逻辑推理公式
谓词 基本推理公式
谓词基本推理公式
谓词逻辑是逻辑学中的一种形式系统,它使用谓词来表达命题的性质和关系。
基本推理公式是谓词逻辑中的一些基本规则,用于推导命题的真假。
以下是几个常用的谓词逻辑基本推理公式:
1. 交换律:A→B ↔ B→A
2. 结合律:(A→B)→C ↔ A→(B→C)
3. 吸收律:A→(B∧C) ↔ (A→B)∧(A→C)
4. 分配律:(A∧B)→C ↔ A→(B→C)
5. 重写律:A→B ↔ ¬B→¬A
6. 否定引入律:¬(A∧B) ↔ (¬A∧¬B)
7. 否定消去律:¬¬A ↔ A
8. 双条件引入律:A↔B ↔ (A→B)∧(B→A)
9. 双条件消去律:A↔B ↔ (A∧B)∨(¬A∧¬B)
10. 全称量词引入律:∀x(P(x)) ↔ P(y)/y (y属于某个集合)
11. 存在量词引入律:∃x(P(x)) ↔ P(y)/y (y属于某个集合)
这些基本推理公式是谓词逻辑的基础,可以用于推导其他命题的真假。
在具体使用时,需要根据命题的具体情况进行选择和应用。
逻辑推理公式
直言命题所有的都是上反对必有一假所有的都不是包容矛盾包容有的是必有一真下反对有的不是所有的A是B 上反对必有一假所有的A都不是B 包容矛盾包容有的A是B 必有一真下反对有A的不是B三段论A→BB→CA→B 有的B是CA→C 有的C是B—B →—A 逆否(A→B的矛盾关系A∧—B)A→B 有的A→B有的B→A—A∨BB→C充分假言:前推后(A推B),肯前肯后,否后否前如果A,那么B;只要A,就B 若A,则B所有A,是B 凡是A,是B 为了A,一定B 为了A,必须B A指的就是B 除非不A,否则B必要假言B推A只有A,才B 没有A,就没有B 不A,不B除非A,否则不B A是B的前提,保障,基础,条件/谁是条件谁在后选言命题P、Q √相容性P∨Q —P、Q √P、—Q √选言—P、—Q ×不相容性P∕Q 要么P要么Q不是P就是QP∨Q的矛盾命题—(P∨Q)→—P ∧—QP∨Q= —P →Q—Q →PP∨Q 排中律排除一个选中一个必须先排—A∨B = A→B (鲁宾逊定律)—A∨B的矛盾命题是A∧—B A→B的矛盾命题是A∧—B模态命题必然P 上反对必有一假必然非P 包容矛盾包容可能P 必有一真下反对可能非P模态命题的具体关系“并非必然P”等值于“可能非P”,即:不必然=可能不;“并非必然非P”等值于“可能P”,即:不必然不=可能;“并非可能P”等值于“必然非P”,即:不可能=必然不;“并非可能非P”等值于“必然P”,即:不可能不=必然;模态命题与非模态命题的推出关系必然P→P →可能P ;必然非P →非P→可能非P。
命题逻辑基本推理公式
命题逻辑基本推理公式(1) P∧Q⇒P .(2)¬( P→Q)⇒P .(3)¬(P→Q)⇒¬Q.(4) P⇒P ∨Q.(5)¬P⇒P →Q.(6) Q⇒P →Q.(7) ¬P∧(P∨Q) ⇒Q.选言推理否定式(8) P∧(P→Q) ⇒Q. 假言推理肯定前件式(9) ¬Q∧(P→Q) ⇒¬P .假言推理否定后件式(10) (P→Q)∧(Q→R) ⇒P→R. 三段论(11) (P↔ Q)∧(Q↔R) ⇒P↔R. 双条件三段论(12) (P→R)∧(Q→R)∧( P ∨Q) ⇒R. 二难推理(13) (P→Q)∧(R→S) ∧(P ∨R)⇒Q∨S. 二难推理(14) (P→Q)∧(R→S) ∧¬(Q∨¬S)⇒¬P ∨¬R. 破坏二难推理(15) (Q→R) ⇒(( P∨Q)→(P ∨R)) .(16) (Q→R) ⇒(( P→Q)→(P→R)) .使用真值表法证明这些推理公式是容易的。
