2019-2020北京四中初一上册期中考试试卷数学(含解析).doc

合集下载

2019-2020学年北京四中七年级(上)期中数学试卷 解析版

2019-2020学年北京四中七年级(上)期中数学试卷  解析版

2019-2020学年北京四中七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)﹣2的倒数是()A.﹣2B.﹣C.D.22.(3分)举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×1043.(3分)下列运算正确的是()A.5a2﹣3a2=2B.2x2+3x2=5x4C.3a+2b=5ab D.7ab﹣6ba=ab4.(3分)有理数a,b在数轴上的对应位置如图,则下列结论正确的是()A.ab>0B.<0C.a+b<0D.a﹣b<05.(3分)用代数式表示“m的2倍与n平方的差”,正确的是()A.(2m﹣n)2B.2(m﹣n)2C.2m﹣n2D.(m﹣2n)2 6.(3分)下列说法正确的是()A.平方等于本身的数是0和1B.﹣a一定是负数C.一个有理数不是正数就是负数D.一个数的绝对值一定是正数7.(3分)下列关于单项式﹣2x2y的说法中,正确的是()A.系数为2,次数为2B.系数为2,次数为3C.系数为﹣2,次数为2D.系数为﹣2,次数为38.(3分)方程x﹣4=3x+5移项后正确的是()A.x+3x=5+4B.x﹣3x=﹣4+5C.x﹣3x=5﹣4D.x﹣3x=5+4 9.(3分)下列各式中去括号正确的是()A.﹣(﹣a﹣b)=a﹣bB.a2+2(a﹣2b)=a2+2a﹣2bC.5x﹣(x﹣1)=5x﹣x+1D.3x2﹣(x2﹣y2)=3x2﹣x2﹣y210.(3分)如图是一个圆,一只电子跳蚤在标有数字的五个点上跳跃.若它停在奇数点上时,则一次沿顺时针方向跳两个点;若停在偶数点上时,则下一次沿逆时针方向跳一个点.若这只跳蚤从1这点开始跳,则经过2019次跳后它所停在的点对应的数为()A.1B.2C.4D.5二、填空题(每小题2分,共16分)11.(2分)0.03095精确到千分位的近似值是.12.(2分)如图是我市12月份某一天的天气预报,该天的温差是.13.(2分)比较大小:.14.(2分)已知x=﹣3是关于x的方程kx﹣2k=5的解,那么k的值为.15.(2分)已知有理数a,b,c在数轴上的位置如图所示,其中|c|<|a|<|b|,化简:|a|+2|a ﹣b|﹣|c﹣2a|=.16.(2分)若关于x的多项式x4﹣ax3+x3﹣5x2﹣bx﹣3x﹣1不存在含x的一次项和三次项,则a+b=.17.(2分)请阅读一小段约翰•斯特劳斯的作品,根据乐谱中的信息确定最后一个音符的时间长应为.18.(2分)小宇计划在某外卖网站点如下表所示的菜品,已知每份订单的配送费为3元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元,如果小宇在购买下表中所有菜品时,采取适当的下订单方式,那么他点餐总费用最低可为元.菜品单价(含包装费)数量水煮牛肉(小)30元1醋溜土豆丝(小)12元1豉汁排骨(小)30元1手撕包菜(小)12元1米饭3元2三、解答题19.(16分)计算:(1)(﹣11)+8+(﹣14);(2)8÷(﹣2)﹣(﹣4)×3;(3)(﹣+﹣)×16;(4)﹣12﹣(1﹣)÷3×(﹣)220.(8分)计算:(1)3x2﹣6x﹣x2﹣3+4x﹣2x2﹣1;(2)(5a2+2a﹣1)﹣4(3﹣8a+2a2)21.(8分)解方程:(1)3(2x﹣1)=4x+3;(2)﹣=122.(5分)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.23.(4分)工厂加工一批比赛用乒乓球,按国际比赛规定要求乒乓球的直径标准为40mm,但是实际生产的乒乓球直径可能会有一些偏差,以下是该工厂加工的20个乒乓球的直径检验记录:(“+”表示超出标准,“﹣”表示不足标准.)个数1211132偏差/mm﹣0.4﹣0.2﹣0.10+0.3+0.5(1)其中偏差最大的乒乓球直径是;(2)这20个乒乓球平均每个球的直径是多少mm?(3)若误差在“±0.25”以内的球可以作为合格产品,若误差在“±0.15mm”以内的球可以作为良好产品,这些球的合格率是,良好率是.24.(6分)一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)若(m,n)是“相伴数对”,其中m≠0,求;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.25.