算法设计与分析王红梅第二版分治法

合集下载

算法设计及分析(第2版)王红梅胡明习题答案解析

算法设计及分析(第2版)王红梅胡明习题答案解析
else
return 0;
}
intmain()
{
char s1[19]="ababcabccabccacbab";
char s2[7]="abccac";
cout<< BF( s1, s2) <<endl;
return 0;
}
//KMP算法
#include<iostream>
using namespace std;
习题1
1. 图论诞生于七桥问题。出生于瑞士的伟大数学家欧拉(Leonhard Euler,1707—1783)提出并解决了该问题。七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图1.7是这条河以及河上的两个岛和七座桥的草图。请将该问题的数据模型抽象出来,并判断此问题是否有解。
3.分析以下程序段中基本语句的执行次数是多少,要求列出计算公式。
(1)基本语句2*i<n执行了n/2次
基本语句y = y + i * j执行了2/n次
一共执行次数=n/2+n/2=O(n)
(2)基本语句m+=1执行了(n/2)*n=O(n*n)
4.使用扩展递归技术求解下列递推关系式:
(1) (2)
(1) int T(int n)
++low;
b[high]=b[low];
}
b[low]=b[0];
return low;
}
void qsort(int l[],int low,int high)
{
int prvotloc;

算法设计与分析 王红梅 第二版 第1章 算法设计基础复习进程

算法设计与分析 王红梅 第二版 第1章 算法设计基础复习进程

2020/6/3
Algorithm Introduction
12
算法的描述方法
#include <iostream.h>
int CommonFactor (int m, int n)
欧{ 几 int r=m % n;
里 德
while (r!=0) {
m=n;

n=r;
法 r=m % n; } return m; }
例1.2 求两个自然数的最大公约数 [想法1]用短除法找出两个数的公因子,再相乘就
是最大公约数。 [算法1]找两个数的公因子目前只能用蛮力法逐个
尝试,用2-min(m,n)进行枚举尝试。
2020/6/3
Algorithm Introduction
20
算法在问题求解中的地位
算法1.1:CommFactorl(伪代码) 输入:两个自然数m和n 输出:m和n的最大公约数 1. factor=1; 2. 循环变量i从2~min(m,n),执行下述操作;
这是算法吗?
为什么?
2020/6/3
Algorithm Introduction
5
算法及其重要特性
程序?
是算法用某种程序设计语言的具体实现。程序可以不满 足算法的性质(3),即有穷性。
“好算法”的重要特性: (1)正确性:合法的输入,都会得出正确的结果 (2)健壮性:非法的输入,应能识别并处理 (3)可理解性:可读性,易理解 (4)抽象分级:通过抽象分级减少求解步骤 (5)高效性:时间和空间效率
2020/6/3
Algorithm Introduction
27
1. 查找问题 2. 排序问题 3. 图问题 4. 组合问题 5. 几何问题

四川理工算法设计与分析作者-王红梅期末考试试题

四川理工算法设计与分析作者-王红梅期末考试试题

一章 7、107 . 使用扩展递归技术求解下列递推关系式 :二章 1、3、51 . 求下列问题的平凡下界, 并指出其下界是否紧密。

( 1) 求数组中的最大元素;(2 ) 判断邻接矩阵表示的无向图是不是完全图;( 3 ) 确定数组中的元素是否都是惟一的;(4 ) 生成一个具有 n 个元素集合的所有子集。

3 . 画出在 3 个数 a , b, c 中求中值问题的决策树。

5 . 假设某算法的时间复杂性为 T( n) = 2n , 在计算机 C1 和 C2 上运行这个算法 , C2 的速度是 C1 的 100 倍。

若该算法在 C1 上运行的时间为 t , 可处理的问题规模为n , 在 C2上运行同样的时间可处理的问题规模是多少 ? 如果 T ( n) = n^2, 在 C2 上运行同样的时间可处理的问题规模是多少 ?3: 6、7、86 . 为 3 .4 .1 节中生成排列对象算法设计程序上机实现 , 能对这个算法进行改进吗 ?7 . 最近对问题也可以以 k 维空间的形式出现 , k 维空间中的两个点维空间的最近对问题设计蛮力算法 , 并分析其时间性能。

8 . 对于一个平面上 n 个点的集合 S , 设计蛮力算法求集合 S 的凸包的一个极点。

四章 1、3、棋盘覆盖、最大子段和1 . 设计分治算法求一个数组中最大元素的位置 , 建立该算法的递推式并求解。

3 . 设计递归算法生成 n 个元素的所有排列对象。

五章3、6、83 . 拿子游戏。

考虑下面这个游戏 : 桌子上有一堆火柴 , 游戏开始时共有 n 根火柴 ,两个玩家轮流拿走 1、2 、3 或 4 根火柴 , 拿走最后一根火柴的玩家为获胜方。

请为先走的玩家设计一个制胜的策略( 如果该策略存在) 。

6 . 在 120 枚外观相同的硬币中, 有一枚是假币, 并且已知假币与真币的重量不同, 但不知道假币与真币相比较轻还是较重。

可以通过一架天平来任意比较两组硬币,最坏情况下, 能不能只比较 5 次就检测出这枚假币 ?8 . 竞赛树是一棵完全二叉树, 它反映了一系列“淘汰赛”的结果: 叶子代表参加比赛的 n 个选手 , 每个内部结点代表由该结点的孩子结点所代表的选手中的胜者 , 显然 , 树的根结点就代表了淘汰赛的冠军。

