高中数学利用导数求函数的最值
高中数学之导数研究函数的最值含答案
专题04 导数研究函数的最值1.已知函数均为上的可导函数,在上连续且,则的最大值为( ) A.B.C.D.【答案】A【解析】函数f(x),g(x)均为[a,b]上的可导函数,在[a,b]上连续令h(x)=f(x)﹣g(x),则h′(x)=f′(x)﹣g′(x),∵f′(x)<g′(x),∴h′(x)<0,函数h(x)是减函数,所以函数h(x)=f(x)﹣g(x)在[a,b]上的最大值为:h(a)=f(a)﹣g(a).故答案为:A2.函数在[0,3]上的最大值和最小值分别是()A.5,-15 B.5,-4 C.-4,-15 D.5,-16【答案】A【解析】,令,得,所以当时,,即为单调递减函数,当时,,即为单调递增函数,所以,又,所以,故选A。
3.下列说法正确的是()A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值【答案】D【解析】函数的极大值不一定是函数的最大值,函数的极小值也不一定是函数的最小值,也就是说函数的最值不一定是极值,∴选项A,B,C均错误.故选D.4.已知函数,则函数的值域为()A.B.C.D.【答案】B【解析】函数的定义域是,函数在区间上单调递减,在区间上单调递增.当时,;当.又函数的最小值为,所以函数的值域为.故答案为:B.5.设直线与函数的图象分别交于点,则当取得最小值时,的值为( ) A.1B.C.D.【答案】D【解析】设函数y=f(x)﹣g(x)=x2﹣lnx(x>0),则y′=2x﹣,令y′=0得,x=或x=舍去,所以当时,y′<0,函数在(0,)上为单调减函数,当时,y′>0,函数在(,+∞)上为单调增函数,所以当x=时,函数取得唯一的极小值,即最小值为:,则所求t的值为,故答案为:6.若函数在区间内有最小值,则的取值范围是()A.B.C.D.【答案】B【解析】令,由题意知,得,∴,∴.7.函数在区间上的最大值是()A.B.C.D.【答案】B【解析】函数,,令,解得.∴函数内单调递增,在内单调递减.∴时函数取得极大值即最大值..故选:B.8.在区间上的最小值是A.B.0C.1D.【答案】C【解析】∵f(x)=x-lnx,∴函数的定义域为(0,+∞),由f′(x)=0得x=1.当x∈(0,1)时,f'(x)<0,f(x)单调递减;当x∈(1,+∞)时,f'(x)>0,f(x)单调递增;由此可知,函数f(x)在上递减,在(1,e]上递增,∴当x=1是函数f(x)的最小值点,f(1)=1-0=1故f(x)的最小值是1.故选C.9.函数的最小值为()A.B.C.D.【答案】C【解析】由题意,函数,则函数的定义域为,又由,令,解得,当时,,函数单调递减,当时,,函数单调递增,所以函数的最小值为,故选C.10.已知函数,若函数与函数有相同的值域,则实数的取值范围是()A.B.C.D.【答案】B【解析】由函数的解析式可得:,在区间上,单调递减,在区间上,单调递增,易知当时,,且,故函数的值域为,函数与函数有相同的值域,则函数在区间上的值域为,结合函数的定义域和函数的单调性可得:,解得:.故实数的取值范围是.本题选择B选项.11.设直线与函数的图象分别交于点M,N,则当达到最小值时,t的值为A.1 B.C.D.【答案】A【解析】解:设,则,当时,,当时,,即函数为减函数,在为增函数,所以取极小值即,即当达到最小值时,t的值为1,故选A.12.函数的最大值是()A.B.C.D.【答案】A【解析】由题意,函数,则,令,即,即,又因为,解得,则当时,,函数单调递增,当时,,函数单调递减,又由,因为,所以函数的最大值为,故选A。
高中数学 利用导数研究函数的极值和最值
专题4 利用导数研究函数的极值和最值 专题知识梳理1.函数的极值(1)函数极值定义:一般地,设函数在点附近有定义,如果对附近的所有的点,都有,就说是函数的一个极大值,记作y 极大值=,是极大值点。
如果对附近的所有的点,都有.就说是函数的一个极小值,记作y极小值=,是极小值点。
极大值与极小值统称为极值.(2)判别f (x 0)是极大、极小值的方法: 若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是极小值.(3)求可导函数f (x )的极值的步骤:①确定函数的定义区间,求导数 ;①求出方程的定义域内的所有实数根;①用函数的导数为的点,顺次将函数的定义域分成若干小开区间,并列成表格.标出在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值。
①根据表格下结论并求出需要的极值。
2. 函数的最值(1)定义:若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最大值,记作;若在函数的定义域内存在,使得对于任意的,都有,则称为函数的最小值,记作;(2)在闭区间上图像连续不断的函数在上必有最大值与最小值.(3)求函数在上的最大值与最小值的步骤:①求在内的极值;①将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值, 从而得出函数在上的最值。
考点探究)(x f x 0x 0f (x )<f (x 0)f (x 0))(x f f (x 0)x 0x 0f (x )>f (x 0)f (x 0))(x f f (x 0)x 00x 0)(0='x f 0x )(x f 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '0x 0x )(x f )(0x f )(x f '¢f (x )=00)(x f ')(x f I x 0x ÎI f (x )£f (x 0))(0x f y max =f (x 0))(x f I x 0x ÎI f (x )³f (x 0))(0x f y min =f (x 0)[]b a ,)(x f []b a ,)(x f []b a ,)(x f (,)a b )(x f f (a ),f (b ))(x f []b a ,考向1 利用导数研究函数的极值 【例】已知函数x x x f ln 1)(+=,求函数()f x 的极值.题组训练1.函数的极大值是________,极小值是________.2.已知函数322()f x x ax bx a =+++在1x =处有极值10,求f (2)的值。
高三数学利用导数求最值和极值试题答案及解析
高三数学利用导数求最值和极值试题答案及解析1.已知函数 (R).(1)当时,求函数的极值;(2)若函数的图象与轴有且只有一个交点,求的取值范围.【答案】(1)当时, 取得极大值为;当时, 取得极小值为.(2)a的取值范围是.【解析】(1)遵循“求导数,求驻点,讨论驻点两侧导数值符号,确定极值”.(2)根据= ,得到△= = .据此讨论:①若a≥1,则△≤0,此时≥0在R上恒成立,f(x)在R上单调递增 .计算f(0),,得到结论.②若a<1,则△>0,= 0有两个不相等的实数根,不妨设为.有.给出当变化时,的取值情况表.根据f(x1)·f(x2)>0, 解得a>.作出结论.试题解析:(1)当时,,∴.令="0," 得. 2分当时,, 则在上单调递增;当时,, 则在上单调递减;当时,, 在上单调递增. 4分∴当时, 取得极大值为;当时, 取得极小值为. 6分(2)∵= ,∴△= = .①若a≥1,则△≤0, 7分∴≥0在R上恒成立,∴ f(x)在R上单调递增 .∵f(0),,∴当a≥1时,函数f(x)的图象与x轴有且只有一个交点. 9分②若a<1,则△>0,∴= 0有两个不相等的实数根,不妨设为.∴.当变化时,的取值情况如下表:x x(x,x)x++11分∵,∴.∴=.同理. ∴.令f(x1)·f(x2)>0, 解得a>.而当时,, 13分故当时, 函数f(x)的图象与x轴有且只有一个交点.综上所述,a的取值范围是. 14分【考点】应用导数研究函数的极值、单调性及函数的图象,分类讨论思想.2.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值3.已知a≤+lnx对任意的x∈[,2]恒成立,则a的最大值为________.【解析】令f(x)=+lnx,f′(x)=,当x∈[,1)时,f′(x)<0,当x∈(1,2]时,f′(x)>0,∴f(x)min=f(1)=0,∴a≤0,故a最大值为0.4.已知函数,是函数的导函数,且有两个零点和(),则的最小值为()A.B.C.D.以上都不对【答案】B【解析】,由题意,当或时,,当时,,因此的最小值是,选B.【考点】函数的极值与最值.5.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则 ().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴x=1不是函数f(x)的极值点.当k=2时,f′(x)=(x-1)(xe x+e x-2),显然f′(1)=0,且x在1的左边附近f′(x)<0,x在1的右边附近f′(x)>0,∴f(x)在x=1处取到极小值.6.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是______.【答案】(,2)【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2.7.设函数f(x)=x e x,则().A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点【答案】D【解析】∵f(x)=x e x,∴f′(x)=e x+x e x=e x(1+x).∴当f′(x)>0时,则x>-1,函数y=f(x)是增函数,同理可求,x<-1时函数f(x)为减函数.∴x=-1时,函数f(x)取得极小值.8.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是().A.(0,2]B.(0,2)C.[,2)D.(,2)【答案】D【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2,故选D.9.若函数在区间内有极值,则实数的取值范围是 .【答案】【解析】因为函数在区间内有极值,所以导数在区间内必有零点,于是.【考点】1.导数的公式与法则;2.函数的零点.10.某人进行了如下的“三段论”推理:如果,则是函数的极值点,因为函数在处的导数值,所以是函数的极值点.你认为以上推理的 ( ) A.大前提错误B.小前提错误C.推理形式错误D.结论正确【答案】A【解析】本题中,如果,则是函数的极值点是错误的.若是函数的极值点,则函数在的左右两侧异号,而否则尽管有,都不能说明是函数的极值点.如,其导数,函数在上是增函数.所以不是函数的极值点.因此本题是大前提错误.【考点】推理与证明、导数、函数的极值11.在处有极小值,则实数为 .【答案】1【解析】由得,又在处有极小值,故,解得或,当时,有,函数在单调递增,在单调递减,故在处有极小值;当时,有,函数在单调递增,在单调递减,故在处有极大值.综上可知.【考点】利用导数处理函数的极值12.已知函数.(1)当时,求函数的极值;(2)求函数的单调区间.【答案】(1),无极大值;(2)见解析.【解析】(1)先找到函数的定义域,在定义域内进行作答,在条件下求出函数的导函数,根据函数的单调性与导数的关系,判断函数的极值;(2)先求出函数的导函数,其导函数中含有参数,所以要进行分类讨论,对分三种情况,,进行讨论,分别求出每种情况下的函数的单调增区间和单调减区间.试题解析:(1)函数的定义域是, 1分当时,,所以在上递减,在上递增,所以函数的极小值为,无极大值; 4分(2)定义域, 5分①当,即时,由,得的增区间为;由,得的减区间为; 7分②当,即时,由,得的增区间为和;由,得的减区间为; 9分③当,即时,由,得的增区间为和;由,得的减区间为; 11分综上,时,的增区间为,减区间为;时,的增区间为和,减区间为;时,的增区间为和,减区间为. 13分【考点】1、对数函数的定义域;2、含参数的分类讨论思想;3、函数的单调性与导数的关系;4、解不等式;5、求函数的极值.13.已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号;(2)若函数在区间上有最大值为,求的值.【答案】(1),;(2).【解析】(1)先求导数,因为切线与轴平行,所以导数为0,列出等式,判断出的符号;(2)求导数,令导数为0,解出方程的根,利用导数的正负判断出函数的单调性,通过分类讨论的方法找到最大值,让最大值等于,解出的值.试题解析:(1) 1分由图象在处的切线与轴平行,知,∴. 2分又,故,. 3分(2) 令,得或. 4分∵,令,得或令,得.于是在区间内为增函数,在内为减函数,在内为增函数.∴是的极大值点,是极小值点. 5分令,得或. 6分分类:①当时,,∴ .由解得, 8分②当时,, 9分∴.由得 . 10分记,∵, 11分∴在上是增函数,又,∴, 12分∴在上无实数根. 13分综上,的值为. 14分【考点】1.用导数求切线的斜率;2.用导数求函数最值.14.已知函数,当时取得极小值,则等于()A.B.C.D.【答案】D【解析】由,解得,当;当;当,故在处取得最小值,即,则,所以,故选D.【考点】导数的极值点求法,导数的极值求解.15.对于三次函数,给出定义:设是函数的导数,是函数的导数,若方程有实数解,则称点为函数的“拐点”。
导数的应用(第3课时)利用导数研究函数的最值和二次函数(课件)高二数学(沪教版2020选择性必修二)
在闭区间上的连续函数 , 函数的最大值与最小 , 可以直观地理解为在区间 I上图像为一条连绵不断的曲线的函数 . 更精确及普适的连续函 数的定义 , 要用到严格的极限语言 , 在高等数学中才能给出 .