(7分)在同一直线上的三点A,B,C,若满足点C到另两个点A,B的距离之比是2,则称点C是其余两点的亮点(或暗点).具体地,当点C在线段AB上时,若=2,则称点C是[A,B]的亮点;若=2,则称点C是[B,A]的亮点;当C在线段AB的延长线上时,若=2,称点C是[A,B]的暗点.例如,如图1,数轴上点A,B,C,D分别表示数﹣1,2,1,0.则点C是[A,B]的亮点,又是[A,D]的暗点;点D是[B,A]的亮点,又是[B,C]的暗点(1)如图2,M,N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.[M,N]的亮点表示的数是,[N,M]的亮点表示的数是;[M,N]的暗点表示的数是,[N,M]的暗点表示的数是;(2)如图3,数轴上点A所表示的数为﹣20,点B所表示的数为40.一只电子蚂蚁P 从B出发以2个单位每秒的速度向左运动,设运动时间为t秒.①求当t为何值时,P是[B,A]的暗点;②求当t为何值时,P,A和B三个点中恰有一个点为其余两点的亮点.附加卷26.(7分)古希腊毕达格拉斯学派的数学家常用小石子在沙滩上摆成各种形状来研究各种多边形数,比如:他们研究过图1中的1,3,6,10,由于这些数能够表示成三角形,将其称为三角形数(三边形数);类似的,称图2中的1,4,9,16,这样的数为正方形数(四边形数).(1)请你写出既是三角形数又是正方形数,且大于1的最小正整数为;(2)记第n个k边形数为N(n,k).例如N(1,3)=1,N(2,3)=3,N(2,4)=4.①N(3,3)=,N(n,3)=,N(n,4)=.②通过进一步研究发现N(n,5)=n2﹣n,N(n,6)=2n2﹣n,请你推测N(n,k)(k≥3)的表达式,并由此计算N(10,24)的值.27.(4分)对于三个数a,b,c,用M{a,b,c}表示a,b,c这三个数的平均数,用min{a,b,c}表示a,b,c这三个数中最小的数,如:M{﹣1,2,3}==,min{﹣1,2,3}=﹣1.(1)若M{x﹣1,﹣5,2x+3}=(1+3x),求x的值;(2)已知M{2x,﹣x+2,3},min{﹣1,0,4x+1},是否存在一个x值,使得2×M{2x,﹣x+2,3}=min{﹣1,0,4x+1}.若存在,请求出x的值;若不存在,请说明理由.28.(3分)如图,若点A、B、C、D在数轴上表示的有理数分别为a,b,c,d,则|a﹣2x|+|2x+b|+|2x ﹣c|+|2x+d|的最小值为.(用含有a,b,c,d的式子表示结果)29.(6分)阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的k个数:x1,x2,x3,…,x k,称为数列A k:x1,x2,x3,x k,其中k为整数且k≥3.定义V(A k)=|x1﹣x2|+|x2﹣x3|+…+|x k﹣1﹣x k|.例如,若数列A5:1,2,3,4,5,则V(A5)=|1﹣2|+|2﹣3|+|3﹣4|+|4﹣5|=4.根据以上材料,回答下列问题:(1)已知数列A3:3,5,﹣2,求V(A3);(2)已知数列A4:x1,x2,x3,x4,其中x1,x2,x3,x4,为4个互不相等的整数,且x1=3,x4=7,V(A4)=4,直接写出满足条件的数列A4;(3)已知数列A5:x1,x2,x3,x4,x5中5个数均为非负数,且x1+x2+x3+x4+x5=25.直接写出V(A5)的最大值和最小值,并说明理由.2019-2020学年北京四中七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)﹣2的倒数是()A.﹣2B.﹣C.D.2【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.【解答】解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.2.(3分)举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于等于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:55000这个数用科学记数法可表示为5.5×104,故选:D.3.