利用excel求解线性规划问题讲解学习
实验1用Excel求解线性规划模型

实验一、用Excel求解线性规划模型线性规划问题用手工求解工作量很大,而且没有较高的数学基础很难理解其计算过程和方法,但是借助Excel“规划求解”工具,就能轻而易举地求得结果。
Excel最多可解200个变量、600个约束条件的问题。
下面我们以一实例介绍利用Excel规划求解工具怎样快速解决具体的经济决策问题。
一、实验目的1、掌握如何建立线性规划模型。
2、掌握用Excel求解线性规划模型的方法。
3、掌握如何借助于Excel对线性规划模型进行灵敏度分析,以判断各种可能的变化对最优方案产生的影响。
4、读懂Excel求解线性规划问题输出的运算结果报告和敏感性报告。
二、实验内容1、[工具][规划求解]命令规划求解加载宏是Excel的一个可选安装模块,在安装Excel时,只有在选择“完全/定制安装”时才可选择装入这个模块。
在安装完成进入Excel后还要用[工具][加载宏]命令选中“规划求解”,以后在[工具]菜单下就增加了一条[规划求解]命令。
使用[规划求解]命令的一般步骤为:第一步:在选取[工具][规划求解]命令后,弹出图1所示“规划求解参数”对话框,其中各选项说明如表1。
图1“规划求解参数”对话框选项名说明设置目标单元格选取计算问题的目标函数,并含有计算公式的单元格等于按问题目标进行选择。
如利润问题,选取“最大值”可变单元格决策变量所在各单元格、不含公式,可以有多个区域或单元格约束增加、修改、删除各个约束等式或不等式,一个一个地与图2切换填入或修改添加选择后弹出图2所示对话框更改选择后弹出图3所示对话框删除删除所选定的约束条件选项决定采用线性模型还是非线性模型求解约束条件中的单元格引用位置,可从键盘直接录入,也可用鼠标拖放选取。
图2图3第二步:完成图1所示的一切填入项目后,单击“选项”按钮,在弹出的“规划求解选项”对话框中若是线性模型则选取“采用线性规模”选项按钮,再单击“确定”按钮回到图1。
图4第三步:在图1中单击“求解”按钮,经计算完成后弹出“规划求解结果”对话框(图5)。
EXCEL规划求解功能操作说明

E X C E L规划求解功能操作说明集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]Excel规划求解功能操作说明以Microsoft Excel2003为例,说明使用Excel的求解线性规划问题功能的使用方法。
一、加载规划求解功能1.点击【工具】按钮,在下拉菜单中选择【加载宏】功能。
2.在弹出的【可加载宏】选项卡中勾选【规划求解】,点击确定按钮。
此时,【工具】下拉菜单中增加规划求解功能,表示加载成功。
二、构造表格Excel表格并填入各项数据以教材18页【例题2-8】为例,构造表格如下:标题栏约束条件区目标函数区计算结果显示区1.录入约束条件系数约束条件(1)为5x 1+x 2-x 3+x 4=3,则在约束系数的第一行的x 1,x 2,x 3,x 4,x 5,限制条件,常数b 列下分别录入5,1,-1,1,0,=,3如下图所示。
约束系数区的第二行录入约束条件(2)的系数、限制符号及常数b ,即-10,6,2,0,1,=,2;约束系数区的第三行录入约束条件(3)(x1≥0)的系数、限制符号及常数b,即1,0,0,0,0,≥,0;约束系数区的第四行录入约束条件(4)(x2≥0)的系数、限制符号及常数b,即0,1,0,0,0,≥,0;约束系数区的第五行录入约束条件(5)(x3≥0)的系数、限制符号及常数b,即0,0,1,0,0,≥,0;约束系数区的第六行录入约束条件(6)(x4≥0)的系数、限制符号及常数b,即0,0,0,1,0,≥,0;约束系数区的第七行录入约束条件(7)(x5≥0)的系数、限制符号及常数b,即0,0,0,0,1,≥,0。
如下图所示。
2.录入目标函数系数目标函数为maxZ=4x1-2x2-x3,则在目标函数的x1,x2,x3,x4,x5列下分别录入4,-2,-1,0,0,如下图所示。
3. 录入约束条件的计算公式双击约束条件(1)行的“总和”单元格,录入以下内容:“=B3*B12+C3*C12+D3*D12+E3*E12+F3*F12”说明:录入的内容即是约束条件(1)的计算公式,其中“B3*B12”代表5x1; “C3*C12”代表1x2;“D3*D12”代表-1x3;“E3*E12”代表1x4;“F3*F12”代表0x5。
用Excel求解LP线性规划问题PPT学习教案

