第十九章四边形全章课课练
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.1.1 平行四边形及其性质(一)
一、填空:
1、在ABCD 中,∠A=︒50,则∠B= 度,∠C= 度,∠D= 度.
2、如果ABCD 中,∠A —∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.
3、如果ABCD 的周长为28cm ,且AB :BC=2∶5,那么AB= cm ,BC= cm ,CD=_____cm , 二、选择题
1.在下列图形的性质中,平行四边形不一定具有的是( ). (A )对角相等 (B )对角互补 (C )邻角互补 (D )内角和是︒360
2.如图1,在ABCD 中,如果EF ∥AD ,GH ∥CD ,EF 与GH 相交与点O ,那么图中的平行四边形一共有( )
(A )4个 (B )5个 (C )8个 (D )9个
O
H
G F
E D C
B
A F E D
C
B
A
(1) (2) (3)
3.如图2,已知□ABCD 的对角线交点是O ,直线EF 过O 点,且平行于BC ,直线GH 过且平行于AB ,则图中共有( )个平行四边形. A.5
B.6
C.7
D.10
三、解答题
1.如图3,在ABCD 中,AC 为对角线,BE ⊥AC ,DF ⊥AC ,E 、F 为垂足. 求证:BE =DF .
2.如图,AD ∥BC ,AE ∥CD ,BD 平分∠ABC ,求证AB=CE .
E D
C
B A
3.如图,在平行四边形ABCD 中,O 是对角线AC 的中点,过O 点作直线EF 分别交BC 、AD 于E 、F .
(1)求证:BE = DF ;
(2)若AC ,EF 将平行四边形ABCD 分成的四部分的面积相等,指出E 点的位置,并说明理由.
O
F E D
C
B
A
19.1.1 平行四边形的性质(二)
一、填空:
1.如图,ABCD 中,AE ⊥BD ,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm .
2.ABCD 一内角的平分线与边相交并把这条边分成
cm 5,cm 7的两条线段,则ABCD 的周长是__ ___cm .
3.如图,ABCD 的周长是36cm,AB=8cm, BC=_______cm;当∠B=60°时,AD 于BC 的距离AE=_____cm,
ABCD 的面积=_______cm 2.
4.在 □ABCD 中,AC =6、BD =4,则AB 的范围是__ ______.
5.在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 .
E
D
C
B
A
6.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______.
二、判断对错
(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD.()
(2)平行四边形两条对角线的交点到一组对边的距离相等.()
(3)平行四边形的两组对边分别平行且相等.()
(4)平行四边形是轴对称图形.()
三、选择题
1.已知,如图,在□ABCD中,AE⊥BC于E,CF⊥AD于F,则图中全等三角形共有( )
A.3对
B.4对
C.5对
D.6对
四、解答题
1.在平行四边形中,周长等于48,
(1)已知一边长12,求各边的长;
(2)已知AB=2BC,求各边的长;
(3)已知对角线AC、BD交于点O,△AOD与△AOB的周长的差是10,求各边的长。
4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15cm,AD=12cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积.
C
D B
A O
19.1.2 平行四边形的判定(一)
一、填空:
1.如图,在四边形ABCD 中,AC 、BD 相交于点O , (1)若AD=8cm ,AB=4cm ,那么当BC=___ _cm ,CD=___ _cm
时,四边形ABCD 为平行四边形;
(2)若AC=10cm ,BD=8cm ,那么当AO=__ _cm ,DO=__ _cm 时,四边形ABCD 为平行四边形.
2.已知四边形ABCD 中,AD ∥BC ,分别添加下列条件,①AB
∥CD ,②AB =DC ,③AD =BC ,④∠A =∠C ,⑤∠B =∠C ,能使四边形ABCD 成为平行四边形的条件的序号是
.
3.灵活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n 个图形由(n+1)个等边三角形拼成,通过观察,分析发现:
①第4个图形中平行四边形的个数为___ __. ②第8个图形中平行四边形的个数为___ __. 二、解答:
1.平行四边形ABCD 的两条对角线AC,BD 相交于O. (1) 图中有哪些三角形全等? 有哪些相等的线段?
