人教版九年级数学上册 圆 几何综合专题练习(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级数学上册 圆 几何综合专题练习(解析版)
一、初三数学 圆易错题压轴题(难)
1.如图,二次函数y=x 2-2mx+8m 的图象与x 轴交于A 、B 两点(点A 在点B 的左边且OA≠OB ),交y 轴于点C ,且经过点(m ,9m ),⊙E 过A 、B 、C 三点。
(1)求这条抛物线的解析式;
(2)求点E 的坐标;
(3)过抛物线上一点P (点P 不与B 、C 重合)作PQ ⊥x 轴于点Q ,是否存在这样的点P 使△PBQ 和△BOC 相似?如果存在,求出点P 的坐标;如果不存在,说明理由
【答案】(1)y=x 2+2x-8(2)(-1,-72)(3)(-8,40),(-154,-1316),(-174,-2516
) 【解析】
分析:(1)把(),9m m 代入解析式,得:22289m m m m -+=,解这个方程可求出m 的值;
(2)分别令y =0和x =0,求出OA ,OB ,O C 及AB 的长,过点E 作EG x ⊥轴于点G ,EF y ⊥轴于点F ,连接CE ,AE ,设OF =GE =a ,根据AE CE = ,列方过程求出a 的值,从而求出点E 的坐标;
(3)设点P (a , a 2+2a -8), 则228,2PQ a a BQ a =+-=-,然后分PBQ ∽CBO 时
和PBQ ∽BCO 时两种情况,列比例式求出a 的值,从而求出点P 的坐标.
详解:(1)把(),9m m 代入解析式,得:22289m m m m -+=
解得:121,0m m =-=(舍去)
∴228y x x =+-
(2)由(1)可得:228y x x =+-,当0y =时,124,2x x =-=;
∵点A 在点B 的左边 ∴42OA OB ,== ,
∴6AB OA OB =+=,
当0x =时,8y =-,
∴8OC =
过点E 作EG x ⊥轴于点G ,EF y ⊥轴于点F ,连接CE ,
, 则116322
AG AB ==⨯= ,
设,则,
在Rt AGE ∆中,,
在中, ()222218CE EF CF a =+=+-,
∵AE CE = ,
∴()2
2918a a +=+- , 解得:72
a = , ∴712E ⎛
⎫-- ⎪⎝
⎭, ; (3)设点()2,28a a a P +-,
则2
28,2PQ a a BQ a =+-=-,
a.当PBQ ∆∽CBO ∆时, PQ CO BQ OB =,即228822
a a a +-=-, 解得:10a =(舍去);
22a =(舍去);38a =- , ∴()18,40P - ;
b.当PBQ ∆∽BCO ∆时,
PQ BO BQ CO =,即228228
a a a +-=-, 解得:12a =(舍去),2154a =-
;3174a =- , ∴21523,416P ⎛⎫-- ⎪⎝⎭;31725416P ⎛⎫- ⎪⎝⎭
, ; 综上所述,点P 的坐标为:()18,40P -,21523,416P ⎛⎫--
⎪⎝⎭,31725416P ⎛⎫- ⎪⎝⎭, 点睛:本题考查了二次函数的图像与性质,二次函数与坐标轴的交点,垂径定理,勾股定理,相似三角形的性质和分类讨论的数学思想,熟练掌握二次函数与一元二次方程的关系、相似三角形的性质是解答本题的关键.
2.如图,已知直线AB 经过⊙O 上的点C ,并且OA =OB ,CA =CB ,
(1)求证:直线AB 是⊙O 的切线;
(2)OA ,OB 分别交⊙O 于点D ,E ,AO 的延长线交⊙O 于点F ,若AB =4AD ,求sin ∠CFE 的值.
【答案】(1)见解析;(25 【解析】
【分析】 (1)根据等腰三角形性质得出OC ⊥AB ,根据切线的判定得出即可;
(2)连接OC 、DC ,证△ADC ∽△ACF ,求出AF=4x ,CF=2DC ,根据勾股定理求出35x ,DF=3x ,解直角三角形求出sin ∠AFC ,即可求出答案. 【详解】
(1)证明:连接OC ,如图1,
∵OA=OB,AC=BC,
∴OC⊥AB,
∵OC过O,
∴直线AB是⊙O的切线;
(2)解:连接OC、DC,如图2,
∵AB=4AD,
∴设AD=x,则AB=4x,AC=BC=2x,∵DF为直径,
∴∠DCF=90°,
∵OC⊥AB,
∴∠ACO=∠DCF=90°,
∴∠OCF=∠ACD=90°﹣∠DCO,
∵OF=OC,
∴∠AFC=∠OCF,
∴∠ACD=∠AFC,
∵∠A=∠A,
∴△ADC∽△ACF,
∴
1
22 AC AD DC x
AF AC CF x
====,
∴AF=2AC=4x,FC=2DC,
∵AD=x,
∴DF=4x﹣x=3x,
在Rt△DCF中,(3x)2=DC2+(2DC)2,
解得:DC 35
x,
∵OA=OB,AC=BC,∴∠AOC=∠BOC,
∴DC EC
=
,
∴∠CFE=∠AFC,
∴sin∠CFE=sin∠AFC=DC
DF
=
35
5
5
35
x
x
=
.
【点睛】
本题考查了等腰三角形的性质,切线的判定,解直角三角形,圆心角、弧、弦之间的关系,相似三角形的性质和判定的应用,能综合运用知识点进行推理和计算是解此题的关键,难度偏大.
3.如图,△ABC内接于⊙O,点D在AB边上,CD与OB交于点E,∠ACD=∠OBC;
(1)如图1,求证:CD⊥AB;
(2)如图2,当∠BAC=∠OBC+∠BCD时,求证:BO平分∠ABC;
(3)如图3,在(2)的条件下,作OF⊥BC于点F,交CD于点G,作OH⊥CD于点H,连接FH并延长,交OB于点P,交AB边于点M.若OF=3,MH=5,求AC边的长.
【答案】(1)见解析;(2)见解析;(3)AC=48 5
【解析】
【分析】
(1)根据直径所对的圆周角是直角,得出∠FCB=90°,再根据“同弧所对的圆周角相等”得出∠A=∠F,再根据已知条件得∠3=90°,得CD⊥AB;
(2)延长BO交AC于K,由已知可得∠A=∠5,由∠A+∠2=90°得∠5+∠2=90°,根据三角形的内角和定理及外角定理得出∠9=∠1得出BO平分∠ABC;
(3)延长BO交AC于点K,延长CD交⊙O于点N,联结BN,由条件可得CH=NH,BF=CF,从而HF是△CBN的中位线,HF∥BN,得出∠OEH=∠EHM又由
∠OEH+∠EOH=∠EHM+∠OHP=90°可得HM=OB=5,在Rt△OBF中,根据勾股定理可得
BF=4,解出BC=8,sin∠OBC=3
5
,所以可得AC=2CK,CK=BC•sin∠OBC=
24
5
得
AC=48 5
.
【详解】
解:(1)如图1,令∠OBC=∠1,∠ACD=∠2