若从语义上给予直观说明也是不难的. 如公式(2), ¬(P →Q) ⇒P . 公式( 3), ¬(P →Q)⇒Q. 意思是说, 若P →Q 不成立( 取假), 必有 P 为真, 还有 Q 为假. 这从P →Q 的定义可知, 因只有当 P = T 而 Q = F 时, P →Q = F. 又如公式( 7), ¬P ∧(P ∨Q)⇒Q. 意思是说, P 不对, 而P ∨Q 又对, 必然有 Q 对.公式( 8) , P ∧(P →Q) ⇒Q 常称作假言推理, 或称作分离规则, 是最常使用的推理公式。
公式(10) , (P →Q) ∧(Q→R)⇒P →R 常称作三段论。
日常语言运用:(1) 此人既呆又笨为真,则此人笨为真。
(2)(3)并非“犯错蕴涵失败“,即是说,”如果犯错,那么失败“为假命题,则必有犯错且不失败的例子。
逻辑判断推理中常用的逻辑公式
逻辑命题与推理必然性推理(演绎推理):对当关系推理、三段论、复合命题推理、关系推理和模态推理可能性推理:归纳推理(枚举归纳、科学归纳)、类比推理命题直言命题的种类:(AEIOae)⑴全称肯定命题:所有S是P(SAP)⑵全称否定命题:所有S不是P(SEP)⑶特称肯定命题:有的S是P(SIP)⑷特称否定命题:有的S不是P(SOP)⑸单称肯定命题:某个S是P(SaP)⑹单称否定命题:某个S不是P(SeP)直言命题间的真假对当关系:矛盾关系、(上)反对关系、(下)反对关系、从属关系矛盾关系:具有矛盾关系的两个命题之间不能同真同假。
主要有三组:SAP与SOP之间。
“所有同学考试都及格了”与“有些同学考试不及格”SEP与SIP之间。
“所有同学考试不及格”与“有些同学考试及格”SaP与SeP之间。
“张三考试及格”与“张三考试不及格”上反对关系:具有上反对关系的两个命题不能同真(必有一假),但是可以同假。
即要么一个是假的,要么都是假的。
存在于SAP与SEP、SAP与SeP、SEP与SaP之间。
下反对关系:具有下反对关系的两个命题不能同假(必有一真),但是可以同真。
即要么一个是真的,要么两个都是真的。
存在于SIP与SOP、SeP与SIP、SaP与SOP之间。
从属关系(可推出关系):存在于SAP与SIP、SEP与SOP、SAP与SaP、SEP与SeP、SaP与SIP、SeP与SOP六种直言命题之间存在的对当关系可以用一个六角图形来表示,“逻辑方阵图”SAP SEPSaP SePSIP SOP直言命题的真假包含关系全同关系、真包含于关系、真包含关系、交叉关系、全异关系复合命题:负命题、联言命题、选言命题、假言命题负命题的一般公式:并非P联言命题公式:p并且q “并且、…和…、既…又…、不但…而且、虽然…但是…”选言命题:相容的选言命题、不相容的选言命题相容的选言命题公式:p或者q“或、或者…或者…、也许…也许…、可能…可能…”【一个相容的选言命题是真的,只有一个选言支是真的即可。
逻辑判断推理中常用的逻辑公式(同名5617)
逻辑命题与推理必然性推理(演绎推理):对当关系推理、三段论、复合命题推理、关系推理和模态推理可能性推理:归纳推理(枚举归纳、科学归纳)、类比推理命题直言命题的种类:(AEIOae)⑴全称肯定命题:所有S是P(SAP)⑵全称否定命题:所有S不是P(SEP)⑶特称肯定命题:有的S是P(SIP)⑷特称否定命题:有的S不是P(SOP)⑸单称肯定命题:某个S是P(SaP)⑹单称否定命题:某个S不是P(SeP)直言命题间的真假对当关系:矛盾关系、(上)反对关系、(下)反对关系、从属关系矛盾关系:具有矛盾关系的两个命题之间不能同真同假。
主要有三组:SAP与SOP之间。
“所有同学考试都几个了”与“有些同学考试不及格”SEP与SIP之间。
“所有同学考试不及格”与“有些同学考试及格”SaP与SeP之间。
“张三考试及格”与“张三考试不及格”上反对关系:具有上反对关系的两个命题不能同真(必有一假),但是可以同假。
即要么一个是假的,要么都是假的。
存在于SAP与SEP、SAP与SeP、SEP与SaP之间。
下反对关系:具有下反对关系的两个命题不能同假(必有一真),但是可以同真。
即要么一个是真的,要么两个都是真的。
