留 一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?
列一元二次方程解几何问题

9
2 (中考·黔西南州)某校准备修建一个面积为180平方
米的矩形活动场地,它的长比宽多11米,设场地的
宽为x米,则可列方程为( )
A.x(x-11)=180
B.2x+2(x-11)=180
C.x(x+11)=180
D.2x+2(x+11)=180
4.四周一片( ),听不到一点声响。 5.越是在紧张时刻,越要保持头脑的( )。
八、句子工厂。
1.世界上有多少人能亲睹她的风采呢? (陈述 句)
_________________________________ ______ ______ ______ ______ ______ ______ ______ 2.达·芬奇的“蒙娜丽莎”是全人类文 化宝库 中一颗 璀璨的 明珠。 (缩写 句子) ___________________________________ ______ ______ ______ ______ ______ ______ ____ 3.我在她面前只停留了短短的几分钟。 她已经 成了我 灵魂的 一部分 。(用 关联词 连成一 句话) __________________________________ ______ ______ ______ ______ ______ ______ _____
1、世上没有绝望的处境,只有对处境 绝望的 人。 2、挑水如同武术,武术如同做人。循序 渐进, 逐步实 现目标 ,才能 避免许 多无谓 的挫折 。
3、别想一下造出大海,必须先由小河川 开始。 4、自信是所有成功人士必备的素质之一 ,要想 成功, 首先必 须建立 起自信 心,而 你若想 在自己 内心建 立信心 ,即应 像洒扫 街道一 般,首 先将相 当于街 道上最 阴湿黑 暗之角 落的自 卑感清 除干净 ,然后 再种植 信心, 并加以 巩固。 信心建 立之后 ,新的 机会才 会随之 而来。
第3课时 用一元二次方程解决几何图形问题

第3课时用一元二次方程解决几何图形问题基础题知识点1 一般图形的问题1.(衡阳中考)绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为( ) A.x(x-10)=900 B.x(x+10)=900C.10(x+10)=900 D.2[x+(x+10)]=9002.(白银中考)用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( )A.x(5+x)=6 B.x(5-x)=6C.x(10-x)=6 D.x(10-2x)=63.(宿迁中考)一块矩形菜地的面积是120 m2,如果它的长减少2 m,那么菜地就变成正方形,则原菜地的长是________m.4.一个直角三角形的两条直角边相差 5 cm,面积是7 cm2,这两条直角边长分别为________________.5.(自贡中考)利用一面墙(墙的长度不限),另三边用58 m长的篱笆围成一个面积为200 m2的矩形场地,求矩形的长和宽.知识点2 边框与甬道问题6.如图,在宽为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540 m2,求道路的宽.如果设小路宽为x m,根据题意,所列方程正确的是( )A.(20-x)(32-x)=540B.(20-x)(32-x)=100C.(20+x)(32-x)=540D.(20-x)(32+x)=5407.如图所示,在一块正方形空地上,修建一个正方形休闲广场,其余部分铺设草坪,已知休闲广场的边长是正方形空地边长的一半,草坪的面积为147 m2,则休闲广场的边长是________m.8.如图所示,某小区计划在一个长为40米,宽为26米的矩形场地ABCD上修建三条同样宽的甬路,使其中两条与AB垂直,另一条与AB平行,其余部分种草,若使每一块草坪的面积都为144平方米,求甬路的宽度.中档题9.(宁夏中考)如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是( )A.x2+9x-8=0B.x2-9x-8=0C.x2-9x+8=0D.2x2-9x+8=010.(襄阳中考)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12 m的住房墙,另外三边用25 m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1 m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80 m2?11.在高度为2.8 m的一面墙上,准备开凿一个矩形窗户.现用9.5 m长的铝合金条制成如图所示的窗框.问:窗户的宽和高各是多少时,其透光面积为3 m2(铝合金条的宽度忽略不计)?12.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1.在温室内,沿前侧内墙保留3 m宽的空地,其他三侧内墙各保留1 m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288 m2?综合题13.已知,如图,在△ABC中,∠B=90°.AB=5 cm,BC=7 cm.点P从点A开始沿AB 边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积等于4 cm2?(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度等于5 cm?(3)在问题(1)中,△PBQ的面积能否等于7 cm2?说明理由.参考答案基础题1.B2.B3.124.2 cm 、7 cm5.设垂直于墙的-边长为x 米,由题意,得x(58-2x)=200.解得x 1=25,x 2=4.∴另一边长为8米或50米.答:矩形长为25米宽为8米或矩形长为50米宽为4米.6.A7.78.设甬路的宽度为x 米.依题意,得(40-2x)(26-x)=144×6.解得x 1=2,x 2=44(不合题意,舍去).答:甬路的宽度为2米. 中档题 9.C10.设矩形猪舍垂直于住房墙的一边长为x m ,则平行于住房墙的一边长为(26-2x)m.依题意,得x(26-2x)=80.解得x 1=5,x 2=8.当x =5时,26-2x =16>12(舍去);当x =8时,26-2x =10<12.