例9.已知(f x)=-x2+6x 1,求函数y (f x)在区间[ 0,7] 上的最大值与最小值
解 由本节例 6 可知 , 函数 (f x)=-x2+6x 1 的驻点为 x =3 ,比较 f( 3 ) =8 , f( 0 ) =-1 , f( 7 ) =-8 , 可知该函数在 [ 0 , 7 ] 上的最大值是 8 , 最小值是 -8 , 如图 5-3-3 所示
首先 ,可以利用导数的正负来判断函数y=ax2 +bx+c(a>0)的单调性 , 同时求出它的极值 .
记f (x)=ax2 +bx+c .对该函数求导 ,可得f (x)=2ax+b,令f (x)=0,
解得函数有唯一驻点x0 =-
b .可以列表如下 2a
:
因此 ,函数y f (x)的单调减区间为( - ,- b ),单调增区间为(- b ,+)
当 Δ≤0 时 , 该不等式的解集为 R. 这就很方便地得到必修课程 第 2 章中的相应结论 .
课本练习 宋老师数学精品工作室
1. 判断下列说法是否正确 , 并说明理由 : ( 1 ) 函数在某区间上的极大值不会小于它的极小值 ; ( 2 ) 函数在某区间上的最大值不会小于它的最小值 ; ( 3 ) 函数在某区间上的极大值就是它在该区间上的最大值 ; ( 4 ) 函数在宋某老区师间数上学的精最品大工值作就室是它在该区间上的极大值 .
第 5 章导数及其应用
高中数学讲义:利用导数解函数的最值
函数的最值一、基础知识:1、函数的最大值与最小值:(1)设函数()f x 的定义域为D ,若0x D $Î,使得对x D "Î,均满足()()0f x f x £,那么称0x x =为函数()f x 的一个最大值点,()0f x 称为函数()f x 的最大值(2)设函数()f x 的定义域为D ,若0x D $Î,使得对x D "Î,均满足()()0f x f x ³,那么称0x x =为函数()f x 的一个最小值点,()0f x 称为函数()f x 的最小值(3)最大值与最小值在图像中体现为函数的最高点和最低点(4)最值为函数值域的元素,即必须是某个自变量的函数值。
例如:()[)ln ,1,4f x x x =Î,由单调性可得()f x 有最小值()10f =,但由于x 取不到4,所以尽管函数值无限接近于ln 4,但就是达不到。
()f x 没有最大值。
(5)一个函数其最大值(或最小值)至多有一个,而最大值点(或最小值点)的个数可以不唯一,例如()sin f x x =,其最大值点为()22x k k Z pp =+Î,有无穷多个。
2.“最值”与“极值”的区别和联系右图为一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x (1)“最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.(2)从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个(4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.3、结论:一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.4、最值点只可能在极值点或者边界点处产生,其余的点位于单调区间中,意味着在这些点的周围既有比它大的,也有比它小的,故不会成为最值点5、利用导数求函数的最值步骤:一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下:(1)求)(x f 在(,)a b 内的极值;(2)将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值6、求函数最值的过程中往往要利用函数的单调性,所以说,函数的单调区间是求最值与极值的基础7、在比较的过程中也可简化步骤:(1)利用函数单调性可判断边界点是否能成为最大值点或最小值点(2)极小值点不会是最大值点,极大值点也不会是最小值点8、最值点的作用(1)关系到函数的值域(2)由最值可构造恒成立的不等式:例如:()ln 1f x x x =-+,可通过导数求出()()min 10f x f ==,由此可得到对于任意的0x >,均有()()min 0f x f x ³=,即不等式ln 1x x £-二、典型例题:例1:求函数()x f x xe -=的最值思路:首先判定定义域为R ,对函数进行求导,根据单调区间求出函数的最值解:()()'1x fx x e -=-,令()'0f x >,解得:1x <()f x \的单调区间为:x (),1-¥()1,+¥'()f x +-()f x Z ]()()max 11f x f e\==,无最小值小炼有话说:函数()xf x xe-=先增再减,其最大值即为它的极大值点,我们可以将这种先增再减,或者先减再增的函数成为“单峰函数”,在单峰函数中,极值点即为函数的某个最值点。
高中数学根据导数求函数的最值问题解题技巧总结
高中数学根据导数求函数的最值问题解题技巧总结在高中数学中,求函数的最值问题是经常出现的一类问题,对于这类问题我们可以通过求导数的方法来解决。
下面是一些关于根据导数求函数最值问题的解题技巧的总结。
1. 确定函数的定义域在解决函数的最值问题之前,我们需要确定函数的定义域。
定义域是指函数在实数范围内的取值范围。
确定定义域的同时,我们也要考虑函数是否连续以及是否存在间断点等因素。
2. 求函数的一阶导数为了求函数的最值,我们需要先求出函数的一阶导数。
对于一元函数而言,我们可以使用导数的定义或者常见的求导法则来求出一阶导数。
一阶导数能够反映函数的变化趋势以及函数的增减性质。
3. 找出导数为零的点接下来,我们需要找出函数的一阶导数为零的点,即导数为零的临界点。
这些点也称为函数的驻点。
通过求解导数为零的方程,我们可以得到函数取得极值的可能点。
4. 判断临界点的性质在找出函数的驻点之后,我们需要进一步判断这些点的性质。
根据导数的符号变化,我们可以判断驻点是极大值点还是极小值点。
通常我们可以通过求解导数的二阶导数,来判断驻点的性质。
5. 极值与最值的关系在有限闭区间上,函数的极大值和极小值统称为最值。
通过比较极值点的函数值,我们可以确定函数的最大值和最小值。
同时,我们还需要考虑函数在定义域的两端是否存在最值。
6. 综合应用求解问题除了在抽象的函数图像上求解最值问题,我们还可以将最值问题与实际问题相结合。
通过建立函数模型,并利用导数的知识来解决实际问题。
这样可以提升我们对于求解最值问题的能力和灵活性。
通过以上的技巧,我们能够更加高效地解决高中数学中根据导数求函数最值问题。
同时,在实际应用中,我们也需要不断的进行练习和思考,熟练掌握这些技巧,从而更好地应对各种求解最值问题的场景。
利用导数求函数的极值、最值知识点讲解+例题讲解(含解析)
利用导数求函数的极值、最值一、知识梳理1.函数的极值与导数形如山峰形如山谷2.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习考点一利用导数解决函数的极值问题角度1根据函数图象判断函数极值【例1-1】已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2)解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 答案 D规律方法 由图象判断函数y =f (x )的极值,要抓住两点:(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性.两者结合可得极值点.角度2 已知函数求极值【例1-2】 (2019·天津和平区模拟)已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x , 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-ax x (x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,故函数在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1a .规律方法 运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.角度3 已知函数的极(最)值求参数的取值 【例1-3】 (2019·泰安检测)已知函数f (x )=ln x . (1)求f (x )图象的过点P (0,-1)的切线方程;(2)若函数g (x )=f (x )-mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.解 (1)f (x )的定义域为(0,+∞),且f ′(x )=1x .设切点坐标为(x 0,ln x 0),则切线方程为y =1x 0x +ln x 0-1.把点P (0,-1)代入切线方程,得ln x 0=0,∴x 0=1. ∴过点P (0,-1)的切线方程为y =x -1. (2)因为g (x )=f (x )-mx +m x =ln x -mx +mx (x >0), 所以g ′(x )=1x -m -m x 2=x -mx 2-mx 2=-mx 2-x +m x 2,令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h (0)>0,12m >0,h ⎝ ⎛⎭⎪⎫12m <0即可,解得0<m <12.规律方法 已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.【训练1】 (1)(2017·全国Ⅱ卷)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为( ) A.-1B.-2e -3C.5e -3D.1解析 f ′(x )=[x 2+(a +2)x +a -1]·e x -1,则f ′(-2)=[4-2(a +2)+a -1]·e -3=0⇒a =-1, 则f (x )=(x 2-x -1)·e x -1,f ′(x )=(x 2+x -2)·e x -1, 令f ′(x )=0,得x =-2或x =1, 当x <-2或x >1时,f ′(x )>0, 当-2<x <1时,f ′(x )<0,所以x =1是函数f (x )的极小值点, 则f (x )极小值为f (1)=-1. 答案 A(2)(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . ①若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; ②若f (x )在x =2处取得极小值,求a 的取值范围. 解 ①因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e. 由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.②f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.考点二 利用导数求函数的最值【例2】 (2019·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 解 (1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx , 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎢⎡⎭⎪⎫1e ,+∞.①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e.从而f (x )在⎝ ⎛⎭⎪⎫0,-1a 上为增函数,在⎝ ⎛⎦⎥⎤-1a ,e 上为减函数,∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a .令-1+ln ⎝ ⎛⎭⎪⎫-1a =-3,得ln ⎝ ⎛⎭⎪⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.规律方法 1.利用导数求函数f (x )在[a ,b ]上的最值的一般步骤:(1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【训练2】 (2019·合肥质检)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)∵f (x )=e x ·cos x -x ,∴f (0)=1, f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0), 即y =1.(2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ), 则g ′(x )=-2e xsin x ≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立, 且仅在x =0处等号成立, ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减, ∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.考点三 利用导数求解最优化问题【例3】 (2018·衡水中学质检)在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为⎝ ⎛⎭⎪⎫v 103+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v2(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y (升). (1)求y 关于v 的函数关系式;(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,总用氧量最少.