对话框“规划求解参 数”
第6页/共12页
①在“设置目标单元格”栏后的空白中填入$C$5, 并选中“最小”;
对话框“规划求解参 数”
②在“可变单元格(B)”栏后的空白中 填入$A$1:$B$1;
第7页/共12页
③光标指向“约束”栏,按“添加”,出现“添 加约束”对话框(如下图),
对话框“改变约束”
依次填入约束关系,每输完一条,按“添加”,输入所有约束条 件后,按“确定”,
输入系数
第3页/共12页
3、LP模型的EXCEL输入(两种 方法)
在C2单元格中输入“=A2*A$1+B2*B$1”,并复制到C3、C4、C5 中,使它们分别变为 “=A3*A$1+B3*B$1” 、“=A4*A$1+B4*B$1” 和 “=A5*A$1+B5*B$1”。
第4页/共12页
利用EXCEL的SUMPRODUCT函 数进行计算
第8页/共12页
又退回到下图状态,在下图中可以选“更改”、 “删除”、“全部重设”来编辑约束条件及其他
设置。
填入了参数的对话框“规划求解参数 ”
第9页/共12页
④在上图中按“求解”,即进入求解过程, 求解结束,出现“规划求解结果”对话框(如
下图),选择“保存规划求解结果”后,
对话框“规划求解结果”
求解的结果
第11页/共12页
工作表中可变单元格、目标单 元格以及计算约束条件的单元 格均发生变化。如不想破坏原 始数据,可选择“恢复为原 值”,同时第1选0页/共中12页“报告”框中 的“运算结果报告”,或选
excel求解线性规划

线性规划的excel求解模型
在单元格E4和E5中分别输入: E4 =C4*C7+D4*D7 E5 =C5*C7+D5*D7
(4) 确定用于表示目标函数值的单元格,称为目标单元格,这里用E6表示。 在E6输入:E6 =C6*C7+D6*D7
注意:特别关注C7,D7和E6,所以将其背景刷灰
线性规划的excel求解模型
(2) 确定用于表示变量的单元格,称为可变单元格,这里分别用C7,D7表示
x1和x2。
(3) 确定用于表示原约束方程的左边的单元格,称为输出单元格。这里分别 用E4,E5表示第一和第二个约束的左边,由于约束左边决定于变量的取值,即 决定于可变单元格C7和D7的值,所以E4,E5取值决定于C7,D7。
在Excel菜单栏中选择“工具/规划求解”,便会弹出“规划求解参数”对话 框,如下图所示。
模型参数设置
在开始求解之前,需先在对话框中设置好各种参数,包括目标单元格、问 题类型(求最大值还是最小值)、可变单元格以及约束条件等。
规划求解选项
在设置完模型参数之后,需要设置计算参数,点击“选项”按钮,选择运 算参数。
EXCEL线性规划求解
主要内容
Excel规划求解功能的加载 建立线性规划问题的excel模型 线性规划的Excel求解过程 求解结果分析
1、打开Excel 点击 “工具”菜单在下拉菜单中选 择“加载宏”;
2、在弹出式菜单中勾选“规划求解”,并点击“确 定”,则规划求解功能被加载(如果MS Office 2003未完全安装,则需要插入安装盘,才能顺利 加载);
注意: (1) 特别关注决策变量的取值以及目标函数值,所以C7,D7和E6,所以将
其背景刷灰; (2) 单元格内没有任何输入时,默认取值为0;单元格内输入“=”表示单元
怎么利用EXCEL求解线性规划

利用线性回归方法求解生产计划方法一:1、建立数学模型:①设变量:设生产拉盖式书桌x台,普通式书桌y台,可得最大利润②确定目标函数及约束条件目标函数:y=max+115P90x约束条件:200x .....................⑴+y10≤20x .....................⑵4≤+y16128x .....................⑶+y1015≤220yx ..........................⑷,≥2、在Excel中求解线性规划①首先,如图1所示,在Excel工作表格输入目标函数的系数、约束方程的系数和右端常数项:图1②将目标方程和约束条件的对应公式输入各单元格中F2=MMULT(B6:C6,F6:F7);F3=MMULT(B3:C3,F6:F7);F2=MMULT(B4:C4,F6:F7);F2=MMULT(B5:C5,F6:F7);出现图2样式:图2线性规划问题的电子表格模型建好后,即可利用“线性规划”功能进行求解。
选择“工具”→“规划求解”出现“规划求解参数”窗口,如图3所示:图3在该对话框中,目标单元格选择F2,问题类型选择“最大值”,可变单元格选择F6:F7,点击“添加”按钮,弹出“添加约束条件”窗口,如图4所示:图4根据所建模型,共有4个约束条件,针对约束(1):2002010≤+y x ,左端“单元格所引用位置”选择F3,右端“约束值”选择D3,符号类 型选择“<=”,同理继续添加约束(2)(3)(4),完成后选择“确定”,回到“规划求解参数”对话框,如5图所示:图5④点击“选项”按钮,弹出“规划求解选项”对话框,选择“采用线性模型”和“假定非负”两项,如图6所示:图6⑤点击“确定”→“求解”,选择“运算结果报告”“敏感性报告”“极限值报告”三项,最后点击“确定”,输出结果: 运算结果报告:敏感性报告:极限报告:方法二:1、建立数学模型设生产拉盖式书桌x 台,普通式书桌y 台,总利润为Z 元 确定目标函数及约束条件 目标函数:y x Z 90115max += 约束条件:⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0,22010151281642002010..y x y x y x y x t s 2、在Excel 中规划求解在Excel 中建立线性规划模型,如图1所示:图11)在E2中输入“=B2*B6+C2*C6”如图2所示,同理 E3=B3*B6+C3*C6E4=B4*B6+C4*C6B7=B5*B6+C5*C6图22)单击“工具”菜单下的“规划求解”,在弹出的“规划求解参数”对话框输入各项参数:✓目标单元格选择B7✓问题类型选择“最大值”✓可变单元选择B6:C6✓约束条件选择B6:C6≥0;E2:E4≤D2:D4参数设置完毕,如图3:图33)点击“选项”,弹出“规划求解选项”对话框,选择“采用线性模型”、“假定非负”和“显示迭代结果”,说明要求求解的问题是线性模型且所求的变量必须为非负,如图4所示:图44)点击“确定”→“求解”,选择“运算结果报告”“敏感性报告”“极限值报告”三项,最后点击“确定”,输出结果:运算结果报告:敏感性报告:极限值报告:。
EXCEL求解线性规划问题