算法设计与分析-王-第1章-算法设计基础

算法设计与分析-王-第1章-算法设计基础

2)有没有已经解决了的类似问题可供借鉴?
1.4 算法设计的一般过程
在模型建立好了以后,应该依据所选定的模型对问 题重新陈述,并考虑下列问题: (1)模型是否清楚地表达了与问题有关的所有重要
的信息?
(2)模型中是否存在与要求的结果相关的数学量? (3)模型是否正确反映了输入、输出的关系? (4)对这个模型处理起来困难吗?
程序设计研究的四个层次:
算法→方法学→语言→工具
理由2:提高分析问题的能力
算法的形式化→思维的逻辑性、条理性
1.2 算法及其重要特性
一、算法以及算法与程序的区别
例:欧几里德算法——辗转相除法求两个自然数 m 和 n 的最大公约数
m n
欧几里德算法
r
1.2 算法及其重要特性
欧几里德算法
① 输入m 和nห้องสมุดไป่ตู้如果m<n,则m、n互换;
对不合法的输入能作出相适应的反映并进行处理。 (2) 健壮性(robustness): 算法对非法输入的抵抗能力, 即对于错误的输入,算法应能识别并做出处理,而不是 产生错误动作或陷入瘫痪。 (3)可读性:算法容易理解和实现,它有助于人们对算 法的理解、调试和修改。 (4) 时间效率高:运行时间短。 (5) 空间效率高:占用的存储空间尽量少。
算法设计与分析
Design and Analysis of Computer Algorithms
高曙
教材:

算法设计与分析(第二版),清华大学出版社,王红梅, 胡明 编著
参考书目:

Introduction to Algorithms, Third Edition, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,机械工 业出版社,2012

算法分析实验指导书(王红梅)

算法分析实验指导书(王红梅)

《算法设计与分析》实验指导书计算机科学与技术学院石少俭实验一分治法1、实验目的(1)掌握设计有效算法的分治策略。

(2)通过快速排序学习分治策略设计技巧2、实验要求(1)熟练掌握分治法的基本思想及其应用实现。

(2)理解所给出的算法,并对其加以改进。

3、分治法的介绍任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。

问题的规模越小,越容易直接求解,解题所需的计算时间也越少。

而当n较大时,问题就不那么容易处理了。

要想直接解决一个规模较大的问题,有时是相当困难的。

分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

如果原问题可分割成k个子问题,1<k≤n ,且这些子问题都可解,并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。

由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。

在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。

这自然导致递归过程的产生。

分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。

分治法的适用条件(1)该问题的规模缩小到一定的程度就可以容易地解决;(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。

(3)利用该问题分解出的子问题的解可以合并为该问题的解;(4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。

上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心法或动态规划法。

第四条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

算法设计与分析(第2版)-王红梅-胡明-习题答案(1)

算法设计与分析(第2版)-王红梅-胡明-习题答案(1)

算法设计与分析(第2版)-王红梅-胡明-习题答案习题11. 图论诞生于七桥问题。

出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。

七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图 1.7是这条河以及河上的两个岛和七座桥的草图。

请将该问题的数据模型抽象出来,并判断此问题是否有解。

七桥问题属于一笔画问题。

输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。

另一类是只有二个奇点的图形。

2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。

请用伪代码描述这个版本的欧几里德算法1.r=m-n2.循环直到r=02.1 m=n图1.7 七桥问题2.2 n=r2.3 r=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。

要求分别给出伪代码和C++描述。

//采用分治法//对数组先进行快速排序//在依次比较相邻的差#include <iostream>using namespace std;int partions(int b[],int low,int high){int prvotkey=b[low];b[0]=b[low];while (low<high){while (low<high&&b[high]>=prvotkey)--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high){prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high}}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';cout<<endl;quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。

算法设计与分析王红梅第二版动态规划详解演示文稿

算法设计与分析王红梅第二版动态规划详解演示文稿

2022/3/2
Chapter 6 Dynamic Programming
26
第26页,共110页。
多段图的最短路径问题
多段图的决策过程:
多段图的边(u, v),用cuv 表边的权值,从源点s到终点t的最短路 径记为d(s, t),则从源点0到终点9的最短路径d(0, 9)由下式确定 :
d(0, 9)=min{c01+d(1, 9), c02+d(2, 9), c03+d(3, 9)}
2022/3/2
Chapter 6 Dynamic Programming
10
第10页,共110页。
动态规划法的设计思想
动态规划法的求解过程 原问题
子问题1
子问题2 ……
子问题n
2022/3/2
填表 原问题的解
Chapter 6 Dynamic Programming
11
第11页,共110页。
动态规划法的设计思想
Page 15
第6章 动态规划法
2022/3/2
第15页,共110页。
数塔问题——想法
[想法]从顶层出 发下一层选择 取决于两个4层 数塔的最大数 值和。
8 12 15 3 96 8 10 5 12 16 4 18 10 9
Page 16
第6章 动态规划法
2022/3/2
第16页,共110页。
数塔问题——想法
求解初始子问题:底层的每个数字可看作1层数塔,则最大数值和就是其自身; 再求解下一阶段的子问题:第4层的决策是在底层决策的基础上进行求解,可以看作4 个2层数塔,对每个数塔进行求解; 再求解下一阶段的子问题:第3层的决策是在第4层决策的基础上进行求解,可以看作3个 2层的数塔,对每个数塔进行求解;

算法设计与分析-总结0

算法设计与分析-总结0

这本书是《算法设计与分析》王红梅编著一共有以下12章,我们学了1、3、4、5、6、7、8、9分别是“绪论、蛮力法、分治法、减治法、动态规划法、贪心法、回溯法、分治限界法第1章绪论考点:1、算法的5个重要特性。

(P3)答:输入、输出、有穷性、确定性、可行性2、描述算法的四种方法分别是什么,有什么优缺点。

(P4)答:1. 自然语言优点:容易理解;缺点:容易出现二义性,并且算法都很冗长。

2. 流程图优点:直观易懂;缺点:严密性不如程序语言,灵活性不如自然语言。

3. 程序设计语言优点:用程序语言描述的算法能由计算机直接执行;缺点:抽象性差,是算法设计者拘泥于描述算法的具体细节,忽略了“好”算法和正确逻辑的重要性,此外,还要求算法设计者掌握程序设计语言及其编程技巧。