答:所建矩形猪舍的长为10 m ,宽为8 m .11.设窗户的高为x m ,则窗户的宽为9.5-2x -0.53=3-23x(m),则根据题意列方程为:x(3-23x)=3,解得x 1=1.5,x 2=3(不合题意,舍去).所以窗户的高为1.5 m ,宽为3-23×1.5=2(m). 12.设矩形温室的宽为x m ,则长为2x m .根据题意,得(x -2)·(2x -4)=288.解得x 1=-10(不合题意,舍去),x 2=14.所以x =14,2x =2×14=28.答:当矩形温室的长为28 m ,宽为14 m 时,蔬菜种植区域的面积是288 m 2. 综合题13.(1)设x 秒后,△PBQ 的面积等于4 cm 2.根据题意,得x(5-x)=4.解得x 1=1,x 2=4.∵当x =4时,2x =8>7,不合题意,舍去.∴x =1.(2)设x 秒后,PQ =5,则(5-x)2+(2x)2=25.解得x1=0(舍去),x2=2.∴x=2.(3)设x秒后,△PBQ的面积等于7 cm2.根据题意,得x(5-x)=7.此方程无解.所以不能.周周练(21.2.3~21.3)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.小新在学习解一元二次方程时,做了下面几个填空题:(1)若x2=9,则x=3;(2)方程mx2+m2x=0(m≠0),则x=-m;(3)方程2x(x+1)=x+1的解为x=-1.其中,答案完全正确的有( )A.0个 B.1个C.2个 D.3个2.已知α,β满足α+β=5,αβ=6,则以α,β为根的一元二次方程是( ) A.x2-5x+6=0B.x2-5x-6=0C.x2+5x+6=0D.x2+5x-6=03.(衡阳中考)若关于x的方程x2+3x+a=0有一个根为-1,则另一个根为( ) A.-2 B.2C.4 D.-34.解方程3(x-1)2=6(x-1),最适当的方法是( )A.直接求解 B.配方法C.因式分解法 D.公式法5.多项式a2+4a-10的值等于11,则a的值为( )A.3或7 B.-3或7C.3或-7 D.-3或-76.经计算整式x+1与x-4的积为x2-3x-4,则一元二次方程x2-3x-4=0的所有根是( )A.x1=-1,x2=-4B.x1=-1,x2=4C.x1=1,x2=4D.x1=1,x2=-47.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为( )A.50(1+x)2=60B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120D.50(1+x)+50(1+x)2=1208.(哈尔滨中考改编)今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60 m,若将短边增长到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1 600 m2,那么扩大后的正方形绿地边长为( ) A.120 mB.100 mC.85 mD.80 m二、填空题(每小题4分,共24分)9.(聊城中考)一元二次方程x2-2x=0的解是______________.10.一元二次方程x2+bx+c=0的两根互为倒数,则c=________.11.设一元二次方程x2-7x+3=0的两个实数根分别为x1和x2,则x1+x2=_______,x1x2=_______.12.(南昌中考)已知一元二次方程x2-4x-3=0的两根为m,n,则m2-mn+n2=________.13.已知:如图所示的图形是一无盖长方体的铁盒平面展开图.若铁盒的容积为3 m3,则根据图中的条件,可列出方程:____________.14.(巴彦淖尔中考)某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请___个队参赛.三、解答题(共44分)15.(20分)用适当的方法解下列方程:(1)(徐州中考)x2-2x-3=0;(2)(x+2)2=2x+4;(3)(3x+1)2-4=0;(4)4x 2-12x +5=0;(5)4(x -1)2-9(3-2x)2=0.16.(6分)当x 为何值时,32x 2+14(x -1)和13(x -2)互为相反数?17.(8分)向阳村2013年的人均收入为12 000元,2015年的人均收入为14 520元.求人均收入的年平均增长率.18.(10分)(淮安中考)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1 200元.请问她购买了多少件这种服装?参考答案1.A2.A3.A4.C5.C6.B7.D8.D9.x 1=0,x 2=2 10.1 11.7 3 12.25 13.x(x +1)=3 14. 515.(1)x 1=-1,x 2=3.(2)x 1=0,x 2=-2.(3)x 1=13,x 2=-1.(4)x 1=52,x 2=12.(5)x 1=74,x 2=118. 16.∵32x 2+14(x -1)和13(x -2)互为相反数,∴32x 2+14(x -1)+13(x -2)=0.解得x 1=-1,x 2=1118.∴当x 为-1或1118时,32x 2+14(x -1)和13(x -2)互为相反数. 17.设人均收入的年平均增长率为x ,根据题意得12 000(1+x)2=14 520.解得x 1=0.1=10%,x 2=-2.1(不合题意,舍去).答:人均收入的年平均增长率为10%.18.设购买了x 件这种服装,根据题意,得[80-2(x -10)]x =1 200.解得x 1=20,x 2=30.当x =30时,80-2(30-10)=40<50,不合题意,舍去.∴x =20.答:她购买了20件这种服装.。
课件11几何图形的动点问题九年级数学上册学与练(苏科版)

练一练
4.如图,Rt△ABC中,∠B=90°,AC=10 cm,BC=6 cm.现有两个 动点P、Q分别从点A和点B同时出发,其中点P以2 cm/s的速度沿AB向 终点B移动;点Q以1 cm/s的速度沿BC向终点C移动,其中一点到终点, 另一点也随之停止.连结PQ,设动点运动时间为x s. (1)用含x的代数式表示PB和BQ的值; (2)是否存在x的值,使得四边形APQC的面积等于20 cm2?若存在,请 求出此时x的值;若不存在,请说明理由.
Q以 2 cm/s 的速度向点 D 移动.
(2) P,Q 两点从出发开始,经过几秒时,点 P 和点 Q 的距离为 10 cm?