约束右端值降低15时,目旳函数值旳变化量。
解:(1)最优解为x1=0, x2=12.4, x3=9.5
(2) x1旳目旳系数降低5,占允许降低旳百分比=5/∞=0%,x2 旳目旳系数增长4,占允许增长旳百分比=4/7.8=51.2%。
变化旳百分比和为51.2%,没有超出100%,所以最优解不变。
(3)第一资源约束右端值增长30,占允许增长旳30 /∞=0%, 第二资源约束右端值增长4 ,占允许增长旳4/15=26.7%,
•初值和终值分别指 单元格在此次求解 前旳数值和求解后 旳数值。
敏感性分析报告(1)
可变单元格中 • “单元格”指决策变量所在单元格旳地址 • “名字”是决策变量旳名称 • “终值”是决策变量旳终值,即最优值 • “递减成本”指最优解中档于0旳变量,相应旳目旳函数中旳系数
增长或降低多少,最优解不再为0 • “目旳式系数”目旳函数中旳系数,为已知条件 • “允许旳增量”与“允许旳减量”表达目旳函数中旳系数在增量
(1)引用旳类型
三种类型 :
相对引用、 绝对引用、混合引用
(2) 相对引用
格式: A3 、B6
使用相对引用后,系统将会记住建立公式旳单元格和被 引用旳单元格旳相对位置,在复制这个公式时,新旳公式单 元和被引用旳单元依然保持这种相对位置。
(3)绝对引用 格式:$a$3 $d$5
绝对引用是指被引用旳单元与引用旳公式单元旳位置 关系是绝正确,不论将这个公式复制到任何单元,公式所 引用旳还是原来单元格旳数据。
2) 在弹出旳对话框中旳“可用加载宏”列表框 中,选定待添加旳加载宏“规划求解”选项旁 旳复选框,然后单击“拟定”.单击“拟定” 后,“工具”菜单下就会出现一项“规划求解”
3. “规划求解”各参数设置
excel线性规划

excel线性规划Excel线性规划是指利用Excel软件来解决线性规划问题。
线性规划问题是最经典的优化问题之一,主要是在一定约束条件下,找出使某个目标函数取得最优值的决策变量取值。
Excel提供了Solver插件,可以用于求解线性规划问题。
首先,我们需要建立起线性规划问题的模型。
假设我们有m个决策变量x1、x2、...、xm,需要找到这些决策变量的取值,使得目标函数Z(x1、x2、...、xm)取得最优值。
同时,还有n个约束条件,即使得一些函数关系式(一般为等式或不等式)满足。
线性规划模型可以表示为如下形式:目标函数:Z = c1x1 + c2x2 + ... + cmxm + d约束条件:A11x1 + A12x2 + ... + A1mxm <= b1A21x1 + A22x2 + ... + A2mxm <= b2...An1x1 + An2x2 + ... + Anmxm <= bn然后,我们可以通过Excel的Solver插件来求解线性规划问题。
具体步骤如下:1. 打开Excel软件,在工具栏中选择“数据”菜单,点击“求解器”按钮。
2. 在弹出的Solver对话框中,选择“线性规划”作为求解的方法。
3. 在“目标单元格”栏中输入目标函数的单元格地址。
若目标函数是在单元格C1中,则输入$C$1。
4. 在“变量单元格”栏中输入决策变量的单元格范围。
若决策变量是在范围B1:B5中,则输入$B$1:$B$5。
5. 在“约束条件”栏中,点击“添加”按钮,逐个输入约束条件。
每个约束条件包括“约束单元格”、“约束类型”和“约束值”三项。
若第一个约束条件是在单元格D1中,约束类型为“<=”,约束值为10,则输入$D$1<=10。
6. 在“求解方法”下拉菜单中,选择求解的方法。
常用的有“规划求解法”和“单纯形法”。
7. 点击“确定”按钮开始求解。
Solver会根据给定的目标函数和约束条件,寻找使目标函数取得最优值的决策变量取值。
应用Excel软件求解线性规划问题