存在于SIP与SOP、SeP与SIP、SaP与SOP之间。
从属关系(可推出关系):存在于SAP与SIP、SEP与SOP、SAP与SaP、SEP与SeP、SaP与SIP、SeP与SOP六种直言命题之间存在的对当关系可以用一个六角图形来表示,“逻辑方阵图”SAP SEPSaP SePSIP SOP直言命题的真假包含关系全同关系、真包含于关系、真包含关系、交叉关系、全异关系复合命题:负命题、联言命题、选言命题、假言命题负命题的一般公式:并非P联言命题公式:p并且q “并且、…和…、既…又…、不但…而且、虽然…但是…”选言命题:相容的选言命题、不相容的选言命题相容的选言命题公式:p或者q“或、或者…或者…、也许…也许…、可能…可能…”【一个相容的选言命题是真的,只有一个选言支是真的即可。
逻辑推理公式整理
逻辑推理公式整理逻辑推理是一种基于事实和前提的推导过程,通过推理规则和逻辑公式来得出新的结论。
在逻辑推理中,公式扮演着重要的角色,可以帮助我们理解和描述逻辑关系。
以下是一些常见的逻辑推理公式。
1.求取命题的否定:公式:¬P说明:这个公式表示命题P的否定,即P不成立。
2.条件推理:公式:P→Q说明:这个公式表示如果P成立,则Q也成立。
这是一种常见的逻辑推理形式。
3.充分必要条件:公式:P↔Q说明:这个公式表示P与Q是充分必要条件,即当P成立时Q成立,且当Q成立时P也成立。
4.假言推理:公式:P,Q/P→Q说明:这个公式表示如果同时有P和Q成立,则可以得出P推出Q。
5.排中律:公式:P∨¬P说明:这个公式表示一个命题P或它的否定¬P一定成立。
这是一种基本的逻辑定律。
6.矛盾律:公式:P∧¬P说明:这个公式表示一个命题P与它的否定¬P是矛盾的,不可能同时成立。
7.分配律:公式:P∧(Q∨R)≡(P∧Q)∨(P∧R)说明:这个公式表示逻辑中的分配律,可以帮助我们简化复杂命题的形式。
8.合取范式:公式:(P∨Q)∧(¬P∨Q)∨(P∨¬Q)∧(¬P∨¬Q)说明:这个公式表示合取范式,可以将命题写成一组合取式的多个命题的析取。
9.析取范式:公式:(P∧Q)∨(¬P∧Q)∨(P∧¬Q)∨(¬P∧¬Q)说明:这个公式表示析取范式,可以将命题写成一组析取式的多个命题的合取。
10.假言三段论:公式:P→Q,Q→R/P→R说明:这个公式表示如果P推出Q,且Q推出R,则可以得出P推出R。
这些是一些常见的逻辑推理公式,可以应用于不同的逻辑推理问题中。
逻辑公式的运用能够帮助我们进行准确有效的推理和论证,提高逻辑思维能力。
在实际应用中,还有更多的逻辑推理公式可以用于解决复杂的问题。
逻辑推理公式六句口诀
1、全同关系
指一组词所指代的是同一个概念,即同一事物的不同称谓,或者表达相同意义的词语。
2、全异关系指一组词的两个词语所代表的事物完全不一致。
全异关系又分为两种情况:完全全异以及不完全全异。
1)完全全异即对于同一类事物只分为A、B两种情况。
除了A和B没有其他情况。
2)不完全全异即对于同一类事物分为多种情况,A、B只是其中一部分,还有其他情况。
3、包含关系
又称种属关系,是指种概念和属概念间关系,可表示为:A是B的一种。
4、交叉关系
指两个词语所代表的集合有相同部分也有不同部分。
可表示为:有的A是B,有的A不是B,有的B是A,有的B不是A。
离散数学逻辑公式大全化简
离散数学逻辑公式大全化简
离散数学逻辑公式大全:
一、对称表达式
1. 对立矛盾:P∧(¬P),这就意味着,实际上什么都不是真。
2. 波尔定理:(P→Q)∨(Q→P),即P和Q之一必定是另一个的条件。
3. 谓词逻辑:∀xPx,表明了P是对任意x是真的。
二、蕴涵表达式
1. 因果关系:P→Q,其中P是因,Q是果。
2. 排中律:P∨(Q∧R)≡(P∨Q)∧(P∨R),即P既支持Q和R的同时满足,也支持Q和R的分别满足。
3. 简单蕴涵:P→Q,Q即P的蕴涵结果。
三、命题逻辑