A
D
解:(2)设经过 y s 时,点 P 和 Q 的距离为 10 cm,
依题意得 62+(16-3y-2y)2=102,
P
整理得 25y2-160y+192=0,
解得 y1,y2,均符合题意,
练一练
1.如图,在 Rt△ABC 中,∠C=90°,AC=9 cm,BC=7 cm, 动点 P 从点 C 出发,沿 CA 方向运动,动点 Q 从点 B 出发,沿 BC 方向运动,如果点 P,Q 的运动速度均为 1 cm/s.那么运动几秒 时,它们相距 5 cm?
解:设运动 x s 时,它们相距 5 cm, 则 CP=x cm,CQ=(7-x) cm. 依题意,得 x2+(7-x)2=52, 解得 x1=3,x2=4. 答:运动 3 s 或 4 s 时,它们相距 5 cm.
练一练
5.如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm.点P 从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开 始沿BC边向点C以2 cm/s的速度移动. (1)如果P,Q分别从A,B同时出发,那么几秒后 △PBQ的面积等于6 cm2? (2)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长 度等于5 cm? (3)在(1)中,△PQB的面积能否等于8 cm2?说明理由.
人教版九年级数学上册课件第3课时 用一元二次方程解决几何图形问题

当堂练习
5. 如图,要设计一幅宽20cm,长30cm的图案,其 中有两横、两竖的彩条,横、竖彩条的宽度比为 3∶2,如果要使彩条所占面积是图案面积的四分之 一,应如何设计彩条的宽度(结果保留小数点后一 位)?
①
②
③
④
当堂练习
解:设横彩条的宽度为3x cm.则竖彩条的宽度为2x cm.
根据题意,得30×20× 1 =30×20-(30-4x)(20-6x). 4
课堂小结
✓ 归纳总结 ✓ 构建脉络
课堂小结
常见几何图形面积 几何图形 是等量关系
几何图形与
一元二次方
程问题
课本封面问题 常采用图形
平移能聚零
类
型
彩条/小路宽 度问题
为整方便列 方程
动点面积问题
当堂练习
(2)对.两个正方形的面积之和为: x2+(10-x)2=2x2-20x+100
=2(x2-10x+25)+50=2(x-5)2+50 ∵无论x取何值,2(x-5)2总是不小于0的. ∴2(x-5)2+50≥50.即这两个正方形的面积之和总是 不小于50cm2的,所以不可能等于48cm2. 小峰的说法是对的.
当堂练习
✓ 当堂反馈 ✓ 即学即用
当堂练习
1. 从正方形铁片的边截去2cm宽的一个长方形,余下的
面积是48cm2,则原来的正方形铁片的面积是(D )
A.8cm B.64cm
C.8cm2 D.64cm2
2. 直角三角形的两条直角边的和是14cm,面积是24cm2.
则其两条直角边长分别是 6cm 、 8cm .
整理,得12x2-130x+75=0.
数学人教版九年级上册同步教学课件:21.3 第3课时 几何图形问题

6.(2015· 巴中)如图,某农场有一块长40 m,宽32 m的矩形种植 地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽 的小路,要使种植面积为1140 m2,求小路的宽.
解:设小路的宽为x m,依题意有(40-x)(32-x)=1140,整理得 x2-72x+140=0,解得x1=2,x2=70(不合题意,舍去),则小路的 宽是2 m
立等量关系.
2.在解决面积的相关问题时,灵活运用“平移变换”利于对分 离的图形面积进行“整体表示”,使问题简化.
易错提示: 不要忽略方程的根要使实际问题有意义.
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。 2、孤单一人的时间使自己变得优秀,给来的人一个惊喜,也给自己一个好的交代。 3、命运给你一个比别人低的起点是想告诉你,让你用你的一生去奋斗出一个绝地反击的故事,所以有什么理由不努力! 4、心中没有过分的贪求,自然苦就少。口里不说多余的话,自然祸就少。腹内的食物能减少,自然病就少。思绪中没有过分欲,自然忧就少。大悲是无泪的,同样大悟无言。缘来尽量要惜,缘尽就放。人生本来就空,对人家笑笑,对自己笑笑,笑着看天下,看日出日落, 花谢花开,岂不自在,哪里来的尘埃! 5、心情就像衣服,脏了就拿去洗洗,晒晒,阳光自然就会蔓延开来。阳光那么好,何必自寻烦恼,过好每一个当下,一万个美丽的未来抵不过一个温暖的现在。 6、无论你正遭遇着什么,你都要从落魄中站起来重振旗鼓,要继续保持热忱,要继续保持微笑,就像从未受伤过一样。 7、生命的美丽,永远展现在她的进取之中;就像大树的美丽,是展现在它负势向上高耸入云的蓬勃生机中;像雄鹰的美丽,是展现在它搏风击雨如苍天之魂的翱翔中;像江河的美丽,是展现在它波涛汹涌一泻千里的奔流中。 8、有些事,不可避免地发生,阴晴圆缺皆有规律,我们只能坦然地接受;有些事,只要你愿意努力,矢志不渝地付出,就能慢慢改变它的轨迹。 9、与其埋怨世界,不如改变自己。管好自己的心,做好自己的事,比什么都强。人生无完美,曲折亦风景。别把失去看得过重,放弃是另一种拥有;不要经常艳羡他人,人做到了,心悟到了,相信属于你的风景就在下一个拐弯处。 10、有些事想开了,你就会明白,在世上,你就是你,你痛痛你自己,你累累你自己,就算有人同情你,那又怎样,最后收拾残局的还是要靠你自己。 