(2) 若平行四边形ABCD 的周长是20cm,△AOD 的周长比△ABO 的周长大6cm.求AB,AD 的长.
2.已知:如图, ABCD 中,点E 、F 分别在CD 、AB 上,DF ∥BE ,EF 交BD 于点O . 求证:EO=OF .
O
D
C
B
A
3.已知:如图,△ABC ,BD 平分∠ABC ,DE ∥BC ,EF ∥BC ,求证:BE=CF.
F E
D
C
B
A
4.如图,在□ABCD 中,对角线AC 与BD 交于点O ,已知点E 、F 分别为AO 、OC 的中点,•证明:四边形BFDE 是平行四边形.
19.1.2平行四边形的判定(二)
一、填空:
1.在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有_______对.二、选择
1.在下列给出的条件中,能判定四边形ABCD为平行四边形的是().(A)AB∥CD,AD=BC; (B)∠A=∠B,∠C=∠D;
(C)AB=CD,AD=BC; (D)AB=AD,CB=CD
2.平行四边形ABCD的周长32,5AB=3BC,则对角线AC的取值范围为( )
A. 6<AC<10
B. 6<AC<16
C. 10<AC<16
D. 4<AC<16
3. 能够判定一个四边形是平行四边形的条件是 ( )
A. 一组对角相等;
B. 两条对角线互相平分
C. 两条对角线互相垂直
D. 一对邻角的和为180°
4.A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD;这
四个条件中任选两个,能使四边形ABCD成为平行四边形的选法共有()
(A)3种(B)4种(C)5种(D)6种
三、解答题:
1.已知:如图,AC∥ED,点B在AC上,且AB=ED=BC,找出图中的平行四边形,并说明理由.
E D
C
B
A
2.已知:如图,在ABCD中,AE、CF分别是∠DAB、∠BCD的平分线.求证:四边形AFCE是平行四边形.
F E
D C
B
A
3.延长△ABC的中线AD至E,使DE=AD.求证:四边形ABEC是平行四边形.13、(江苏南通)如图,菱形公园内有四个景点,请你用两种不同的方法,按下列要求设
计成四个部分:⑴用直线分割;⑵每个部分内各有一个景点;⑶各部分的面积相等。
(可用铅笔画,只要求画图正确,不写画法)
19.2.1 矩形(一)
一、填空:
1、矩形的定义中有两个条件:一是 ________ ,二是 .
2、已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为 、 、 、 .
3、已知矩形的一条对角线长为10cm ,两条对角线的一个交角为120°,则矩形的边长分别为 cm , cm , cm , cm .
二、选择:
1、下列说法错误的是( ).
(A )矩形的对角线互相平分 (B )矩形的对角线相等
(C )有一个角是直角的四边形是矩形 (D )有一个角是直角的平行四边形叫做矩形 2、矩形的对角线把矩形分成的三角形中全等三角形一共有( ). (A )2对 (B )4对 (C )6对 (D )8对
3、矩形的两条对角线的夹角为60°,对角线长为15cm ,较短边的长为( ).
(A)12cm (B)10cm (C)7.5cm (D)5cm
三、解答题
1、已知:如图,O 是矩形ABCD 对角线的交点,AE 平分∠BAD ,∠AOD=120°, 求∠AEO 的度数.
O
E
D
C B A
2.在直角三角形ABC 中,∠C=90°,AB=2AC ,求∠A 、∠B 的度数.
3.已知:矩形ABCD 中,BC=2AB ,E 是BC 的中点,求证:EA ⊥ED .
4.如图,矩形ABCD 中,AB=2BC ,且AB=AE ,求证:∠CBE 的度数.
E
D
C
B
A
F
E D
C
B
A
19.2.1 矩形(二)
一、选择:
1.下列说法正确的是( ).
(A )有一组对角是直角的四边形一定是矩形; (B )有一组邻角是直角的四边形一定是矩形; (C )对角线互相平分的四边形是矩形; (D )对角互补的平行四边形是矩形
2、 一矩形两对角线之间的夹角有一个是600, 且这角所对的边长5cm,则对角线长为( ) A. 5 cm B. 10cm C. 52cm D. 无法确定
3、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).
