青岛大学随机过程试卷三
随机过程试题及答案
随机过程试题及答案随机过程是概率论与数理统计的重要理论基础之一。
通过研究随机过程,可以揭示随机现象的规律性,并应用于实际问题的建模与分析。
以下是一些关于随机过程的试题及答案,帮助读者更好地理解与掌握这一概念。
1. 试题:设随机过程X(t)是一个马尔可夫过程,其状态空间为S={1,2,3},转移概率矩阵为:P =| 0.5 0.2 0.3 || 0.1 0.6 0.3 || 0.1 0.3 0.6 |(1) 计算X(t)在t=2时的转移概率矩阵。
(2) 求X(t)的平稳分布。
2. 答案:(1) 根据马尔可夫过程的性质,X(t)在t=2时的转移概率矩阵可以通过原始的转移概率矩阵P的2次幂来计算。
令Q = P^2,则X(t=2)的转移概率矩阵为:Q =| 0.37 0.26 0.37 || 0.22 0.42 0.36 || 0.19 0.36 0.45 |(2) 平稳分布是指随机过程的状态概率分布在长时间内保持不变的分布。
设平稳分布为π = (π1,π2, π3),满足πP = π(即π为右特征向量),且所有状态的概率之和为1。
根据πP = π,可以得到如下方程组:π1 = 0.5π1 + 0.1π2 + 0.1π3π2 = 0.2π1 + 0.6π2 + 0.3π3π3 = 0.3π1 + 0.3π2 + 0.6π3解以上方程组可得到平稳分布:π = (0.25, 0.3125, 0.4375)3. 试题:设随机过程X(t)是一个泊松过程,其到达率为λ=1,即单位时间内到达的事件平均次数为1。
(1) 请计算X(t)在t=2时的累计到达次数的概率P{N(2)≤3}。
(2) 计算X(t)的平均到达速率。
4. 答案:(1) 泊松过程具有独立增量和平稳增量的性质,且在单位时间内到达次数服从参数为λ的泊松分布。
所以,P{N(2)≤3} = P{N(2)=0} + P{N(2)=1} + P{N(2)=2} +P{N(2)=3},其中P{N(2)=k}表示在时间间隔[0,2]内到达的次数为k的概率。
随机过程第三、五章测验题答案(2010)
随机过程测试题二答案1.以1T 表示泊松过程}0),({≥t t N 中事件首次发生的时刻,则对于t s ≤,求条件概率}1)(|{1=≤t N s T P解: ==≤}1)(|{1t N s T P ts .(细节请查书) (5分) 2.设{N (t ), t ≥0}是强度为λ的泊松过程,N (t )表示到时刻t 为止事件A 发生的次数,则对任意t s <≤0,求),(),(t DN t EN )).(),(cov(s N t N解:t t DN t EN λ==)()(; (5分) .))(),(cov())(),(-)(cov())(),(cov(s s N s N s N s N t N s N t N λ=+= (5分)3.设某公交车站从早晨5时至晚上21时有车发出.从5时至8时乘客的平均到达率呈现性增加,5时乘客的平均到达率为200人/小时,8时乘客的平均到达率为1400人/小时;8时至18时乘客的平均到达率不变;18时至21时乘客的平均到达率线性减少,到21时为200人/小时.假定在不相重叠的时间间隔内到达车站的乘客数相互独立.求(1)12时至14时恰有2000名乘客到车站的概率;(2)这两小时内到车站的乘客平均数.解:以N (t )表示0时到t 时到达的乘客数,则211818885),18(4001400,1400),5(400200)(≤≤<<≤≤⎪⎩⎪⎨⎧---+=t t t t t t λ,(1)).21400(~)12()14(⨯-P N N==-}2000)12()14({N N P !2000280020002800⋅-e ; (5分) (2)2800)]12()14([=-N N E . (5分)4.假定某天文台观测到的流星流是一个泊松过程,据以往资料统计为每小时平均观察到3颗流星. 试求(1)在上午8点到12点期间,该天文台没有观察到流星的概率.(2)下午(12点以后)该天文台观察到第一颗流星的时间的分布函数.解:(1)设早晨8时为0时刻,以N (t )表示0时到t 时观测到的流星数,则N (t )是强度为3(颗/小时)的泊松过程.).43(~)0()4(⨯-P N N==-}0)0()4({N N P 12-e ; (5分)(2)记下午(12点以后)该天文台观察到第一颗流星的时间为1T ,则其密度函数为.0,3)(3≥=-t e t f t相应的分布函数为⎩⎨⎧<≥-=-0,00,1)(3t t e t F t . (5分) 5.保险公司接到的索赔次数是一个泊松过程{N (t ),t ≥0}, 每次的赔付金额{Y n }是一族独立随机变量序列,且有相同分布F ,索赔数额与它发生的时刻无关.则在(0,t ]时间内保险公司赔付的总金额可表示为∑=)(1t N i i Y (5分);若保险公司以平均每月两次的速率接到索赔要求,每次赔付为均值是2000元的正态分布,则它的年平均赔付金额为48000元(5分).解:2000元×2×12=48000元6. 设到某电影院的观众服从强度为λ的泊松流,如果电影在时刻t 开演,求在(0,t ]时间内到达电影院的观众等待开演的时间总和的均值.解:假设以强度为λ的泊松过程{N (t ),t ≥0}来到某电影院,火车在时刻t 启程. 计算在(0,t ]时间内到达的乘客的等待时间的总和的期望值.解1:以T n 记第n 位观众的来到时刻,则所求为∑=-)(1)(t N i i T t E.22])(|[])(|)([)(1)(1nt nt nt n t N T E nt n t N T t E t N i i t N i i =-==-==-∑∑== (5分) ∑∑∑+∞=====-=-0)(1)(1})({])(|)([)(n t N i i t N i i n t N P n t N T t E T t E.2)!1()(2!)(221120t e n t t e n t nt n t n n t nλλλλλλ=-==∑∑+∞=--+∞=- (5分) 7.某商场为调查顾客到来的客源情况,考察了男女顾客来商场的人数。
(完整版)随机过程习题答案
(完整版)随机过程习题答案随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的⼀维概率密度、均值和相关函数。
解因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的⼀维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的⼀维概率密度及),(),(21t t R t EX X 。
解对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的⼀维概率密度xtt x f t x f Y 1)ln ();(-=,0>t)(][)]([)(dy y f e eE t X E t m yt tY X相关函数+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X 2.3 若从0=t 开始每隔21秒抛掷⼀枚均匀的硬币做实验,定义随机过程=时刻抛得反⾯时刻抛得正⾯t t t t t X ,2),cos()(π试求:(1))(t X 的⼀维分布函数),1(),21(x F x F 和;(2))(t X 的⼆维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,⽅差 )1(),(22X Xt σσ。
概率统计随机过程-期末试卷-参考答案
7. 1
8. 1 1
4. ,
2
数理统计
57 33 e 30 154 e 15 9. , 8 24
2 2 2
又由
15 S 2
2
4
即
152
2 15 S 2 (15) 知 D 2 2 15
D S 2 2 15
2
得 D S
2 15
4
五、解:
数理统计
1 2 3 (1) 先求二步转移概率矩阵 1 1/ 2 1/ 4 1/ 4 2 P (2) [ P (1)] 2 1/ 4 1/ 2 1/ 4 3 1/ 4 1/ 4 1/ 2 3 P{ X 2 2} P X 0 iP X 2 2 | X 0 i