11、花开不是为了花落,而是为了开的更加灿烂。 12、随随便便浪费的时间,再也不能赢回来。 13、不管从什么时候开始,重要的是开始以后不要停止;不管在什么时候结束,重要的是结束以后不要后悔。 14、当你决定坚持一件事情,全世界都会为你让路。 15、只有在开水里,茶叶才能展开生命浓郁的香气。 15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。 16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。 17、一个人只要强烈地坚持不懈地追求,他就能达到目的。你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。 18、无论是对事还是对人,我们只需要做好自己的本分,不与过多人建立亲密的关系,也不要因为关系亲密便掏心掏肺,切莫交浅言深,应适可而止。 19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。 20、没有收拾残局的能力,就别放纵善变的情绪。 16、成功的反义词不是失败,而是从未行动。有一天你总会明白,遗憾比失败更让你难以面对。 17、没有一件事情可以一下子把你打垮,也不会有一件事情可以让你一步登天,慢慢走,慢慢看,生命是一个慢慢累积的过程。 18、努力也许不等于成功,可是那段追逐梦想的努力,会让你找到一个更好的自己,一个沉默努力充实安静的自己。 19、你相信梦想,梦想才会相信你。有一种落差是,你配不上自己的野心,也辜负了所受的苦难。 20、生活不会按你想要的方式进行,它会给你一段时间,让你孤独、迷茫又沉默忧郁。但如果靠这段时间跟自己独处,多看一本书,去做可以做的事,放下过去的人,等你度过低潮,那些独处的时光必定能照亮你的路,也是这些不堪陪你成熟。所以,现在没那么糟,看似 生活对你的亏欠,其实都是祝愿。 10、放手如拔牙。牙被拔掉的那一刻,你会觉得解脱。但舌头总会不由自主地往那个空空的牙洞里舔,一天数次。不痛了不代表你能完全无视,留下的那个空缺永远都在,偶尔甚至会异常挂念。适应是需要时间的,但牙总是要拔,因为太痛,所以终归还是要放手,随它去。 11、这个世界其实很公平,你想要比别人强,你就必须去做别人不想做的事,你想要过更好的生活,你就必须去承受更多的困难,承受别人不能承受的压力。 12、逆境给人宝贵的磨炼机会。只有经得起环境考验的人,才能算是真正的强者。自古以来的伟人,大多是抱着不屈不挠的精神,从逆境中挣扎奋斗过来的。 13、不同的人生,有不同的幸福。去发现你所拥有幸运,少抱怨上苍的不公,把握属于自己的幸福。你,我,我们大家都可以经历幸福的人生。 14、给自己一份坚强,擦干眼泪;给自己一份自信,不卑不亢;给自己一份洒脱,悠然前行。轻轻品,静静藏。为了看阳光,我来到这世上;为了与阳光同行,我笑对忧伤。 15、总不能流血就喊痛,怕黑就开灯,想念就联系,疲惫就放空,被孤立就讨好,脆弱就想家,不要被现在而蒙蔽双眼,终究是要长大,最漆黑的那段路终要自己走完。 16、在路上,我们生命得到了肯定,一路上,我们有失败也有成功,有泪水也有感动,有曲折也有坦途,有机遇也有梦想。一路走来,我们熟悉了陌生的世界,我们熟悉了陌生的面孔,遇人无数,匆匆又匆匆,有些成了我们忘不掉的背影,有些成了我们一生的风景。我笑, 便面如春花,定是能感动人的,任他是谁。 17、努力是一种生活态度,与年龄无关。所以,无论什么时候,千万不可放纵自己,给自己找懒散和拖延的借口,对自己严格一点儿,时间长了,努力便成为一种心理习惯,一种生活方式! 18、自己想要的东西,要么奋力直追,要么干脆放弃。别总是逢人就喋喋不休的表决心或者哀怨不断,做别人茶余饭后的笑点。 19、即使不能像依米花那样画上完美的感叹号,但我们可以歌咏最感人的诗篇;即使不能阻挡暴风雨的肆虐,但我们可以左右自己的心情;即使无法预料失败的打击,但我们可以把它当作成功的一个个驿站。 20、能力配不上野心,是所有烦扰的根源。这个世界是公平的,你要想得到,就得学会付出和坚持。每个人都是通长为32 m的矩形地面上修筑同样宽的道 路(图中阴影部分),余下的部分种草坪,要使草坪的面积为540 m2,
课件中考数学二轮复习_利用一元二次方程解决几何问题课件

2.列方程解应用题的一般步骤.
活学巧记 列方程解应用题,
审设列解和验答;
审题弄清已未知,
设元直间两办法;
等量关系列方程,
解方程时守章法;
检验准且合题意,
问求同一才作答.
情景引入
1.李明准备进行如下操作实验:把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.
如何列一元二次方程解决图形类的应用题呢? 根据几何问题中的数量关系列一元二次方程并求解.
解:设出发后x s时,S ∆MON=1/12 S菱形ABCD. 已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3cm DN=x ²cm.
分析:利用正方形的性质,结合勾股定理列方程,据题意,画图如图所示, (2)在运动过程中,△PBQ的面积能否等于矩形ABCD的面积的四分之一?若能,求出运动的时间;
动点M从点A出发沿AC方向以每秒2cm的速度做匀速直线运动,动点N从点B 出发沿BD方向以每秒1cm的速度做匀速直线运动,若M,N同时出发,问出发后几秒时,△MON的面积为菱形
ABCD面积的1/12.