解 (1)由题意,下潜用时60v (单位时间),用氧量为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫v 103+1×60v =3v 250+60v (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时60v 2=120v (单位时间),用氧量为120v ×1.5=180v (升),因此总用氧量y =3v 250+240v +9(v >0).(2)y ′=6v 50-240v 2=3(v 3-2 000)25v 2,令y ′=0得v =1032,当0<v <1032时,y ′<0,函数单调递减; 当v >1032时,y ′>0,函数单调递增.若c <1032 ,函数在(c ,1032)上单调递减,在(1032,15)上单调递增,∴当v =1032时,总用氧量最少. 若c ≥1032,则y 在[c ,15]上单调递增, ∴当v =c 时,这时总用氧量最少.规律方法 1.利用导数解决生活中优化问题的一般步骤:(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.三、课后练习1.(2019·郑州质检)若函数y =f (x )存在n -1(n ∈N *)个极值点,则称y =f (x )为n 折函数,例如f (x )=x 2为2折函数.已知函数f (x )=(x +1)e x -x (x +2)2,则f (x )为( ) A.2折函数 B.3折函数 C.4折函数D.5折函数解析 f ′(x )=(x +2)e x -(x +2)(3x +2)=(x +2)(e x -3x -2),令f ′(x )=0,得x =-2或e x =3x +2. 易知x =-2是f (x )的一个极值点,又e x =3x +2,结合函数图象,y =e x 与y =3x +2有两个交点.又e -2≠3(-2)+2=-4.∴函数y =f (x )有3个极值点,则f (x )为4折函数. 答案 C2.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.解析 因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.答案 ⎣⎢⎡⎭⎪⎫1,323.(2019·杭州质检)传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm 且以每秒1 cm 等速率缩短,而长度以每秒20 cm 等速率增长.已知神针的底面半径只能从12 cm 缩到4 cm ,且知在这段变形过程中,当底面半径为10 cm 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________ cm. 解析 设神针原来的长度为a cm ,t 秒时神针的体积为V (t ) cm 3, 则V (t )=π(12-t )2·(a +20t ),其中0≤t ≤8, 所以V ′(t )=[-2(12-t )(a +20t )+(12-t )2·20]π.因为当底面半径为10 cm 时其体积最大,所以10=12-t ,解得t =2,此时V ′(2)=0,解得a =60,所以V (t )=π(12-t )2·(60+20t ),其中0≤t ≤8.V ′(t )=60π(12-t )(2-t ),当t ∈(0,2)时,V ′(t )>0,当t ∈(2,8)时,V ′(t )<0,从而V (t )在(0,2)上单调递增,在(2,8)上单调递减,V (0)=8 640π,V (8)=3 520π,所以当t =8时,V (t )有最小值3 520π,此时金箍棒的底面半径为4 cm.答案 44.设f (x )=x ln x -ax 2+(2a -1)x (常数a >0). (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解 (1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x . 又a >0,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减.∴函数y =g (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12a ,单调递减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意. 综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.。
高中数学根据导数求函数的最值问题解题技巧总结
高中数学根据导数求函数的最值问题解题技巧总结在高中数学中,根据导数求函数的最值是一个常见的考点。
这类问题要求我们通过求函数的导数,找到函数的极大值或极小值点,从而确定函数的最值。
下面我将总结一些解题技巧,帮助高中学生和他们的父母更好地应对这类问题。
一、寻找函数的极值点在解决根据导数求函数最值问题时,首先需要找到函数的极值点。
一般来说,函数的极值点就是函数的导数等于零的点,即函数的驻点。
我们可以通过以下步骤来找到函数的极值点:1. 求函数的导数。
根据问题给出的函数,我们可以先对其求导数。
例如,对于函数f(x),我们可以求得它的导函数f'(x)。
2. 解方程f'(x) = 0。
将求得的导函数f'(x)置零,解方程求得函数的驻点。
这些驻点就是函数的极值点。
需要注意的是,有时候函数的极值点可能还存在于函数的定义域的边界处,所以我们还需要将边界处的点也考虑进去。
二、判断极值点的性质找到函数的极值点后,我们需要进一步判断这些点的性质,即确定它们是极大值点还是极小值点。
这里有两种常见的方法:1. 使用导数的符号表。
我们可以通过绘制导数的符号表来判断极值点的性质。
具体做法是,在函数的定义域上选择几个代表性的点,代入导数f'(x)的值,然后根据导数的正负确定函数在这些点附近的增减性。
如果导数从正变负,那么这个点就是极大值点;如果导数从负变正,那么这个点就是极小值点。
2. 使用二阶导数。
二阶导数可以帮助我们更准确地判断极值点的性质。
具体做法是,求得函数的二阶导数f''(x),然后将极值点代入二阶导数。
如果二阶导数大于零,那么这个点就是极小值点;如果二阶导数小于零,那么这个点就是极大值点。
三、举一反三根据导数求函数的最值问题不仅仅局限于求解极值点,还可以应用到其他类型的函数中。
下面举一个例子来说明。
例题:求函数f(x) = x^3 - 3x^2 + 2x的最大值和最小值。
高中数学的解析如何利用导数求函数的极值
高中数学的解析如何利用导数求函数的极值在高中数学中,求解函数的极值是一个常见的问题。
通过计算函数的导数,可以帮助我们找到函数的极大值或者极小值。
解析法是一种常用且简洁的方法,它基于导函数的性质进行推导和分析。
本文将介绍解析法如何利用导数求解函数的极值。
一、解析法的基本思想解析法利用导数的性质来求解函数的极值。
对于一个函数 f(x),如果它在某个点 x0 处取得极大值或者极小值,那么 f'(x0) = 0。
此外,如果 f'(x0) 不存在,也可能代表 f(x) 在该点取得极值。
二、求解过程1. 求解导函数首先,我们需要求解原函数 f(x) 的导函数 f'(x)。
根据具体的题目,可以通过求导法则来计算函数的导数,例如常用的求导法则包括和差法、乘法法则、除法法则和链式法则等。
求导的过程需要运用高中数学中学过的求导公式和技巧。
2. 解方程 f'(x) = 0根据解析法的基本思想,我们需要找到函数导数为零的点。
因此,我们需要解方程 f'(x) = 0,找出满足条件的 x 值。
3. 判定极值类型在找到满足 f'(x) = 0 的 x 值后,我们可以通过二阶导数的符号来判定具体的极值类型。
如果 f''(x) > 0,那么函数在该点取得极小值;如果f''(x) < 0,那么函数在该点取得极大值。
如果 f''(x) = 0,则需要结合其他方法进一步进行判定。
4. 给出极值点和极值根据判定的结果,我们可以得到函数的极值点和极值。
我们可以通过代入原函数 f(x) 进行计算,得到极值点的具体数值和函数的极值。
三、解析法的应用举例为了更好地理解解析法的应用,以下以一个具体的数学问题为例来演示。
问题:已知函数 f(x) = x^3 - 6x^2 + 9x + 2,求函数 f(x) 的极值点和极值。
解答:1. 求解导函数将函数 f(x) 求导得到 f'(x) = 3x^2 - 12x + 9。
利用导数求函数最值的三种方法
2023年6月上半月㊀解法探究㊀㊀㊀㊀利用导数求函数最值的三种方法◉甘肃省高台县第一中学㊀郭惠英㊀㊀摘要:新课标要求学生学会并运用转化与分类讨论等思想解决实际问题,能够利用导数求某些函数的极值㊁最值.在教学中,教师既要让学生熟练掌握实用的解题方法,更要注重开拓他们的解题思路,不断提高解题效率和准确率.关键词:分类讨论法;消元转化法;判断单调性法;构建新函数㊀㊀关于求函数最值与极值的问题,近年来在高考全国卷以及各地的自主命题卷中多次出现,多以选择题㊁填空题的形式出现,也与其他知识交汇在解答题中呈现, 最值与极值 问题逐渐成为高考的高频考点与热点[1],在备考中应予以高度重视.利用导数求函数的最值是一种十分简捷有效的好方法,具体解题思路是:先构造函数,明确定义域,求导;再求变号零点;最后求原函数的最值(极值).求函数f(x)在[a,b]上的最大值和最小值的基本步骤是:先求函数f(x)在(a,b)上的极值;再求函数f(x)在区间端点的函数值f(a),f(b);最后将函数f(x)的各极值与f(a),f(b)作比较,其中最大的一个为最大值,最小的一个为最小值.下面结合典型例题,探讨运用导数求解函数最值问题的思路与方法.1分类讨论法运用分类讨论法求函数最值的基本思路是,把整体问题化为部分问题来解决,化成部分问题后,增加了题设条件.解答这类题型的步骤是:①确定分类讨论的对象,即对哪个参数进行讨论;②对所讨论的对象进行合理分类(要求分类不重复㊁不遗漏㊁不越级㊁标准要统一);③逐类讨论;④归纳总结.例1㊀(2022年全国乙卷理科数学第16题)已知x=x1和x=x2分别是函数f(x)=2a x-e x2(a>0且aʂ1)的极小值点和极大值点.若x1<x2,则a的取值范围是.解析:fᶄ(x)=2a x l n a-2e x.因为x1,x2分别是函数f(x)=2a x-e x2的极小值点和极大值点,所以函数f(x)在(-ɕ,x1)和(x2,+ɕ)上单调递减,在(x1,x2)上单调递增.故当xɪ(-ɕ,x1)ɣ(x2,+ɕ)时,fᶄ(x)<0;当xɪ(x1,x2)时,fᶄ(x)>0.若a>1,当x<0时,2a x l n a>0,2e x<0,则此时fᶄ(x)>0,与上述矛盾,故a>1不符合题意.若0<a<1,则方程2a x l n a-2e x=0的两个根为x1,x2,即方程a x l n a=e x的两个根为x1,x2,即函数y=a x l n a与函数y=e x的图象有两个不同的交点.令g(x)=a x l n a,则gᶄ(x)=a x l n2a,0<a<1.设过原点的直线与函数y=g(x)图象相切于点(x0,a x l n a),又切线的斜率为gᶄ(x0)=a x l n2a,故过原点的切线方程为y-a x l n a=a x l n2a(x-x0),则有-a x l n a=-x0a x l n2a,解得x0=1l n a,所以切线的斜率为l n2a a1l n a=e l n2a.图1因为函数y=a x l n a与函数y=e x的图象有两个不同的交点(如图1),所以e l n2a<e,解得1e<a<e.又0<a<1,故1e<a<1.综上所述,a的取值范围为(1e,1).思路与方法:本题主要采用了分类讨论的方法.由x1,x2分别是函数f(x)=2a x-e x2的极小值点和极大值点,可得当xɪ(-ɕ,x1)ɣ(x2,+ɕ)时,fᶄ(x)<0,当xɪ(x1,x2)时,fᶄ(x)>0;再分a>1和0<a<1两种情况讨论,方程2a x l n a-2e x=0的两个根为x1,x2,即函数y=a x l n a与函数y=e x的图象有两个不同的交点,构造函数g(x)=a x l n a;最后根据导数的意义并结合图象即可获解.2消元转化法消元转化法求最值是换元法与转化思想的综合运用.其解题思路是,通过设元消参与转化的方法,将不熟悉和难解的求最值问题转化为熟知的㊁易解的或已经解决的问题,将抽象的问题转化为具体的㊁直观57Copyright©博看网. All Rights Reserved.解法探究2023年6月上半月㊀㊀㊀的问题,将复杂的问题转化为简单的问题,将一般性的问题转化为直观的㊁特殊的问题,将实际问题转化为数学问题来解决.例2㊀已知函数f (x )=e x,g (x )=2x ,若f (m )=g (n )成立,则n -m 的最小值为(㊀㊀).A.12㊀㊀㊀B .1㊀㊀㊀C .2-l n 2㊀㊀㊀D.2+l n 2解法1:由f (m )=g (n ),得e m=2n ,解得n =12e 2m(m ɪR ).设h (m )=n -m =12e 2m -m ,则h ᶄ(m )=e 2m-1.由h ᶄ(m )>0,得m >0;由h ᶄ(m )<0,得m <0.所以h (m )在(-ɕ,0)上单调递减,在(0,+ɕ)上单调递增,从而得到(n -m )m i n =h (0)=12.故正确答案为:A .解法2:令f (m )=g (n )=t ,即e m=2n =t ,则m =l n t ,n =12t 2.设h (t )=n -m =12t 2-l n t ,t >0,则h ᶄ(t )=t -1t =t 2-1t.由h ᶄ(t )>0,得t >1,由h ᶄ(t )<0,得0<t <1,则h (t )在(0,1)上单调递减,在(1,+ɕ)上单调递增,所以(n -m )m i n =h (1)=12.故正确答案为:A .思路与方法:本题利用f (m )=g (n ),对n -m 消元,将问题转化为单变量函数,再应用导数求函数的最小值.