1. 范式:¬(P∨Q)即¬P∧¬Q,这表明,若P和Q两者成立其一,则结果
为假。
2. 合取范式:P ∨ Q,表示只要PQ其一成立,结果即成立。
3. 否定范式:P→Q,表示只有当P成立,Q才会成立,否则结果为假。
四、可辩证表达式
1. 含义性质:P→Q,表明当P为真时,Q也可能为真,但可能有证据
表明P为假时,Q也可能为假。
2. 对抗性质:¬P∧Q,表明当P(或Q)被否定时,另一方会加强对这个变量的认可。
3. 不可满足性:P∧¬P,表明两个性质之间存在矛盾,因此,这种形式无法同时满足。
逻辑学常用图表和公式
逻辑学常用图表和公式一、命题逻辑1. 命题命题是陈述语句,能够判断其真假,可以用P、Q、R等符号表示。
例如:P表示今天是晴天。
2. 求反命题、逆命题和对偶命题反命题:把命题中的主语和谓语都取反,如“P:今天是晴天”;则“非P:今天不是晴天”。
逆命题:将命题中的主语和谓语分别取反,如“P:今天是晴天”;则“Q:不是晴天就不是今天”。
对偶命题:对一命题中的“存在”、“全称”、“或”、“与”等词进行逆否,如“∀x P(x)”则对应的对偶命题为“∃x (~P(x)”。
3. 否命题否定某些命题可以得到一个新的命题,称为否命题。
例如“P:今天是晴天”;则“~P:今天不是晴天。
”4. 蕴含若P成立,则P蕴含Q;用符号表示为P——>Q。
(当P成立时,Q也必定成立。
)5. 充分必要条件若Q成立,则P充分必要;用符号表示为P《——Q。
(当Q成立时,P必定成立。
)6. 前提、结论和推理规则前提:一个论证中被认为是真实的命题。
结论:从前提推出来的结论。
推理规则:从前提出发,推得结论的规则。
包括假言三段论、假言推理、乘积原则等。
7. 假言三段论若P——>Q是真的,Q——>R也是真的,则P——>R也是真的。
例如:“若今天下雨,我就不去”,“若我不去,就不会迟到”,“所以如果今天下雨,我就不会迟到。
”8. 内容永真性和形式永真性内容永真性:一个公式无论描写何种情况,它的真值都为真,则称其具有内容永真性。
形式永真性:一个公式无论取什么命题作为变量,都为真,则称其具有形式永真性。
9. 逻辑等价式若P<——>Q是真的,则P和Q逻辑等价。
例如:“非(P& Q)<——>(~P V ~ Q)”。
10. 常见逻辑公式与(^)、或(V)、非(~)、蕴涵(——>)、等价(《——》)、全称量词(∀)、存在量词(∃)等。
二、谓词逻辑1. 谓词谓词是有个体变元的陈述语句,如“x>y”或“P(x,y)”。
全部199管理类联考逻辑推理公式(二)2024
全部199管理类联考逻辑推理公式(二)引言概述:本文旨在介绍全部199管理类联考逻辑推理公式的第二部分,以帮助考生更好地理解和掌握这些公式。
这些公式对于提高考生在逻辑推理方面的能力和应对考试题目非常有帮助。
本文将详细介绍每个大点下的小点内容,并在文末进行总结。
正文内容:一、公式1-5:假设与否定1. 假设的使用和表达方法2. 否定的含义和作用3. 假设与否定的关系及应用场景4. 假设与否定的常见考点和解题技巧5. 案例分析:假设与否定的应用实例二、公式6-10:逻辑关系1. 逻辑关系的定义和分类2. 逻辑关系的表达方式和示例3. 逻辑关系的逻辑性质和推理规律4. 逻辑关系的应用技巧和解题方法5. 案例分析:逻辑关系的实际应用三、公式11-15:比较与类别1. 比较关系的表达和解读方法2. 比较关系的逻辑性质和推理规律3. 类别关系的定义和分类4. 类别关系的应用技巧和解题方法5. 案例分析:比较与类别的实际应用四、公式16-20:因果与因果关系1. 因果关系的概念和特征2. 因果关系的表达和判断方法3. 因果关系的逻辑性质和推理规律4. 因果关系的应用技巧和解题方法5. 案例分析:因果关系的实际应用五、公式21-25:假设与推断1. 假设与推断的定义和区别2. 假设与推断的逻辑关系和推理规律3. 假设与推断在逻辑推理中的应用场景4. 假设与推断的解题技巧和方法5. 案例分析:假设与推断的实际应用总结:本文介绍了全部199管理类联考逻辑推理公式的第二部分,共分为五个大点。