使用变量xij代表第i种原料用于生产第j种产品的数量(桶)
1
i=1, 2, 3分别代表催化裂化汽油、异戊烷和直馏汽油
2
j=1, 2, 3分别代表80#、100#汽油和燃料油
3
物料平衡约束
4
物料平衡约束
蒸汽压限制
01
辛烷值限制
02
变量非负约束
03
各类约束
Excel求解步骤
打开Excel,建立新工作表,输入公式
应用软件求解线性规划问题
添加副标题
202X
1.1 Excel的规划求解工具
Excel软件提供了求解一般规模数学规划问题的“规划求解”工具 该工具具有界面友好、操作简单、与Excel无缝集成等优点 可用于化学化工常见中、小规模线性规划、非线性规划、整数规划问题的求解
Excel提供的规划求解工具对模型规模有一定限制:求解模型的决策变量数不超过200个。当“规划求解选项”对话框中的“采用线性模型”复选框处于选中状态时,对约束条件的数量没有限制;而对于非线性问题,每个可变单元格除了变量的范围和整数限制外,还可以有最多达100个约束条件
Excel结果分析-3
整数规划的运行结果
由于工程实际问题中存在各种不确定性,因此线性规划模型中的系数C、aji、bj等均可能偏离原来的计算值,因此决策者必须掌握这些系数改变时对原最优解的影响,也就是必须进行线性规划的灵敏度分析。
可以应用Excel方便地实现
线性规划的灵敏度分析
The End
Excel求解步骤-1
打开规划求解窗口
Excel求解步骤-2
设置目标单元格 设置可变单元格 约束的输入
Excel求解步骤-3
设置规划求解选项
Excel求解线性规划问题实验教程要点

数学与信息科学学院Excel求解线性规划问题实验教程二零一三零八月目录1.关于“规划求解” (1)2.如何加载“规划求解” (2)3.“规划求解”各参数解释和设置 (3)4.“规划求解”的步骤 (6)5.Excel求解线性规划问题 (8)6.Excel求解运输问题 (14)7.Excel求解目标规划问题 (18)8.Excel求解整数规划问题 (22)1.关于“规划求解”“规划求解”是Excel中的一个加载宏,借助“规划求解”,可求得工作表上某个单元格(被称为目标单元格)中公式(公式:单元格中的一系列值、单元格引用、名称或运算符的组合,可生成新的值。
公式总是以等号(=)开始)的最优值。
“规划求解”将对直接或间接目标单元格中公式相关联的一组单元格中的数值进行调整,最终在目标单元格公式中求得期望的结果。
“规划求解”通过调整所指定的可更改的单元格(可变单元格)中的值,从目标单元格公式中求得所需的结果。
在创建模型过程中,可以对“规划求解”中的可变单元格数值应用约束条件(约束条件:“规划求解”中设置的限制条件。
可以将约束条件应用于可变单元格、目标单元格或其它与目标单元格直接或间接相关的单元格。
而且约束条件可以引用其它影响目标单元格公式的单元格。
使用“规划求解”可通过更改其它单元格来确定某个单元格的最大值或最小值。
)Microsoft Excel的“规划求解”工具取自德克萨斯大学奥斯汀分校的Leon Lasdon 和克里夫兰州立大学的Allan Waren共同开发的Generalized Reduced Gradient(GRG2)非线性最优化代码。
线性和整数规划问题取自Frontline Systems公司的John Watson 和Dan Fylstra提供的有界变量单纯形法和分支边界法。
2.如何加载“规划求解”安装office的时候,系统默认的安装方式不会安装宏程序,需要用户根据自己的需求选择安装。
下面是加载“规划求解”宏的步骤:(1)在“工具”菜单上,单击“加载宏”。
excel求解线性规划

excel求解线性规划Excel是一种常用的电子表格软件,可以用于求解线性规划问题。
线性规划是一种数学优化问题,目标是找到一组决策变量的最优值,使得目标函数达到最大或最小值,并满足一系列约束。
下面将介绍如何使用Excel求解线性规划问题。
第一步是建立模型。
线性规划模型由目标函数和约束条件组成。
目标函数是需要最大化或最小化的线性函数,约束条件是决策变量需要满足的限制条件。
在Excel中,可以在一个工作表中设置一个单元格来表示目标函数,并使用其他单元格来表示约束条件。
第二步是确定决策变量和其范围。
决策变量是需要优化的变量,其范围通常是非负数。
在Excel中,可以使用单元格来表示决策变量,并设置其边界条件。
第三步是设置约束条件。
约束条件通常是一组线性不等式或等式。
在Excel中,可以使用单元格和公式来表示约束条件,并使用Excel内置的函数来计算约束条件的结果。
第四步是设置目标函数。
在Excel中,可以使用单元格和公式来表示目标函数,并使用Excel内置的函数来计算目标函数的结果。
第五步是求解线性规划问题。
在Excel中,可以使用ExcelSolver插件来求解线性规划问题。
Solver插件是一个用于求解最优化问题的工具,可以根据设置的目标函数和约束条件自动计算最优解。
可以在Excel的“数据”选项卡中找到Solver插件,并按照提示设置目标函数、约束条件和决策变量的范围,然后点击求解按钮进行计算。
最后,根据Solver求解结果,可以在Excel中找到最优解和目标函数的最优值。
总之,Excel是一种强大的工具,可以用于求解线性规划问题。
只需要将线性规划问题转化为Excel中的单元格和公式表示,然后使用Solver插件进行求解,就可以得到最优解和目标函数的最优值。
通过Excel求解线性规划问题,可以提高计算效率和准确性,帮助决策者进行决策分析和优化。
【必须收藏】只用60秒就能解决的Excel线性规划,你却熬了整个通宵...