数理统计
《概率统计与随机过程》期末试卷二 参考答案 一、填空题
1. F (1, n)
2. P X 1 x1 ,..., X n xn p i 1 (1 p) 其中xi 0或1;
1 n 3. X , Xi X n i 1
xi
n
n
xi
i 1
n
,
E ( S 2 ) p(1 - p)
六、解:
a2 (3) 因 RX ( t , t ) cos 0 , 2 i 故 S X R e d X
2 a i cos( ) e d 0 2 2 a cos(0 )e i d 2 a2 0 0 2
p1 (0) P12 (2) p2 (0) P22 (2) p3 (0) P32 (2) 1 1 1 1 1 ( ) 3 4 2 4 3 (2) P{ X 2 2, X 3 2 | X 0 1}
(完整word版)随机过程试题带答案
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 Γ 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 (n)n P P = 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p ∈=⋅∑ 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
1.为it(e-1)e λ。
2. 1(sin(t+1)-sin t)2ωω。
3. 1λ4. Γ 5. 212t,t,;e,e 33⎧⎫⎨⎬⎩⎭。
6.(n)nP P =。
《随机过程》试题A卷
= cosωt1 cosωt2 (DA + [EA]2 )
因为 DA = 1, EA = 0,
所以 = cosωt1 cosωt2
自协方差函数 C( X (t1), X (t2 )) = R( X (t1), X (t2 )) − mX (t1)mX (t2 )
因为 ∀t ∈ R, mX (t) = 0
n
∏ ∑ it Yi
n
ϕ X (n) (t) = E(eitX (n) ) = E(e i=1 ) = E(eitYi ) = [1 − p + peit ]n
i =1
n
n
∑ ∑ = Cnk ( peit )k (1 − p)n−k = eitkCnk pk (1 − p)n−k
k=0
k=0
由概率分布与特征函数的一一对应得{X (n), n = 1, 2L}的一维概率分布律为
重复进行多次 以 X(n)表示到第 n 次为止事件 A 发生的次数
1 试问{X (n),n = 1,2,L}是何种随机过程
2 试写出{X (n), n = 1,2,L} 的一维概率分布
解答
令 Yi
=
⎧1 ⎨ ⎩0
第i次试验A发生 第i次试验A不发生
i = 1,2,L 由题意知 它们是相互独
n
立的 此时 X(n)表示为 X (n) = ∑Yi n = 1,2,L i =1
00
1 2
000
1 2
000
1 3
0
1 3
0
000000
10
0⎞ ⎟
0
⎟ ⎟
0
⎟ ⎟
0
⎟ ⎟
⎟ 0⎟
⎟
0⎟
最新-期末随机过程试题及答案资料
《随机过程期末考试卷》1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
随机过程习题和答案.doc
一、设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:袋中有一个白球,两个红球,每隔单位时间从袋中任取一球后放回,对每一个确定的t对应随机变量X(t)t3te如果对如果对t时取得红球t时取得白球试求这个随机过程的一维分布函数族.设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
设随机过程X(t)U cos2t U E(U)5,D(U)5.求:,其中是随机变量,且(1)均值函数;(2)协方差函数;(3)方差函数.设有两个随机过程X(t)Ut2Y(t)Ut3,U随机变量,且D(U)5.,其中是试求它们的互协方差函数。
设A,B,X(t)At3B t T(,)的均值是两个随机变量试求随机过程,函数和自相关函数.A,B,~(1,4),~(0,2),()(,)若相互独立且A N B U则m X t及R X t1t2为多少?一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令N(t)表示(0,t)时间内的体检人数,则N(t)为参数为30的poisson过程。
以小时为单位。
则E(N(1))30。
40k(30) P(N(1)40)ek!k030。
在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1,2,当1路公共汽车有N人乘坐后出发;2路公共汽车1在有N2人乘坐后出发。
设在0时刻两路公共汽车同时开始等候乘客到来,求(1)1路公共汽车比2路公共汽车早出发的概率表达式;(2)当N1=N,1=22时,计算上述概率。
研究生《随机过程》考试题
随机过程考试题(2009)一,(12分)已知12,X X 为独立同指数分布(1)EXP 的随机变量。
(1) 证明12X X +与112X X X +独立;(2) 令112212,Y X X Y X X =+=-,求12,Y Y 的联合概率密度. 二,(10分)设随机变量X 的分布律为{}11,0,1,2,.2x P X x x +=== 令 (){}min ,,0,1,2,.X n X n n ==求随机过程(){},0X X n n =≥的一维分布律及均值函数. 三,(12分)设(){},0N N t t =≥的强度为0λ>的Possion 过程, (1) 证明:若0,1s t n <<≥,则()(){}1kn kk n s s P N s k N t n C t t -⎛⎫⎛⎫===- ⎪⎪⎝⎭⎝⎭(2) 设随机变量T 与N 相互独立,且{},0.tP T t et μ->=>证明:(){},0,1,2,.kP N t k k μμλμλμ⎛⎫===⎪++⎝⎭四,(12分)设Markov 链的状态空间{}1,2,3S =,初始分布(){}014,12,14π=,一步转移概率矩阵为11124411022010⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭P 求:(1) 二步转移概率矩阵()2P(2) ()(){}22,42;P X X == (3) ()()321.E X X ⎡⎤=⎣⎦设Markov 链的状态空间{}1,2,3,4,5S =,一步转移概率矩阵为113001312140140000100010000001⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭P(1) 画出状态转移图;(2) 指出哪些是非常返态?哪些是常返态? (3) 求常返态的周期及平均回转时间; (4) 给出状态空间S 的分解。
六(12分)设(){},X t t -∞<<+∞是均方可导的平稳过程,其自相关函数为{}.X R τ令 ()(),dX t Y t t dt=-∞<<+∞(1) 求()Y t 的自相关函数(2) 问(){},Y t t -∞<<+∞是否为平稳过程?为什么? 七,(12分)已知下列平稳过程X 的相关函数为{}.X R τ(相应地,谱密度()X S ω),求X 的谱密度(相应地,相关函数): (1){}()()4cos 3X R ecos ττπττ-=+(2)()()651,15150,15X S ωδωωωω⎧⎛⎫+-≤⎪ ⎪=⎨⎝⎭⎪>⎩(已知:()()()()11000cos ;12;fff f ωτπδωωδωωπδω---++⎡⎤⎣⎦ ()()()()10222200cos 0.f a f aaea aaτωτωωωω--+>-+++ )八,(8分)设有二阶矩随机变量X 及普通实函数()()f t t -∞<<+∞,证明:若f 在0t t =点可导, 则()()00t t Xf t Xf t ='=⎡⎤⎣⎦设有如图所示的交通网络,流入的为图示强度的Possion 过程(假定各过程独立),而在交会处车辆按图示的概率选择行走方向(假定方向的选择也相互独立).描述三个出口处的交通的情况.随即过程试题(2006)1, 已知()()123123123,06,,,0x x x x x x e f x x x others -++⎧<<<⎪=⎨⎪⎩112213323,22,y x y x x y x x ==-=-求: (1)123,,y y y 的概率密度(2)1Ey ,1Dy2,设X 的均值函数为()X m t ,自相关函数为()12,X R t t ,用()X m t 和()12,X R t t 来表示()()(),,X X X D t C t t ϕ3,,X Y 两个随机变量均值函数和方差分别为,,,X Y X Y m m δδ,相关系数为ρ,设Z X t Y =+,求()(),Z Z m t R t4,一强度为λ的Passion 过程,求: (1)()(){}P x t m x j n ==(2)若(){}110P N e -==,求()()23E N N ⎡⎤⎣⎦(3或者5)5,设()h x 为平方可积函数。