A .测量对角线是否相互平分
B .测量两组对边是否分别相等
C .测量一组对角是否都为直角
D .测量其中三角形是否都为直角
二、填空题
1.工人师傅做铝合金窗框分下面三个步骤进行: ⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB =CD ,EF =GH ; ⑵ 摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ; ⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: ;
三、解答题
1.如图3,一张矩形纸片,要折叠出一个最大的正方形, 小明把矩形的一个角沿折痕AE 翻折上去,使AB 和AD 边上的AF 重合,则四边形ABEF 就是一个最大的正方形,你能说出他使用的判定方法吗?
2.已知:如图,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得DE=CD.连结AE,BE,求证:四边形ACBE为矩形.
E
D
C B
A
3.、如图,EB=EC,EA=ED,AD=BC, ∠AEB=∠DEC,证明:四边形ABCD是矩形.
4、.如图,有两条笔直的公路(BD和EF,其宽度不计)从一块矩形的土地ABCD中穿过,
已知EF是BD的垂直平分线,有BD=400m,EF=300 m,求这块矩形土地ABCD的面积。
O
F
E
D C
A
A
D C B H
E F G B C
D
A E P F (图2) D C
B A 19.2.2 菱形(一)
一、填空:
1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 . 2.如图1所示,将两条等宽的纸条重叠在一起,则四边形ABCD 是______________,若AB=8,∠ABC=600,则AC=______________,BD=______________。
(图1) (图3)
3、(贵阳实验区).如图2,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是_______.
4、已知菱形的两条对角线分别是6cm 和8cm ,则菱形的周长是 .面积是
5、菱形ABCD 中,∠D ∶∠A=3∶1,菱形的周长为 8cm ,则菱形的高是 .
二、选择
1、如图3,过矩形ABCD 的四个顶点作对角线AC 、BD 的平行线,分别相交于E 、F 、G 、H 四点,则四边形EFGH 为( )
A.平行四边形 B 、矩形 C 、菱形 D. 正方形 2.
ABCD 的对角线AC 、BD 相交于点O ,下列条件中,不能判定
ABCD 是菱形的是( )
A .A
B =AD B .A
C ⊥B
D C .∠A =∠D D .CA 平分∠BCD
三、解答:
1、已知:如图,菱形ABCD 中,E 、F 分别是CB 、CD 上的点,且BE=DF . 求证:∠AEF=∠AFE .
2、已知:如图ABC ∆中,AD 是BAC ∠的角平分线,DE ∥AC ,DF ∥AB 。
证明:四边形AEDF 是菱形。
对于这道,小林是这样证明明的。
证明:因为AD 平分BAC ∠,所以∠1=∠2, 因为DE ∥AC ,所以∠2=∠3 因为DF ∥AB ,所以∠1=∠4 又AD=AD,所以△AED ≌△AFD.
所以AE =AF,DE=DF. 所以四边形AEDF 是菱形. 老师说小林的解题过程有错误,你能看出来吗?
⑴请你帮小林指出他的错误是什么?(先在解答过程中划出来,再说明他错误的原因) ⑵请你帮小林做出正确的解答。
F E
D C
B A
H G
F
E
D
C
B
A
19.2.2 菱形(二)
一、填空:
(1)对角线互相平分的四边形是;
(2)对角线互相垂直平分的四边形是________;
(3)对角线相等且互相平分的四边形是________;
(4)两组对边分别平行,且对角线的四边形是菱形.
2、如图1,□ABCD中,AE、CF分别是∠BAD和∠BCD的角平分线,根据现有的图形,
请添加一个条件,使四边形AECF为菱形,则添加的一个条件可以是(只需写出一个即可,图中不能再添加别的“点”和“线”).
(1) (2) (3)
3、如图2,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的
一个动点,则PE+PB的最小值是.
二、选择题
1.下列条件中,能判定四边形是菱形的是().
(A)两条对角线相等(B)两条对角线互相垂直
(C)两条对角线相等且互相垂直(D)两条对角线互相垂直平分
2.如图3所示,过四边形ABCD的各顶点作对角线BD、AC的平行线围成四边形EFGH,若四
边形EFGH是菱形,则原四边形ABCD一定是( )
A.菱形
B.平行四边形
C.矩形
D.对角线相等的四边形
三、解答题
1、如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,
求证:四边形OCED是菱形。
2、已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.