在解题过程中,根据需要可采用多种变形,如①m =l n 2n (n >0);②n =12e 2m ;③令e m=2n =t ,则m =l n t ,n =12t 2;等等.3判断单调性法通过判断函数在某个区间上的单调性或者通过单调性得出函数的图象来求函数的最值,是最常用最简捷的一种方法.利用导数研究函数的单调性,关键在于准确判定导数的符号,当f (x )含参数时,需要依据参数取值对不等式解集的影响进行分类讨论.例3㊀已知函数f (x )=a x 3+x 2+b x (其中常数a ,b ɪR ),g (x )=f (x )+f ᶄ(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值与最小值.解析:(1)由题意得f ᶄ(x )=3a x 2+2x +b ,因此g (x )=f (x )+f ᶄ(x )=a x 3+(3a +1)x 2+(b +2)x +b .因为函数g (x )是奇函数,所以g (-x )=-g (x ),即对任意实数x ,都有a (-x )3+(3a +1)(-x )2+(b +2)(-x )+b =-[a x 3+(3a +1)x 2+(b +2)x +b ],于是3a +1=0,b =0,解得a =-13,b =0.故f (x )的表达式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,所以g ᶄ(x )=-x 2+2.令g ᶄ(x )=0,解得x =-2,或x =2.当x <-2,或x >2时,g ᶄ(x )<0,从而g (x )在区间(-ɕ,-2],[2,+ɕ)上是减函数.当-2<x <2时,g ᶄ(x )>0,从而g (x )在区间[-2,2]上是增函数.综上可知,g (x )在区间[1,2]上的最大值与最小值只可能在x =1,2,2时取得.而g (1)=53,g (2)=423,g (2)=43,因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43.思路与方法:本题的第(2)问是函数在闭区间上的最值问题,关键是判断函数在该区间上的单调性,因为通过单调性即可得出函数的大致图象,进而求出最值,所以就可以避免比较端点值与极值的大小[2].由此可见,利用函数的单调性是解决函数极值问题的一个重要方法.综上所述,利用导数求函数的最值时,首先要确定和判别函数的极大值和极小值,判断函数是否有极大值,就是判断f ᶄ(x )是否有左正右负的零点,判断是否有极小值,就是判断f ᶄ(x )是否有左负右正的零点;其次是要掌握求函数最值的常用方法与步骤.在具体解题过程中,有时需要对问题进行转化,构建新的函数,再用导数解决问题.参考文献:[1]吴永娇.聚焦函数与导数中的最值问题[J ].中学生数理化(高考数学),2021(5):18G20.[2]李红磊.突破函数与导数问题的几种策略[J ].高中数理化,2022(15):60G61.Z 67Copyright ©博看网. All Rights Reserved.。
高中数学导数的应用之极值和最值
利用导数求函数的极值与最值内容再现1、函数的单调性与其导数正负的关系:在某个区间内,如果,那么函数在这个区间内单调递增;在某个区间内,如果,那么函数在这个区间内单调递减;若恒有,则函数在这个区间内是常函数。
2、利用函数判断函数值的增减快慢:如果一个函数在某一范围内导数的绝对值,那么函数在这个范围内变化的快,这时函数的图像比较“陡峭”(向上或向下):反之,若函数在这个范围内导数的绝对值,那么函数在这个范围内变化的比较慢,这时函数的图像比较“平缓”。
3、判断函数极大、极小值的方法: 解方程,当时:(1)如果在附近的左侧,右侧,那么是极大值,是极大值点。
(2)如果在附近的左侧,右侧,那么是极小值点。
4、(1)函数的闭区间上的最值:如果在闭区间上函数的图像是一条曲线,则该函数在上一定能取得和,并且函数的最值必在或取得。
(2)求函数在区间上的最值的步骤:求函数在的;将函数的与比较,其中最大的一个是最大值,最小的一个是最小值。
三、巩固练习1、已知函数在区间内可导,且,则( )(A) (B) (C) (D)2、函数在区间 ( )(A) 上单调递减 (B) 上单调递减(C) 上单调递减 (D) 上单调递增3、已知在上有最小值,则在上,的最大值是4、已知是函数的一个极值点,其中,(I)求与的关系式;(II)求的单调区间;(III)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值五、典型例题1、一个物体的运动方程为其中S的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A、 7米/秒B、6米/秒C、 5米/秒D、 8米/秒DCxOA By 2、用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊接成铁盒,所做铁盒容积最大时,在四角截去的正方形的边长为( ) A .6cm B .8cm C .10cm D .12cm3、如图,某农场要修建3个养鱼塘,每个面积为10 000米2,鱼塘前面要留4米的运料通道,其余各边为2米宽的堤埂,则占地面积最少时,每个鱼塘的长宽分别为 ( ) A .长102米,宽米B .长150米,宽66米C .长宽均为100米D .长100米,宽米4、过抛物线y=x 2-3x 上一点P 的切线的倾斜角为45°,它与两坐标轴交于A ,B 两点,则△AOB 的面积是5、如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为_______时,其容积最大.6、6、某旅行社在暑假期间推出如下旅游团组团办法:达到100人的团体,每人收费1000元。
高考数学之利用导数研究函数的极值和最值
高考数学之利用导数研究函数的极值和最值一.知识点睛1.可导函数的极值:①如果函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,我们就把a叫做函数的极小值点,f(a)叫做函数的极小值.②如果函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,我们就把b叫做函数的极大值点,f(b)叫做函数的极大值.注意:①.可导函数y=f(x)在点x0取得极值的充要条件是f′(x0)=0,且在点x0左侧和右侧,f′(x)异号②.导数为0的点不一定是极值点,比如y=x3即导数为0的点是该点为极值点的必要条件,而不是充分条件。
③.若极值点处的导数存在,则一定为02.求可导函数极值的步骤:①.确定函数的定义域②求导f′(x)③求方程f′(x)=0的根④把定义域划分为部分区间,并列成表格,检查f′(x)在方程根左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值。
二.方法点拨:1.已知具体函数求极值2.已知含参函数的极值点和极值,确定参数:①极值点处导数为0②由极值点,极值组成的坐标在曲线上,由这两点建立有关参数的方程,求出参数值以后还须检验,看参数是否符合函数取得极值的条件。
3.已知含参函数极值点个数,确定参数范围:函数f(x)的极值点导函数f′(x) 的异号零点f′(x)=0的根函数y=k与函数y=g(x)图像交点的横坐标注意:导函数f′(x)的零点并不是函数f(x)的极值点,导函数f′(x)的异号零点才对应函数f(x)的极值点。
因此方程f′(x)=0的根及函数y=k与函数y=g(x)图像交点的横坐标,必须对应f′(x) 的异号零点。
方法总结:解决函数的零点,极值点,及方程根的关系问题时,优先考虑分离参数法,若分离参数不容易实现或者分离后依然不好解决问题,再考虑以下解题思路:(1)研究函数图像与X轴的位置关系⑵研究非水平的动直线(定点直线系或者斜率不为0的平行直线系)与固定函数曲线的位置关系⑶研究动态曲线与曲线的位置关系。
高三数学利用导数求最值和极值试题答案及解析
高三数学利用导数求最值和极值试题答案及解析1.已知函数(1)若是的极值点,求的极大值;(2)求实数的范围,使得恒成立.【答案】(1)极大值为;(2)综上所述:时,恒成立.【解析】(1)通过“求导数、求驻点、讨论驻点附近导数值的符号、确定极值”,“表解法”形象直观;(2)应用转化与化归思想.要使得恒成立,即时,恒成立;构造函数,应用导数研究函数的最值,注意分以下情况:(ⅰ)当时,(ii)当时,(iii)当时,(iv)当a>1时,综上所述:时,恒成立.试题解析:(1)是的极值点解得 2分当时,当变化时,+4分的极大值为 6分(2)要使得恒成立,即时,恒成立 8分设,则(ⅰ)当时,由得单减区间为,由得单增区间为,得 10分(ii)当时,由得单减区间为,由得单增区间为,此时,不合题意. 10分(iii)当时,在上单增,不合题意. 12分(iv)当a>1时,由得单减区间为,由得单增区间为,此时不合题意. 13分综上所述:时,恒成立. 14分【考点】1.应用导数研究函数的单调性、极(最)值,2.应用导数证明不等式3.转化与化归思想.2.设函数在处取极值,则= .【答案】2.【解析】因为,又函数在处取极值,所以,从而.【考点】1.函数导数的求法;2.三角恒等变形公式.3.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值4.已知曲线.(1)若曲线C在点处的切线为,求实数和的值;(2)对任意实数,曲线总在直线:的上方,求实数的取值范围.【答案】(1),,(2).【解析】(1)根据导数几何意义,所以.因为,所以.因为过点,所以,(2)由题意得:不等式恒成立,恒成立问题一般转化为最值问题.一是分类讨论求函数最小值,二是变量分离为恒成立,求函数最小值.两种方法都是,然后对实数a进行讨论,当时,,所以.当时,由得,不论还是,都是先减后增,即的最小值为,所以.试题解析:解(1), 2分因为曲线C在点(0,1)处的切线为L:,所以且. 4分解得, -5分(2)法1:对于任意实数a,曲线C总在直线的的上方,等价于∀x,,都有,即∀x,R,恒成立, 6分令, 7分①若a=0,则,所以实数b的取值范围是; 8分②若,,由得, 9分的情况如下:+11分所以的最小值为, 12分所以实数b的取值范围是;综上,实数b的取值范围是. 13分法2:对于任意实数a,曲线C总在直线的的上方,等价于∀x,,都有,即∀x,R,恒成立, 6分令,则等价于∀,恒成立,令,则, 7分由得, 9分的情况如下:+-11分所以的最小值为, 12分实数b的取值范围是. 13分【考点】利用导数求切线、最值.5.设函数f(x)=ax2+bx+c(a,b,c∈R).若x=-1为函数f(x)e x的一个极值点,则下列图像不可能为y=f(x)的图像的是()【答案】D【解析】若x=-1为函数f(x)e x的一个极值点,则易得a=c.∵选项A、B的函数为f(x)=a(x+1)2,其中a≠0,则[f(x)e x]′=f′(x)e x+f(x)(e x)′=a(x+1)·(x+3)e x,∴x=-1为函数f(x)e x的一个极值点,满足条件;选项C中,对称轴x=->0,且开口向下,∴a<0,b>0,∴f(-1)=2a-b<0,也满足条件;选项D中,对称轴x=-<-1,且开口向上,∴a>0,b>2a,∴f(-1)=2a-b<0,与图像矛盾,故选D.6.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则 ().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴x=1不是函数f(x)的极值点.当k=2时,f′(x)=(x-1)(xe x+e x-2),显然f′(1)=0,且x在1的左边附近f′(x)<0,x在1的右边附近f′(x)>0,∴f(x)在x=1处取到极小值.7.若函数满足:在定义域内存在实数,使(k为常数),则称“f(x)关于k可线性分解”.(Ⅰ)函数是否关于1可线性分解?请说明理由;(Ⅱ)已知函数关于可线性分解,求的取值范围;(Ⅲ)证明不等式:.【答案】(Ⅰ)是关于1可线性分解;(Ⅱ)a的取值范围是;(Ⅲ)详见解析.【解析】(Ⅰ)函数是否关于1可线性分解,关键是看是否存在使得成立,若成立,是关于1可线性分解,否则不是关于1可线性分解,故看是否有解,构造函数,看它是否有零点,而,观察得,,有根的存在性定理可得存在,使;(Ⅱ)先确定定义域为,函数关于可线性分解,即存在,使,即有解,整理得有解,即,从而求出的取值范围;(Ⅲ)证明不等式:,当时,,对求导,判断最大值为,可得,分别令,叠加可得证结论.试题解析:(Ⅰ)函数的定义域是R,若是关于1可线性分解,则定义域内存在实数,使得.构造函数.∵,且在上是连续的,∴在上至少存在一个零点.即存在,使. 4分(Ⅱ)的定义域为.由已知,存在,使.即.整理,得,即.∴,所以.由且,得.∴a的取值范围是. 9分(Ⅲ)由(Ⅱ)知,a =1,,.当时,,所以的单调递增区间是,当时,,所以的单调递减区间是,因此时,的最大值为,所以,即,因此得:,,,,,以上各式相加得:,即,所以,即.14分【考点】导数在最大值、最小值问题中的应用.8.如图,已知点,函数的图象上的动点在轴上的射影为,且点在点的左侧.设,的面积为.(Ⅰ)求函数的解析式及的取值范围;(Ⅱ)求函数的最大值.【答案】(Ⅰ).(Ⅱ)当时,函数取得最大值8.【解析】(Ⅰ)确定三角形面积,主要确定底和高.(Ⅱ)应用导数研究函数的最值,遵循“求导数,求驻点,讨论驻点两侧导数正负,比较极值与区间端点函数值”.利用“表解法”形象直观,易以理解.试题解析:(Ⅰ)由已知可得,所以点的横坐标为, 2分因为点在点的左侧,所以,即.由已知,所以, 4分所以所以的面积为. 6分(Ⅱ) 7分由,得(舍),或. 8分函数与在定义域上的情况如下:2+↘12分所以当时,函数取得最大值8. 13分【考点】三角形面积,应用导数研究函数的最值.9.设.(1)若时,单调递增,求的取值范围;(2)讨论方程的实数根的个数.【答案】(1);(2)见解析.【解析】(1)求出函数导数,当时,单调递增,说明当时,,即在恒成立,又函数在上递减,所以;(2)将方程化为,令,利用导数求出的单调区间,讨论的取值当时,,当时,,所以当时,方程无解,当时,方程有一个根,当时,方程有两个根.