随机过程习题及部分解答(共享).docx
随机过程习题及部分解答习题一1.若随机过程X(/)为X(0 = A?,-oo<r<+oo,式中4为(0, 1)上均匀分布的随机变量,求X(/)的一维概率密度Px(x;t)。
2.设随机过程X(/) = 4cos(初+ 其中振幅A及角频率①均为常数,相位&是在[-兀,刃上服从均匀分布的随机变量,求X(/)的一维分布。
习题二1.若随机过程X(/)为X(t)=At -00 < r < +00 ,式中4为(0,1)上均匀分布的随机变量,求E[xa)],7?xa』2)2.给定一随机过程X(/)和常数Q,试以X(/)的相关函数表示随机过程y(0 = X(/ + a) —X(/)的自相关函数。
3.已知随机过程X(/)的均值阪⑴和协方差函数Cx (爪© , 0(/)是普通函数,试求随机过程丫⑴=X(/) + 0(/)是普通函数,试求随机过程丫⑴=X(/) + 0(/)的均值和协方差函数。
4.设X(t) = A cos at + B sin at,其中A, B是相互独立且服从同一高斯(正态)分布N(0Q2)的随机变量,a为常数,试求X(/)的值与相关函数。
习题三1.试证3.1节均方收敛的性质。
2.证明:若X(t),twT;Y(t),twT均方可微,a0为任意常数,则aX(t) + bY(t) 也是均方可微,且有[aX (?) + b Y(/)]' = aX'(/) + b Y'(/)3.证明:若X⑴,twT均方可微,/X/)是普通的可微函数,则f(Z)X(Z)均方可微且[f(ox(or-/w(o+/(ox,(o4.证明:设X⑴在[a,b]上均方可微,且X0)在[a,切上均方连续,则有X'⑴ dt = X(b) — X(a)J a5•证明,设X(t\t eT =[a,b];Y{t\t eT = [a,b]为两个随机过程,且在T上均方可积,a和0为常数,则有(*b (*b (*bf [aX(/) + 0Y(/)M = a [ Xit)dt + /3\ Y⑴ dtJ a J a J aeb rc rbaX (t)dt = X (t)dt + XQ) dt,aWcWbJ a J a Jc6.求随机微分方程X'(/) + aX ⑴二丫⑴ze[0,+oo]'X(0) = 0的X(t)数学期望E [X(0]。
随机过程试卷
1 1 2 3 4 1 3 1 4 4 1 3 1
0
1 3 3 4
,P3 0 = ,一步转移概率矩阵为P =
4
1
0 1. 2. 3. 4. 5. 计算P X n+2 = 1|Xn = 3 计算P X 0 = 1,X2 = 2 计算P X 2 = 2 计算P X 2 = 2,X4 = 1 计算P X1 = 2,X2 = 2|X 0 = 1
π π
二(20 分)
1 1 3 2 3 1 2 1 6 2 1 3
设 Xn,n ≥ 0 是具有 3 个状态 1, 2, 3 的齐次马氏链, 一步转移概率矩阵为P =
0
1 2
0 1. 2. 3. 试画出状态转移图 此链是否遍历 求出它的平稳分布
三(25 分)
设 齐 次 马 氏 链 Xn,n ≥ 0 的 状 态 空 间 为 E = 1,2,3 初 始 分 布 为 P1 0 = 4 ,P2 0 =
四(20 分)
有随机相位正弦波过程ξ ������ = A cos ������������ + X ,其中 、������是常数, 为 0,2π 上均匀分布 1. 2. ξ ������ 是否为宽平稳过程 ξ ������ 是否具有平稳性
五(20 分)
设顾客在 0,������ 时段内,进入百货大楼的人数是一个泊松过程,平均每十分钟进入 30 人, 再设每位顾客购物的概率 P=0.2,每位顾客是否购物相互独立,且与进入大楼的顾客数相互 独立,令Y t 表示 0,������ 时段内购物顾客的人数 1. Y t 是否是泊松过程,为什么? 2. 3. 求P Y t = k ,k = 0,1,2, … 求 5 分钟内有 10 位顾客购物的概率
随机过程 2007-2008 期末考试 A 卷
随机过程试卷及答案
随机过程 试 卷学期: 2010 至 2011 学年度 第 1 学期 课程: 随机过程 班级: YS201021/22/23/25/31/32 姓名(10分)设有正弦波随机过程()()()t B t A t X ωωsin 2cos 2+=,其中∞<≤t 0,ω为常数,A 和B 都是均匀分布于[]2,0之间的随机变量,并且它们之间相互统计独立。
确定随机变量⎪⎭⎫ ⎝⎛ωπ4X 的概率密度并画出概率密度函数波形。
解:B A B A X 224sin 24cos 24+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛ππωπ,而B A 2,2是均匀分布于[]2,0之间的随机变量,它们的概率密度都为()21=x f ,⎪⎭⎫⎝⎛ωπ4X 的概率密度为()21=x f 与()21=y f 的卷积。
即有()()()[]()()[]()()()()()()()()()()()4441222141224122141221221--+---=-*-+-*-*=--*--=x u x x u x x xu x u x u x u x u x u x u x u x u x u x u x f X二、(10分)设两状态时间离散马尔可夫链() ,2,1,0,=n n ξ,()n ξ可取 0 或 1,它的一步转移概率矩阵为⎪⎪⎭⎫ ⎝⎛=2211q pp q P 其中 1 ,12211=+=+q p q p , 且 (){}(){}⎪⎪⎩⎪⎪⎨⎧+==+==2122110010p p p P p p p P ξξ 已知 ()()()()⎪⎪⎭⎫⎝⎛--+--------++=n n nnnp p p p p p p p p p p p p p p p p p P 21212122211121122111111 试证明该过程为严平稳过程。
(5分)()()., 1 })({})({}1)({}0)({})(/)({})(/)({})({ })(/)({ )(/)({})({ })(,,)(,)({})(/)({})(/)({})({ })(,,)(,)({,)(1})(,,)(,)({})(,,)(,)({ )(1111111122111111221122111111221122112211221121即是严平稳过程始时刻无关阶联合概率与发生的起所以任意式成立,以所以上面二式相等,所无关,所以与发生时刻或因为刻无关所以它的转移概率与时是一齐次马尔可夫链由于,即要证明个时刻设任意是一严平稳随机过程,要说明k i m n P i n P n n P n P i n i n P i n i n P i m n P i m n i m n P i m n i m n P i m n P i m n i m n i m n P i n i n P i n i n P i n P i n i n i n P n i m n i m n i m n P i n i n i n P n n n k n k k k k k k k k k k k k k k k k k k k k k =+========⋅=+==+=+=+=+⋅=+==+=+=+====⋅======+=+=+====<<<------ξξξξξξξξξξξξξξξξξξξξξξξξξξξξξξξξξ(5分)利用抛掷硬币的试验定义一个随机过程()()⎩⎨⎧=出现反面出现正面tt t X 2cos π 设出现正反面的概率是相同的。