N M G
F
E
D
C
B
A
3、如图,已知AD是Rt△ABC斜边BC上的高,∠B的平分线交AD于M交AC于E,∠DAC
的平分线交CD于N.求证:四边形AMNE是菱形.
E
D
C
B A
19.2.3 正方形
一、填空:
1.正方形的四条边____ __,四个角___ ____,两条对角线____ ____.
2.如图1,E 为正方形ABCD 内一点,且△EBC 是等边三角形。
则∠EAD 与∠ECD 的度数分别为 、和 .
(1) (2)
二、选择题
1、如图2,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点C•顺时针方向旋转90°得到△DCF ,连接EF .若∠BEC=60°,则∠EFD 的度数为( ) (A )10° (B )15° (C )20° (D )25° 2. 用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)菱形;(4)正方形;(5)等腰三角形.一定可以拼成的图形是( ) (A )(1)(2)(5) (B )(2)(3)(5) (C )(1)(4)(5) (D )(1)(2)(3) 三、解答题:
1.已知:如图,点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且DE=BF .求证:EA ⊥AF .
2.已知:如图,△ABC 中,∠C=90°,CD 平分∠ACB ,DE ⊥BC 于E ,DF ⊥AC 于F . 求证:四边形CFDE 是正方形.
3.已知:如图,正方形ABCD中,E为BC上一点,AF平分∠DAE交CD于F,求证:AE=BE+DF.
4、已知:如图,四边形ABCD为正方形,E、F分别为CD、CB延长线上的点,且DE=
BF.求证:∠AFE=∠AEF.
F
B A
C
D
E
19.2.4三角形的中位线
一、填空:
1.如图1,A 、B 两点被池塘隔开,在AB 外选一点C ,连结AC 和BC ,并分别找出AC 和BC 的中点M 、N ,如果测得MN=20 m ,那么A 、B 两点的距离是 m ,理由是 .
(1) (2) (3) 2.如图2,△ABC 中,D 、E 、F 分别是AB 、AC 、BC 的中点. (1)若EF=5cm ,则AB= cm ;若BC=9cm ,则DE= cm ; (2)中线AF 与DE 中位线有什么特殊的关系?证明你的猜想.
3.一个三角形的周长是135cm ,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是 cm .
4.已知:△ABC 中,点D 、E 、F 分别是△ABC 三边的中点,如果△DEF 的周长是12cm ,那么△ABC 的周长是 cm .
5、 顺次连接一个任意四边形四边的中点,得到一个四边形是 . 二、选择题
1、小明爸爸的风筝厂准备购进甲、乙两种规格相同但颜色不同的布料生产一批形状如图3所示的风筝,点E ,F ,G ,H 分别是四边形ABCD 各边的中点.其中阴影部分用甲布料,其余部分用乙布料(裁剪两种布料时,均不计余料).若生产这批风筝需要甲布料30匹,那么需要乙布料( )
A .15匹
B .20匹
C .30匹
D .60匹 2、(湖南郴州市)在一个四边形ABCD 中,依次连结各边中点的四边形是菱形,则对角线AC 与BD 需要满足条件( )
A . 垂直
B . 相等
C .垂直且相等
D . 不再需要条件 三、解答题:
1.已知:如图,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形.
A E H D
F
G B C
2.已知:三角形的各边分别为8cm 、10cm和12cm ,求连结各边中点所成三角形的周长.
3.如图,四边形ABCD中,AC=6,BD=8且AC⊥BD顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1;再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2……如此进行下去得到四边形A n B n C n D n .
(1)证明:四边形A1B1C1D1是矩形;(6分)
(2)写出四边形A1B1C1D1和四边形A2B2C2D2的面积;(2分)
(3)求四边形A5B5C5D5的周长.(4分)
19.3 梯形(一)
一、填空:
1、在梯形ABCD 中,已知AD ∥BC ,∠B=50°,∠C=80°,AD=a ,BC=b ,,则DC= .
2、直角梯形的高为6cm ,有一个角是30°,则这个梯形的两腰分别是 和 .