【必须收藏】只用60秒就能解决的Excel线性规划,你却熬
了整个通宵...
箭头处“蓝色字”,
每天学一个表格技能!
领导给小王同志12个金额,让他凑数据,凑成26005元和33459元。
左拼右凑这个金额,凑了一个通宵,还没凑对,十分着急,同事3分钟就给解决了
❶在Excel中调出线性规划我们在Excel选项里面,找到加载项然后勾选规划求解加载项,点击确定
❷我们在C1单元格输入公式:=SUMPRODUCT(A2:A13*B2:B13)
❸前面加载了加载项之后,在数据选项卡下,就有了规划求解进行相关设置后,运行得到最终的结果,操作动图如下所示:
其中的设置是,设置目标是C1单元格,目标值是26005,可变的单元格区域是B2:B13,遵守约束是B2:B13是二进制
最终B2:B13单元格中的数据为1的这些值累加起来,正好就能得到我们需要的26005了
剩下的数据正好就是33459元了。
模糊凑数据
如果给定的一个金额是系统也不可能准确的凑出来,Excel一直在计算的过程中的时候,可以随时按ESC退出
或者我们改变公式,使得进行模糊的凑数据接近这个值,我们现在要把这些数据最接近30000
我们可以在C1输入公式:=ABS(SUMPRODUCT(A2:A13,B2:B13)-30000)
然后在线性规划中的设置是:C1是最小值
然后运行,这个时候,会一直在那里转,这个时候,我们需要按ESC,然后
保留求解
得到了一组结果。
这个例子还是找到了正好等于30000的数据。
如果不等于的话,那么会得出一个最接近的结果。
当然,平时不用这个功能的时候,需要把这个功能给关闭了,否则每次打开Excel的速度会变慢一点。
线性规划的EXCEL求解

关于“规划求解选项”各可选项的说明 (3)
• 装入模型:输入对所要调入模型的引用 • 保存模型:将打开“保存模型”对话框, 输入模型的保存位置,只有当需要在工作 表上保存多个模型时,单击此命令,第一 个模型会自动保存。
一类特殊的线性规划问题:运输问 题
例1 某公司经销甲产品。它下设三个加工厂。 每日的产量分别是:A1为7吨,A2为4吨,A3为9吨。 该公司把这些产品分别运往四个销售点。各销售点 每日销量为:B1为3吨,B2为6吨,B3为5吨,B4为 6吨。已知从各工厂到各销售点的单位产品的运价如 下表所示。问该公司应如何调运产品,在满足各销 点的需要量的前提下,使总运费为最少。
( j 1, 2,3, 4) (i 1, 2,3)
这类问题,我们称之为运输问题。产量正好和销 量相等的运输问题称为产销平衡问题,产销平衡问题 有以下特征:
1. 平衡运输问题必有可行解,也必有最优解. 2. 平衡运输问题的约束方程系数矩阵 A 的所有各阶子 式只取 0,1 或 -1 三个值. 3. 如果平衡运输问题中的所有产量 ai 和销量 bj 4. 都是整数,那么,它的任一基可行解都是整数解.
线性规划问题的EXCEL求解
• 用EXCEL求解线性规 划问题前,需要在工 具菜单上选择加载宏: 弹出对话框
勾选规划工具,点击“确定”即可
• 若已加载过则无需再次加载。若安装不完全,也是无法加 载的,需要重新安装。 • 加载宏之后,工具菜单上即出现“规划求解”按钮,可以 用来求解许多规划问题,当然包含线性规划问题
例:某工厂生产三种产品,各种产品所需的原材料和设备 台时及能供给数量如下表所示,问如何安排生产利润最大?
甲
原材料 工时 单位利润 3 2 4
乙
用excel进行线性规划的灵敏度分析学习资料