随机过程期末考试题库及答案pdf
随机过程期末考试题库及答案pdf1. 随机过程期末考试题库及答案pdf以下是随机过程期末考试的题库及答案,供同学们参考。
一、选择题1. 假设随机过程{X(t), t≥0}是独立增量过程,那么下列哪个说法是正确的?A. X(t)的增量是独立的B. X(t)的增量是平稳的C. X(t)的增量是独立且平稳的D. X(t)的增量是相关且非平稳的答案:C2. 马尔可夫链具有以下哪种性质?A. 无记忆性B. 有记忆性C. 有周期性D. 以上都不是答案:A二、填空题1. 如果随机过程{X(t), t≥0}的自相关函数R(τ)满足R(τ) = R(-τ),则该过程是__________的。
答案:对称2. 随机过程{X(t), t≥0}的均值函数为μ(t),若μ(t) = 0,则称该过程为__________。
答案:零均值三、简答题1. 简述什么是泊松过程,并给出其特征。
答案:泊松过程是一种计数过程,其特征包括:- 在任意不相交的时间间隔内发生事件是相互独立的。
- 在任意小的时间间隔内,事件的发生次数服从泊松分布。
- 事件的平均发生率是恒定的。
2. 描述布朗运动的基本性质。
答案:布朗运动的基本性质包括:- 连续性:样本路径是连续的。
- 无记忆性:未来的行为不依赖于过去。
- 独立增量:不同时间间隔的增量是相互独立的。
- 正态分布:任意时间间隔的增量服从以零为均值的正态分布。
四、计算题1. 假设随机过程{X(t), t≥0}是标准布朗运动,求X(t)的均值和方差。
答案:对于标准布朗运动,X(t)的均值为0,方差为t。
2. 给定马尔可夫链的状态转移矩阵P,求状态i在时间t+1时刻的概率。
答案:设状态i在时间t时刻的概率为pi(t),则状态i在时间t+1时刻的概率为pi(t+1) = Σ(pi(t) * Pij),其中Pij是状态i转移到状态j的概率。
以上是随机过程期末考试题库及答案的部分内容,希望对同学们的复习有所帮助。
随机过程试题及答案
随机过程试题及答案一、单项选择题(每题2分,共10分)1. 随机过程的数学定义中,通常需要满足哪些条件?A. 样本空间、概率测度、随机变量B. 样本空间、概率测度、随机函数C. 样本空间、随机变量、随机函数D. 概率测度、随机变量、随机函数答案:B2. 马尔可夫链的无记忆性指的是什么?A. 过程的未来状态仅依赖于当前状态B. 过程的未来状态仅依赖于过去的状态C. 过程的未来状态依赖于当前和过去的状态D. 过程的未来状态依赖于所有历史状态答案:A3. 在随机过程中,如果一个过程的任何有限维分布都是联合正态的,则称该过程为什么?A. 正态过程B. 高斯过程C. 联合正态过程D. 多元正态过程答案:B4. 以下哪个不是平稳随机过程的性质?A. 一阶矩不随时间变化B. 任意两个不同时间点的协方差仅依赖于时间差C. 过程的均值随时间变化D. 过程的自相关函数仅依赖于时间差答案:C5. 随机过程的谱密度函数与自相关函数之间的关系是什么?A. 互为傅里叶变换B. 互为拉普拉斯变换C. 互为Z变换D. 互为梅林变换答案:A二、填空题(每题3分,共15分)1. 如果随机过程的样本路径是连续的,则称该过程为_________。
答案:连续过程2. 随机过程的样本函数是定义在时间轴上的_________。
答案:随机变量3. 对于一个平稳过程,其自相关函数R(τ)仅依赖于时间差τ,而不依赖于绝对时间t,即R(t1, t2) = R(t1 - t2) = R(τ),其中τ = t2 - t1。
这种性质称为_________。
答案:时间平移不变性4. 随机过程的遍历性是指过程的_________等于其统计平均。
答案:时间平均5. 随机过程的遍历性分为_________遍历性和_________遍历性。
答案:强,弱三、简答题(每题10分,共20分)1. 简述什么是泊松过程,并给出其概率质量函数。
答案:泊松过程是一种描述在固定时间或空间间隔内随机事件发生次数的随机过程。
2017-2018期末随机过程试题及答案.docx
《随机过程期末考试卷》1 •设随机变量X服从参数为■的泊松分布,则X的特征函数为 _________ 。
2•设随机过程X(t)=Acos( t+G),rvt<::其中为正常数,A和门是相互独立的随机变量,且A和门服从在区间∣0,11上的均匀分布,则X(t)的数学期望为。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为_的同一指数分布。
4•设:W n)是与泊松过程fX(t),t 一0?对应的一个等待时间序列,则W n服从分布。
5•袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,Γ对每一个确定的t对应随机变量x(t)=」3,如果t时取得红球,则这个随机过(e t, 如果t时取得白球程的状态空间__________ 。
6 •设马氏链的一步转移概率矩阵P=(P i j),n步转移矩阵Pg=(P(;)),二者之间的关系为。
7•设CX n)n -0?为马氏链,状态空间I ,初始概率P i= P(X°=i),绝对概率P j(n) =P「X n =j?,n步转移概率P j n),三者之间的关系为________________ 。
8 .设{X(t),t 一0}是泊松过程,且对于任意t20则P{X ⑸= 6|X (3) = 4} = _______t9 •更新方程K t =H^O K^SdFS解的一般形式为___________________ C 10•记亠-EX n)对一切a—0,当t—:时,M t+a -M t > _____________3. 设]X n)n — 0为马尔科夫链,状态空间为I ,则对任意整数n — 0,仁I Vn和i,j I ,n步转移概率P j n)=V P fk)P k n-I),称此式为切普曼一科尔莫哥洛夫方程,底I证明并说明其意义、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB) C2.设{X(t), t_0}是独立增量过程,且X(0)=0,证明{X(t), t_0}是一个马尔科夫过程。
青岛青大附中选修三第二单元《随机变量及其分布》检测(答案解析)
一、选择题1.赵先生朝九晚五上班,上班通常乘坐公交加步行或乘坐地铁加步行.赵先生从家到公交站或地铁站都要步行5分钟.公交车多且路程近一些,但乘坐公交路上经常拥堵,所需时间(单位:分钟)服从正态分布(33N ,24),下车后从公交站步行到单位要12分钟;乘坐地铁畅通,但路线长且乘客多,所需时间(单位:分钟)服从正态分布(44N ,22),下地铁后从地铁站步行到单位要5分钟.给出下列说法:从统计的角度认为所有合理的说法的序号是( )(1)若8:00出门,则乘坐公交上班不会迟到;(2)若8:02出门,则乘坐地铁上班不迟到的可能性更大; (3)若8:06出门,则乘坐公交上班不迟到的可能性更大; (4)若8:12出门.则乘坐地铁上班几乎不可能不迟到.参考数据:2~(,)Z N μσ,则()0.6827P Z μσμσ-<+≈,(22)0.9545P Z μσμσ-<+≈,(33)0.9973P Z μσμσ-<+≈A .(1)(2)(3)(4)B .(2)(4)C .(3)(4)D .(4)2.将两颗骰子各掷一次,设事件A =“两个点数都不相同”,B =“至少出现一个5点”,则概率()P A B =( ) A .1011B .511C .518D .5363.随机变量X 的概率分布为()()()1,2,31aP X n n n n ===+,其中a 是常数,则()E aX =( )A .3881B .139C .152243D .52274.已知随机变量X 的分布列:若()1E X =,(21)2D X +=,则p =( ) A .13B .14C .15D .165.