在每个大点下,我们详细阐述了其中的小点内容,并提供了相关的解题技巧和应用实例。
希望本文能为考生们理解和掌握逻辑推理公式提供一定的指导和帮助,以提高其在考试中的表现。
逻辑推理公式整理
逻辑推理公式由网友xczhyd整理1、所有的S是P 所有的S不是P有的S是P 有的S不是P推论:不是所有的S是P = 有的S不是P不是所有的S不是P=有的S是P总结1:A不是后移;B所有的变有的,有的变所有的所有的S是P=不是有的S不是P总结2:A否定前件,B所有的变有的,有的变所有的;C是变不是,不是变是总总结:否定前件,所有的变有的,有的变所有的;是变不是,不是变是2、必然P 必然非P可能P 可能非P推论:不可能非P=必然P不必然非P=可能P(这两个公式根据矛盾关系可推出)推论:不是所有的S必然是P=有的S可能不是P不是有的S必然不是P=所有的S可能是P不是有的S不必然不是P=不是有的S可能是P=所有的S必然不是P=>所有的S可能不是P=>有的S可能不是P(这个例句多看看,对照一下,注意等号和箭头)总结:“不必然不,不可能不”先变更为“可能,必然”(没有“不必然不、不可能不”的不需要变更);否定前件;有的变所有的,所有的变有的;是变不是,不是变是;可能变必然,必然变可能;3、如果P,那么Q P -------> Q 非P<——非Q 或者非P,或者Q只有P,才Q P ←----- Q 非P——>非Q 或者P,或者非Q总结:否定之后变方向,另外注意箭头的读法,顺着箭头读“如果XXX,那么XXXX”;反着箭头读“只有XXXX,才XXX”几个典型题目:a.已知A→B,C→非B,非C→D,现在非D,求A还是非A,B还是非Bb.已知A或B→C,现在非C,求A、B、A和B、非A、非B、非A和非B等,此题答案是非A和非B;c.已知A和B→C,现在非C,可推出非A或非B,或非A非Bd.假如“如果P,那么Q”为真,可以推出“P并且Q”;假如为假,可以推出“P但非Q”e.假如“只有P,才Q”为真,可以推出“Q并且P”;假如为假,可以推出“Q但非P”(d.e此类题目一般都考是假的情况)f.更复杂点的是这几类集合到一块考6、上反对关系,必有1假,可以同假;下反对关系,必有1真,可以同真;矛盾关系,必有1真1假。
【9A文】逻辑判断推理中常用的逻辑公式
逻辑命题与推理必然性推理(演绎推理):对当关系推理、三段论、复合命题推理、关系推理和模态推理可能性推理:归纳推理(枚举归纳、科学归纳)、类比推理命题直言命题的种类:(AEIOae)⑴全称肯定命题:所有S是P(SAP)⑵全称否定命题:所有S不是P(SEP)⑶特称肯定命题:有的S是P(SIP)⑷特称否定命题:有的S不是P(SOP)⑸单称肯定命题:某个S是P(SaP)⑹单称否定命题:某个S不是P(SeP)直言命题间的真假对当关系:矛盾关系、(上)反对关系、(下)反对关系、从属关系矛盾关系:具有矛盾关系的两个命题之间不能同真同假。
主要有三组:SAP与SOP之间。
“所有同学考试都及格了”与“有些同学考试不及格”SEP与SIP之间。
“所有同学考试不及格”与“有些同学考试及格”SaP与SeP之间。
“张三考试及格”与“张三考试不及格”上反对关系:具有上反对关系的两个命题不能同真(必有一假),但是可以同假。
即要么一个是假的,要么都是假的。
存在于SAP与SEP、SAP与SeP、SEP与SaP之间。
下反对关系:具有下反对关系的两个命题不能同假(必有一真),但是可以同真。
即要么一个是真的,要么两个都是真的。
存在于SIP与SOP、SeP与SIP、SaP与SOP之间。