用excel进行线性规划的灵敏度分析学习资料线性规划是一种数学优化方法,它提供了一种有效的方法来解决最优化问题。
灵敏度分析是线性规划中的一个非常重要的概念,它是用来研究一些关键参数的变化对于最优解的影响。
在Excel中进行线性规划和灵敏度分析非常方便,本文将介绍如何在Excel中进行线性规划的灵敏度分析。
首先,我们需要先了解Excel中进行线性规划的基本步骤。
以最简单的线性规划模型为例,我们可以用以下模型来说明:目标函数:Maximize f(x,y)=4x+3y约束条件:2x+y <= 8x,y >= 0要在Excel中求解这个问题,我们需要遵循以下步骤:1. 打开Excel,输入目标函数和约束条件。
公式应放在单元格中,约束条件应按行排列,用每行的最后一个单元格来设置限制。
还应设置变量的初始值,并将目标单元格格式设置为“最大值”或“最小值”。
2. 选择“数据”选项卡,在“分析”组内选择“规划问题”选项。
在弹出的窗口中,选择“线性规划”选项,并单击“确定”按钮。
3. 在线性规划窗口中,选择“目标单元格”和变量单元格,然后选择要优化的运算符(如“大于等于”或“小于等于”)。
选择“添加”按钮向模型添加约束条件,直到所有限制都添加完毕。
单击“求解”按钮,Excel将显示变量的最优解、目标函数的最优解以及约束条件的最佳值。
在完成线性规划模型的求解后,我们可以进行灵敏度分析来研究模型中不同参数的变化对最终解的影响。
在Excel中进行灵敏度分析有以下步骤:1. 求出每个决策变量的最优值和目标函数的最优值。
2. 使用Excel的数据表功能,建立一个数据表,将要变化的参数输入到数据表中。
可以一次性变化多个参数。
3. 将数据表的单元格链接到原始模型中的输入参数单元格。
4. 使用Excel的数据表的“展示数据表”功能,查看各参数的最优解或其他解所对应的目标函数的值。
5. 根据结果进行分析,确定哪些参数对最终结果有最大的影响。
线性规划的EXCEL求解(NO5)

本、企业的产量和各仓库配送量等数据,如下表所示。试确定
运送方案,使总运费最少。
起点 终点 配送中心
B1
B2
产量
A1
3
7.5
100
A2
3.5
8.2
80
A3
3.4
9.2
70
配送中心
2.3
2.3
配送量
120
130
250
14
电子表 格建立 及最优 解
2
建立电子表格模型: 其公式输入为:
3
二、用EXCEL规划求解工具求解线性规划模型
4
输入规划求解参数
5
点击求解按钮,求得最优解。
6
例2 营养配餐问题
根据生物营养学理论,要维持人体正常的生理健康需求, 一个成年人每天需要从食物中获取3000卡路里热量,55克蛋 白质和800毫克钙。假定市场上可供选择的食品有猪肉、鸡蛋、 大米和白菜,这些食品每千克所含热量和营养成份,以及市 场价格如下表所示。问如何选购才能在满足营养的前提下, 使购买食品的总费用最小?
项目号
项目成本
项目周期
年现金流
净现值
内部报酬率
1
400000
20
2
250000
10
3
100000
8
4
75000
15
5
75000
6
6
50000
5
7
250000
10
8
250000
3
59600 55000 24000 12000 18000 14000 41000 99000
《运筹学》使用Excel求解线性规划问题

第三节使用Excel求解线性规划问题利用单纯形法手工计算线性规划问题是很麻烦的。
office软件是一目前常用的软件,我们可以利用office软件中的Excel工作表来求解本书中的所有线性规划问题。
对于大型线性规划问题,需要应用专业软件,如Matlab,Lindo,lingo等,这些软件的使用这里我们不作介绍,有需要的,自己阅读有关文献资料。
用Excel工作表求解线性规划问题,我们需要先设计一个工作表,将线性规划问题中的有关数据填入该工作表中。
所需的工作表可按下列步骤操作:步骤1 确定目标函数系数存放单元格,并在这些单元格中输入目标函数系数。
步骤2 确定决策变量存放单元格,并任意输入一组数据。
步骤3 确定约束条件中左端项系数存放单元格,并输入约束条件左端项系数。
步骤4 在约束条件左端项系数存放单元格右边的单元格中输入约束条件左端项的计算公式,计算出约束条件左端项对应于目前决策变量的函数值。
步骤5 在步骤4的数据右边输入约束条件中右端项(即常数项)。
步骤6 确定目标函数值存放单元格,并在该单元格中输入目标函数值的计算公式。
例建立如下线性规划问题的Excell工作表:1212121212max1502102310034120..55150,0z x xx xx xs tx xx x=++≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩解:下表是按照上述步骤建立的线性规划问题的Excell工作表。
其中:D4=B2*B4+C2*C4, D5=B2*B5+C2*C5 , D6=B2*B6+C2*C6, C7= B2*B1+C2*C1 。
建立了Excel工作表后,就可以利用其中的规划求解功能求相应的线性规划问题的解。
求解步骤如下:步骤1单击[工具]菜单中的[规划求解]命令。
步骤2 弹出[规划求解参数]对话框,在其中输入参数。
置目标单元格文本框中输入目标单元格;[等于]框架中选中[最大值\最小值]单选按钮。
步骤3 设置可变单元格区域,按Ctrl键,用鼠标进行选取,或在每选一个连续区域后,在其后输入逗号“,”。
利用excel求解线性规划问题讲解学习