试题解析:(1)∵∴∵当时,单调递增∴当时,∴,,函数在上递减∴(2)∴令当时∵∴即在递增当时∵∴即在递减∵当时当时∴①当时,方程无解②当时,方程有一个根③当时,方程有两个根【考点】利用导数求函数最值、利用导数研究函数取值、函数和方程思想.10.函数上有最小值,实数a的取值范围是()A.(-1,3)B.(-1,2)C.D.【答案】D【解析】由题 f'(x)=3-3x2,令f'(x)>0解得-1<x<1;令f'(x)<0解得x<-1或x>1,由此得函数在(-∞,-1)上是减函数,在(-1,1)上是增函数,在(1,+∞)上是减函数故函数在x=-1处取到极小值-2,判断知此极小值必是区间(a2-12,a)上的最小值.∴a2-12<-1<a,解得-1<a<,又当x=2时,f(2)=-2,故有a≤2,综上知a∈(-1,2],故选D.【考点】用导数研究函数的最值11.设函数,其中.(1)若在处取得极值,求常数的值;(2)设集合,,若元素中有唯一的整数,求的取值范围.【答案】(1);(2)【解析】(1)由在处取得极值,可得从而解得,此问注意结合极值定义检验所求值是否为极值点;(2)分,,和三种情况得出集合A,然后由元素中有唯一的整数,分析端点,从而求出的取值范围.试题解析:(1),又在处取得极值,故,解得.经检验知当时,为的极值点,故.(2),当时,,则该整数为2,结合数轴可知,当时,,则该整数为0,结合数轴可知当时,,不合条件.综上述,.【考点】1.利用导数处理函数的极值;2.集合元素的分析12.定义在上的函数满足:①(为正常数);②当时,.若函数的所有极大值点均在同一条直线上,则_____________.【答案】或.【解析】当时,,故函数在上单调递增,在上单调递增,故函数在处取得极大值,当时,则,此时,此时,函数在处取得极大值,对任意,当时,函数在处取得极大值,故函数的所有极大值点为,由于这些极大值点均在同一直线上,则直线的斜率为定值,即为定值,故或,即或.【考点】1.函数的极值;2.直线的斜率13.若不等式对恒成立,则实数的取值范围是 .【答案】【解析】由得或,即或.又,所以或.因为不等式对恒成立,所以或.(1)令,则.令得,当时,;当时,.所以在上是增函数,在是减函数.所以,所以.(2)令,则,因为,所以,所以易知,所以在上是增函数.易知当时,,故在上无最小值,所以在上不能恒成立.综上所述,,即实数的取值范围是.【考点】利用导数研究函数的单调性、利用函数单调性求最值、含绝对值不等式的解法14.(本小题满分共12分)已知函数,曲线在点处切线方程为。
高二数学利用导数求最值和极值试题答案及解析
高二数学利用导数求最值和极值试题答案及解析1.函数在上的最小值为_____________________.【答案】-6【解析】;令得:列表如下:-1(-1,0)0(0,1)1(1,2)2所以由上表可知:函数的最小值为-6.【考点】函数的最值及导数的应用.2.已知函数f(x)=ax3+bx2+cx+d的图象与x轴有三个不同交点(0,0),(x1,0),(x2,0),且f(x)在x=1,x=2时取得极值,则x1•x2的值为.【答案】6.【解析】因为的图像过,所以,即;因为f(x)在x=1,x=2时取得极值,所以的两根为1,2,则,即;则,所以.【考点】三次函数的零点、函数的极值.3.设函数f(x)=+ln x,则()A.x=为f(x)的极大值点B.x=为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点【答案】D【解析】因为,所以当时,,当x>2时,,故知x=2为f(x)的极小值点.故选D.【考点】函数的极值.4.已知函数在与处都取得极值.(1)求函数的解析式;(2)求函数在区间[-2,2]的最大值与最小值.【答案】(1);(2).【解析】(1)由已知函数在与处都取得极值,得到,求出得到:关于a,b的两个方程,联立解方程组可得到a,b的值,从而可写出函数的解析式;(2)由(1)已求出的解析式,要求函数在区间[-2,2]的最大值与最小值,只需先求出函数在区间[-2,2]的极大值与极小值,再求出两个端点的函数值,然后比较这四个数值的大小,得其中的最大者就是该函数的最大值,最小者就是该函数的最小值.试题解析:(1)f(x)=x3+ax2+bx,f¢(x)=3x2+2ax+b 1分由f¢()=,f¢(1)=3+2a+b=0 3分得a=,b=-2 5分经检验,a=,b=-2符合题意所以,所求的函数解析式为: 6分(2)由(1)得f¢(x)=3x2-x-2=(3x+2)(x-1), 7分列表如下:(-2,-)-(-,1)9分11分所以当时, 12分【考点】1.函数导数;2.函数极值;3.函数最值.5.函数在[0,3]上的最大值和最小值分别是( ).A.5,-15B.5,-14C.5,-16D.5,15【答案】A【解析】,;令得;令得;函数在递减,在递增;又,.【考点】利用导数求闭区间上的最值.6.点P是曲线x2-y-2ln=0上任意一点,则点P到直线4x+4y+1=0的最短距离是( ) A.(1-ln 2)B.(1+ln 2)C.D.(1+ln 2)【答案】B【解析】设P(,),则点P到直线4x+4y+1=0的距离= =,设==(),所以= =,当时,<0,当时,,所以在(0,)是减函数,在(,)上是增函数,所以当=时,==,所以= .【考点】点到直线距离公式;利用导数求最值7.已知函数既有极大值又有极小值,则实数的取值范围是。
数学解决函数极值的三种方法
数学解决函数极值的三种方法函数的极值指的是函数在某个区间内取得的最大值或最小值。
求解函数的极值是数学中的重要问题之一,有着广泛的应用。
本文将介绍三种常用的数学方法来解决函数的极值问题。
一、导数法导数法是求解函数极值最常用的方法之一。
该方法基于导数的性质,通过求函数的导数来研究函数在不同点的变化情况。
假设函数f(x)在[a, b]区间内连续可导。
下面是求解函数极值的步骤:1. 求出函数f(x)的导数f'(x)。
2. 求出导数f'(x)的零点,即解方程f'(x) = 0。
3. 求出[a, b]区间内导数f'(x)的极值点,即对导数f'(x)求导,得到f''(x),再求出f''(x) = 0的解。
4. 将[a, b]区间内得到的所有解代入原函数f(x)中,得出这些点对应的函数值。
5. 比较得出的函数值,找出最大值和最小值。
导数法求解函数极值的优点是简单易懂,只需要求导和解方程,相对较快。
但该方法的缺点是依赖函数的可导性,对于非连续或不可导的函数不适用。
二、一元二次函数法一元二次函数法是解决函数极值问题的另一种常用方法。
该方法适用于形如f(x) = ax² + bx + c的二次函数。
下面是使用一元二次函数法求解函数极值的步骤:1. 将函数f(x)化为顶点形式,即使用平方完成或配方法将函数转化为f(x) = a(x-h)² + k的形式。
2. 根据一元二次函数的性质,当a>0时,函数在顶点(h, k)处取得最小值;当a<0时,函数在顶点(h, k)处取得最大值。
3. 找出顶点的横坐标h,即x = -b/2a。
代入f(x),求得函数的极值。
一元二次函数法的优点是适用范围广,并且可以直观地得到函数的极值点。
但对于不是二次函数的情况,该方法并不适用。
三、二阶导数法二阶导数法是一种更加精确的求解函数极值的方法。
高三数学利用导数求最值和极值试题答案及解析
高三数学利用导数求最值和极值试题答案及解析1.函数y=x4-4x+3在区间[-2,3]上的最小值为()A.72B.36C.12D.0【答案】D【解析】因为y′=4x3-4,令y′=0即4x3-4=0,解得x=1.当x<1时,y′<0,当x>1时,y′>0,所以函数的极小值为y|=1=0,而在端点处的函数值y|x=-2=27,y|x=3=72,所以y min=0.x2.若函数f(x)=x3-3x在(a,6-a2)上有最小值,则实数a的取值范围是()A.(-,1)B.[-,1)C.[-2,1)D.(-2,1)【答案】C【解析】f′(x)=3x2-3=3(x+1)(x-1),令f′(x)=0,得x=±1,所以f(x)的大致图象如图所示,f(1)=-2,f(-2)=-2,若函数f(x)在(a,6-a2)上有最小值,则,解得-2≤a<1.3.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值4.若函数在(0,1)内有极小值,则实数a的取值范围是( )A.(0,3)B.(-∞,3)C.(0,+∞)D.【答案】D 【解析】∵,且f(x)在(0,1)内有极小值. ∴.5. 已知是奇函数,当时,,当时,的最小值为1,则的值等于( ) A .B .C .D .1【答案】D . 【解析】由已知是奇函数,且当时,的最小值为1,而奇函数图象关于原点对称性,可得当时,有最大值.,当,即时,,在上单调递增;当,即时,,在上单调递减.当时,取最大值,故选D .【考点】1.函数的奇偶性;2.导数与函数的最大值最小值.6. 如图,某自来水公司要在公路两侧铺设水管,公路为东西方向,在路北侧沿直线铺设线路l 1,在路南侧沿直线铺设线路l 2,现要在矩形区域ABCD 内沿直线将l 1与l 2接通.已知AB = 60m ,BC = 80m ,公路两侧铺设水管的费用为每米1万元,穿过公路的EF 部分铺设水管的费用为每米2万元,设∠EFB= α,矩形区域内的铺设水管的总费用为W .(1)求W 关于α的函数关系式; (2)求W 的最小值及相应的角α. 【答案】(1)=80+60tanα;(2),.【解析】(1)过E 作,垂足为M ,由题意得∠MEF="α," 故有,,,化简即可;(2),利用导数求出的最大值和相应的角度即可.试题解析:(1)如图,过E 作,垂足为M ,由题意得∠MEF=α,故有,,, 3分所以=80+ 60tanα(其中8分 (2)W. 设,则. 11分令得,即,得.列表+0所以当时有,此时有. 14分答:铺设水管的最小费用为万元,相应的角. 16分【考点】函数模型的应用、利用导数求函数极值、三角函数综合.7.已知函数.(1)若在处取得极大值,求实数的值;(2)若,求在区间上的最大值.【答案】(1);(2)详见解析.【解析】(1) 本小题首先利用导数的公式和法则求得原函数的导函数,通过列表分析其单调性,进而寻找极大值点;(2) 本小题结合(1)中的分析可知参数的取值范围影响函数在区间上的单调性,于是对参数的取值范围进行分段讨论,从而求得函数在区间上的单调性,进而求得该区间上的最大值.试题解析:(1)因为令,得,所以,随的变化情况如下表:↗↘↗(2)因为所以当时,对成立所以当时,取得最大值当时,在时,,单调递增在时,,单调递减所以当时,取得最大值当时,在时,,单调递减所以当时,取得最大值当时,在时,,单调递减在时,,单调递增又,当时,在取得最大值当时,在取得最大值当时,在,处都取得最大值0. 14分综上所述,当或时,取得最大值当时,取得最大值当时,在,处都取得最大值0当时,在取得最大值.【考点】1.导数公式;2.函数的单调性;3.分类讨论.8.记函数的最大值为M,最小值为m,则的值为( ) A.B.C.D.【答案】A【解析】由已知得,,解得,所以函数的定义域是. 已知函数求导得,,时,当时,,当时,,所以在区间上先增后减,最大值是,因为,,所以,所以.【考点】1.利用导数研究函数的最值;2.函数的单调性与导数的关系9.设.(Ⅰ)若对一切恒成立,求的取值范围;(Ⅱ)设,且是曲线上任意两点,若对任意的,直线AB的斜率恒大于常数,求的取值范围;(Ⅲ)求证:.【答案】(Ⅰ);(Ⅱ);(Ⅲ)详见解析【解析】(Ⅰ)∴对一切恒成立等价于恒成立.这只要求出函数的最小值即可.(Ⅱ)直线的斜率为:由题设有,不妨设则这样问题转化为函数,在上单调递增所以恒成立,即对任意,恒成立这样只需求出的最小值即可.(Ⅲ)不等式可变为由(Ⅰ) 知(时取等号),在此不等式中取得:变形得:取得:变形得:取得:变形得:取得:变形得:将以上不等式相加即可得证.试题解析:(Ⅰ)令,则由得.所以在上单调递增, 在单调递减.所以由此得:又时,即为此时取任意值都成立综上得:(II)由题设得,直线AB的斜率满足:,不妨设,则即:令函数,则由以上不等式知:在上单调递增,所以恒成立所以,对任意,恒成立又=故(Ⅲ)由(Ⅰ) 知时取等号),取,得即累加得所以【考点】1、函数的导数及其应用;2、不等关系及重要不等式;3、不等式的证明.10.已知函数(1)当时,求函数在上的极值;(2)证明:当时,;(3)证明:.【答案】(1);(2)证明过程详见解析;(3)证明过程详见解析.【解析】本题主要考查导数的运算,利用导数研究函数的单调性、极值和最值、不等式等基础知识,考查函数思想,考查综合分析和解决问题的能力.第一问,将代入,得到解析式,对它求导,列出表格,通过单调性,判断极值;第二问,证明不等式转化为求函数的最小值大于0;第三问,利用第二问的结论,令,利用放缩法得到,再利用对数的性质和裂项相消法求和,得到所证不等式.试题解析:(1)当时,1分变化如下表+00+极大值, 4分(2)令则 6分∴在上为增函数。
利用导数求解函数的极值与最值
利用导数求解函数的极值与最值函数的极值与最值是高中数学中的重要概念之一。
在数学中,我们通过求函数的导数来研究函数的极值与最值。
本文将详细讨论如何利用导数求解函数的极值与最值的方法。
一、函数的极值当函数在某一点处的导数等于零或者不存在时,该点可能为函数的极值点。
具体而言,我们可根据导数的符号变化来判断函数的极值。
1. 当导数的符号从正变负时,函数在该点处取得极大值;2. 当导数的符号从负变正时,函数在该点处取得极小值;3. 当导数的符号不变,或者导数不存在时,函数在该点处可能为极值点,需通过其他方法进行判断。
二、求解函数的极值的步骤下面我们将通过一个具体的例子来介绍如何求解函数的极值。
例:求函数f(x) = x^3 - 6x^2 + 9x的极值。
步骤一:求导数首先,对函数f(x)求导数,得到f'(x) = 3x^2 - 12x + 9。
步骤二:解方程f'(x) = 0,得到导数等于零的解对f'(x) = 0进行因式分解,得到(3x - 3)(x - 3) = 0。
解得x = 1或x = 3。
步骤三:求解极值将求得的解代入原函数f(x),计算函数值。