从属关系(可推出关系):存在于SAP与SIP、SEP与SOP、SAP与SaP、SEP与SeP、SaP与SIP、SeP与SOP六种直言命题之间存在的对当关系可以用一个六角图形来表示,“逻辑方阵图”SAPSEPSaPSePSIPSOP直言命题的真假包含关系全同关系、真包含于关系、真包含关系、交叉关系、全异关系负命题的一般公式:并非P联言命题公式:p并且q“并且、…和…、既…又…、不但…而且、虽然…但是…”选言命题:相容的选言命题、不相容的选言命题相容的选言命题公式:p或者q“或、或者…或者…、也许…也许…、可能…可能…”【一个相容的选言命题是真的,只有一个选言支是真的即可。
德摩根定律逻辑公式
德摩根定律逻辑公式德摩根定律是数理逻辑中的一组重要公式,它用于描述逻辑命题的否定、合取和析取关系。
德摩根定律包括两个公式:德摩根定律一和德摩根定律二。
在逻辑推理和证明中,德摩根定律起着重要的作用,能够帮助我们简化逻辑表达式,更好地理解和分析逻辑关系。
德摩根定律一是指“非(A或B)等于非A且非B”。
换句话说,对于两个命题A和B,它们的析取的否定等于它们的否定的合取。
这个定律可以用一个公式来表示:¬(A∨B) ≡ ¬A∧¬B。
其中,¬表示取反,∨表示或,∧表示且。
德摩根定律二是指“非(A且B)等于非A或非B”。
也就是说,对于两个命题A和B,它们的合取的否定等于它们的否定的析取。
这个定律可以用一个公式来表示:¬(A∧B) ≡ ¬A∨¬B。
德摩根定律的应用十分广泛,不仅在数理逻辑中有重要意义,而且在计算机科学、电路设计、证明论等领域也有广泛的应用。
在证明过程中,德摩根定律可以帮助我们转化命题的形式,简化推理的过程。
例如,当我们需要证明一个复杂的命题时,我们可以利用德摩根定律将其转化为较为简单的形式,进而进行推导和分析。
这样,不仅可以减少犯错的机会,还可以提高证明的效率和可读性。
在计算机科学中,德摩根定律也被广泛应用于逻辑电路的设计和优化中。
通过运用德摩根定律,我们可以将复杂的逻辑表达式转化为简化的形式,从而减少电路的复杂度和功耗,提高电路的性能和可靠性。
除了在数理逻辑和计算机科学中的应用,德摩根定律还可以帮助我们理解和分析现实生活中的问题。
在日常生活中,人们常常会遇到需要进行逻辑推理的情况,例如判断一个命题的真假、分析一个复杂的论证过程等。
德摩根定律可以提供一种思维工具,帮助我们更好地理清思路,准确地推导出正确的结论。
德摩根定律是一组重要的逻辑公式,它们在数理逻辑、计算机科学和日常生活中都有广泛的应用。
通过运用德摩根定律,我们可以简化逻辑表达式,提高证明的效率和可读性,优化逻辑电路的设计,以及解决日常生活中的各种逻辑问题。
逻辑判断推理中常用的逻辑公式
可能性推理:归纳推理(枚举归纳、科学归纳)、类比推理⑴全称肯定命题:所有SAP)⑵全称否定命题:所有S不是P( SEP)⑶特称肯定命题:有的SIP)⑷特称否定命题:有的S不是P(SOP)⑸单称肯定命题:某个SaP)⑹单称否定命题:某个S不是P(SeP)SaP与SeP之间。
“张三考试及格”与“张三考试不及格” 上反对关系:具有上反对关系的两个命题不能同真(必有一假)存在于SAP与SEP SAP与SeP、SEP与SaP之间。
下反对关系:具有下反对关系的两个命题不能同假(必有一真)的。
存在于SIP与SOP SeP与SIP、SaP与SOP之间。
从属关系(可推出关系):存在于SAP与SIP、SEP 与SOP 六种直言命题之间存在的对当关系可以用一个六角图形来表示,,但是可以同假。
即要么一个是假的,要么都是假的。
,但是可以同真。
即要么一个是真的,要么两个都是真SAP与SaP SEP与SeP、SaP与SIP、SeP与SOP “逻辑方阵图”逻辑命题与推理必然性推理(演绎推理):对当关系推理、三段论、复合命题推理、关系推理和模态推理命题直言命题的种类:(AEIOae)直言命题间的真假对当关系:矛盾关系、(上)反对关系、(下)反对关系、从属关系矛盾关系:具有矛盾关系的两个命题之间不能同真同假。
主要有三组:SAP与SOP之间。