伪代码优点:表达能力强,抽象性强,容易理解3、了解非递归算法的时间复杂性分析。

(P13)要点:对非递归算法时间复杂性的分析,关键是建立一个代表算法运行时间的求和表达式,然后用渐进符号表示这个求和表达式。

非递归算法分析的一般步骤是:(1)决定用哪个(或哪些)参数作为算法问题规模的度量。

(2)找出算法的基本语句。

(3)检查基本语句的执行次数是否只依赖问题规模。

(4)建立基本语句执行次数的求和表达式。

(5)用渐进符号表示这个求和表达式。

[例1.4]:求数组最小值算法int ArrayMin(int a[ ], int n){min=a[0];for (i=1; i<n; i++)if (a[i]<min) min=a[i];return min;}问题规模:n基本语句:a[i]<minT(n)= n-1=O(n)4、掌握扩展递归技术和通用分治递推式的使用。

(P15)扩展递归技术:通用分支递归式:5、习题1-4,习题1-7设计算法求数组中相差最小的两个元素(称为最接近数)的差。

要求给出伪代码描述,并用一组例子进行跟踪验证,写出验证过程。

算法设计与分析 王红梅 第二版 第9章 分支限界法

算法设计与分析 王红梅 第二版 第9章 分支限界法

6
分支限界法的设计思想
如果某孩子结点的目标函数可能取值超出目标函数的界,则 将其丢弃,因为从这个结点生成的解不会比目前已经得到的 解更好;否则,将其加入待处理结点表(表PT)
依次从表PT中选取使目标函数的值取极值的结点成为当前扩 展结点,重复上述过程,直到找到最优解。
目标函数的界[down, up]的确定
9
分支限界法的设计思想
PT表
2 w=4, v=40 ub=76
1 w=0, v=0 ub=100
3 w=0, v=0 ub=60

w=11 无效解
5 w=4, v=40 ub=70
6 w=9, v=65 ub=69
7 w=4, v=40 ub=64
8
×
w=12
无效解
9 w=9, v=65 ub=65
如TSP问题(图8.6)。
分支限界法
先确定一个合理的限界函数
由限界函数确定目标函数的界[down, up]
仍以穷举法的解空间树为基础,但以广度优先的原理搜 索该结点的所有孩子结点,分别估算这些孩子结点的目 标函数的可能取值
2020/1/12
Branch and Bound Method
2020/1/12
Branch and Bound Method
12
分支限界法的设计思想
在结点7 物品3不装入背包,w=4,v=40,与结点5相同 目标函数值为:ub=40 + (10-4)×4=64 将结点7加入表PT中
在表PT 中选取目标函数值取得极大的结点6 优先进行搜索
在结点8 物品4装入背包,w=12>W, 不满足约束条件,将结点8丢弃;
将结点2加入待处理结点表PT中

算法设计与分析第二版课后习题解答

算法设计与分析第二版课后习题解答

算法设计与分析基础课后练习答案习题1.14.设计一个计算的算法,n是任意正整数。

除了赋值和比较运算,该算法只能用到基本的四则运算操作。

算法求//输入:一个正整数n 2//输出:。

step1:a=1;step2:若a*a<n 转step 3,否则输出a;step3:a=a+1转step 2;5. a.用欧几里德算法求gcd(31415,14142)。

b. 用欧几里德算法求gcd(31415,14142),比检查min{m,n}和gcd(m,n)间连续整数的算法快多少倍?请估算一下。

a. gcd(31415, 14142) = gcd(14142, 3131) = gcd(3131, 1618) =gcd(1618, 1513) = gcd(1513, 105) = gcd(1513, 105) = gcd(105, 43) =gcd(43, 19) = gcd(19, 5) = gcd(5, 4) = gcd(4, 1) = gcd(1,0) = 1.b.有a可知计算gcd(31415,14142)欧几里德算法做了11次除法。

连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1·14142 和2·14142之间,所以欧几里德算法比此算法快1·14142/11 ≈1300 与2·14142/11 ≈2600 倍之间。

6.证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d一定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。

数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。

算法设计与分析 王红梅 第二版 第5章_ 减治法

算法设计与分析 王红梅 第二版 第5章_ 减治法
分别求中位数 10<13,结果在[10, 13]之间 长度为1,较小者为所求
舍弃13之前元素,{13,15} 舍弃15之后元素,{10,15}
{13,15} 舍弃13之后元素,{13} {13} {10,15} 舍弃10之前元素,{15} {15}
2015-5-2
第5章 减治法
Page 11
减治法的设计思想
算法5.1:两个序列中位数SearchMid 输入:两个长度为n的有序序列A和B 输出:序列A和B的中位数 1. 循环直到序列A和序列B均只有一个元素 1.1 a = 序列A的中位数; 1.2 b = 序列B的中位数; 1.3 比较a和b,执行下面三种情况之一: 1.3.1 若a=b,则返回a,算法结束; 1.3.2 若 a<b ,则在序列 A 中舍弃 a 之前的元素,在序列 B 中舍弃b之后的元素,转步骤1; 1.3.3 若a>b,则在序列A中舍弃a之后的元素,在序列B中 舍弃b之前的元素,转步骤1; 2. 序列A和序列B均只有一个元素,返回较小者;
2015-5-2
Reduce and Conquer Method
4
减治法的设计思想
减治法将问题划分为若干子问题,并且规模为n的 原问题的解与较小规模(通常是 n/2)的子问题的解之 间具有某种确定的关系:
(1)原问题的解只存在于其中一个较小规模的子问题中; (2)原问题的解与其中一个较小规模的解之间有某种对应关系。
二叉排序树的结点结构为: struct BiNode { int data; //结点的值,假设查找集合的元素为整型 BiNode *lchild, *rchild; //指向左、右子树的指针 };
算法5.2——二叉排序树的查找 BiNode * SearchBST(BiNode *root, int k) { if (root= =NULL) return NULL; else if (root->data==k) return root; else if (k<root->data) return SearchBST(root->lchild, k); else return SearchBST(root->rchild, k); }