(3分)下列运算正确的是()A.5a2﹣3a2=2B.2x2+3x2=5x4C.3a+2b=5ab D.7ab﹣6ba=ab【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、5a2﹣3a2=2a的平方,故A错误;B、2x2+3x2=5x2,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.4.(3分)有理数a,b在数轴上的对应位置如图,则下列结论正确的是()A.ab>0B.<0C.a+b<0D.a﹣b<0【分析】根据所给的图形判断出a>0,b<0,|a|>|b|,再对每一选项进行分析,即可得出答案.【解答】解:根据图形可知:a>0,b<0,|a|>|b|,则ab<0,<0,a+b>0,a﹣b>0,下列结论正确的是B;故选:B.5.(3分)用代数式表示“m的2倍与n平方的差”,正确的是()A.(2m﹣n)2B.2(m﹣n)2C.2m﹣n2D.(m﹣2n)2【分析】根据题意可以用代数式表示m的2倍与n平方的差.【解答】解:用代数式表示“m的2倍与n平方的差”是:2m﹣n2,故选:C.6.(3分)下列说法正确的是()A.平方等于本身的数是0和1B.﹣a一定是负数C.一个有理数不是正数就是负数D.一个数的绝对值一定是正数【分析】根据有理数的乘方的运算方法,有理数的分类,正数和负数的含义和判断,以及绝对值的含义和求法,逐项判断即可.【解答】解:∵平方等于本身的数是0和1,∴选项A符合题意;∵﹣a可能是负数,也可能是正数或0,∴选项B不符合题意;∵一个有理数有可能是正数、负数或0,∴选项C不符合题意;∵一个数的绝对值是正数或0,∴选项D不符合题意.故选:A.7.(3分)下列关于单项式﹣2x2y的说法中,正确的是()A.系数为2,次数为2B.系数为2,次数为3C.系数为﹣2,次数为2D.系数为﹣2,次数为3【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而分析即可.【解答】解:单项式﹣2x2y的系数为﹣2,次数为3.故选:D.8.(3分)方程x﹣4=3x+5移项后正确的是()A.x+3x=5+4B.x﹣3x=﹣4+5C.x﹣3x=5﹣4D.x﹣3x=5+4【分析】把3x移到等号左边,﹣4移到等号右边,注意移项要变号.【解答】解:∵x﹣4=3x+5,∴x﹣3x=5+4,故选:D.9.(3分)下列各式中去括号正确的是()A.﹣(﹣a﹣b)=a﹣bB.a2+2(a﹣2b)=a2+2a﹣2bC.5x﹣(x﹣1)=5x﹣x+1D.3x2﹣(x2﹣y2)=3x2﹣x2﹣y2【分析】根据各个选项中的式子,进行变形,即可判断是否正确,本题得以解决.【解答】解:﹣(﹣a﹣b)=a+b,故选项A错误;a2+2(a﹣2b)=a2+2a﹣4b,故选项B错误;5x﹣(x﹣1)=5x﹣x+1,故选项C正确;3x2﹣(x2﹣y2)=3x2﹣x2+y2,故选项D错误;故选:C.10.(3分)如图是一个圆,一只电子跳蚤在标有数字的五个点上跳跃.若它停在奇数点上时,则一次沿顺时针方向跳两个点;若停在偶数点上时,则下一次沿逆时针方向跳一个点.若这只跳蚤从1这点开始跳,则经过2019次跳后它所停在的点对应的数为()A.1B.2C.4D.5【分析】根据题意,分析可得电子跳蚤的跳动规律为3﹣5﹣2﹣1,周期为4;又由2019=4×504+3,经过2019次跳后它停在的点所对应的数为2.【解答】解:由1起跳,1是奇数,沿顺时针下一次能跳2个点,落在3上.由3起跳,3是奇数,沿顺时针下一次能跳2个点,落在5上由5起跳,5是奇数,沿顺时针下一次能跳2个点,落在2上由2起跳,2是偶数,沿逆时针下一次只能跳一个点,落在1上.3﹣5﹣2﹣1﹣3,周期为4;又由2019=4×504+3,∴经过2019次跳后它停在的点所对应的数为2.故选:B.二、填空题(每小题2分,共16分)11.(2分)0.03095精确到千分位的近似值是0.031.【分析】精确到千分位就是对千分位以后的数字进行四舍五入,据此即可求解.【解答】解:0.03095精确到千分位的近似值是0.031.故答案是:0.031.12.(2分)如图是我市12月份某一天的天气预报,该天的温差是7℃.【分析】用最高气温减去最低气温列出算式,然后再依据有理数的减法法则计算即可.【解答】解:该天的温差为5﹣(﹣2)=5+2=7(℃),故答案为:7℃.13.(2分)比较大小:<.【分析】先比较出两个数的绝对值,再根据两个负数比较,绝对值大的反而小,即可得出答案.【解答】解:∵>,∴<.故答案为:<.14.(2分)已知x=﹣3是关于x的方程kx﹣2k=5的解,那么k的值为﹣1.【分析】根据方程解的定义,将方程的解代入方程,就可得一个关于字母k的一元一次方程,从而可求出k的值.