“所有同学考试都及格了”与“有些同学考试不及格”SEP与SIP之间。
“所有同学考试不及格”与“有些同学考试及格”SaP SAP SEPSePSIP SOP直言命题的真假包含关系全同关系、真包含于关系、真包含关系、交叉关系、全异关系复合命题:负命题、联言命题、选言命题、假言命题负命题的一般公式:并非P联言命题公式:p并且q “并且、…和…、既…又…、不但…而且、虽然…但是…”选言命题:相容的选言命题、不相容的选言命题相容的选言命题公式:p或者q “或、或者…或者…、也许…也许…、可能…可能…”【一个相容的选言命题是真的,只有一个选言支是真的即可。
逻辑判断推理中常用的逻辑公式
逻辑命题与推理必然性推理(演绎推理):对当关系推理、三段论、复合命题推理、关系推理与模态推理可能性推理:归纳推理(枚举归纳、科学归纳)、类比推理命题直言命题得种类:(AEIOae)⑴全称肯定命题:所有S就是P(SAP)⑵全称否定命题:所有S不就是P(SEP)⑶特称肯定命题:有得S就是P(SIP)⑷特称否定命题:有得S不就是P(SOP)⑸单称肯定命题:某个S就是P(SaP)⑹单称否定命题:某个S不就是P(SeP)直言命题间得真假对当关系:矛盾关系、(上)反对关系、(下)反对关系、从属关系矛盾关系:具有矛盾关系得两个命题之间不能同真同假。
主要有三组:SAP与SOP之间。
“所有同学考试都及格了"与“有些同学考试不及格”SEP与SIP之间、“所有同学考试不及格”与“有些同学考试及格"SaP与SeP之间。
“张三考试及格”与“张三考试不及格”上反对关系:具有上反对关系得两个命题不能同真(必有一假),但就是可以同假、即要么一个就是假得,要么都就是假得、存在于SAP与SEP、SAP与SeP、SEP与SaP之间。
下反对关系:具有下反对关系得两个命题不能同假(必有一真),但就是可以同真。
即要么一个就是真得,要么两个都就是真得。
存在于SIP与SOP、SeP与SIP、SaP与SOP之间。
从属关系(可推出关系):存在于SAP与SIP、SEP与SOP、SAP与SaP、SEP与SeP、SaP与SIP、SeP与SOP 六种直言命题之间存在得对当关系可以用一个六角图形来表示,“逻辑方阵图”SAPSEPSaP SePSIP SOP直言命题得真假包含关系全同关系、真包含于关系、真包含关系、交叉关系、全异关系复合命题:负命题、联言命题、选言命题、假言命题负命题得一般公式:并非P联言命题公式:p并且q“并且、…与…、既…又…、不但…而且、虽然…但就是…”选言命题:相容得选言命题、不相容得选言命题相容得选言命题公式:p或者q“或、或者…或者…、也许…也许…、可能…可能…”【一个相容得选言命题就是真得,只有一个选言支就是真得即可。
逻辑判断推理中常用的逻辑公式.doc
逻辑命题与推理必然性推理(演绎推理):对当关系推理、三段论、复合命题推理、关系推理和模态推理可能性推理:归纳推理(枚举归纳、科学归纳)、类比推理命题直言命题的种类:(AEIOae)⑴全称肯定命题:所有S 是 P(SAP)⑵全称否定命题:所有S 不是 P(SEP)⑶特称肯定命题:有的S 是 P(SIP)⑷特称否定命题:有的S 不是 P(SOP)⑸单称肯定命题:某个S 是 P(SaP)⑹单称否定命题:某个S 不是 P(SeP)直言命题间的真假对当关系:矛盾关系、(上)反对关系、(下)反对关系、从属关系矛盾关系:具有矛盾关系的两个命题之间不能同真同假。
主要有三组:SAP 与 SOP 之间。
“所有同学考试都及格了”与“有些同学考试不及格”SEP 与 SIP 之间。
“所有同学考试不及格”与“有些同学考试及格”SaP 与 SeP之间。
“张三考试及格”与“张三考试不及格”上反对关系:具有上反对关系的两个命题不能同真(必有一假),但是可以同假。
即要么一个是假的,要么都是假的。
存在于SAP 与 SEP、 SAP 与 SeP、 SEP 与 SaP 之间。