算法设计与分析(第2版) 王红梅 胡明 习题参考答案

算法设计与分析(第2版) 王红梅 胡明 习题参考答案
#include<iostream>
usingnamespacestd;
intmain()
{
longdoubleresult=1;
doublej=1;
for(inti=1;i<=64;++i)
{
j=j*2;
result+=j;
j++;
}
cout<<result<<endl;
return0;
}
习题3
1.假设在文本"ababcabccabccacbab"中查找模式"abccac",写出分别采用BF算法和KMP算法的串匹配过
else
value=a[i+2]-a[i+1];
}
cout<<value<<endl;
return0;
}
4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。要求分别给出伪代码和C++描述。
#include<iostream>
usingnamespacestd;
{
if(n==1)
return4;
elseif(n>1)
return3*T(n-1);
}
(2)
intT(intn)
{
if(n==1)
return1;
elseif(n>1)
return2*T(n/3)+n;
}
5.求下列问题的平凡下界,并指出其下界是否紧密。
(1)求数组中的最大元素;
(2)判断邻接矩阵表示的无向图是不是完全图;

算法设计与分析(第二版) 第2章

算法设计与分析(第二版) 第2章

1
,n 1
T
(n)
2T (n
1)
1 ,n
1
不失一般性,设n为2的幂。由数学归纳法容易得出,该递归 方程的解为2n-1,即O(2n)。
从上述例子可见,当算法包含调用自身的过程时,其运 行时间可用递归方程(recurrence equation)描述。本节介绍三 种求解递归方程的方法。这三种方法分别是替换方法(subs titution method)、递归树方法(recursion-tree method)和主方法 (master method)。
递归过程在实现时,可用一个等价的递归栈来实现过程 的嵌套调用。递归的深度就是在整个计算中过程嵌套调用的 最大程度。通常,深度取决于输入规模。因此,对于大型问 题,栈所需的空间可能妨碍我们使用递归方法求解。图2-3 表示n=4时汉诺塔算法的运行过程。
图 2-3 汉诺塔的运行过程(n=4)
汉诺塔算法的时间复杂度为指数级的复杂度。以下做一 简要证明。假设汉诺塔算法的时间复杂度为T(n),由递归算
2.1.2 替换方法 用替换方法解某个递归方程时,分为两步。首先猜测问
题解的某个界限,然后用数学归纳法证明所猜测解的正确性。 例2.4 利用替换方法解递归方程T(n)=2T(n/2)+n。 解 我们猜测其解为T(n)=O(n lb n)。假设这个界限对
于[n/2]成立,即存在某个常数c,T([n/2])≤c([n/2]) lb([n/2])成立。现在要证明T(n)≤cn lb n。将假设代入递归
第2章 分治法
2.1 递归与递归方程
2.1.1 递归的概念 递归(recursion)是数学与计算机科学中的基本概念。程
序设计语言中的递归程序可被简单地定义为对自己的调用。 递归程序不能总是自我调用,否则就会永不终止。因此,递 归程序必须有终止条件。尽管递归程序在执行时间上往往比 非递归程序要付出更多的代价,但有很多问题的数学模型或 算法设计方法本来就是递归的,用递归过程来描述它们不仅 非常自然,而且证明该算法的正确性要比用相应的非递归形 式容易得多,因此递归不失为一种强有力的程序设计方法。 下面我们来看几个利用递归的例子。

算法设计与分析(第2版)-王红梅-胡明-习题答案(1)

算法设计与分析(第2版)-王红梅-胡明-习题答案(1)

算法设计与分析(第2版)-王红梅-胡明-习题答案习题11. 图论诞生于七桥问题。

出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。

七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图 1.7是这条河以及河上的两个岛和七座桥的草图。

请将该问题的数据模型抽象出来,并判断此问题是否有解。

七桥问题属于一笔画问题。

输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。

另一类是只有二个奇点的图形。

2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。

请用伪代码描述这个版本的欧几里德算法1.r=m-n2.循环直到r=02.1 m=n图1.7 七桥问题2.2 n=r2.3 r=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。

要求分别给出伪代码和C++描述。

//采用分治法//对数组先进行快速排序//在依次比较相邻的差#include <iostream>using namespace std;int partions(int b[],int low,int high){int prvotkey=b[low];b[0]=b[low];while (low<high){while (low<high&&b[high]>=prvotkey)--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high){prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high}}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';cout<<endl;quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。

算法设计与分析 王红梅 第二版 第10章 问题的复杂性详解

算法设计与分析 王红梅 第二版 第10章 问题的复杂性详解

2020/9/22
第3章 NP完全理论
14
NP完全问题的定义
定义3.6 令Π是一个判定问题,如果问题Π属于NP类问题,并 且对NP类问题中的每一个问题Π' ,都有Π' ∝pΠ,则称判定问 题Π是一个NP完全问题(NP Complete Problem),可以把 NP完全问题记为NPC。
问题Π'
NP类问题
计算机学科的根本问题是什么能被(有效地)自动计 算。图灵:一个问题是可计算的当且仅当它在图灵机 上经过有限步骤后得到正确的结果。库克:一个问题 是实际可计算的当且仅当它在图灵机上经过多项式步 骤后得到正确的结果。易解问题:多项式时间内可解。 难解问题:指数时间求解。
2020/9/22
第10章 问题的复杂性
给定无向图G=(V,E)和正整数k,若存在 V ' V ,|V ' | k ,使得对任意 的 (u, v) E ,都有 u V ' 或 v V ' ,则称 V‘ 为图 G 的一个大小为k的顶 点覆盖。
2020/9/22
第3章 NP完全理论
25
NP完全问题的计算机处理
NPC问题是计算机难以处理的,但在实际中常会遇到,
非确定性算法与NP类问题
定义2.3 设A是求解问题Π的一个算法,如果算法A以
如下猜测并验证的方式工作,就称算法A是非确定性 (Nondeterminism)算法:
2020/9/22
第10章 问题的复杂性
10
P类问题和NP类问题
猜测阶段
在这个阶段,对问题的输入实例产生一个任意字符串y, 在算法的每一次运行时,串y的值可能不同,因此,猜 测以一种非确定的形式工作。
验证阶段

算法设计与分析习题解答(第2版)

算法设计与分析习题解答(第2版)