当x = 1时,f(1) = 1^3 - 6(1)^2 + 9(1) = 4;当x = 3时,f(3) = 3^3 - 6(3)^2 + 9(3) = 0。
根据我们上文对导数符号变化的判断方法,我们可得出以下结论:当x = 1时,函数取得极小值;当x = 3时,函数取得极大值。
三、函数的最值函数的最值可以通过求解函数的极值来得到。
通常情况下,我们还需要考虑函数在定义域的端点处的取值。
例:求函数f(x) = 2x^2 - 4x + 1在区间[0, 2]上的最大值和最小值。
步骤一:求导数对函数f(x)求导数,得到f'(x) = 4x - 4。
步骤二:求解极值将导数f'(x) = 0,解得x = 1。
步骤三:求解函数在区间端点处的取值将x = 0和x = 2代入原函数f(x),计算函数值。
高考数学复习:利用导数求函数的极最值
高考数学复习:利用导数求函数的极最值1.利用导数求函数的极最值问题.解题方法是利用导函数与单调性关系确定单调区间,从而求得极最值.只是对含有参数的极最值问题,需要对导函数进行二次讨论,对导函数或其中部分函数再一次求导,确定单调性,零点的存在性及唯一性等,由于零点的存在性与参数有关,因此对函数的极最值又需引入新函数,对新函数再用导数进行求值、证明等操作.例1.已知函数()()e ln xf x x a x x =++.(1)若a e =-,求()f x 的单调区间;(2)当0a <时,记()f x 的最小值为m ,求证:1m .【答案】(1)函数()f x 的单调递减区间为()0,1,单调递增区间为()1,+∞ (2)证明见解析(1)求出导函数()'f x ,由()0f x '>得增区间,由()0f x '<得减区间; (2)函数定义域是(0,)+∞,求得导函数()()1e xx f x x a x +'=+,这里1x x+是正数,引入()e x g x x a =+,利用它的单调性,得其有唯一零点0x ,是()f x 的唯一极小值点,即()()00000e ln xm f x x a x x ==++,由0()g x =00e 0x x a +=把0()m f x =转化为关于a 的函数,再由导数得新函数的最大值不大于1,证得结论成立. (1)当a e =-时,()()e e ln xf x x x x =-+,()f x 的定义域是()0,∞+,()()()111e e 1e e x xx f x x x x x +⎛⎫⎛⎫'=+-+=- ⎪ ⎪⎝⎭⎝⎭,当01x <<时,()0f x '<;当1x >时,()0f x '>.所以函数()f x 的单调递减区间为()0,1,单调递增区间为()1,+∞. (2)由(1)得()f x 的定义域是()0,∞+,()()1e xx f x x a x+'=+, 令()e xg x x a =+,则()()10x g x x e '=+>,()g x 在()0,∞+上单调递增,因为0a <,所以()00g a =<,()e 0ag a a a a a --=-+>-+=,故存在()00,x a ∈-,使得()000e 0xg x x a =+=.当()00,x x ∈时,()0g x <,()()1e 0xx f x x a x+'=+<,()f x 单调递减; 当()0,x x ∈+∞时,()0g x >,()()1e 0xx f x x a x+'=+>,()f x 单调递增; 故0x x =时,()f x 取得最小值,即()()00000e ln xm f x x a x x ==++,由00e 0x x a +=,得()()000e n ln e l x xm x a x a a a =+=-+-,令0x a =->,()ln h x x x x =-,则()()11ln ln h x x x '=-+=-, 当()0,1x ∈时,()ln 0h x x '=->,()ln h x x x x =-单调递增, 当()1,x ∈+∞时,()ln 0h x x '=-<,()ln h x x x x =-单调递减, 故1x =,即1a =-时,()ln h x x x x =-取最大值1,1m . 例2.已知函数()()()ln e xxf x a x x a =+-∈R . (1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)讨论函数()f x 的极值点的个数. 【答案】(1)11ey =-; (2)答案见解析.(1)分别求出()1f 和()1f ',即可求出切线方程;(2)分0a ≥、1a e≤-和10e a -<<三种情况,分别讨论()f x 单调性,即可得到对应的极值点的情况.(1)当1a =时,()n e l xx f x x x =+-定义域为()0+∞,,()111ef =-. 因为()1e 11x x f x x -'=+-,所以()111110ef -'=+-=. 所以()y f x =在点()()1,1f 处的切线方程为:11ey =-. (2) 函数()()()ln e xx f x a x x a =+-∈R 定义域为()0+∞,,()1111e e x x x x x f x a a x x --⎛⎫⎛⎫'=+-=+ ⎪ ⎪⎝⎭⎝⎭. 令()(),0e x x g x a x =+>,()1ex xg x ='-. 令()0g x '>,得01x <<;令()0g x '<,得1x >; 所以()g x 在()0,1上单增,在()1,+∞上单减. 所以()()max 11e g x g a ==+,所以()1ea g x a <≤+①当0a ≥时,10e x ax+>,令()0f x '>,得01x <<;令()0f x '<,得1x >; 所以()f x 在()0,1上单增,在()1,+∞上单减. 此时()f x 有且只有一个极值点. ②当1a e≤-时,()0e x xg x a =+≤,令()0f x '>,得1x >;令()0f x '<,得01x <<; 所以()f x 在()0,1上单减,在()1,+∞上单增. 此时()f x 有且只有一个极值点.③当10ea -<<时,方程()0g x =有两个相异正根12,x x ,不妨设1201x x <<<,则当10x x <<时,有()0f x '<;当11x x <<时,有()0f x '>;当21x x <<时,有;()0f x '<;当2x x >时,有;()0f x '>;所以()f x 在()10,x 上单减,在()1,1x 上单增,在()21,x 上单减,在()2,x +∞上单增, 此时()f x 有三个极值点.综上所述:当0a ≥或1a e ≤-时,()f x 有且只有一个极值点;当10ea -<<时,()f x 有三个极值点.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围.例3.已知函数()2e e 2x xf x ax -=+--.(1)当1a =时,证明:函数()f x 在区间()0,∞+上单调递增;(2)若()()e xg x f x -=-,讨论函数()g x 的极值点的个数.【答案】(1)证明见解析 (2)答案见解析(1)先对函数求导,再二次求导,可求得导函数在区间()0,∞+上单调递增,从而可得()()00f x f ''>=,进而可证得结论,(2)当0a =时,可得()g x 单调递增,无极值点,当0a ≠时,()e 2xg x ax ='-,令ee 202x xax a x-=⇒=,令()e xh x x=,利用导数求出()h x 的单调区间和极值,从而分0e 2a <<,e 2a =和2e a >求解即可(1)证明:当1a =时,()()2e e 2,e e 2x x x xf x x f x x --=+----'=. 当0x >时,()e e 20x xf x -=+-'>',.所以函数()f x '在区间()0,∞+上单调递增,故()()00f x f ''>=,故函数()f x 在区间()0,∞+上单调递增. (2)解:当0a =时,()e 2xg x =-单调递增,无极值点, 当0a ≠时,()e 2xg x ax ='-,令e e 202xxax a x-=⇒=,令()e xh x x =,则()()2e 1x x h x x -'=,当0x <时,()0h x <,且()0h x '<,当0a <时,方程e2xa x=有唯一小于零的零点,故函数()g x 存在一个极值点;当01x <<时,()0h x '<,当1x >时,()0h x '>,故函数()h x 在()0,1上单调递减,在()1,+∞上单调递增,()1e h =为函数()h x 极小值, 所以当0e 2a <<时,方程e 2xa x=无解,函数()g x 无极值点;当e 2a =时,方程e 2xa x=有一个解, 但当01x <<时,()e 2,e 20x xa g x ax x ='>->,当1x >时,()e 2,e 20x x a g x ax x='>->,故函数()g x 无极值点.当2e a >时,方程e 2xa x=有两解,函数()g x 存在一个极大值点和一个极小值点.综上,当0a <时,函数()g x 存在一个极值点, 当e02a 时,函数()g x 无极值点, 当2ea >时,函数()g x 存在一个极大值点和一个极小值点.1.已知函数ln(1)()x f x x a+=+. (1)当1a =-时,判断()f x 在区间()1,+∞上的单调性;(2)当1a >时,记()f x 的最大值为M ,求证:1(,)2a M e -∈.【答案】(1)()f x 在(1,)+∞上单调递减.(2)证明见解析(1)利用导数研究函数的单调性即可;(2)由题知2ln(1)1()()x ax x f x x a '+-++=+,设()ln(1)1x ag x x x +=-++,进而得()g x 在(1,)-+∞存在唯一零点()01,1a x e ∈-且()f x 的最大值()()000ln 1x M f x x a+==+,再结合()000ln 11x a x x ++=+可得011,12a M e x -⎛⎫=∈ ⎪+⎝⎭. (1)当1a =-时,21ln(1)1()(1)(1)x x x f x x x '--++=>-, 设1()ln(1)1x g x x x -=-++,则21'()(1)x g x x -+=+,当(1,)x ∈+∞时,()0,()g x g x '<在(1,)+∞上单调递减, 所以()()1ln 20g x g =-<<, 所以()0f x '<,所以()f x 在(1,)+∞上单调递减. (2)2ln(1)1()()x ax x f x x a '+-++=+, 设()ln(1)1x a g x x x +=-++,则2()(1)x a g x x '--=+. 当1a >时,()f x 的定义域为(1,),()0,()g x g x '-+∞≤在(1,)-+∞上单调递减,因为()()(1)11(1)ln 21ln 20,102a aaa e a g g e e--+=-≥->-=< 所以()(1)10ag g e -<.又因为()g x 的图象是不间断的,且()g x 在(1,)-+∞上单调递减,所以()g x 在(1,)-+∞存在唯一零点()01,1ax e ∈-,当()01,x x ∈-时,()0,()0,()g x f x f x '>>在()01,x -上单调递增, 当()0,x x ∈+∞时,()0,()0,()g x f x f x '<<在()0,x +∞上单调递减, 所以()f x 的最大值()()000ln 1x M f x x a+==+由()00g x =得()000ln 11x ax x ++=+,所以011,12a M e x -⎛⎫=∈ ⎪+⎝⎭,从而原命题得证. 2.函数()e sin 2xx x f a x =-+.(1)求曲线()y f x =在点()()0,0f 处的切线方程; (2)当0a ≥时,求函数()f x 在0,1上的最小值; (3)直接写出a 的一个值,使()f x a ≤恒成立,并证明. 【答案】(1)()1y a x a =++ (2)a(3)1a =-,证明见解析(1)利用导数的几何意义直接求解;(2)利用导数研究函数的单调性,进而求得最小值;(3)取1a =-,构造函数()e sin 21x g x x x =+--,即证()0g x ≥恒成立,利用导数研究函数的单调性及最值即可证得结论. (1)由()e sin 2xx x f a x =-+,知()0f a =,切点为()0,a求导()e cos 2xf a x x =-+',则切线斜率()0121a f a k =-+='+=所以切线方程为:()1y a a x -=+,即()1y a x a =++ (2)求导()e cos 2xf a x x =-+',[]0,1x ∈0a ≥,[]cos 1,1x ∈-,0f x,所以函数()f x 在0,1上单调递增,()()min 0f x f a ∴==,即函数()f x 在0,1上的最小值为a . (3)取1a =-,下面证明e sin 21x x x --+≤-恒成立,即证e sin 210x x x +--≥恒成立, 令()e sin 21x g x x x =+--,即证()0g x ≥恒成立 求导()e cos 2x g x x '=+-,(i )当0x ≤时,e 1x ≤,[]cos 1,1x ∈-,此时()0g x '≤所以函数()g x 在(],0-∞上单调递减,()(0)0g x g ∴≥=,即()0g x ≥成立(ii )当0x >时,令()()e cos 2,0xp x g x x x '==+->,()e sin x p x x -'=,因为e 1x >,[]sin 1,1x ∈-,所以()0p x '>,所以函数()g x '在()0,+∞上单调递增,()(0)0g x g ''∴>=,所以函数()g x 在()0,+∞上单调递增,()(0)0g x g ∴>=,综上可知,()0g x ≥恒成立,即()f x a ≤恒成立3.已知函数()2e xf x ax =-(其中为自然对数的底数).