下反对关系:具有下反对关系的两个命题不能同假(必有一真),但是可以同真。
即要么一个是真的,要么两个都是真的。
存在于SIP 与 SOP、SeP与 SIP、 SaP 与 SOP 之间。
从属关系(可推出关系):存在于SAP 与 SIP、SEP 与 SOP、SAP 与 SaP、SEP 与 SeP、SaP 与 SIP、 SeP 与 SOP六种直言命题之间存在的对当关系可以用一个六角图形来表示,“逻辑方阵图”SAPSEPSaPSePSIPSOP直言命题的真假包含关系全同关系、真包含于关系、真包含关系、交叉关系、全异关系合同关系真包含于关系真包含关系交叉关系全异关系SAP 真真假假假SEP 假假假真真SIP 真真真真假SOP 假假真真真复合命题:负命题、联言命题、选言命题、假言命题负命题的一般公式:并非P联言命题公式: p 并且 q“并且、和、既又、不但而且、虽然但是”选言命题:相容的选言命题、不相容的选言命题相容的选言命题公式: p 或者 q“或、或者或者、也许也许、可能可能”【一个相容的选言命题是真的,只有一个选言支是真的即可。
老吕形式逻辑公式
老吕形式逻辑公式
老吕形式逻辑公式是一种形式化的表示逻辑语句的方法,其基本结构为:
1. 命题变量:用大写字母表示,如A、B、C等。
2. 连接词:包括合取(∧)、析取(∨)、蕴含(→)、双条件(↔)等。
3. 量词:包括全称量词(∀)和存在量词(∃)。
4. 括号:用于标识逻辑表达式的结构。
根据这些基本元素,可以构建出各种复杂的逻辑公式。
例如,以下是一些常见的老吕形式逻辑公式:
1. A∧B:A和B同时成立。
2. A∨B:A或者B成立。
3. A→B:如果A成立,则B也成立。
4. A↔B:A成立当且仅当B成立。
5. ¬A:A不成立。
6. ∀xP(x):对于任意x,P(x)都成立。
7. ∃xP(x):存在x使得P(x)成立。
老吕形式逻辑公式能够准确地表示逻辑语句的结构和关系,方便进行逻辑推理和证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逻辑推理公式
直言命题
所有的都是上反对所有的都不是
必有一假
包包
矛盾
容容
必有一真
有的是下反对有的不是
所有的A是B 上反对所有的A都不是B
必有一假
包包
矛盾
容容
必有一真
有的A是B 下反对有A的不是B
三段论
A?B B?C
B?C
A?B 有的B是C
A?C 有的C是B
—B ? —A 逆否 (A?B的矛盾关系A?—B) A?B 有的A?B 有的B?A
—A?B
第 1 页共 3 页
充分假言:前推后(A推B),肯前肯后,否后否前
如果A,那么B; 只要A,就B 若A,则B 所有A,是B 凡是A,是B 为了A,一定B 为了A,必须B A指的就是B 除非不A,否则B 必要假言 B推A 只有A,才B 没有A,就没有B 不A,不B 除非A,否则不B A是B的前提,保障,基础,条件/谁是条件谁在后
选言命题
P、Q ?
相容性 P?Q —P、Q ?
P、—Q ?
选言—P、—Q ×
不相容性P?Q 要么P要么Q
不是P就是Q
P?Q的矛盾命题—(P?Q) ? —P ?—Q
P?Q= —P ? Q
—Q ? P
P?Q 排中律排除一个选中一个必须先排
—A?B = A?B (鲁宾逊定律)
—A?B的矛盾命题是 A?—B A?B的矛盾命题是 A?—B
第 2 页共 3 页
模态命题
必然P 上反对必然非P
必有一假
包包
矛盾
容容
必有一真
可能P 下反对可能非P
模态命题的具体关系
“并非必然P”等值于“可能非P”,即:不必然=可能不; “并非必然非P”等值于“可能P”,即:不必然不=可能; “并非可能P”等值于“必然非P”,即:不可能=必然不; “并非可能非P”等值于“必然P”,即:不可能不=必然; 模态命题与非模态命题的推出关系
必然P? P ? 可能P ;
必然非P ? 非P ? 可能非P
第 3 页共 3 页。