【解答】解:把x=﹣3代入,得﹣3k﹣2k=5.解得k=﹣1.故答案是:﹣1.15.(2分)已知有理数a,b,c在数轴上的位置如图所示,其中|c|<|a|<|b|,化简:|a|+2|a﹣b|﹣|c﹣2a|=﹣a+2b﹣c.【分析】先判断绝对值符号里面式子的正负,然后去绝对值即可.【解答】解:由数轴可得:a<0,b>0,c<0,∵|c|<|a|<|b|,∴a﹣b<0,c﹣2a>0,则原式=﹣a﹣2a+2b﹣c+2a=﹣a+2b﹣c.故答案为:﹣a+2b﹣c.16.(2分)若关于x的多项式x4﹣ax3+x3﹣5x2﹣bx﹣3x﹣1不存在含x的一次项和三次项,则a+b=﹣2.【分析】先确定三次项及一次项的系数,再令其为0即可得到a、b的值,再根据代数式求值,可得答案.【解答】解:x4﹣ax3+x3﹣5x2﹣bx﹣3x﹣1=x4+(1﹣a)x3﹣5x2﹣(b+3)x﹣1,∵多项式x4﹣ax3+x3﹣5x2﹣bx﹣3x﹣1不存在含x的一次项和三次项,∴1﹣a=0,b+3=0,解得a=1,b=﹣3,∴a+b=1﹣3=﹣2.故答案为:﹣2.17.(2分)请阅读一小段约翰•斯特劳斯的作品,根据乐谱中的信息确定最后一个音符的时间长应为.【分析】观察图形不难发现,音符数字的和为,然后列式计算即可得解.【解答】解:依题意得:﹣=,故答案为:.18.(2分)小宇计划在某外卖网站点如下表所示的菜品,已知每份订单的配送费为3元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元,如果小宇在购买下表中所有菜品时,采取适当的下订单方式,那么他点餐总费用最低可为54元.菜品单价(含包装费)数量水煮牛肉(小)30元1醋溜土豆丝(小)12元1豉汁排骨(小)30元1手撕包菜(小)12元1米饭3元2【分析】根据满30元减12元,满60元减30元,满100元减45元,即可得到结论.【解答】解:小宇应采取的订单方式是60一份,30一份,所以点餐总费用最低可为60﹣30+3+30﹣12+3=54元,答:他点餐总费用最低可为54元.故答案为:54.三、解答题19.(16分)计算:(1)(﹣11)+8+(﹣14);(2)8÷(﹣2)﹣(﹣4)×3;(3)(﹣+﹣)×16;(4)﹣12﹣(1﹣)÷3×(﹣)2【分析】(1)原式利用加法法则计算即可求出值;(2)原式先计算乘除运算,再计算加减运算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=(﹣11)+(﹣14)+8=(﹣25)+8=﹣17;(2)原式=﹣4﹣(﹣12)=﹣4+12=8;(3)原式=﹣×16+×16﹣×16=﹣12+14﹣8=﹣6;(4)原式=﹣1﹣××=﹣1﹣=﹣1.20.(8分)计算:(1)3x2﹣6x﹣x2﹣3+4x﹣2x2﹣1;(2)(5a2+2a﹣1)﹣4(3﹣8a+2a2)【分析】(1)首先找出同类项,再合并即可;(2)先去括号,再合并同类项即可.【解答】解:(1)原式=3x2﹣x2﹣2x2﹣6x+4x﹣3﹣1,=﹣2x﹣4;(2)原式=5a2+2a﹣1﹣12+32a﹣8a2,=﹣3a2+34a﹣13.21.(8分)解方程:(1)3(2x﹣1)=4x+3;(2)﹣=1【分析】(1)方程去括号,移项合并,把x系数化为,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6x﹣3=4x+3,移项合并得:2x=6,解得:x=3;(2)去分母得:2x﹣5﹣9x﹣3=6,移项合并得:﹣7x=14,解得:x=﹣2.22.(5分)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.【分析】先根据整式的加减运算法则把原式化简,再把x=2,y=代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:x﹣2(x﹣y2)+(﹣x+y2),=x﹣2x+y2﹣x+y2,=﹣3x+y2,当x=﹣2,时,原式=﹣3×(﹣2)+()2=6+=6.23.(4分)工厂加工一批比赛用乒乓球,按国际比赛规定要求乒乓球的直径标准为40mm,但是实际生产的乒乓球直径可能会有一些偏差,以下是该工厂加工的20个乒乓球的直径检验记录:(“+”表示超出标准,“﹣”表示不足标准.)个数1211132偏差/mm﹣0.4﹣0.2﹣0.10+0.3+0.5(1)其中偏差最大的乒乓球直径是40.5mm;(2)这20个乒乓球平均每个球的直径是多少mm?