自的位置. 解得x₁=-10(舍去),x₂=4
某村计划建造如图的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m宽的空地,其他三侧内墙各保留1m的通道。
拓展探究
如围,菱形ABCD中AC, BD交于点0.4C=8 cm.BD=6cm.动点M从点A出发沿AC方向以 每秒2cm的速度做匀速直线运动,动点N从点B 出发沿BD方向以每秒1cm的速度做匀速 直线运动,若M,N同时出发,问出发后几秒时,△MON的面积为菱形ABCD面积的1/12.
人教版九年级上册数学 21.3 实际问题与一元二次方程 课件

4.三个连续偶数,已知最大数与最小数的
平方和比中间一个数的平方大332,求这三 个连续偶数.
1.偶数个连续偶数(或奇数),一般可设中间两个为 (x1)和(x 1). 2.奇数个连续偶数(或奇数,自然数),一般可设中 间一个为x.如三个连续偶数,可设中间一个偶数为x, 则其余两个偶数分别为(x2)和(x+2)又如三个连续自 然数,可设中间一个自然数为x,则其余两个自然数 分别为(x1)和(x 1).
解这个方程得:x1 x2 4
CQ
B
答:当AP 4cm时,四边形面积为16cm2
小结 拓展
回味无穷
• 列方程解应用题的一般步骤是: • 1.审:审清题意:已知什么,求什么?已,未知之间有什么关系? • 2.设:设未知数,语句要完整,有单位(同一)的要注明单位; • 3.列:列代数式,列方程; • 4.解:解所列的方程; • 5.验:是否是所列方程的根;是否符合题意; • 6.答:答案也必需是完事的语句,注明单位且要贴近生活. • 列方程解应用题的关键是: • 找出相等关系. • 关于两次平均增长(降低)率问题的一般关系: • a(1±x)2=A(其中a表示基数,x表表示增长(或降低)率,A表示新数)
数字与方程
实际问题与一元二次方程 (三)
1. 两个数的差等于4,积等于45,求这两个数.
2. 一个两位数,它的十位数字比个位数字小3,而 它的个位数字的平方恰好等于这个两位数.求这 个两位数.
3.有一个两位数,它的十位数字与个位数字的和是5. 把这个两位数的十位数字与个位数字互换后得到 另一个两位数,两个两位数的积为736.求原来的 两位数.
则 x(18 x) 81
化简得,x2 18x 81 0 (x9)2 0 x1 x2 9
一元二次方程的应用(几何图形) 课件 2022—2023学年青岛版数学九年级上册

九年级上册
学习目标:
1、会列出一元二次方程解决简单的实际问题(几何问题), 培养应用意识和分析问题、解决问题的能力。 2、能根据问题的实际意义,检验方程的解是否合理。
1.将一根长64cm的铁丝剪成两段,再将每段分别围成正方形(如图),
如果这两个正方形的面积和等于160cm2,求两个正方形的边长。
解:设温室宽为x m,长为3x m,那么蔬菜种植区的长为(3x-
6)m,宽为(x-2)m 根据题意,得:(3x-6)(x-2)=300 整理,得 x2 -4x-96=0
解得 x1 =12,x2=-8
经检验,当温室的宽是12m时,符合题意.
当x =12时,3x=3×12=36.
答:温室宽度为12m时,蔬菜种植面积300m2.
当x -x =16-4 =12.
答:两个正方形的边长分别是12cm和4cm.
2. 某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m), 四边用木栏围成,木栏长40m.
(1)设养鸡场宽为x m, 则长为(__4_0___2__x_)__m__,_即__(_2_0_-__x_)_m;
经检验,当道路的宽是2m时,符合题意.
答:道路宽度为2m时,绿化面积7644m2.
课本152页练习1
4.天泉村计划建造如图所示的矩形蔬菜温室,要求长宽的比为3:1,在温室内,沿前后两侧
内墙各留3m的空地放置工具,其他两侧内墙各留1m宽通道.当矩形温室的长与宽多少时,
蔬菜种植区的面积是300m2?
等量关系式:蔬菜种植面积=300m2
同步117页跟踪3
3.如图,在边长100m,宽80m的矩形场地上修建两条宽度相等且互
相垂直的道路,剩余部分进行绿化,要使绿化面积为7644m2,则道
用一元二次方程解决几何图形问题PPT课件

7.【中考·宁夏】你知道吗,对于一元二次方程,我国古代 数学家还研究过其几何解法呢!以方程x2+5x-14=0, 即x(x+5)=14为例加以说明.数学家赵爽(公元3~4世纪) 在其所著的《勾股圆方图注》中记载的方法是构造图(如 图甲)中大正方形的面积是(x+x+5)2,
其中它又等于四个矩形的面积加上中间小正方形的面积,即 4×14+52,据此易得x=2.那么在如图乙(矩形的顶点均落在 边长为1的小正方形网格格点上)中,能够说明方程x2-4x-12 =0的正确构图是____②________.(只填序号) 【点拨】∵x2-4x-12=0,即x(x-4)=12,∴构造大正方 形的面积是(x+x-4)2,其中它又等于四个矩形的面积加上 中间小正方形的面积,即4×12+42,据此易得x=6.故填②.