利用e x c e l求解线性规划问题利用excel求解线性规划问题“规划求解”示例例1 美佳公司计划制造Ⅰ、Ⅱ两种家电产品。
已知各制造一件时分别占用的设备A,B的台时、调试工序时间及每天可用于这两种家电的能力、各售出一件时的获利情况,如下表所示。
问该公司应制造两种家电各多少件,使获取的利润为最大。
1.建立数学模型2. 打开excel,输入下列数据。
3、如何在工作表中设置问题条件?先设置目标单元格,即最大利润,把它放在E1单元格上,可变单元格放置计划生产Ⅰ和Ⅱ产品的件数,这里把它放在C10:D10区域。
F4:F6是约束单元格,要对它们的值进行约束。
单击E1,在编辑框输入如图所示的公式。
⎪⎪⎩⎪⎪⎨⎧>=<=+<=+<=+=,52426155..2max212121221xxxxxxxt sxxz注意,表示绝对引用的美元符号,可以单击F4功能键添加。
4、单击E4单击格式,在编辑栏上输入公式:=$C$4*$C$10+$D$4*$D$10。
绝对引用单元格有一个好处,显示的单元格位置变化时,引用的数据没改变。
5、单击E5单击格式,在编辑栏上输入公式:=$C$5*$C$10+$D$5*$D$10。
6、单击E6单击格式,在编辑栏上输入公式:=$C$6*$C$10+$D$6*$D$10。
7、如何使用规划求解功能?单击工具菜单,如果看不到规划求解选项不要慌,先选加载宏。
然后勾选规划求解,确定单击数据菜单——点击“模拟分析”——8、单击“规划求解”:指定目标单元格。
一种方法是先选中目标单元格E1,单击工具---规划求解。
另一种先单击工具---规划求解,再输入目标单元格名称。
输入可变单元格区域。
比较快的方法是,单击折叠框,用鼠标选中可变单元格区域:$C$11:$E$11。
注意勾选最大值哦。
设置目标: $E$1;点选“最大值”;设置:可变单元: $C$10:$D$109.设置条件不等式。
单击添加,单击折叠框,选择单元格和不等号,单击关闭窗口,接着添加另一个条件。
利用excel求解线性规划问题

利用excel求解线性规划问题线性规划(Linear Programming,LP)是一种用于求解最优化问题的数学方法。
它在经济学,管理学,工程学等领域得到了广泛应用。
Excel是一种功能强大的电子表格软件,提供了一些内置的工具和函数,可以帮助我们求解线性规划问题。
在Excel中求解线性规划问题,通常需要使用“规划求解”工具,该工具位于“数据”选项卡的“分析”分组中。
下面将逐步介绍如何使用Excel求解线性规划问题。
步骤1:建立模型首先,我们需要建立线性规划模型。
模型通常包括目标函数和约束条件。
目标函数:我们需要定义一个目标函数,它表示我们希望最大化或最小化的目标。
在Excel中,可以使用单元格引用和各种数学运算符来定义目标函数。
约束条件:我们需要定义一系列约束条件,这些约束条件是对决策变量的限制。
在Excel中,可以使用不等式和等式来表示约束条件。
每个约束条件都可以转化为一个单元格引用和数学运算符的组合。
步骤2:输入数据在建立模型之后,我们需要输入相关数据。
这包括目标函数中的系数和约束条件中的系数和约束值。
在Excel中,我们可以使用单元格来输入这些数据。
步骤3:设置规划求解选择“数据”选项卡,在“分析”分组中找到“规划求解”工具。
如果没有找到该工具,可能需要先启用“加载项”中的“分析工具包”。
点击“规划求解”,将会打开一个对话框。
在这个对话框中,我们需要输入一些参数来设置求解过程。
目标单元格:这是包含目标函数结果的单元格。
调整变量单元格:这是包含决策变量的单元格范围。
约束条件:这是包含约束条件的单元格范围。
约束条件中的系数:这是一个选择项,用于指定约束条件中的系数是包含在单元格范围中还是直接输入。
约束条件的约束值:这是一个选择项,用于指定约束条件中的约束值是包含在单元格范围中还是直接输入。
约束条件的约束类型:这是一个选择项,用于指定约束条件的类型(大于等于,小于等于等)。
非负约束:这是一个复选框,用于指定决策变量是否具有非负约束。
利用excel软件求解线性规划问题讲解