袋中有大小完全相同的2个红球和2个黑球,不放回地依次摸出两球,设“第一次摸得黑球”为事件A ,“摸得的两球不同色”为事件B ,则概率()|P B A 为( )43326.已知一种元件的使用寿命超过1年的概率为0.8,超过2年的概率为0.6,若一个这种元件使用到1年时还未失效,则这个元件使用寿命超过2年的概率为( ) A .0.75B .0.6C .0.52D .0.487.将一枚质地均匀且各面分别有狗,猪,羊,马图案的正四面体玩具抛掷两次,设事件=A {两次掷的玩具底面图案不相同},B ={两次掷的玩具底面图案至少出现一次小狗},则()P B A =( )A .712B .512C .12D .11128.某市一次高三年级数学统测,经抽样分析,成绩X 近似服从正态分布2(84,)N σ,且(7884)0.3P X <≤=.该市某校有400人参加此次统测,估计该校数学成绩不低于90分的人数为( ) A .60 B .80 C .100D .1209.下列四个结论中正确的个数是(1)对于命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∃∈都有210x ->;(2)已知2(2,)XN σ,则 (2)0.5P X >=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为ˆ23yx =-; (4)“1≥x ”是“12x x+≥”的充分不必要条件. A .1B .2C .3D .410.已知随机变量ξ的分布列为P (ξ=k )=13,k =1,2,3,则D (3ξ+5)=( ) A .6 B .9 C .3D .411.已知随机变量X 的分布列如下表所示则(25)E X -的值等于 A .1B .2C .3D .412.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )225248二、填空题13.一个口袋中有7个大小相同的球,其中红球3个,黄球2个,绿球2个.现从该口袋中任取3个球,设取出红球的个数为ξ,则()E ξ=______. 14.下列命题中,正确命题的序号为_________.①已知随机变量X 服从二项分布(,)B n p ,若()30,()20E X D X ==,则23p =; ②将一组数据中的每个数据都加上同一个常数后,方差恒不变;③设随机变量ξ服从正态分布(0,1)N ,若(1)P p ξ=,则1(10)2P p ξ-<=-; ④某人在10次射击中,击中目标的次数为,~(10,0.8)X X B ,则当8X =时概率最大. 15.已知随机变量X 的分布列为:X-1 0 1()P X q13 16则随机变量X 的方差()V X 的值为______.16.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则()P B A 等于___________.17.已知X 服从二项分布()100,0.2B ,则()32E X --= ________. 18.已知某随机变量X 的分布列如下(,p q R ∈):且X 的数学期望()12E X =,那么X 的方差()D X =__________. 三、解答题19.一台设备由三个部件构成,假设在一天的运转中,部件1,2,3需要调整的概率分别为0.1,0.2,0.3,各部件的状态相互独立.(1)求设备在一天的运转中,部件1,2中至少有1个需要调整的概率;(2)记设备在一天的运转中需要调整的部件个数为X ,求X 的分布列及数学期望. 20.某软件是一款自营生鲜平台以及提供配送服务的生活类APP .某机构为调查顾客对该软件的使用情况,在某地区随机抽取了100人,调查结果整理如下: 顾客年龄20岁以下[20,[30,40) [40,[50,[60,70岁以30)50) 60) 70] 上 使用人数 5 10 18 8 4 2 0 未使用人数212363(1)现随机抽取1名顾客,试估计该顾客年龄在且未使用这款APP 的概率;(2)从被抽取的年龄在[50,70]且使用这款APP 的顾客中,随机抽取2人进一步了解情况,用X 表示这2人中年龄在[50,60)的人数,求随机变量X 的分布列及数学期望; (3)为鼓励居民使用,该机构拟对使用这款APP 的居民赠送1张5元的代金劵.若某区预计有6000人具有购物能力,试估计该机构至少应准备多少张代金券.21.某高三毕业班甲、乙两名同学在连续的8次数学周练中,统计解答题失分的茎叶图如图:(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并判断哪位同学做解答题相对稳定些;(2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X 的分布列和均值.22.某学校用“10分制”调查本校学生对教师教学的满意度,现从学生中随机抽取16名,以茎叶图记录了他们对该校教师教学满意度的分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)若教学满意度不低于9.5分,则称该生对教师的教学满意度为“极满意”.求从这16人中随机选取3人,至少有1人是“极满意”的概率;(2)以这16人的样本数据来估计整个学校的总体数据,若从该校所有学生中(学生人数很多)任选3人,记X 表示抽到“极满意”的人数,求X 的分布列及数学期望.23.双十一购物狂欢节,是指每年11月11日的网络促销日,源于淘宝商城2009年11月11日举办的网络促销活动,双十一已成为中国电子商务行业的年度盛事,开且逐渐影响到国际电子商务行业,某网络促销平台从去年的双十一当天的消费者中随机抽取500名,调查他们的消费金额(单位:百元)情况,根据调查的结果绘制了频数分布表,其中消费金额在[)9,11,[)1,13,[]13,15的频数成等比数列. 消费金额/百元[)1,3 [)3,5 [)5,7 [)7,9 [)9,11 [)11,13 [)13,15频数 40 60 120 140m n20m n 组区间的中点值为代表);(2)用分层抽样的方法从消费金额在[)3,5,[)5,7,[)9,11内的消费者中抽13人,再从这13人中随机抽取3人,记抽取的3人中消费金额超过平均数的人数为X ,求X 的分布列和数学期望.24.2020年8月,体育总局和教育部联合提出了《关于深化体教融合,促进青少年健康发展的意见》.某地区为落实该意见,初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分.某学校在初三上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到频率分布直方图(如图所示),且规定计分规则如下表:每分钟跳绳个数 [)155,165 [)165,175 [)175,185 []185,215得分17181920分的概率; (2)若该校初三年级所有学生的跳绳个数2~(,)X N μσ,用样本数据的平均值和方差估计总体的期望和方差.已知样本方差2169s ≈(各组数据用中点值代替).根据往年经验,该校初三年级学生经过训练,正式测试时跳绳个数都有明显进步.假设中考正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:①全年级有1000名学生,预估正式测试每分钟跳182个以上人数;(结果四舍五入到整数) ②若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为Y ,求随机变量Y 的分布列和期望. 附:若2~(,)X N μσ,则(||)0.6826,(||2)0.9544,(||3)0.9974P X P X P X μσμσμσ-<≈-<≈-<≈.25.甲、乙两人按如下规则进行射击比赛,双方对同一目标轮流射击,若一方未击中,另一方可继续射击,甲先射,直到有人击中目标或两人总射击次数达4次为止.若甲击中目标的概率为23,乙击中目标的概率为12.(1)求甲在他第二次射击时击中目标的概率;(2)求比赛停止时,甲、乙两人射击总次数X 的分布列和期望.26.