(3)若误差在“±0.25”以内的球可以作为合格产品,若误差在“±0.15mm”以内的球可以作为良好产品,这些球的合格率是70%,良好率是60%.【分析】(1)根据题意列式计算即可;(2)根据平均数的定义即可得到结论;(3)根据误差在“±0.25”以内的球可以作为合格产品,若误差在“±0.15mm”以内的球可以作为良好产品分别占总数的百分比即可得到结论.【解答】解:(1)其中偏差最大的乒乓球直径是40mm+0.5mm=40.5mm,故答案为:40.5mm;(2)这20个乒乓球平均每个球的直径是40+(1×(﹣0.4)+2×(﹣0.2)+1×(﹣0.1)+11×0+3×0.3+2×0.5)=40.05mm;(3)这些球的合格率是×100%=70%,良好率是×100%=60%,故答案为:70%,60%.24.(6分)一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)若(m,n)是“相伴数对”,其中m≠0,求;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.【分析】(1)结合题中所给的定义将(1,b)代入式子求解即可;(2)由定义知+=,整理得9m+4n=0,据此进一步求解可得;(3)原式去括号、合并同类项、整理得出原式=﹣﹣2,将(2)中9m+4n=0代入可得.【解答】解:(1)将a=1,代入有,+=,化简求得:b=﹣;(2)根据题意,得:+=,则15m+10n=6m+6n,∴9m+4n=0,9m=﹣4n,=﹣;(3)由(2)知9m+4n=0,则原式=m﹣n﹣4m+2(3n﹣1)=m﹣n﹣4m+6n﹣2=﹣3m﹣n﹣2=﹣﹣2=﹣2.25.(7分)在同一直线上的三点A,B,C,若满足点C到另两个点A,B的距离之比是2,则称点C是其余两点的亮点(或暗点).具体地,当点C在线段AB上时,若=2,则称点C是[A,B]的亮点;若=2,则称点C是[B,A]的亮点;当C在线段AB的延长线上时,若=2,称点C是[A,B]的暗点.例如,如图1,数轴上点A,B,C,D分别表示数﹣1,2,1,0.则点C是[A,B]的亮点,又是[A,D]的暗点;点D是[B,A]的亮点,又是[B,C]的暗点(1)如图2,M,N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.[M,N]的亮点表示的数是2,[N,M]的亮点表示的数是0;[M,N]的暗点表示的数是10,[N,M]的暗点表示的数是﹣8;(2)如图3,数轴上点A所表示的数为﹣20,点B所表示的数为40.一只电子蚂蚁P 从B出发以2个单位每秒的速度向左运动,设运动时间为t秒.①求当t为何值时,P是[B,A]的暗点;②求当t为何值时,P,A和B三个点中恰有一个点为其余两点的亮点.【分析】(1)设其亮点或暗点表示的未知数,再根据定义列出方程;(2)根据新定义列出进行解答便可.【解答】解:(1)设[M,N]的亮点表示的数是x,根据定义有,解得x=2;设[N,M]的亮点表示的数是y,根据定义有,解得y=0;设[M,N]的暗点表示的数是z,根据定义有,解得z=10;设[N,M]的暗点表示的数是k,根据定义有,解得k=﹣8;故答案为:2;0;10;﹣8.(2)①当P为[B,A]暗点时,P在BA延长线上且PB=2P A=120,t=120÷2=60秒②P为[A,B]亮点时,P A=2PB,40﹣2t﹣(﹣20)=2×2t,t=10;P为[B,A]亮点时,2P A=PB,2[40﹣2t﹣(﹣20)]=2t,t=20;A为[B,P]亮点时,AB=2AP,60=2[﹣20﹣(40﹣2t)],t=45;A为[P,B]亮点时,2AB=AP,120=﹣20﹣(40﹣2t),t=90;综上,t=10或20或45或90.附加卷26.(7分)古希腊毕达格拉斯学派的数学家常用小石子在沙滩上摆成各种形状来研究各种多边形数,比如:他们研究过图1中的1,3,6,10,由于这些数能够表示成三角形,将其称为三角形数(三边形数);类似的,称图2中的1,4,9,16,这样的数为正方形数(四边形数).(1)请你写出既是三角形数又是正方形数,且大于1的最小正整数为36;(2)记第n个k边形数为N(n,k).例如N(1,3)=1,N(2,3)=3,N(2,4)=4.①N(3,3)=6,N(n,3)=n(n+1),N(n,4)=n2.②通过进一步研究发现N(n,5)=n2﹣n,N(n,6)=2n2﹣n,请你推测N(n,k)(k≥3)的表达式,并由此计算N(10,24)的值.【分析】(1)由题意正方形数是n2,探究出三角形数是平方数是最小的值即可解决问题.(2)①探究规律,利用规律解决问题即可.