第1章算法引论11.1 算法与程序11.2 表达算法的抽象机制11.3 描述算法31.4 算法复杂性分析13小结16习题17第2章递归与分治策略192.1 递归的概念192.2 分治法的基本思想262.3 二分搜索技术272.4 大整数的乘法282.5 Strassen矩阵乘法302.6 棋盘覆盖322.7 合并排序342.8 快速排序372.9 线性时间选择392.10 最接近点对问题432.11 循环赛日程表53小结54习题54第3章动态规划613.1 矩阵连乘问题62目录算法设计与分析(第2版)3.2 动态规划算法的基本要素67 3.3 最长公共子序列713.4 凸多边形最优三角剖分753.5 多边形游戏793.6 图像压缩823.7 电路布线853.8 流水作业调度883.9 0-1背包问题923.10 最优二叉搜索树98小结101习题102第4章贪心算法1074.1 活动安排问题1074.2 贪心算法的基本要素1104.2.1 贪心选择性质1114.2.2 最优子结构性质1114.2.3 贪心算法与动态规划算法的差异1114.3 最优装载1144.4 哈夫曼编码1164.4.1 前缀码1174.4.2 构造哈夫曼编码1174.4.3 哈夫曼算法的正确性1194.5 单源最短路径1214.5.1 算法基本思想1214.5.2 算法的正确性和计算复杂性123 4.6 最小生成树1254.6.1 最小生成树性质1254.6.2 Prim算法1264.6.3 Kruskal算法1284.7 多机调度问题1304.8 贪心算法的理论基础1334.8.1 拟阵1334.8.2 带权拟阵的贪心算法1344.8.3 任务时间表问题137小结141习题141第5章回溯法1465.1 回溯法的算法框架1465.1.1 问题的解空间1465.1.2 回溯法的基本思想1475.1.3 递归回溯1495.1.4 迭代回溯1505.1.5 子集树与排列树1515.2 装载问题1525.3 批处理作业调度1605.4 符号三角形问题1625.5 n后问题1655.6 0\|1背包问题1685.7 最大团问题1715.8 图的m着色问题1745.9 旅行售货员问题1775.10 圆排列问题1795.11 电路板排列问题1815.12 连续邮资问题1855.13 回溯法的效率分析187小结190习题191第6章分支限界法1956.1 分支限界法的基本思想1956.2 单源最短路径问题1986.3 装载问题2026.4 布线问题2116.5 0\|1背包问题2166.6 最大团问题2226.7 旅行售货员问题2256.8 电路板排列问题2296.9 批处理作业调度232小结237习题238第7章概率算法2407.1 随机数2417.2 数值概率算法2447.2.1 用随机投点法计算π值2447.2.2 计算定积分2457.2.3 解非线性方程组2477.3 舍伍德算法2507.3.1 线性时间选择算法2507.3.2 跳跃表2527.4 拉斯维加斯算法2597.4.1 n 后问题2607.4.2 整数因子分解2647.5 蒙特卡罗算法2667.5.1 蒙特卡罗算法的基本思想2667.5.2 主元素问题2687.5.3 素数测试270小结273习题273第8章 NP完全性理论2788.1 计算模型2798.1.1 随机存取机RAM2798.1.2 随机存取存储程序机RASP2878.1.3 RAM模型的变形与简化2918.1.4 图灵机2958.1.5 图灵机模型与RAM模型的关系297 8.1.6 问题变换与计算复杂性归约299 8.2 P类与NP类问题3018.2.1 非确定性图灵机3018.2.2 P类与NP类语言3028.2.3 多项式时间验证3048.3 NP完全问题3058.3.1 多项式时间变换3058.3.2 Cook定理3078.4 一些典型的NP完全问题3108.4.1 合取范式的可满足性问题3118.4.2 3元合取范式的可满足性问题312 8.4.3 团问题3138.4.4 顶点覆盖问题3148.4.5 子集和问题3158.4.6 哈密顿回路问题3178.4.7 旅行售货员问题322小结323习题323第9章近似算法3269.1 近似算法的性能3279.2 顶点覆盖问题的近似算法3289.3 旅行售货员问题近似算法3299.3.1 具有三角不等式性质的旅行售货员问题330 9.3.2 一般的旅行售货员问题3319.4 集合覆盖问题的近似算法3339.5 子集和问题的近似算法3369.5.1 子集和问题的指数时间算法3369.5.2 子集和问题的完全多项式时间近似格式337 小结340习题340第10章算法优化策略34510.1 算法设计策略的比较与选择34510.1.1 最大子段和问题的简单算法34510.1.2 最大子段和问题的分治算法34610.1.3 最大子段和问题的动态规划算法34810.1.4 最大子段和问题与动态规划算法的推广349 10.2 动态规划加速原理35210.2.1 货物储运问题35210.2.2 算法及其优化35310.3 问题的算法特征35710.3.1 贪心策略35710.3.2 对贪心策略的改进35710.3.3 算法三部曲35910.3.4 算法实现36010.3.5 算法复杂性36610.4 优化数据结构36610.4.1 带权区间最短路问题36610.4.2 算法设计思想36710.4.3 算法实现方案36910.4.4 并查集37310.4.5 可并优先队列37610.5 优化搜索策略380小结388习题388第11章在线算法设计39111.1 在线算法设计的基本概念39111.2 页调度问题39311.3 势函数分析39511.4 k 服务问题39711.4.1 竞争比的下界39711.4.2 平衡算法39911.4.3 对称移动算法39911.5 Steiner树问题40311.6 在线任务调度40511.7 负载平衡406小结407习题407词汇索引409参考文献415习题1-1 实参交换1习题1-2 方法头签名1习题1-3 数组排序判定1习题1-4 函数的渐近表达式2习题1-5 O(1) 和 O(2) 的区别2习题1-7 按渐近阶排列表达式2习题1-8 算法效率2习题1-9 硬件效率3习题1-10 函数渐近阶3习题1-11 n !