面对环境污染,党和政府高度重视,各级环保部门制定了严格措施治理污染,同时宣传部门加大保护环境的宣传力度,因此绿色低碳出行越来越成为市民的共识,为此某市在八里湖新区建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分缴费,具体扣分标准如下: ①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分; ③租用时间为2小时以上且不超过3小时,扣2分; ④租用时间为3小时以上且不超过4小时,扣3分;⑤租车时间超过4小时除扣3分外,超出时间按每小时扣2分收费(不足1小时的部分按1小时计算)甲、乙两人独立出行,各租用公共自行车一次,且两人租车时间都不会超过4小时,设甲、乙租用时间不超过一小时的概率分别是0.4,0.5;租用时间为1小时以上且不超过2小时的概率分别是0.3,0.3;租用时间为2小时以上且不超过3小时的概率分别是0.2,0.1.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】结合正态分布的性质对每种情况分别求解概率,即可进行判断. 【详解】对于(1)赵先生乘坐公交车的时间不大于43分钟才不会迟到,因为(43)(45)p Z p Z <<且(33123312)0.9973p z -<<+≈,所以(43)(45)0.50.50.99730.9987P Z p Z <≈+⨯≈, 所以赵先生上班迟到还是有可能发生的,(1)不合理;(2)赵先生乘坐地铁上班,则其乘坐地铁的时间不大于48分钟,才不会迟到,因为(444444)0.9545p Z -<<+≈, 所以(48)0.50.95450.50.9773P Z ≈+⨯≈,所以若8:02出门,则乘坐地铁上班不迟到的可能性为0.9773, 若乘坐公交,则乘坐时间不大于41分钟才不会迟到,因为(338338)0.9545P z -<<+≈,所以(41)0.50.50.95450.9773P Z ≈+⨯≈, 故二者的可能性一样,(2)不合理;(3)赵先生乘坐公交车的时间不大于37分钟才不会迟到,因为(334334)0.6827p z -<<+≈,所以(37)(45)0.50.50.68270.8414P Z p Z <≈+⨯≈,赵先生乘坐地铁的时间不大于44分钟才不会迟到,因为(44)0.50.8414p z ≈<,(3)的说法合理;(4)赵先生乘坐地铁的时间不大于38分钟才不会迟到,因为(446446)0.9973p z -<<+≈,所以(38)(10.9973)0.50.0014P Z ≈-⨯≈,即可能性非常小,(4)的说法合理. 故选:C . 【点睛】本题主要考查了正态分布,考查了考生的数据处理的能力,分析及解决问题的能力,考查了核心素养是数据分析,数学运算.2.A解析:A 【分析】根据条件概率的含义,(A |B)P 其含义为在B 发生的情况下,A 发生的概率,即在“至少出现一个5点”的情况下,“两个点数都不相同”的概率,分别求得“至少出现一个5点”与“两个点数都不相同”的情况数目,进而相比可得答案. 【详解】根据条件概率的含义,(A |B)P 其含义为在B 发生的情况下,A 发生的概率, 即在“至少出现一个5点”的情况下,“两个点数都不相同”的概率, “至少出现一个5点”的情况数目为665511⨯-⨯=, “两个点数都不相同”则只有一个5点,共12510C ⨯=种, 故10(|)11P A B =. 故选:A . 【点睛】本题考查条件概率,注意此类概率计算与其他的不同,(A |B)P 其含义为在B 发生的情况下,A 发生的概率.3.D解析:D 【分析】根据裂项相消法以及概率的性质求出a ,再得出()E X ,最后由()()E aX aE X =得出答案. 【详解】()()11a a aP X n n n n n ===-++(1)(2)(3)1P X P X P X =+=+== 122334a a a a a a ∴-+-+-=,解得43a =则221(1),(2),(3)2369129a a a P X P X P X ========= 62113()1239999E X ∴=⨯+⨯+⨯=452()()392137E aX aE X ∴==⨯=故选:D 【点睛】本题主要考查了随机变量分布列的性质以及均值的性质,属于中档题.4.B解析:B 【分析】由(21)4()D X D X +=,可得1()2D X =,由随机变量分布列的期望、方差公式,联立即得解. 【详解】由题意,11()0()2121222aE X p a p p =⨯-+⨯+⨯=∴+= 且(21)2D X +=,又1(21)4()()2D X D X D X +=∴=22211()(01)()(1)(21)222D X p a p ∴=-⨯-+-⨯+-⨯=联立可得:11,4a p == 故选:B 【点睛】本题考查了随机变量分布列的期望和方差,考查了学生概念理解,数学运算的能力,属于中档题.5.B解析:B 【分析】根据题目可知,求出事件A 的概率,事件AB 同时发生的概率,利用条件概率公式求得()|P B A ,即可求解出答案.【详解】依题意,()1214C 1C 2P A ==,()11221143C C 1C C 3P AB ==,则条件概率()()()123|132P AB P B A P A ===.故答案选B . 【点睛】本题主要考查了利用条件概率的公式计算事件的概率,解题时要理清思路,注意()P AB 的求解.6.A解析:A 【分析】记事件:A 该元件使用寿命超过1年,记事件:B 该元件使用寿命超过2年,计算出()P A 和()P AB ,利用条件概率公式可求出所求事件的概率为()()()P AB P B A P A =.【详解】记事件:A 该元件使用寿命超过1年,记事件:B 该元件使用寿命超过2年, 则()0.8P A =,()()0.6P AB P B ==,因此,若一个这种元件使用到1年时还未失效,则这个元件使用寿命超过2年的概率为()()()0.60.750.8P AB P B A P A ===,故选A. 【点睛】本题考查条件概率的计算,解题时要弄清楚两个事件的关系,并结合条件概率公式进行计算,考查分析问题和计算能力,属于中等题.7.C解析:C 【分析】利用条件概率公式得到答案. 【详解】336()1616P AB +==412()11616P A =-= ()()1()2P AB P B A P A == 故答案选C 【点睛】本题考查了条件概率的计算,意在考查学生的计算能力.8.B解析:B 【分析】由题意,成绩X 近似服从正态分布()284,N σ,则正态分布曲线的对称轴为84X =,根据正态分布曲线的对称性,求得()190[12(7884)]2P X P X ≥=⨯-⨯<≤,进而可求解,得到答案. 【详解】由题意,成绩X 近似服从正态分布()284,N σ,则正态分布曲线的对称轴为84X =,又由(7884)0.3P X <≤=, 根据正态分布曲线的对称性,可得()()1190[12(7884)]10.60.222P X P X ≥=⨯-⨯<≤=-=,所以该市某校有400人中,估计该校数学成绩不低于90分的人数为4000.280⨯=人, 故选B. 【点睛】本题主要考查了正态分布曲线的性质的应用,其中解答中熟练应用正态分布曲线的对称性,求得成绩不低于90分的概率是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.C解析:C 【分析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定. 【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∀∈都有210x ->,是错误的;(2)中,已知()22,X N σ~,正态分布曲线的性质,可知其对称轴的方程为2x =,所以 (2)0.5P X >=是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为ˆ23yx =-是正确;(4)中,当1x ≥时,可得12x x +≥=成立,当12x x +≥时,只需满足0x >,所以“1x ≥”是“12x x+≥”成立的充分不必要条件. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10.A解析:A 【分析】直接利用方差的性质()()2D a b a D ξξ+=⨯求解即可.