②提供公式变形,探究规律解决问题即可.【解答】解:(1)由题意第8个图的三角形数为×8(8+1)=36,∴既是三角形数又是正方形数,且大于1的最小正整数为36,故答案为36.(2)①N(3,3)=6,N(n,3)=n(n+1),N(n,4)=n2,故答案为6,n(n+1),n2.②∵N(n,3)===,N(n,4)=n2==,N(n,5)==,N(n,6)=2n2﹣n==,由此推断出N(n,k)=(k≥3),∴N(10,24)==1000.27.(4分)对于三个数a,b,c,用M{a,b,c}表示a,b,c这三个数的平均数,用min{a,b,c}表示a,b,c这三个数中最小的数,如:M{﹣1,2,3}==,min{﹣1,2,3}=﹣1.(1)若M{x﹣1,﹣5,2x+3}=(1+3x),求x的值;(2)已知M{2x,﹣x+2,3},min{﹣1,0,4x+1},是否存在一个x值,使得2×M{2x,﹣x+2,3}=min{﹣1,0,4x+1}.若存在,请求出x的值;若不存在,请说明理由.【分析】(1)由M{x﹣1,﹣5,2x+3}==x﹣1,结合题意得x﹣1=(1+3x),解之可得;(2)由M{2x,﹣x+2,3}==,再分4x+1≥﹣1和4x+1<﹣1两种情况分别求解可得.【解答】解:(1)由题意:M{x﹣1,﹣5,2x+3}==x﹣1,∴x﹣1=(1+3x),解得:x=﹣3.(2)由题意:M{2x,﹣x+2,3}==,若4x+1≥﹣1,则2×=﹣1.解得x=﹣.此时4x+1=﹣25<﹣1.与条件矛盾;若4x+1<﹣1,则2×=4x+1.解得x=.此时4x+1=>﹣1.与条件矛盾;∴不存在.28.(3分)如图,若点A、B、C、D在数轴上表示的有理数分别为a,b,c,d,则|a﹣2x|+|2x+b|+|2x ﹣c|+|2x+d|的最小值为﹣a﹣b+c+d.(用含有a,b,c,d的式子表示结果)【分析】先找到b和d的相反数所在位置,可得|a﹣2x|+|2x+b|+|2x﹣c|+|2x+d|取最小值时,2x在﹣d和c之间,依此去绝对值再化简即可求解.【解答】解:如图所示:,当2x在﹣d和c之间时,|a﹣2x|+|2x+b|+|2x﹣c|+|2x+d|有最小值,最小值|a﹣2x|+|2x+b|+|2x﹣c|+|2x+d|=2x﹣a﹣2x﹣b﹣2x+c+2x+d=﹣a﹣b+c+d.故答案为:﹣a﹣b+c+d.29.(6分)阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的k个数:x1,x2,x3,…,x k,称为数列A k:x1,x2,x3,x k,其中k为整数且k≥3.定义V(A k)=|x1﹣x2|+|x2﹣x3|+…+|x k﹣1﹣x k|.例如,若数列A5:1,2,3,4,5,则V(A5)=|1﹣2|+|2﹣3|+|3﹣4|+|4﹣5|=4.根据以上材料,回答下列问题:(1)已知数列A3:3,5,﹣2,求V(A3);(2)已知数列A4:x1,x2,x3,x4,其中x1,x2,x3,x4,为4个互不相等的整数,且x1=3,x4=7,V(A4)=4,直接写出满足条件的数列A4;(3)已知数列A5:x1,x2,x3,x4,x5中5个数均为非负数,且x1+x2+x3+x4+x5=25.直接写出V(A5)的最大值和最小值,并说明理由.【分析】(1)根据定义V(A k)=|x1﹣x2|+|x2﹣x3|+…+|x k﹣1﹣x k|,代入数据即可求出结论;(2)在数轴上标出x1、x4表示的点,利用数形结合可得出x2、x3在3到7之间且x2≤x3,找出符合题意的搭配方式即可;(3)由数列A5:x1,x2,x3,x4,x5中5个数均为非负数,结合V(A k)的定义,即可得出结论.【解答】解:(1)V(A3)=|3﹣5|+|5﹣(﹣2)|=2+7=9;(2)V(A4)=|3﹣x2|+|x2﹣x3|+|x3﹣7|=4可看成3条线段的长度和,如图所示.∵7﹣3=4,∴x2、x3在3到7之间,且x2≤x3.∵x1,x2,x3,x4为4个互不相等的整数,∴数列A4为:3,4,5,7;3,4,6,7;3,5,6,7.(3)∵数列A5:x1,x2,x3,x4,x5中5个数均为非负数,∴当x1=x2=x3=x4=x5=5时,|x1﹣x2|+|x2﹣x3|+|x3﹣x4|+|x4﹣x5|取最小值,最小值为0;当x1=x3=x5=0,x2+x4=25或x1=x2=x4=x5=0,x3=25时,|x1﹣x2|+|x2﹣x3|+|x3﹣x4|+|x4﹣x5|取最大值,最大值为2×25=50.∴V(A5)的最大值为50,最小值为0.。