(1)讨论函数()f x 的导函数()f x '的单调性;(2)设()()cos g x x x f x =+-,若x =0为g (x )的极小值点,求实数a 的取值范围. 【答案】(1)答案见解析; (2)()1,+∞.(1)先求导,再对a 利用导数分两种情况求函数的单调区间;(2)求出()sin 1e 2x g x x ax =-+-+',令()sin 1e 2x G x x ax =-+-+,则()cos e 2xG x x a =--+',令()()h x G x '=,再对22a -分两种情况讨论分析得解. (1)解: ()e 2x f x ax '=-,令()e 2x F x ax =-,则()e 2xF x a ='-,①当0a ≤时,()0F x '>,②当0a >时,()()ln 2,x a ∈+∞时,()0F x '>,()(),ln 2x a ∈-∞时,()0F x '<; 综上,当0a ≤时,()f x '在(),-∞+∞上是增函数;当0a >时,()f x '在()()ln 2,a +∞上是增函数,在()(),ln 2a -∞上是减函数; (2)解:()2cos e x g x x x ax =+-+,则()sin 1e 2xg x x ax =-+-+',()00g '=, 令()sin 1e 2x G x x ax =-+-+,则()cos e 2xG x x a =--+',令()()h x G x '=,则()sin e xh x x ='-,当0x >时,sin 1x ≤,e 1x >,故()0h x '<,()G x '是减函数, 所以()()022G x G a '='<-.①当220a -≤,即1a ≤时,()0G x '<,即()G x 在()0,∞+上是减函数,不符合0x =是极小值,舍去; ②当220a ->,即1a >时,因为()G x '是减函数,且()00G '>,()()()ln 23cos ln 2330G a a +=-+-<⎡⎤⎣⎦', 所以()()00,ln 23x a ∃∈+,使得()00G x '=,当()00,x x ∈时,()0G x '>,即()g x '是增函数,所以()()00g x g ''>=,即()g x 在()00,x 上是增函数;当0x <时,(),0π∀∈-,使得()0h x '<,()G x '是减函数, 故()()0220G x G a >=-'>',从而()g x '是增函数,所以()()00g x g ''<=,即()g x 在(),0π-上是减函数. 综上,a 的取值范围是()1,+∞.4.已知函数2()2ln =--+f x x x a x ax ,a ∈R . (1)若1a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)设()f x 的极小值点为0x ,且()204<-af x a ,求a 的取值范围.【答案】(1)0y = (2)(2,2)-(1)由导数的几何意义得出切线方程;(2)对a 的值进行分类讨论,利用导数得出其单调性,再根据题意解不等式得出a 的取值范围. (1)由2()ln f x x x x =--可得,(1)0f =,由1()21f x x x'=--可得,(1)2110f '=--= 即曲线()y f x =在点(1,(1))f 处的切线方程为0y = (2)(1)(2)()22a x x a f x x a x x-+'=--+=若0a 时,1()0x f x '>⇒>;01()0x f x '<<⇒<即函数()y f x =在(0,1)上单调递减,在(1,)+∞上单调递增,极小值点为1由()241af a <-,可得2140a a a a ⎧-<-⎪⎨⎪⎩,解得02a ≤<.若2a <-时,当(0,1),2a x ⎛⎫∈⋃-+∞ ⎪⎝⎭时,()0f x '>,则函数()f x 在(0,1),,2a ⎛⎫-+∞ ⎪⎝⎭上单调递增;当1,2a x ⎛⎫∈- ⎪⎝⎭时,()0f x '<,则函数()f x 在1,2a ⎛⎫- ⎪⎝⎭上单调递减,则极小值点为2a -.由224a a f a ⎛⎫-<- ⎪⎝⎭可得,ln 022a a ⎧⎛⎫-<⎪ ⎪⎝⎭⎨⎪<-⎩,此时不等式组无解.若2a =-时,22(1)()0x f x x-'=≥,函数()f x 无极值点. 若20a -<<时,当0,(1,)2a x ⎛⎫∈-⋃+∞ ⎪⎝⎭时,()0f x '>,即函数()f x 在0,,(1,)2a ⎛⎫-+∞ ⎪⎝⎭上单调递增.当,12a x ⎛⎫∈- ⎪⎝⎭时,()0f x '<,即函数()f x 在,12a ⎛⎫- ⎪⎝⎭上单调递减,即函数()f x 的极小值点为1,由()241af a <-,可得21420a a a a ⎧-<-⎪⎨⎪-<<⎩,解得20a -<<.综上,(2,2)a ∈- 5.已知函数()()21ln 12f x x a x a x =+-+,其中a R ∈. (1)讨论()f x 的单调性;(2)若函数()()()1F x f x a x =+-有两个极值点1x ,2x ,且()()1222eF x F x +>--恒成立(e 为自然对数的底数),求实数a 的取值范围. 【答案】(1)答案见解析; (2)10ea <<. (1)示出导函数()'f x ,在定义域内分类讨论确定()'f x 的正负,得单调区间;(2)由()0F x '=有两个不等实根得出a 的一个范围,同时得出12,x x 的关系,计算12()()F x F x +化为a 的函数,不等式变形后,引入函数2()ln eg x x x x =-+,由导数确定单调性后可得不等式的解,即得a 的范围.(1)()f x 的定义域是(0,)+∞,(1)()()(1)a x x a f x x a x x--'=+-+=, 0a ≤时,01x <<时,()0f x '<,1x >时,()0f x '>,()f x 的减区间(0,1),增区间是(1,)+∞;01a <<时,0x a <<或1x >时,()0f x '>,1<<a x 时,()0f x '<,()f x 的增区间是(0,)a 和(1,)+∞,减区间是(,1)a ;1a =时,()0f x '≥恒成立,()f x 的增区间是(0,)+∞,无减区间;1a >时,01x <<或x a >时,()0f x '>,1x a <<时,()0f x '<,()f x 的增区间是(0,1)和(,)a +∞,减区间是(1,)a ;(2)22()()1x x aF x f x a x-+''=+-=,由题意220x x a -+=有两个不等正根12,x x ,440a ∆=->,1a <,又122x x +=,120x x a =>,所以01a <<,21()ln 22F x x a x x =+-, 2221211122212121212111()()ln 2ln 2[()2]ln()2()222F x F x x a x x x a x x x x x x a x x x x +=+-++-=+-+-+2ln 4ln 2a a a a a a =-+-=--,由题意2ln 22e a a a -->--,2ln 0ea a a -+>, 设2()ln eg x x x x =-+(01)x <<,则()ln 11ln g x x x '=+-=0<, ()g x 在(0,1)上递减,又11112()ln 0e e e e e g =-+=,所以由2ln 0e a a a -+>,得10ea <<.综上,10ea <<. 【点睛】本题考查导数研究函数的单调性,考查极值点有关的问题,解题方法由导函数为0得出极值点的性质,同时得出参数的一个范围,计算有关极值点的代数式12()()F x F x +,化简不等式,利用函数的单调性得出不等式的解,从而得出结论,本题属于较难题. 6.已知函数221()2ln (0)2f x ax x a x a =-+≠ (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:121212()()11f x f x x x x x -<+-【答案】(1)答案不唯一,具体见解析 (2)证明见解析(1)函数()f x 求导后,分子为含参的二次三项式,结合0a ≠,我们可以从0∆和0∆>结合开口方向和两根的大小来讨论;(2)1x ,2x 为函数()f x 的两个极值点,我们可以通过()f x '结合韦达定理,找到1x ,2x 的关系,带入到要证明的不等式中,然后通过整理,化简成一个关于12x x 的函数关系,再通过换元,构造函数,通过求解函数的值域完成证明. (1)22222()1a ax x a f x ax x x-+'=-+=,设22()2p x ax x a =-+.(0)x >,318a ∆=-, ①当12a时,0∆,()0p x ,则()0f x ',()f x 在(0,)+∞上单调递增, ②当102a <<时,0∆>,()p x的零点为1x =,2x =120x x <<,令()0f x '>,得10x x <<,或2x x >,令()0f x '<,得12x x x <<,()f x ∴在上单调递减,在,,)∞+单调递增,③当0a <时,0∆>,()p x,()f x ∴在上单调递增,在,)∞+上单调递减.综上所述:当12a时,()f x 在(0,)+∞上单调递增;当102a <<时,()f x在上单调递减,在,,)∞+单调递增;当0a <时,()f x在上单调递增,在,)∞+上单调递减. (2)证明:由(1)知,当102a <<时,()f x 存在两个极值点, 不妨设120x x <<,则121x x a+=, 要证:121212()()11f x f x x x x x -<+-,只要证121212121221()()()()x x x x x xf x f x x x x x -+->=-,只需要证211212122211()[()2]2ln2x x x x x a x x a x x x -+-+>-, 即证21121222112ln ()2x x x a x x x x x -+>-,设12x t x =,(01)t <<, 设函数21()2ln g t a t t t=-+, 22221()t a t g t t -+∴'=-,∴4440a ∆=-<,22210t a t ∴-+>, ()0g t ∴'<,()g t ∴在(0,1)上单调递减,则()(1)g t g >0=, 又121()02x x -<, 则121()0()2g t x x >>-,则21121222112ln ()2x x x a x x x x x -+>-,从而121212()()11f x f x x x x x -<+-. 【点睛】(1)含参的二次三项式再进行分类讨论的时候,如果二次项含参数,在讨论有根无根的情况下要兼顾到开口方向以及两根大小的比较;(2)如果函数()f x 在求导完以后,是一个分子上含有二次三项式,不含指数、对数的式子,那么函数()f x 的极值点关系,可以使用韦达定理来表示. 7.已知函数()()()1ln R af x x a x a x=-+-∈. (1)讨论()f x 的单调性;(2)若()f x 有两个极值点,且这两个极值点分别为1x ,2x ,若不等式()()()1212ln ln f x f x x x λ+<+恒成立,求λ的值.【答案】(1)答案见解析 (2)2λ=-(1)求导,然后分0a ≤,01a <<,1a =,1a >讨论研究单调性;(2)由(1)两个极值点分别是1和a ,不妨设11x =,2x a =,代入()()()1212ln ln f x f x x x λ+<+,然后转化为最值问题求解即可. (1)由题意可知()f x 的定义域为()0,∞+,()()()22111x a x a a f x x x x --+'=-+=. 当0a ≤时,由()0f x '>,得1x >;由()0f x '<,得01x <<. 则()f x 在()0,1上单调递减,在()1,+∞上单调递增.当01a <<时,由()0f x '>,得0x a <<或1x >;由()0f x '<,得1<<a x . 则()f x 在()0,a 和()1,+∞上单调递增,在(),1a 上单调递减. 当1a =时,()0f x '≥恒成立,则()f x 在()0,∞+上单调递增.当1a >时,由()0f x '>,得01x <<或x a >;由()0f x '<,得1x a <<. 则()f x 在()0,1和(),a +∞上单调递增,在()1,a 上单调递减. 综上,当0a ≤时,()f x 在()0,1上单调递减,在()1,+∞单调递增; 当01a <<时,()f x 在()0,a 和()1,+∞上单调递增,在(),1a 上单调递减; 当1a =时,()f x 在()0,∞+上单调递增;当1a >时,()f x 在()0,1和(),a +∞上单调递增,在()1,a 上单调递减. (2)由(1)可知01a <<或1a >,且两个极值点分别是1和a ,不妨设11x =,2x a =, 则()()()()1211ln 11ln f x f x a a a a a a +=-+-+-=-+,12ln ln ln x x a +=, 故()()()1212ln ln f x f x x x λ+<+恒成立,即()1ln ln a a a λ-+<恒成立. 当01a <<时,ln 0a <,则()1a λ<-+,因为01a <<,所以()211a -<-+<-,则2λ≤-; 当1a >时,ln 0a >,则()1a λ>-+, 因为1a >,所以()12a -+<-,则2λ≥-. 综上,2λ=-.。
高二数学利用导数求最值和极值试题答案及解析
高二数学利用导数求最值和极值试题答案及解析1.函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点()A.个B.个C.个D.个【答案】A【解析】函数为增函数, 函数为减函数, 当且左侧,右侧时为极小值点,从而只有一个满足,答案选A..【考点】函数的导数与极值2.若函数在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是__________【答案】【解析】令得或,当时, ,当时, ,因此当时, ,所以,当时, ,当时, ,因此,答案为.【考点】导数与最值3.设函数,则的极小值点为()A.B.C.D.【答案】D【解析】因为,令得解得,又因为函数的定义域为,当时,,所以时为减函数;当时,,所以时为增函数;所以当时函数取得极小值;【考点】导数在求函数极值中的应用;4.已知函数,且是函数的极值点。