【详解】 由题意得()()112323E ξ=⨯++=, ()()()()2221212223233D ξ⎡⎤∴=-+-+-=⎣⎦,()()23536D D ξξ+=⨯=,故选A.【点睛】本题主要考查方差的性质与应用,意在考查对基本性质掌握的熟练程度,属于中档题.11.A解析:A 【分析】先求出b 的值,再利用期望公式求出E(X),再利用公式求出()25E X -. 【详解】由题得0.1+0.2+0,20.11,0.4,b b ++=∴=,所以()10.120.230.440.250.13E X =⨯+⨯+⨯+⨯+⨯= 所以(25)2()52351E X E X -=-=⨯-=. 故答案为A 【点睛】(1)本题主要考查分布列的性质和期望的计算,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 若a b ηξ=+(a 、b 是常数),ξ是随机变量,则η也是随机变量,E η=()E a b aE b ξξ+=+,2()D a b a D ξξ+=.12.D解析:D【解析】分析:根据条件概率求结果.详解:因为在下雨天里,刮风的概率为既刮风又下雨的概率除以下雨的概率,所以在下雨天里,刮风的概率为13104815=, 选D.点睛:本题考查条件概率,考查基本求解能力.二、填空题13.【分析】先确定随机变量的取值再分别计算对应的概率最后利用期望的计算公式即得结果【详解】依题意设取出红球的个数为则而口袋中有红球3个其他球4个故故故答案为:【点睛】方法点睛:求离散型随机变量的期望的步解析:97【分析】先确定随机变量的取值0,1,2,3ξ=,再分别计算对应的概率,最后利用期望的计算公式即得结果. 【详解】依题意,设取出红球的个数为ξ,则0,1,2,3ξ=,而口袋中有红球3个,其他球4个,故()34374035C P C ξ===,()12343718135C C P C ξ===,()21343712235C C P C ξ===,()33375313C C P ξ===,故()418121459012335353535357E ξ=⨯+⨯+⨯+⨯==. 故答案为:97. 【点睛】 方法点睛:求离散型随机变量的期望的步骤:(1)先确定随机变量的取值12,,...,n x x x ξ=;(2)再计算每个变量所对应的概率(),1,2,3,...,i i P x p i n ξ===; (3)利用公式()112233...n n E x p x p x p x p ξ=++++,计算得到期望即可.14.②③④【分析】根据二项分布的均值与方差公式计算判断A 由方差公式判断B 由正态分布判断C 由独立重复试验的概率公式判断D 【详解】根据二项分布的数学期望和方差的公式可得解得所以①错误;根据方差的计算公式可知解析:②③④ 【分析】根据二项分布的均值与方差公式计算判断A ,由方差公式判断B ,由正态分布判断C ,由独立重复试验的概率公式判断D . 【详解】根据二项分布的数学期望和方差的公式,可得()30,()(1)20E X np D X np p ===-=,解得13p =,所以①错误; 根据方差的计算公式可知,将一组数据中的每个数据都加上同一个常数后,方差恒不变,所以②正确;由正态分布的图像的对称性可得12(1)121(10)222P p P p ξξ---<===-,所以③正确;由独立重复试验的概率的计算公式可得,由10101111100.80.2()4(11)1(1)0.80.2k k k k k k C P X k k P X k C k----⋅=-==>=-,得8.8k <,即8k ≤时,()()1P X k P x k =>=-,同理得9k ≥时,()(1)p X k p x k =<=-,即(8)P X =最大,88210(8)(0.8)(10.8)P X C ==-,所以④正确.所以正确命题的序号为②③④.故答案为:②③④. 【点睛】本题考查二项分布,正态分布,随机变量的方差.正态分布曲线具有对称性,常常出现由对称性求概问题,二项分布中概率公式是()(1)k k n kn P X k C p p -==-,可用作商法确定其中的最大值或最小值.15.【分析】由分布列求出然后由方差公式计算方差【详解】由题意故答案为:【点睛】本题考查随机变量的概率分布列考查随机变量的方差根据分布列计算出期望再由方差公式计算即得考查了学生的运算求解能力解析:65216【分析】 由分布列求出q ,然后由方差公式计算方差. 【详解】 由题意1111362q =--=, 111()11263E X =-⨯+⨯=-,222111111165()(1)(0)()2333663216V X =⨯-++⨯++⨯+=.故答案为:65216. 【点睛】本题考查随机变量的概率分布列,考查随机变量的方差.根据分布列计算出期望,再由方差公式计算即得.考查了学生的运算求解能力.16.【分析】根据条件概率的定义明确条件概率的意义即可得出结果【详解】==P(AB)==【点睛】本题主要考查条件概率的计算做题关键在于对条件概率含义的理解属于一般难度试题 解析:12【分析】根据条件概率的定义,明确条件概率的意义,即可得出结果. 【详解】654PA 666⨯⨯=⨯⨯=59,()35P B 16⎛⎫=- ⎪⎝⎭=91216 ,P(AB)=1543666⨯⨯⨯=518,()()()12P AB P B A P A ∴==.【点睛】本题主要考查条件概率的计算,做题关键在于对条件概率含义的理解,属于一般难度试题.17.【解析】分析:先根据二项分布数学期望公式得再求详解:因为服从二项分布所以所以点睛:本题考查二项分布数学期望公式考查基本求解能力 解析:62-【解析】分析:先根据二项分布数学期望公式得()E X ,再求()32E X --. 详解:因为X 服从二项分布()100,0.2B ,所以()1000.220,E X =⨯= 所以()32320262.E X --=-⨯-=-点睛:本题考查二项分布数学期望公式,考查基本求解能力.18.【解析】根据题意可得解得故的方差解析:34【解析】根据题意可得112p q p q +=⎧⎪⎨-=⎪⎩,解得34p =,14q =,故X 的方差()22131131124244D X ⎛⎫⎛⎫=-⨯+--⨯= ⎪ ⎪⎝⎭⎝⎭. 三、解答题19.(1)0.28;(2)分布列见解析,()0.6E X =. 【分析】(1)由题意利用对立事件概率公式即可求得满足题意的概率值;(2)首先确定X 可能的取值,然后分别求解其概率值,最后确定其分布列并求解数学期望即可. 【详解】(1)设部件1需要调整为事件A ,部件2需要调整为事件B ,部件3需要调整为事件C , 由题意可知:()()()0.1,0.2,0.3P A P B P C ===. 部件1,2中至少有1个需要调整的概率为:()()11110.90.810.720.28P A P B ⎡⎤⎡⎤---=-⨯=-=⎣⎦⎣⎦.(2)由题意可知X 的取值为0,1,2,3.且:()()()()0111P X P A P B P C ⎡⎤⎡⎤⎡⎤==---⎣⎦⎣⎦⎣⎦()()()10.110.210.3=-⨯-⨯-0.504=,()()()()111P X P A P B P C ⎡⎤⎡⎤==--⎣⎦⎣⎦()()()11P A P B P C ⎡⎤⎡⎤+--⎣⎦⎣⎦()()()11P A P B P C ⎡⎤⎡⎤+--⎣⎦⎣⎦0.10.80.7=⨯⨯0.90.20.7+⨯⨯0.90.80.3+⨯⨯ 0.398=,()()()()21P X P A P B P C ⎡⎤==-⎣⎦()()()1P A P B P C ⎡⎤+-⎣⎦()()()1P A P C P B ⎡⎤+-⎣⎦0.10.20.7=⨯⨯0.10.80.3+⨯⨯0.90.20.3+⨯⨯ 0.092=.()()()()30.10.20.30.006P X P A P B P C ===⨯⨯=,故X 的分布列为:其数学期望:0.50400.39810.09220.00630.6E X =⨯+⨯+⨯+⨯=. 【点睛】 思路点晴:求离散型随机变量X 的数学期望的一般步骤:(1)先分析X 的可取值,根据可取值求解出对应的概率;(2)根据(1)中概率值,得到X 的分布列;(3)结合(2)中分布列,根据期望的计算公式求解出X 的数学期望. 