3、等腰梯形 ABCD 中,AB ∥DC ,A C 平分∠DAB ,∠DAB=60°,若梯形周长为8cm ,则AD= .
4、已知直角梯形的两腰之比是1∶2,那么该梯形的最大角为 ,最小角为 .
二、选择题:
1、.以线段a =16,b =13为梯形的两底,c =10,d =6为腰画梯形,这样的梯形( ) A.只能画出一个 B.能画出2个 C.能画出无数个 D.不能画出
2、如图1,梯形ABCD 中,AD ∥BC ,设AC ,BD 交于O 点,则图中共有对面积相等的三角形.( ) A.2 B.3 C.4 D.5
图1 图2
3、如图2,在直角梯形ABCD 中,AB =4 cm,AD =4.5 cm,∠C =30°,则DC = cm ,BC = cm ( )
A.8,43
B.8 cm,(4.5+43) cm
C.4(3+1)+2
1
,8 D.8 cm,(43+4) cm
3.等腰直角三角形各边中点连线围成的多边形是( ) A.平行四边形 B.等腰三角形 C.等腰直角三角形 D.等边三角形
三、解答题
1、已知:如图,在等腰梯形ABCD 中,AB ∥CD ,AB >CD ,AD=BC ,BD 平分∠ABC ,∠A=60°,梯形周长是20cm ,求梯形的各边的长.
D C
B
A
2、已知等腰梯形的锐角等于60°它的两底分别为15cm和49cm,求它的腰长和面积.
3、已知,如图,梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE,求证:AD+BC=DC.(延
长DE交CB延长线于点F,由全等可得结论)
19.3 梯形(二)
一、选择题:
1.下列说法中正确的是().
(A)等腰梯形两底角相等;
(B)等腰梯形的一组对边相等且平行;
(C)等腰梯形同一底上的两个角都等于90度;
(D)等腰梯形的四个内角中不可能有直角
2、如图1,等腰梯形ABCD中,AD∥BC,AD=5,AB=6,BC=8,且AB∥DE,△DEC的周长
是()
A、3
B、12
C、15
D、19
E D
C
B A D(B)
E C
B
A
(1) (2)
3、下面命题错误
..的是()
A、等腰梯形的两底平行且相等
B、等腰梯形的两条对角线相等
C、等腰梯形在同一底上的两个角相等
D、等腰梯形是轴对称图形
二、填空题
1.等腰梯形一底角60 ,上、下底分别为8,18,则它的腰长为______,高为______,面积是_________.
2.梯形两条对角线分别为15,20,高为12,则此梯形面积为_________.
3.马慧同学取4根长分别为1、2、3、4的木棒搭建一个梯形,则此梯形的面积等于
_________。
4.如图2,梯形纸片ABCD,∠B=60°,AD∥BC,AB=AD=2,BC=6.将纸片折叠,使点B与点D重合,折痕为AE,则CE=.
5.已知等腰梯形的周长25cm,上、下底分别为7cm、8cm,则腰长为_______cm.
三、解答题:
1.已知等腰梯形中的腰和上底相等,且一条对角线和一腰垂直,求这个梯形的各个角的度数.
2.已知,如图,E 、F 分别是梯形ABCD 的两底AD 、BC 的中点,且EF ⊥BC , 求证:梯形ABCD 是等腰梯形.
F E
D
C
B
A
3.如图,梯形ABCD 中,AB ∥CD ,AD=BC ,CE ⊥AB 于E ,若AC ⊥BD 于G . 求证:CE=
2
1
(AB+CD ). G
E D
C
B
A
5、某生活小区的居民筹集资金1600元,计划在一块上、下底分别为10m ,20m 的梯形空地上种植花木(如图)
(1)他们在△AMD 和BMC 地带上种植太阳花,单价为8元/m 2,当△AMD 地带种满花后(图中阴影部分),共花了160元,请计算种满△BMC 地带所需的费用
.
(2)若其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m 2和10元/m 2,应选择种哪种花木,刚好用完所筹集的资金?(3)若梯形ABCD 为等腰梯形,面积不变(如图10-2),请你设计一种花坛图案,即在梯形内找到一点P ,使得△APB ≌△DPC 且S △APD = S △BPC ,并说出你的理由.
2010D
C
B A。