2019—2020年最新北师大版数学七年级上学期期中考试质量检测及答案解析(试卷).docx

2019—2020年最新北师大版数学七年级上学期期中考试质量检测及答案解析(试卷).docx

第一学期期中考试七年级数学试题一、选择题(共10小题,每小题3分,共30分.) 1.-3的相反数是( )A. -3B. 3C.31 D. 31- 2.在()31-,()21-,22-,()23-这四个数中,最大的数与最小的数的和等于( ) A. 6 B. 8 C. -5 D. 53.点A 在数轴上距离原点3个单位长度,将A 向右移动4个单位长度,再向左移动 7个单位长度,此时A 点所表示的数是( )A. 0B. -6C. 0或-6D. 0或6 4.若()0122=-++b ab ,则()2013b a +的值是( )A.-1B.1C.0D. 1± 5.若A 和B 都是4次多项式,则2A+3B 一定是( ) A .8次多项式 B. 4次多项式 C .次数不高于4次的整式 D. 次数不低于4的整式6.一个长方体从左面看,上面看到的相关数据如下图所示,则其从正面看到的图形面积是( )A. 6B. 8C. 12D. 244从左面看 从上面看 (第6题图) 7.下列说法正确的是( )A. 所有的有理数都能用数轴上的点表示B. 符号不同的两个数互为相反数C. 两数相加,和一定大于任何一个数D. 两数相减,差一定小于被减数8.若1053,115422+-=+-=x x N x x M ,则M 和N 的大小关系是( ) A. N M > B. N M = C. N M < D. 无法确定9.在一条直线上依次有A,B,C 三点,线段AB=3cm ,线段BC=2cm ,那么A ,C 两点间的距离是( )A. 1cmB. 5cmC. 1cm 或5cmD. 无法确定10.已知图1是图2中正方体的表面展开图,其中有五个面内标注了数字,则图2涂有阴影的面在图1中标注的数字是( )A. 2B. 3C. 4D. 52 31 2 3 4 5图1 图2 (第10题图)二、填空题(共8小题,每小3分,共24分.)11. 笔尖在纸上移动能写出字,用数学知识解释就是________________. 12. 若a ,b 互为相反数,c ,d 互为倒数,且m 的绝对值是1,求()m cd b a 2014-+的值是 _________.13. 2013年3月26日,第五届金砖国家峰会在南非德班国际会议中心开幕,在这次峰会上,金砖五国央行签署了1000亿美金外汇储备资金,其中中国拟出410亿美元,数据410亿美元用科学记数法表示为___________美元.14. 若关于a ,b 的多项式()()2222223b mab a b ab a ++---中不含有ab 项,则=m ___. 15. 公园里准备修四条直的走廊,并且在走廊的每个交叉路口处设一个报亭,这样的报亭最多有______个.16. 将三个同样的正方形的一个顶点重合放置,如图所示,那么∠1的度数为_____.1 45° 30° (第16题图)17. 已知21432=++y x ,那么92232-+y x =_________,18.a ,b ,c 三个数在数轴上位置如图所示,且b a =,化简=-+++-++c b c a b a b a ___________.(第18题图) 三、解答题(共6小题,共46分.)19.计算(共4小题,每题3分,共12分)(1) 655.231211+-+- (2)2323264213)()()(-÷-⨯---(3)()121413212012÷+⎪⎭⎫ ⎝⎛--- (4)4125.0411********÷-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯÷⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-20. 先化简,再求值(本题满分6分)()a ab b a a ab b a ----⎪⎭⎫ ⎝⎛++222212212,其中2-=a ,2=b21.(本题满分6分)一个几何体由几个大小相同的小立方块搭成,从上面看这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面,左面看到的几何体的形状图。

2019-2020北京四中初一第一学期数学期中考试题

2019-2020北京四中初一第一学期数学期中考试题

的跨海大桥,全长约 55000 米.将 55000 用科学记数法表示应为( ).
A. 5.5103 B. 55103
C. 0.55105
3. 下列运算正确的是( ).
D. 5.5104
A. 5a2 − 3a2 = 2
B. 2x2 + 3x2 = 5x4
C. 3a + 2b = 5ab
D. 7ab − 6ba = ab

16. 若关于 x 的多项式 x4 − ax3 + x3 − 5x2 − bx − 3x −1不存在含 x 的一次项和三次
项,则 a + b =

17. 请阅读一小段约翰·斯特劳斯的作品,根据乐谱中的信息,确定最后一个音符
的时间长应为

18. 小宇计划在某外卖网站点如下表所示的菜品.已知每份订单的配送费为 3 元,
C. 5x − ( x −1) = 5x − x +1
( ) D. 3x2 − 1 x2 − y2 = 3x2 − 1 x2 − 1 y2
4
44
北京四中 2019—2020 学年度第一学期 期中测验 初一年级(数学学科) 第2页 共 6 页
10. 如图是一个圆,一只电子跳蚤在标有数字的五个点上
跳跃.若它停在奇数点上时,则下一次沿顺时针方向
30 元
1
手撕包菜(小)
12 元
1
米饭
3元
2
北京四中 2019—2020 学年度第一学期 期中测验 初一年级(数学学科) 第3页 共 6 页
三、解答题 19. (每小题 4 分)计算:
(1) (−11) + 8 + (−14) ; (2)8 (−2) − (−4)3 ;

2019-2020学年北京四中七年级(上)期中数学试卷(解析版)

2019-2020学年北京四中七年级(上)期中数学试卷(解析版)