20.(1)750;(2)分布列见解析,43;(3)2820张.【分析】(1)随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的有2+12=14人,由概率公式即可得到所求值;(2)X 所有的可能取值为0,1,2,求出相应的概率值,即可得到分布列与期望; (3)随机抽取的100名顾客中,使用自由购的有47人,计算可得所求值. 【详解】(1)在随机抽取的100名顾客中,年龄在[30, 50)且未使用这款APP 的共有2+12=14人,所以随机抽取1名顾客,估计该顾客年龄在[30, 50)且未使用这款APP 的概率为14710050P ==. (2)X 的所有可能取值为0,1,2,则()22261015C P X C ===, ()1142268115C C P X C ===, ()24266215C P X C === .所以X 的分布列为()18640121515153E X =⨯+⨯+⨯=. (3)在随机抽取的100名顾客中,使用自助结算机的共有5101884247+++++=人, 所以该机构至少应准备张代金券的张数估计为:4760002820100⨯=张. 【点睛】本题考查统计表,随机变量X 的分布列及数学期望,以及古典概型,求X 的分布列,关键点是求出X 所有可能取值对应的概率可得,是一道综合题.21.(1)甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大,乙同学做解答题相对稳定些;(2)分布列见解析,38.【分析】(1)根据平均数公式和方差公式计算结果,并根据平均数和方差的意义,得到结论;(2)甲和乙失分超过15分的概率分别为P 1=38,P 2=12,并计算123138216PP =⨯=,由条件可知32,16X B ⎛⎫⎪⎝⎭,根据二项分布计算分布列和均值. 【详解】(1) 1=8x 甲(7+9+11+13+13+16+23+28)=15, 1=8x 乙(7+8+10+15+17+19+21+23)=15,21=8s 甲 [(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,21=8s 乙[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.所以乙同学做解答题相对稳定些.(2)根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别为P 1=38,P 2=12, 两人失分均超过15分的概率为P 1P 2=316, X 的所有可能取值为0,1,2.依题意,32,16XB ⎛⎫ ⎪⎝⎭, ()22313,0,1,21616kkk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则X 的分布列为X 的均值E (X )=2168⨯=. 【点睛】关键点点睛:本题第二问的关键是判断X 服从二项分布,并计算在每次周练两人失分均超过15分的概率,这样就容易写错分布列. 22.(1)1728;(2)分布列见解析,()34E X =. 【分析】(1)先求出抽出的3人都不满意的概率,再利用对立事件的概率公式即可求解; (2)X 的所有可能取值为0,1,2,3则13,4X B ⎛⎫~ ⎪⎝⎭,利用二项分布的概率公式求出每一个X 的取值对应的概率,即可列出X 的分布列求出数学期望.【详解】(1)16人中满意的有4人,不满意的有12人,设i A 表示所抽取的3人中有i 个人是“极满意”,至少有1人是“极满意”记为事件A ,则抽出的3人都不满意的概率为()31203161128C P A C ==,所以()()01117112828P A P A =-=-=, (2)X 的所有可能取值为0,1,2,316人中满意的有4人,不满意的有12人,随机抽取一人极满意的概率为41164=, 所以13,4X B ⎛⎫~ ⎪⎝⎭,所以()33270464P X ⎛⎫=== ⎪⎝⎭,()213132714464P X C ⎛⎫==⨯⨯=⎪⎝⎭, ()22313924464P X C ⎛⎫==⨯⨯= ⎪⎝⎭,()333113464P X C ⎛⎫==⨯= ⎪⎝⎭.所以X 的分布列为所以()1236464644E X =⨯+⨯+⨯=. 【点睛】 思路点睛:求离散型随机变量的分布列及期望的一般步骤: (1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布等,可结合其对应的概率计算公式及期望计算公式,简化计算)23.(1)80,40m n ==,7.44; (2)分布列见解析;期望为132143. 【分析】(1)根据已知列出关于,m n 的方程组,求得,m n 的值,结合平均数公式,即可求解; (2)利用分层抽样分别求出消费金额在[)3,5,[)5,7,[)9,11中抽取的人数,根据题意得到随机变量X 的所有可能的值,求得相应的概率,得出随机变量的分布列,利用公式求得期望. 【详解】(1)由调查的结果绘制了频数分布表,及消费金额在[)9,11,[)1,13,[]13,15的频数成等比数列,可得220406012014020500n mm n ⎧=⎨++++++=⎩,解得80,40m n ==,所以平均数240460612071401080124014207.44500⨯+⨯+⨯+⨯+⨯+⨯+⨯=.(2)由题意,消费金额在[)3,5,[)5,7,[)9,11之间的总人数为6012080260++=人, 又由13603260⨯=人,131206260⨯=人,13803260⨯=人, 即从[)3,5中抽3人,在[)5,7中抽6人,在[)9,11中抽4人, 随机变量X 的所有可能的取值为0,1,2,3,则0312494933131384144(0),(1)286286C C C C P X P X C C ======, 21304949331313544(2),(3)286286C C C C P X P X C C ======,所以随机变量X 的分布列为:所以期望()0123286286286286143E X =⨯+⨯+⨯+⨯=. 【点睛】求随机变量X 的期望与方差的方法及步骤: 理解随机变量X 的意义,写出X 可能的全部值; 求X 取每个值对应的概率,写出随机变量的分布列; 由期望和方差的计算公式,求得数学期望()(),E X D X ;若随机变量X 的分布列为特殊分布列(如:两点分布、二项分布、超几何分布),可利用。
青岛市青大附中选修三第二单元《随机变量及其分布》测试题(包含答案解析)
15.某工厂在试验阶段大量生产一种零件,这种零件有 、 两项技术指标需要检测,设各项技术指标达标与否互不影响,若有且仅有一项技术指标达标的概率为 ,至少一项技术指标达标的概率为 .按质量检验规定:两项技术指标都达标的零件为合格品,任意依次抽取该种零件4个,设 表示其中合格品的个数,则 ______.
(Ⅰ)现从 年 月至 月中随机选取 个月,求该垃圾处理厂可回收物中废纸和塑料品的回收量均超过 吨的概率;
(Ⅱ)从 年 月至 月中任意选取 个月,记 为选取的这 个月中回收的废纸可再造好纸超过 吨的月份的个数.求 的分布列及数学期望;
(Ⅲ)假设 年 月该垃圾处理场可回收物中塑料品的回收量为 吨.当 为何值时,自 年 月至 年 月该垃圾处理场可回收物中塑料品的回收量的方差最小.(只需写出结论,不需证明)
A.60B.80
C.100D.120
10.已知某随机变量 的概率密度函数为 则随机变量 落在区间 内在概率为( )
A. B. C. D.
11.2018年6月18日,是我国的传统节日“端午节”.这天,小明的妈妈煮了5个粽子,其中两个腊肉馅,三个豆沙馅.小明随机抽取出两个粽子,若已知小明取到的两个粽子为同一种馅,则这两个粽子都为腊肉馅的概率为( )
8.将一枚质地均匀且各面分别有狗,猪,羊,马图案的正四面体玩具抛掷两次,设事件 {两次掷的玩具底面图案不相同}, {两次掷的玩具底面图案至少出现一次小狗},则 ()
A. B. C. D.
9.某市一次高三年级数学统测,经抽样分析,成绩 近似服从正态分布 ,且 .该市某校有400人参加此次统测,估计该校数学成绩不低于90分的人数为()