1.家庭电路是最常见、最基本的实用电路,它由两根 _进__户__线___、_电__能__表___、_总__开__关___、_保__险__装__置_、用电器 和导线等组成。家庭电路中的各用电器之间是 ___并___联的;控制用电器的开关与用电器____串____联 ,接在____火____线和用电器之间。
10.如图,在Rt△ABC中,∠C=90°,AC=6 cm,BC=8 cm,点P从B点出发以1 cm/s的速度向C点运动,同时Q 从C点出发以相同的速度向A点运动,当其中一个点到达 目的地时另一点自动停止运动,设运动时间为t s.
(1)用含t的代数式表示CP,CQ的长,并直接写出t的取值范 围;
解:CP=(8-t) cm,CQ=t cm.t的取值范围为 0≤t≤6.
人教版 九年级上
第十九章 生活用电
第1节 家庭电路
课堂导练
3.下图是家庭电路的组成,请填出各组成部分的名称。
第3课时 用一元二次方程解决几何图形问题

类型二:围成图形面积问题
例2 如图,若要建一个长方形鸡场,鸡场的一边靠墙,墙对面有一个2米宽的门,另三边 用竹篱笆围成,篱笆总长33米.
(1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)围成鸡场的面积可能达到200平方米吗?
解:(1)设宽为 x 米,则 x(33-2x+2)=150,
第3课时 用一元二次方程解决几何图形问题
1.规则几何图形面积问题:利用对应图形的面积计算公式建立一元二次方程的数学模型. 2.不规则几何图形面积问题:利用 平移 或 割补 的方法,将不规则几何图 形面积问题转化为规则几何图形面积的和或差求解.
类型一:边框与甬道问题
例1 如图所示,在长为32 m、宽20 m的矩形耕地上,修筑同样宽的三条道路(两条纵向, 一条横向,横向与纵向互相垂直),把耕地分成大小不等的六块作试验田,要使试验田面 积为570 m2,问道路应多宽?
x cm,根据题意所列方程为
(60+2x)(40+2x)×54%=60×40
.
3.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米 的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?
解:设AB=x,则BC=100-4x(BC≤25).根据题意,得x(100-4x)=400.解得x1=5,x2=20. 当x=5时,100-4x=80,不满足BC≤25,不符合题意舍去;当x=20时,100-4x=20.所以 AB为20米,BC为20米.
则根据题意可列出关于x的方程为( B )
(A)x(5+x)=6
(B)x(5-x)=6
(C)x(10-x)=6
(D)x(10-2x)=6
华师大版九年级上册22.3.2用一元二次方程解决复杂的应用问题课件

12.小亮家想利用房屋侧面的一面墙,再砌三面墙,围成一个 矩形猪圈,如图所示,现在已备足可以砌12 m长的墙的材料. (1)如果小亮家想围成面积为16 m2的矩形猪圈,你能够教他们怎 么围吗? (2)如果小亮家想围成面积为20 m2的矩形猪圈,你认为可能吗? 说明理由. 解:(1)设垂直于墙的边长为x m,则x(12-2x) =16,解得x1=2,x2=4,所以垂直于墙的边 长为2 m或4 m
• 不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面 上的话,另一眼睛看到纸的背面。2022年4月12日星期二下午5时28分58秒17:28:5822.4.12
• 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月下午5时28分22.4.1217:28April 12, 2022 • 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022年4月12日星期二5时28分58秒17:28:5812 April 2022 • 书籍是屹立在时间的汪洋大海中的灯塔。
知识点1:用一元二次方程解决复杂的几何问题
1.(2014·牡丹江)现有一块长80 cm,宽60 cm的矩形钢片,将它 的四个角各剪去一个边长为x cm的小正方形,做成一个底面积为 1 500 cm2的无盖的长方体盒子,根据题意列方程,化简可得 _________x_2_-__7_0_x_+__8_2_5_=__0_________.
7.某种文化衫,平均每天销售40件,每件盈利20元,若每件 降价1元,则每天可多售10件,如果每天要盈利1 080元,每件 应降价___2_或__1_4____元.
8.某商场将某种商品的售价从原来的每件40元经两次调价后调 至每件32.4元.若该商品两次调价的降价率相同,则这个降价率 为___1_0_%___,经调查,该商品每降价0.2元,即可多销售10件.若 该商品原来每月销售500件,那么两次调价后,每月可销售商品 ___8_8_0___件. 9.某商店从厂家以每件2ห้องสมุดไป่ตู้元的价格购进一批商品,该商品可以 自行定价,若每件商品售价为a元,则可卖出(350-10a)件,但物 价局限定每次商品加价不能超过进价的25%,商品计划要赚400 元,需要卖出___1_0_0___件商品,每件商品的售价为___2_5__元.
最新部编人教版九年级上学期数学实际问题与一元二次方程(2)课件

探究三:动点问题
重点、难点知识★▲
问题: (1)设经过x秒钟,BQ=___2_x___, BP=___5_-_x___. (2)等量关系是:_____B_P_2_+_B_Q__2=_P__Q_2_______.
如何列方程求解?
解:(1)设:经过x秒以后△PBQ面积为6,
1 2
×(5-x)×2x=6
活动1 面积问题
例. 如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶 一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积 是5400cm2,设金色纸边的宽为xcm,求满足x的方程.
(1)挂图长为_(__8_0_+_2_x_)__cm,宽为_(__5_0_+_2_x_)__cm. (2)等量关系是:_挂__图__面__积__为__5_4_0_0__c_m_2_.