下面我们通过一个例子来解释怎样用“规划求解”来求解数学规划问题。
例1 公司通常需要确定每月(或每周)生产计划,列出每种产品必须生产的数量。
具体来说就是,产品组合问题就是要确定公司每月应该生产的每种产品的数量以使利润最大化。
产品组合通常必须满足以下约束:● 产品组合使用的资源不能超标。
● 对每种产品的需求都是有限的。
我们每月生产的产品不能超过需求的数量,因为生产过剩就是浪费(例如,易变质的药品)。
下面,我们来考虑让某医药公司的最优产品组合问题。
该公司有六种可以生产的药品,相关数据如下表所示。
设该公司生产药品1~6的产量分别为126,,,x x x (磅),则最优产品组合的线性规划模型为123456123456123456123456max 6 5.3 5.4 4.2 3.8 1.86543 2.5 1.545003.2 2.6 1.50.80.70.316009609281041..977108410550,16j z x x x x x x x x x x x x x x x x x x x x x s t x x x x j =++++++++++≤⎧⎪+++++≤⎪⎪≤⎪≤⎪⎪≤⎨⎪≤⎪≤⎪⎪≤⎪⎪≥≤≤⎩下面用规划求解加载宏来求解这个问题: 首先,如下如所示,在Excel 工作表内输入目标函数的系数、约束方程的系数、右端常数项;其次,选定目标函数单元、可变单元、约束函数单元,定义目标函数、约束函数其中,劳动力约束函数的定义公式是“=MMULT(B3:G3, J5:J10)”,原料约束函数的定义公式是“=MMULT(B4:G4,J5:J10)”,目标函数的定义公式是“MMULT(B5:G5, J5:J10)”。
注:函数MMULT(B3:G3, J5:J10)的意义是:单元区B3:G3表示的行向量与单元区J5:J10表示的列向量的内积。
这一要特别注意的是,第一格单元区必须是行,第二格单元区必须是列,并且两个单元区所含的单元格个数必须相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用e x c e l求解线性
规划问题
利用excel求解线性规划问题
“规划求解”示例
例1 美佳公司计划制造Ⅰ、Ⅱ两种家电产品。
已知各制造一件时分别占用的设备A,B的台时、调试工序时间及每天可用于这两种家电的能力、各售出一件时的获利情况,如下表所示。
问该公司应制造两种家电各多少件,使获取的利润为最大。
1.建立数学模型
2. 打开excel,输入下列数据。
3、如何在工作表中设置问题条件?先设置目标单元格,即最大利润,把它放在E1单元格上,可变单元格放置计划生产Ⅰ和Ⅱ产品的件数,这里把它放在C10:D10区域。
F4:F6是约束单元格,要对它们的值进行约束。
单击E1,在编辑框输入如图所示的公式。
⎪
⎪
⎩
⎪
⎪
⎨
⎧
>=
<=
+
<=
+
<=
+
=
,
5
24
2
6
15
5
..
2
max
2
1
2
1
2
1
2
2
1
x
x
x
x
x
x
x
t s
x
x
z
注意,表示绝对引用的美元符号,可以单击F4功能键添加。
4、单击E4单击格式,在编辑栏上输入公式:=$C$4*$C$10+$D$4*$D$10。
绝对引用单元格有一个好处,显示的单元格位置变化时,引用的数据没改变。
5、单击E5单击格式,在编辑栏上输入公式:=$C$5*$C$10+$D$5*$D$10。
6、单击E6单击格式,在编辑栏上输入公式:=$C$6*$C$10+$D$6*$D$10。
7、如何使用规划求解功能?单击工具菜单,如果看不到规划求解选项不要慌,先选加载宏。
然后勾选规划求解,确定
单击数据菜单——点击“模拟分析”——
8、单击“规划求解”:指定目标单元格。
一种方法是先选中目标单元格E1,单击工具---规划求解。
另一种先单击工具---规划求解,再输入目标单元格名称。
输入可变单元格区域。
比较快的方法是,单击折叠框,用鼠标选中可变单元格区域:$C$11:$E$11。
注意勾选最大值哦。
设置目标: $E$1;点选“最大值”;设置:可变单元: $C$10:$D$10
9.设置条件不等式。
单击添加,单击折叠框,选择单元格和不等号,单击关闭窗口,接着添加另一个条件。
1).单击添加:输入约束不等式X1+X2≤0 ,即在E4输入:$E$4≤$F$4
2).单击添加:输入约束不等式X1+X2≤0 ,即在E5输入:$E$5≤$F$5
2).单击添加:输入约束不等式X1+X2≤0 ,即在E6输入:$E$6≤$F$6
3).单击添加,输入约束X1,X2≥0即在E6输入:$E$6≤$F$6
10、10、点击保存方案,输入方案名称。
11、单击保存规划求解结果,确定。
12、显而易见,美佳公司每天各生产Ⅰ、Ⅱ产品3.5件和1.5件时,可以获得最大利润。
这就是我们要找的最佳方案。
13、如何输出报表?单击求解按钮后出现一个选择框,在报告框里,用鼠标和shift键全部选中3个,勾选保存。
单击确定。
系统自动产生3个报表。
随即弹出返回【规划求解结果】对话框,提示已经找到一解满足条件,同时在工作表中显示出计算结果,用户可以看到各种产品的售出数量以及“最大利润”的数值。
在【规划求解结果】对话框中的“报告”中选择“运算结果报告”,单击“确定”,返回工作表中,此时系统自动地在工作簿中插入一个《运算结果报告1》工作表,并显示出结果报告。
14、打开excel下面的工作表标签运算结果报告1,可以看到全貌,同样的可以看到另两个报表。
2.9原问题解答
教材P77页2.9对偶问题Min W=8Y1+6Y2+6Y3+9Y4
S.t. Y
1+2Y
2
+Y
4
≥2
3Y
1+Y
2
+Y
3
+Y
4
≥4
Y
3
+Y4≥1
Y 1+Y
3
≥1
Y 1,...Y
4
≥0。