的阶4习题1-12 平均情况下的计算时间复杂性4算法实现题1-1 统计数字问题4算法实现题1-2 字典序问题5算法实现题1-3 最多约数问题6算法实现题1-4 金币阵列问题8算法实现题1-5 最大间隙问题11第2章递归与分治策略14 习题2-1 Hanoi 塔问题的非递归算法14习题2-2 7个二分搜索算法15习题2-3 改写二分搜索算法18习题2-4 大整数乘法的 O(nm log(3/2))算法19习题2-5 5次 n /3位整数的乘法19习题2-6 矩阵乘法21习题2-7 多项式乘积21习题2-8 不动点问题的 O( log n) 时间算法22习题2-9 主元素问题的线性时间算法22习题2-10 无序集主元素问题的线性时间算法22习题2-11 O (1)空间子数组换位算法23习题2-12 O (1)空间合并算法25习题2-13 n 段合并排序算法32习题2-14 自然合并排序算法32习题2-15 最大值和最小值问题的最优算法35习题2-16 最大值和次大值问题的最优算法35习题2-17 整数集合排序35习题2-18 第 k 小元素问题的计算时间下界36习题2-19 非增序快速排序算法37习题2-20 随机化算法37习题2-21 随机化快速排序算法38习题2-22 随机排列算法38习题2-23 算法qSort中的尾递归38习题2-24 用栈模拟递归38习题2-25 算法select中的元素划分39习题2-26 O(n log n) 时间快速排序算法40习题2-27 最接近中位数的 k 个数40习题2-28 X和Y 的中位数40习题2-29 网络开关设计41习题2-32 带权中位数问题42习题2-34 构造Gray码的分治算法43习题2-35 网球循环赛日程表44目录算法设计与分析习题解答(第2版)算法实现题2-1 输油管道问题(习题2-30) 49算法实现题2-2 众数问题(习题2-31) 50算法实现题2-3 邮局选址问题(习题2-32) 51算法实现题2-4 马的Hamilton周游路线问题(习题2-33) 51算法实现题2-5 半数集问题60算法实现题2-6 半数单集问题62算法实现题2-7 士兵站队问题63算法实现题2-8 有重复元素的排列问题63算法实现题2-9 排列的字典序问题65算法实现题2-10 集合划分问题(一)67算法实现题2-11 集合划分问题(二)68算法实现题2-12 双色Hanoi塔问题69算法实现题2-13 标准二维表问题71算法实现题2-14 整数因子分解问题72算法实现题2-15 有向直线2中值问题72第3章动态规划76习题3-1 最长单调递增子序列76习题3-2 最长单调递增子序列的 O(n log n) 算法77习题3-7 漂亮打印78习题3-11 整数线性规划问题79习题3-12 二维背包问题80习题3-14 Ackermann函数81习题3-17 最短行驶路线83习题3-19 最优旅行路线83算法实现题3-1 独立任务最优调度问题(习题3-3) 83算法实现题3-2 最少硬币问题(习题3-4) 85算法实现题3-3 序关系计数问题(习题3-5) 86算法实现题3-4 多重幂计数问题(习题3-6) 87算法实现题3-5 编辑距离问题(习题3-8) 87算法实现题3-6 石子合并问题(习题3-9) 89算法实现题3-7 数字三角形问题(习题3-10) 91算法实现题3-8 乘法表问题(习题3-13) 92算法实现题3-9 租用游艇问题(习题3-15) 93算法实现题3-10 汽车加油行驶问题(习题3-16) 95算法实现题3-11 圈乘运算问题(习题3-18) 96算法实现题3-12 最少费用购物(习题3-20) 102算法实现题3-13 最大长方体问题(习题3-21) 104算法实现题3-14 正则表达式匹配问题(习题3-22) 105算法实现题3-15 双调旅行售货员问题(习题3-23) 110算法实现题3-16 最大 k 乘积问题(习题5-24) 111算法实现题3-17 最小 m 段和问题113算法实现题3-18 红黑树的红色内结点问题115第4章贪心算法123 习题4-2 活动安排问题的贪心选择123习题4-3 背包问题的贪心选择性质123习题4-4 特殊的0-1背包问题124习题4-10 程序最优存储问题124习题4-13 最优装载问题的贪心算法125习题4-18 Fibonacci序列的Huffman编码125习题4-19 最优前缀码的编码序列125习题4-21 任务集独立性问题126习题4-22 矩阵拟阵126习题4-23 最小权最大独立子集拟阵126习题4-27 整数边权Prim算法126习题4-28 最大权最小生成树127习题4-29 最短路径的负边权127习题4-30 整数边权Dijkstra算法127算法实现题4-1 会场安排问题(习题4-1) 128算法实现题4-2 最优合并问题(习题4-5) 129算法实现题4-3 磁带最优存储问题(习题4-6) 130算法实现题4-4 磁盘文件最优存储问题(习题4-7) 131算法实现题4-5 程序存储问题(习题4-8) 132算法实现题4-6 最优服务次序问题(习题4-11) 133算法实现题4-7 多处最优服务次序问题(习题4-12) 134算法实现题4-8 d 森林问题(习题4-14) 135算法实现题4-9 汽车加油问题(习题4-16) 137算法实现题4-10 区间覆盖问题(习题4-17) 138算法实现题4-11 硬币找钱问题(习题4-24) 138算法实现题4-12 删数问题(习题4-25) 139算法实现题4-13 数列极差问题(习题4-26) 140算法实现题4-14 嵌套箱问题(习题4-31) 140算法实现题4-15 套汇问题(习题4-32) 142算法实现题4-16 信号增强装置问题(习题5-17) 143算法实现题4-17 磁带最大利用率问题(习题4-9) 144算法实现题4-18 非单位时间任务安排问题(习题4-15) 145算法实现题4-19 多元Huffman编码问题(习题4-20) 147算法实现题4-20 多元Huffman编码变形149算法实现题4-21 区间相交问题151算法实现题4-22 任务时间表问题151第5章回溯法153习题5\|1 装载问题改进回溯法(一)153习题5\|2 装载问题改进回溯法(二)154习题5\|4 0-1背包问题的最优解155习题5\|5 最大团问题的迭代回溯法156习题5\|7 旅行售货员问题的费用上界157习题5\|8 旅行售货员问题的上界函数158算法实现题5-1 子集和问题(习题5-3) 159算法实现题5-2 最小长度电路板排列问题(习题5-9) 160算法实现题5-3 最小重量机器设计问题(习题5-10) 163算法实现题5-4 运动员最佳匹配问题(习题5-11) 164算法实现题5-5 无分隔符字典问题(习题5-12) 165算法实现题5-6 无和集问题(习题5-13) 167算法实现题5-7 n 色方柱问题(习题5-14) 168算法实现题5-8 整数变换问题(习题5-15) 173算法实现题5-9 拉丁矩阵问题(习题5-16) 175算法实现题5-10 排列宝石问题(习题5-16) 176算法实现题5-11 重复拉丁矩阵问题(习题5-16) 179算法实现题5-12 罗密欧与朱丽叶的迷宫问题181算法实现题5-13 工作分配问题(习题5-18) 183算法实现题5-14 独立钻石跳棋问题(习题5-19) 184算法实现题5-15 智力拼图问题(习题5-20) 191算法实现题5-16 布线问题(习题5-21) 198算法实现题5-17 最佳调度问题(习题5-22) 200算法实现题5-18 无优先级运算问题(习题5-23) 201算法实现题5-19 世界名画陈列馆问题(习题5-25) 203算法实现题5-20 世界名画陈列馆问题(不重复监视)(习题5-26) 207 算法实现题5-21 部落卫队问题(习题5-6) 209算法实现题5-22 虫蚀算式问题211算法实现题5-23 完备环序列问题214算法实现题5-24 离散01串问题217算法实现题5-25 喷漆机器人问题218算法实现题5-26 n 2-1谜问题221第6章分支限界法229习题6-1 