和68cm2,那么矩形ABCD的面积是( B )
A.21cm2 C.24cm2பைடு நூலகம்
B.16cm2 D.9cm2
解:设AB=xcm,AD=(10-x)cm,则正方形ABEF的面积为x2cm2, 正方形ADGH的面积为(10-x)2cm2, 根据题意得 x2+(10-x)2=68, 整理得 x2-10x+16=0 解之得 x1=2,x2=8 所以AB=2cm,AD=8cm或AB=8cm,AD=2cm, 综上可求矩形ABCD的面积是16cm2.
北
AC
东
E B
问题:(1)设t时刻,轮船行驶到C点,此时AC=____2_0_t___; 台风中心运动到E点,此时AE=__1_0_0_-_4_0_t_;
(2)等量关系是:____E__C_2_=_A_C__2+__A_E_2_____.
一元二次方程的应用-ppt课件

例1
如图,某小区计划在一块长为 20 m,宽为 12 m
题
型 的矩形场地上修建三条互相垂直且宽度一样的小路,其余
突
破 部分种花草,若要使花草的面积达到 160 m2,则小路的宽
为 ______ m.
第一课时 几何图形面积问题
[解析]如解析图,设小路的宽为 x m,将小路进行平
重
难
题 移,则其余部分可合成相邻两边的长分别为(20-2x) m,
握手问题、照相问
素之间算一 题、比赛问题(每
次
双循环
每两个元素
之间算两次
两队之间赛一场)
循环次数
n(n-1)
互赠贺卡、比赛问
题(每两队之间赛 n(n-1)
两场)
第三课时 循环问题、销售问题及数字问题
归纳总结
考
点
解决循环问题,首先确定是单循环还是双循环,即确定
清
单 每两个元素之间算一次还是算两次,再代入公式列方程求解
清
单
2 的
26
m)的空旷场地为提前到场的观众设立面积为
300
m
解
读 封闭型矩形等候区.如图,为了方便观众进出,在两边空出
两个宽各为 1 m 的出入口,共用去隔栏绳 48 m.求工作人
员围成的这个矩形的相邻两边的长度.
第一课时 几何图形面积问题
[答案] 解:设 AB=x m,则 BC=(48-2x+1+1) m,由
重 ■题型一 传播问题
难
例 1 某种病毒传播非常快,如果一个人被传染,经过
题
型 两轮传染后就会有 64 个人被传染.
考
点
清 题意得 x(48-2x+1+1)=300,解得 x1=10,x2=15.当 x=10
2019秋九年级数学上册一元二次方程解决几何图形等问题作业本课件新版新人教版43(1)

【解析】设原来这块正方形木板的边长是 x m. 根据题意,得 x(x-2)=48, 解得 x1=8,x2=-6(不合题意,舍去), ∴原来这块正方形木板的边长是 8 m. 故选 A.
第3课时 用一元二次方程解决几何图形等问题
3. 直角三角形两直角边的长度比是 3∶4, 而斜边长等于 10 cm,
图 21-3-7
第3课时 用一元二次方程解决几何图形等问题
1 解:依题意可得(18-3x)(8-2× x)=72, 2 解得 x1=2,x2=12(不合题意,舍去). 答:当 x 的值为 2 时,花圃的面积之和为 72 平方米.
第3课时 用一元二次方程解决几何图形等问题
B 规律方法综合练
10.如图 21-3-8,矩形 ABCD 的周长是 20 cm,以 AB,AD 为边 向外作正方形 ABEF 和正方形 ADGH, 若两正方形的面积之和为 68 cm , 则矩形 ABCD 的面积是( C ) A.24 cm
第二十一章 一元二次方程
21.3 实际问题与一元二次方程
第二十一章 一元二次方程
第3课时 用一元二次方程解 决几何图形等问题
A 知识要点分类练 B 规律方法综合练 C 拓广探究创新练
第3课时 用一元二次方程解决几何图形等问题
A 知识要点分类练
知识点 1 规则图形的面积问题
2
1.某中学准备建一个面积为 375 m 的矩形游泳池,且游泳池的 宽比长短 10 m.设游泳池的长为 x m,则可列方程为( A ) A.x(x-10)=375 C.2x(2x-10)=375 B.x(x+10)=375 D.2x(2x+10)=375
加油学习
24 那么这个直角三角形的面积为________cm .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 直接开平方 法)
• 2、 (x-2)2-4(x+1)2=0 ( 因式分解 法)
• 3、(5x-4)2 -(4-5x)=0 ( 因式分解 法)
• 4、 x2-4x-10=0
( 公式 法)
• 5、 3x2-4x-5=0
32m 2om
.
变式: 如图,在长为32m,宽为20m的长方形地面上 修筑横纵的宽度比为2:1的道路(图中白色部 分),余下的部分种上草坪,要使草坪的面积 为540m2,求道路的宽.
.
小结
灵活运用“平移变换”利用对分离的 图形的面积进行“整体表示”,使问 题简化,做到不重不漏。
.
质疑导学 一元二次方程与动态几何综合
.
4.如图,用长为18m的篱笆(虚线部分),两面靠 墙围成矩形的苗圃.要围成苗圃的面积为81m2,设 AB边为Xm可列方程
B
CA.Fra bibliotek小结列一元二次方程解应用题的步骤 审、设、列、解、检、答.
这里要特别注意:在列一元二次方程 解应用题时,由于所得的根一般有 两个,所以要检验这两个根是否符 合实际问题的要求.
.