给出以下几个问题:①;②;③;④其中正确的命题是__________。
(填出所有正确命题的序号)【答案】①③【解析】的定义域为,,所以有,所以有即即,所以有;因为,所以有。
【考点】导数在求函数极值中的应用5.已知函数在处有极大值.(Ⅰ)求的值;(Ⅱ)若过原点有三条直线与曲线相切,求的取值范围;(Ⅲ)当时,函数的图象在抛物线的下方,求的取值范围.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】(Ⅰ)通过对函数f(x)求导,根据函数在x=2处有极值,可知f'(2)=0,解得a的值.(Ⅱ)把(1)求得的a代入函数关系式,设切点坐标,进而根据导函数可知切线斜率,则切线方程可得,整理可求得b的表达式,令g'(x)=0解得x1和x2.进而可列出函数g(x)的单调性进而可知-64<b<0时,方程b=g(x)有三个不同的解,结论可得.(Ⅲ)当x∈[-2,4]时,函数y=f(x)的图象在抛物线y=1+45x-9x2的下方,进而可知x3-12x2+36x+b<1+45x-9x2在x∈[-2,4]时恒成立,整理可得关于b的不等式,令h(x)=-x3+3x2+9x+1,对h(x)进行求导由h'(x)=0得x1和x2.分别求得h,h(-1),h(3),h(4),进而可知h(x)在[-2,4]上的最小值是,进而求得b的范围.试题解析:(Ⅰ),或,当时,函数在处取得极小值,舍去;当时,,函数在处取得极大值,符合题意,∴.(3分)(Ⅱ),设切点为,则切线斜率为,切线方程为,即,∴.令,则,由得,.函数的单调性如下:↗极大值↘极小值↗∴当时,方程有三个不同的解,过原点有三条直线与曲线相切.(8分)(Ⅲ)∵当时,函数的图象在抛物线的下方,∴在时恒成立,即在时恒成立,令,则,由得,.∵,,,,∴在上的最小值是,.(12分)【考点】等比关系的确定;利用导数研究函数的极值.6.已知函数,在点处的切线方程是(e为自然对数的底)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的最值一、基础知识:1、函数的最大值与最小值:(1)设函数()f x 的定义域为D ,若0x D ∃∈,使得对x D ∀∈,均满足()()0f x f x ≤,那么称0x x =为函数()f x 的一个最大值点,()0f x 称为函数()f x 的最大值(2)设函数()f x 的定义域为D ,若0x D ∃∈,使得对x D ∀∈,均满足()()0f x f x ≥,那么称0x x =为函数()f x 的一个最小值点,()0f x 称为函数()f x 的最小值(3)最大值与最小值在图像中体现为函数的最高点和最低点(4)最值为函数值域的元素,即必须是某个自变量的函数值。
例如:()[)ln ,1,4f x x x =∈,由单调性可得()f x 有最小值()10f =,但由于x 取不到4,所以尽管函数值无限接近于ln 4,但就是达不到。
()f x 没有最大值。
(5)一个函数其最大值(或最小值)至多有一个,而最大值点(或最小值点)的个数可以不唯一,例如()sin f x x =,其最大值点为()22x k k Z ππ=+∈,有无穷多个。
2.“最值”与“极值”的区别和联系右图为一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x (1)“最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.(2)从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个(4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.3、结论:一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.4、最值点只可能在极值点或者边界点处产生,其余的点位于单调区间中,意味着在这些点的周围既有比它大的,也有比它小的,故不会成为最值点5、利用导数求函数的最值步骤:一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下:(1)求)(x f 在(,)a b 内的极值;(2)将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值6、求函数最值的过程中往往要利用函数的单调性,所以说,函数的单调区间是求最值与极值的基础7、在比较的过程中也可简化步骤:(1)利用函数单调性可判断边界点是否能成为最大值点或最小值点(2)极小值点不会是最大值点,极大值点也不会是最小值点8、最值点的作用(1)关系到函数的值域(2)由最值可构造恒成立的不等式:例如:()ln 1f x x x =-+,可通过导数求出()()min 10f x f ==,由此可得到对于任意的0x >,均有()()min 0f x f x ≥=,即不等式ln 1x x ≤-二、典型例题:例1:求函数()xf x xe-=的最值思路:首先判定定义域为R ,对函数进行求导,根据单调区间求出函数的最值解:()()'1x fx x e -=-,令()'0f x >,解得:1x <()f x ∴的单调区间为:x (),1-∞()1,+∞'()f x +-()f x()()max 11f x f e∴==,无最小值小炼有话说:函数()xf x xe-=先增再减,其最大值即为它的极大值点,我们可以将这种先增再减,或者先减再增的函数成为“单峰函数”,在单峰函数中,极值点即为函数的某个最值点。
例2:已知函数()322f x x ax =++,2x =是()f x 的一个极值点,求:(1)实数a 的值(2)判断()f x 在区间(]1,4-上是否存在最大值和最小值解:(1)()'232f x x ax=+2x = 是()f x 的一个极值点()'21240f a ∴=+=3a ∴=-(2)思路,由第(1)问可得()3232f x x x =-+,进而求出单调区间得到最值解:()()'23632fx x x x x =-=-,令()'0fx >,解得:10x -<<或24x <<()f x ∴的单调区间为:x ()1,0-()0,2()2,4'()f x +-+()f x计算()()()()12,02,22,418f f f f -=-==-=()()max 418f x f ∴==()()min 22f x f ==小炼有话说:在本题中,最小值的求解尽管1x =-不在所给区间中,但也需要代入到()f x 中计算,此时计算出的是函数左边界的临界值,如果()()12f f -<,则函数就不存在最小值了。
所以在求定义域为开区间的函数最值时,也要关注边界处的临界值。
例3:已知函数()326f x ax ax b =-+,是否存在实数,a b ,使得()f x 在[]1,2上取得最大值4,最小值29?-若存在,求出,a b 的值,若不存在,请说明理由思路:利用()'fx 求出函数的单调区间,在根据单调区间判断最大最小值点的可能位置,进而根据最大最小值解出,a b 解:()()'231234fx ax ax ax x =-=-,(1)当0a >时,[]1,2x ∈ 40,0x x ∴-<>()'f x ∴<()f x 在[]1,2单调递减()()()()max min 15431931629f x f b a a b f x f b a ==-=⎧=⎧⎪∴⇒⎨⎨===-=-⎩⎪⎩(2)当0a <时,[]1,2x ∈ 40,0x x ∴-<>()'fx ∴>()f x 在[]1,2单调递增()()()()max min 31643441529f x f b a a b f x f b a ==-=⎧=-⎧⎪∴⇒⎨⎨=-==-=-⎩⎪⎩319a b =⎧∴⎨=⎩或344a b =-⎧⎨=-⎩小炼有话说:本题在求最值时由于函数带有参数,从而在解单调区间的过程中涉及到对参数的分类讨论。
从而确定最值的选取(有关含参数单调区间的计算详见2.1)例4:求函数()322912f x x x x =-+([]1,3x ∈-)的最值思路一:考虑去掉绝对值得到一个分段函数,在利用导数求出每段的最值,再进行比较解:()()22912f x x x x =-+229120x x -+> 恒成立()()[]()[)222912,0,32912,1,0x x x x f x x x x x ⎧-+∈⎪∴=⎨--+∈-⎪⎩当[]0,3x ∈时,()()()'22291249612fx x x x x x x =-++-=--可得:()f x 在()()0,1,2,3单调递增,在()1,2单调递减()()()()00,15,39,24f f f f ∴====∴[]0,3x ∈时,()()min max 0,9f x f x ==当[)1,0x ∈-时,()()()()'22291249612fx x x x x x x =--++-=---()f x ∴在[)1,0-单调递减,()()max 123f x f ∴=-=-当0x →时,()0f x →∴可得函数()f x 的最值为()()max 123f x f =-=-,()()min 00f x f ==思路二:考虑先求出绝对值里表达式的值域,然后在加上绝对值求出最值。
解:令()322912g x x x x=-+()()()'612g x x x ∴=--,[]1,3x ∈-令()'0g x >,解得:11x -<<或23x <<()g x ∴的单调区间为:x ()1,1-()1,2()2,3'()f x +-+()f x()()()()123,15,24,39g g g g ∴-=-===()g x ∴的值域为[]23,9-()()f xg x =()f x ∴的值域为[]0,23()max 23f x =-,()min 0f x =小炼有话说:(1)第一种方法为处理含绝对值函数的常用方法,绝对值的函数中若绝对值内部比较简单,则通常先通过讨论绝对值内部的符号,将函数转化成为分段函数进行分析,而求分段函数的最值时可分别求出每一段的最值再进行比较(2)第二种方法用于当绝对值内部的符号不易确定时(例如绝对值为0的点不好确定),也可考虑先求出内部的取值范围,再取绝对值进而得到值域。
例5:已知函数()x e f x x =的定义域为()0,+∞,求()f x 在[](),10m m m +>上的最值思路:()x e f x x =的单调区间可通过导数来确定,()()'21x x e f x x-=,1x =是()f x 的极值点,而极值点是否在[],1m m +会影响最值点的选取,从而要依次进行分类讨论解:()()'21x x e fx x-=,令()'0f x >解得1x >()f x ∴在()0,1单调递减,在()1,+∞单调递增1x =为()f x 的极小值点(1)当1m ≥时,()f x 在[],1m m +单调递增()()()()1minmax ,11m m e e f x f m f x f m m m +∴===+=+(2)当01m <<时,11m +>()f x ∴在(),1m 单调递减,在()1,1m +单调递增()()min 1f x f e∴==()()(){}max max ,1f x f m f m =+()()1,11m m e e f m f m m m +=+=+下面比较()(),1f m f m +的大小若()()11111m m e e ef m f m m m m m +<+⇔<⇔<++111m em m e ⇔+<⇔>-11m e ∴>-时,()()1max 11m e f x f m m +=+=+当11m e =-时,()()()()1max 11me ef x f m f m e e m -=+===-当101m e <<-时,()()max me f x f m m==综上所述:1m ≥时,()()()()1minmax ,11m m e e f x f m f x f m m m +===+=+111m e <<-时,()()min 1f x f e ==,()()1max 11m e f x f m m +=+=+11m e =-时,()()()()1max 11e f x f m f m e e -=+==-101m e <<-时,()()max me f x f m m==例6:已知函数()ln ()mf x x m R x=-∈在区间上取得最小值4,则___________.思路一:函数()f x 的定义域为(0,)+∞,21()m f x x x '=+.当()0f x '=时,210mx x+=,当0m ≥时,()0f x '>,()f x 为增函数,所以min ()(1)4f x f m ==-=,4m =-,矛盾舍去;当0m <时,若(0,)x m ∈-,()0f x '<,()f x 为减函数,若(,)x m ∈-+∞,()0f x '>,()f x 为增函数,所以()ln()1f m m -=-+为极小值,也是最小值;①当1m -<,即10m -<<时,()f x 在[1,]e 上单调递增,所以min ()(1)4f x f m ==-=,所以4m =-(矛盾);②当m e ->,即m e <-时,()f x 在[1,]e 上单调递减,min ()()14mf x f e e==-=,所以3m e =-.③当1m e -≤-≤,即1e m -≤≤时,()f x 在[1,]e 上的最小值为()ln()14f m m -=-+=,此时2m e e =-<-(矛盾).综上3m e =-.思路二:()'221m x m fx x x x+=+=,令导数()'0f x x m =⇒=-,考虑最小值点只有可能在边界点与极值点处取得,因此可假设,1,x m x x e ===分别为函数的最小值点,求出m 后再检验即可。