0-1背包问题的栈式分支限界法229习题6-2 用最大堆存储活结点的优先队列式分支限界法231习题6-3 团顶点数的上界234习题6-4 团顶点数改进的上界235习题6-5 修改解旅行售货员问题的分支限界法235习题6-6 解旅行售货员问题的分支限界法中保存已产生的排列树237 习题6-7 电路板排列问题的队列式分支限界法239算法实现题6-1 最小长度电路板排列问题一(习题6-8) 241算法实现题6-2 最小长度电路板排列问题二(习题6-9) 244算法实现题6-3 最小权顶点覆盖问题(习题6-10) 247算法实现题6-4 无向图的最大割问题(习题6-11) 250算法实现题6-5 最小重量机器设计问题(习题6-12) 253算法实现题6-6 运动员最佳匹配问题(习题6-13) 256算法实现题6-7 n 后问题(习题6-15) 259算法实现题6-8 圆排列问题(习题6-16) 260算法实现题6-9 布线问题(习题6-17) 263算法实现题6-10 最佳调度问题(习题6-18) 265算法实现题6-11 无优先级运算问题(习题6-19) 268算法实现题6-12 世界名画陈列馆问题(习题6-21) 271算法实现题6-13 骑士征途问题274算法实现题6-14 推箱子问题275算法实现题6-15 图形变换问题281算法实现题6-16 行列变换问题284算法实现题6-17 重排 n 2宫问题285算法实现题6-18 最长距离问题290第7章概率算法296习题7-1 模拟正态分布随机变量296习题7-2 随机抽样算法297习题7-3 随机产生 m 个整数297习题7-4 集合大小的概率算法298习题7-5 生日问题299习题7-6 易验证问题的拉斯维加斯算法300习题7-7 用数组模拟有序链表300习题7-8 O(n 3/2)舍伍德型排序算法300习题7-9 n 后问题解的存在性301习题7-11 整数因子分解算法302习题7-12 非蒙特卡罗算法的例子302习题7-13 重复3次的蒙特卡罗算法303习题7-14 集合随机元素算法304习题7-15 由蒙特卡罗算法构造拉斯维加斯算法305习题7-16 产生素数算法306习题7-18 矩阵方程问题306算法实现题7-1 模平方根问题(习题7-10) 307算法实现题7-2 集合相等问题(习题7-17) 309算法实现题7-3 逆矩阵问题(习题7-19) 309算法实现题7-4 多项式乘积问题(习题7-20) 310算法实现题7-5 皇后控制问题311算法实现题7-6 3-SAT问题314算法实现题7-7 战车问题315算法实现题7-8 圆排列问题317算法实现题7-9 骑士控制问题319算法实现题7-10 骑士对攻问题320第8章NP完全性理论322 习题8-1 RAM和RASP程序322习题8-2 RAM和RASP程序的复杂性322习题8-3 计算 n n 的RAM程序322习题8-4 没有MULT和DIV指令的RAM程序324习题8-5 MULT和DIV指令的计算能力324习题8-6 RAM和RASP的空间复杂性325习题8-7 行列式的直线式程序325习题8-8 求和的3带图灵机325习题8-9 模拟RAM指令325习题8-10 计算2 2 n 的RAM程序325习题8-11 计算 g(m,n)的程序 326习题8-12 图灵机模拟RAM的时间上界326习题8-13 图的同构问题326习题8-14 哈密顿回路327习题8-15 P类语言的封闭性327习题8-16 NP类语言的封闭性328习题8-17 语言的2 O (n k) 时间判定算法328习题8-18 P CO -NP329习题8-19 NP≠CO -NP329习题8-20 重言布尔表达式329习题8-21 关系∝ p的传递性329习题8-22 L ∝ p 330习题8-23 语言的完全性330习题8-24 的CO-NP完全性330习题8-25 判定重言式的CO-NP完全性331习题8-26 析取范式的可满足性331习题8-27 2-SAT问题的线性时间算法331习题8-28 整数规划问题332习题8-29 划分问题333习题8-30 最长简单回路问题334第9章近似算法336习题9-1 平面图着色问题的绝对近似算法336习题9-2 最优程序存储问题336习题9-4 树的最优顶点覆盖337习题9-5 顶点覆盖算法的性能比339习题9-6 团的常数性能比近似算法339习题9-9 售货员问题的常数性能比近似算法340习题9-10 瓶颈旅行售货员问题340习题9-11 最优旅行售货员回路不自相交342习题9-14 集合覆盖问题的实例342习题9-16 多机调度问题的近似算法343习题9-17 LPT算法的最坏情况实例345习题9-18 多机调度问题的多项式时间近似算法345算法实现题9-1 旅行售货员问题的近似算法(习题9-9) 346 算法实现题9-2 可满足问题的近似算法(习题9-20) 348算法实现题9-3 最大可满足问题的近似算法(习题9-21) 349 算法实现题9-4 子集和问题的近似算法(习题9-15) 351算法实现题9-5 子集和问题的完全多项式时间近似算法352算法实现题9-6 实现算法greedySetCover(习题9-13) 352算法实现题9-7 装箱问题的近似算法First Fit(习题9-19) 356算法实现题9-8 装箱问题的近似算法Best Fit(习题9-19) 358算法实现题9-9 装箱问题的近似算法First Fit Decreasing(习题9-19) 360算法实现题9-10 装箱问题的近似算法Best Fit Decreasing(习题9-19) 361算法实现题9-11 装箱问题的近似算法Next Fit361第10章算法优化策略365 习题10-1 算法obst的正确性365习题10-2 矩阵连乘问题的 O(n 2) 时间算法365习题10-6 货物储运问题的费用371习题10-7 Garsia算法371算法实现题10-1 货物储运问题(习题10-3) 374算法实现题10-2 石子合并问题(习题10-4) 374算法实现题10-3 最大运输费用货物储运问题(习题10-5) 375算法实现题10-4 五边形问题377算法实现题10-5 区间图最短路问题(习题10-8) 381算法实现题10-6 圆弧区间最短路问题(习题10-9) 381算法实现题10-7 双机调度问题(习题10-10) 382算法实现题10-8 离线最小值问题(习题10-11) 390算法实现题10-9 最近公共祖先问题(习题10-12) 393算法实现题10-10 达尔文芯片问题395算法实现题10-11 多柱Hanoi塔问题397算法实现题10-12 线性时间Huffman算法400算法实现题10-13 单机调度问题402算法实现题10-14 最大费用单机调度问题405算法实现题10-15 飞机加油问题408第11章在线算法设计410习题11-1 在线算法LFU的竞争性410习题11-4 多读写头磁盘问题的在线算法410习题11-6 带权页调度问题410算法实现题11-1 最优页调度问题(习题11-2) 411算法实现题11-2 在线LRU页调度(习题11-3) 414算法实现题11-3 k 服务问题(习题11-5) 416参考文献422。