4.如图,用长为18m的篱笆(虚线部分),两面靠 墙围成矩形的苗圃.要围成苗圃的面积为81m2,设 AB边为Xm可列方程
A
B
C
5.如图,某幼儿园有一道长为16m的墙,计
划用32m长的围栏靠墙围成一个面积120的
矩形草坪,求该矩形草坪长,宽各多少?
16m
.
选用适当方法解下列一元二次方程
• 1、 (2x+1)2=64
.
3、如图,ΔABC中,∠B=90º,点P从点A开始沿 AB边向点B以1cm/s的速度移动,点Q从点B 开始沿BC边向点C以2cm/s的速度移动. 如果点P、Q分别从点A、B同时出发,经过几 秒钟,ΔPBQ的面积等于8cm2?
C
12cm Q
A P 6cm B
.
.
.
解:设P,Q运动的时间为x s,则由题意知AP=x cm,BP =(5-x) cm,BQ=2x cm,CQ=(7-2x) cm. (1)S△PBQ= 1 ·PB·BQ= 1 ×(5-x)×2x=4. 解得x1=12,x2=4. 2 当x=1时,5-1>0,7-2×1>0,满足题意; 当x=4时,5-4>0,7-2×4<0,不满足题 意,舍去. 故1 s后,△PBQ的面积为4 cm2.
6.如图,在△ABC中,∠B=90°,AB=5 cm, BC=7 cm. 点P从点A开始 沿AB边向点B以1 cm/s的 速度移动,点Q从点B开 始沿BC边向点C以2 cm/s 的速度移动.
(1)如果点P,Q分别从点A,B同时出发,那么几 秒后,△PBQ的面积为4 cm2?
.
(2)如果点P,Q分别从点A,B同时出发,那么几 秒后,PQ的长度为5 cm?
积为33 cm2?
(2)P、Q两点从出发开始到几秒时,点P和点Q的距
离是10 cm?
•
.
解决有关“动点”的问题”方法
1)关键—— 以静代动
把动的点进行转换,变为线段的长度,
2)方法—— 时间变路程
求“动点的运动时间”可以转化为求“动点 的运动路程”,也是求线段的长度;
3)常依据的数量关系——面积,勾股定理,
.
学习检测
1、将一块正方形的铁皮四角剪去一个边长为4cm 的小正方形,做成一个无盖的盒子.已知盒子的容积 是400cm3,求原铁皮的边长.
2、某林场计划修一条长750m,横截面为 等腰梯形的渠道,横截面面积为1.6m2, 上口宽比渠深多2m,渠底比渠深多0.4m.
(1)渠道的上口宽与渠底宽各是多少? (2)如果计划每天挖土48m3,需要多 少天才能把这条渠道挖完?
.
.
课后小结
(一)、小结:请同学们说一说一元二 次方程与实际问题---面积问题与动点问 题的解题思路及技巧.这里要特别注意:在 列一元二次方程解应用题时,由于所得的 根一般有两个,所以要检验这两个根是否 符合实际问题的要求.
(二)布置作业P22第8题第9题
.
质疑导学
1、如图在矩形ABCD中,AB=6 BC=3cm.点P沿边AB从点A开始向点B以 2cm/s的速度移动,点Q沿边DA从点D开始 向点A以1cm/s的速度移动.如果P、Q 同 时出发,用t(s)表示移动的时间 (0≤t≤3).当t为何值时,△QAP 的面积等于2cm2?
.
合作学习
如图,在长为32m,宽为20m的长方形地面上 修筑同样宽的道路(图中阴影部分),余下的 部分种上草坪,要使草坪的面积为540m2,求 道路的宽.
(1)
(2)
.
如图,在长为32m,宽为20m的长方形地面上 修筑同样宽的道路(图中阴影部分),余下的 部分种上草坪,要使草坪的面积为540m2,求 道路的宽.
(3)在(1)中,△PBQ的面积能否为7 cm2?并说明理 由.
.
2、如图1,A、B、C、D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P、Q分别从点A、C同时出发, 点P以3 cm/s的速度向点B移动,一直到达B为止, 点Q以2 cm/s的速度向D移动.
(1)P、Q两点从出发开始到几秒时四边形PBCQ的面
.
解: (2)由题意知PQ2=PB2+BQ2=(5-x)2+(2x)2, 若PQ=5 cm,则(5-x)2+(2x)2=25.
解得x1=0(舍去),x2=2. 故2 s后,PQ的长度为5 cm.
(3)不能.理由如下:仿照(1),得 解:
1 (5-x)·2x=7, 整2 理,得x2-5x+7=0. ∵Δ=b2-4ac=25-4×1×7=-3<0, ∴此方程无实数解. ∴△PBQ的面积不能为7 cm2.
用一元二次方程解决几何图形问 题
面积、动点问题
.
回顾 面积公式
h
a
S 1 ah 2
b
a
S 1 ab 2
a
b
a
S a2
a
S ab
.
a h
b
S 1 (a b)h 2
a b
S 1 ab 2
h a
S ah
r
S r2
.
自学展示
1.直角三角形两条直角边的和为7,面 积为6,则斜边为( ). 2.从正方形铁片,截去2cm宽的一条长 方形,余下的面积是48cm2,则原来的正 方形铁片的面积是( ). 3、在一块长10m,宽6m的矩形纸片 ,将纸片四个角剪去一个同样的正方 形,制成底面积是12m2的无盖长方体 纸盒,设剪去的正方形边长为xcm,则 可列出关于x的方程为