算法设计与分析 王红梅 第二版 第2章_ 算法分析基础汇总

算法设计与分析 王红梅 第二版 第2章_ 算法分析基础汇总

13
2.1.4 非递归算法的时间复杂性分析

例2.6 分析例2.2中起泡排序算法的时间复杂性
基本语句是比较操作r[j]>r[j+1]
最好情况:记录已经是升序排列,算法只执行一次,比较n-1次, 时间复杂性为O(n)
最坏情况:记录是降序排列,每趟只是无序序列中最大的记录
交换到最终位置,所以算法执行n-1趟,第i趟比较n-i次比较,
i0
r 1
2.2 算法的空间复杂性分析
算法在运行过程中所需的存储空间包括: (1)输入输出数据占用的空间。取决于问题,与算法无关 (2)算法本身占用的空间。大小固定 (3)执行算法需要的辅助空间。空间复杂性所指
S(n)=O(f(n))
算法
输入输出数据
辅助空间
2.2 算法的空间复杂性分析
T(2)=1≤22成立,对所有i≤n,假设T(i)≤i2,则:
T(2n)=2T(n)+2n≤2n2+2n ≤4n2=(2n)2
故得,T(n)=O(n2)成立
2. 猜测技术
O(n2)是最小上限?如果猜测更小一些,如T(n)≤cn,证明失败。 即说明上限 应在n和n2之间。 再试试T(n)≤nlogn T(2)=1≤ 2log2成立,对所有i≤n,假设T(i)≤ nlogn ,则: T(2n)=2T(n)+2n≤2nlogn +2n=2n(logn+1) =2nlog(2n) 故得,T(n)=O(nlogn)成立
3. 通用分治递推式
m
(1)r < 1: ri <
1
,由于am nlogb a ,所以T (n) O(nlogb a )
i0 1 r
m

《算法设计与分析》课程实验报告 (分治法(三))

《算法设计与分析》课程实验报告 (分治法(三))

《算法设计与分析》课程实验报告实验序号:04实验项目名称:实验4 分治法(三)一、实验题目1.邮局选址问题问题描述:在一个按照东西和南北方向划分成规整街区的城市里,n个居民点散乱地分布在不同的街区中。

用x 坐标表示东西向,用y坐标表示南北向。

各居民点的位置可以由坐标(x,y)表示。

街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。

居民们希望在城市中选择建立邮局的最佳位置,使n个居民点到邮局的距离总和最小。

编程任务:给定n 个居民点的位置,编程计算邮局的最佳位置。

2.最大子数组问题问题描述:对给定数组A,寻找A的和最大的非空连续子数组。

3.寻找近似中值问题描述:设A是n个数的序列,如果A中的元素x满足以下条件:小于x的数的个数≥n/4,且大于x的数的个数≥n/4 ,则称x为A的近似中值。

设计算法求出A的一个近似中值。

如果A中不存在近似中值,输出false,否则输出找到的一个近似中值4.循环赛日程表问题描述:设有n=2^k个运动员要进行网球循环赛。

现要设计一个满足以下要求的比赛日程表:每个选手必须与其他n-1个选手各赛一次,每个选手一天只能赛一次,循环赛一共进行n-1天。

二、实验目的(1)进一步理解分治法解决问题的思想及步骤(2)体会分治法解决问题时递归及迭代两种不同程序实现的应用情况之差异(3)熟练掌握分治法的自底向上填表实现(4)将分治法灵活于具体实际问题的解决过程中,重点体会大问题如何分解为子问题及每一个大问题涉及哪些子问题及子问题的表示。

三、实验要求(1)写清算法的设计思想。

(2)用递归或者迭代方法实现你的算法,并分析两种实现的优缺点。

(3)根据你的数据结构设计测试数据,并记录实验结果。

(4)请给出你所设计算法的时间复杂度的分析,如果是递归算法,请写清楚算法执行时间的递推式。

四、实验过程(算法设计思想、源码)1.邮局选址问题(1)算法设计思想根据题目要求,街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档