2019-2020学年北京四中七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)﹣2的倒数是()A.﹣2B.﹣C.D.22.(3分)举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×1043.(3分)下列运算正确的是()A.5a2﹣3a2=2B.2x2+3x2=5x4C.3a+2b=5ab D.7ab﹣6ba=ab4.(3分)有理数a,b在数轴上的对应位置如图,则下列结论正确的是()A.ab>0B.<0C.a+b<0D.a﹣b<05.(3分)用代数式表示“m的2倍与n平方的差”,正确的是()A.(2m﹣n)2B.2(m﹣n)2C.2m﹣n2D.(m﹣2n)2 6.(3分)下列说法正确的是()A.平方等于本身的数是0和1B.﹣a一定是负数C.一个有理数不是正数就是负数D.一个数的绝对值一定是正数7.(3分)下列关于单项式﹣2x2y的说法中,正确的是()A.系数为2,次数为2B.系数为2,次数为3C.系数为﹣2,次数为2D.系数为﹣2,次数为38.(3分)方程x﹣4=3x+5移项后正确的是()A.x+3x=5+4B.x﹣3x=﹣4+5C.x﹣3x=5﹣4D.x﹣3x=5+4 9.(3分)下列各式中去括号正确的是()A.﹣(﹣a﹣b)=a﹣bB.a2+2(a﹣2b)=a2+2a﹣2bC.5x﹣(x﹣1)=5x﹣x+1D.3x2﹣(x2﹣y2)=3x2﹣x2﹣y210.(3分)如图是一个圆,一只电子跳蚤在标有数字的五个点上跳跃.若它停在奇数点上时,则一次沿顺时针方向跳两个点;若停在偶数点上时,则下一次沿逆时针方向跳一个点.若这只跳蚤从1这点开始跳,则经过2019次跳后它所停在的点对应的数为()A.1B.2C.4D.5二、填空题(每小题2分,共16分)11.(2分)0.03095精确到千分位的近似值是.12.(2分)如图是我市12月份某一天的天气预报,该天的温差是.13.(2分)比较大小:.14.(2分)已知x=﹣3是关于x的方程kx﹣2k=5的解,那么k的值为.15.(2分)已知有理数a,b,c在数轴上的位置如图所示,其中|c|<|a|<|b|,化简:|a|+2|a ﹣b|﹣|c﹣2a|=.16.(2分)若关于x的多项式x4﹣ax3+x3﹣5x2﹣bx﹣3x﹣1不存在含x的一次项和三次项,则a+b=.17.(2分)请阅读一小段约翰•斯特劳斯的作品,根据乐谱中的信息确定最后一个音符的时间长应为.18.(2分)小宇计划在某外卖网站点如下表所示的菜品,已知每份订单的配送费为3元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元,如果小宇在购买下表中所有菜品时,采取适当的下订单方式,那么他点餐总费用最低可为元.菜品单价(含包装费)数量水煮牛肉(小)30元1醋溜土豆丝(小)12元1豉汁排骨(小)30元1手撕包菜(小)12元1米饭3元2三、解答题19.(16分)计算:(1)(﹣11)+8+(﹣14);(2)8÷(﹣2)﹣(﹣4)×3;(3)(﹣+﹣)×16;(4)﹣12﹣(1﹣)÷3×(﹣)220.(8分)计算:(1)3x2﹣6x﹣x2﹣3+4x﹣2x2﹣1;(2)(5a2+2a﹣1)﹣4(3﹣8a+2a2)21.(8分)解方程:(1)3(2x﹣1)=4x+3;(2)﹣=122.(5分)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.23.(4分)工厂加工一批比赛用乒乓球,按国际比赛规定要求乒乓球的直径标准为40mm,但是实际生产的乒乓球直径可能会有一些偏差,以下是该工厂加工的20个乒乓球的直径检验记录:(“+”表示超出标准,“﹣”表示不足标准.)个数1211132偏差/mm﹣0.4﹣0.2﹣0.10+0.3+0.5(1)其中偏差最大的乒乓球直径是;(2)这20个乒乓球平均每个球的直径是多少mm?(3)若误差在“±0.25”以内的球可以作为合格产品,若误差在“±0.15mm”以内的球可以作为良好产品,这些球的合格率是,良好率是.24.(6分)一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)若(m,n)是“相伴数对”,其中m≠0,求;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.25.(7分)在同一直线上的三点A,B,C,若满足点C到另两个点A,B的距离之比是2,则称点C是其余两点的亮点(或暗点).具体地,当点C在线段AB上时,若=2,则称点C是[A,B]的亮点;若=2,则称点C是[B,A]的亮点;当C在线段AB的延长线上时,若=2,称点C是[A,B]的暗点.例如,如图1,数轴上点A,B,C,D分别表示数﹣1,2,1,0.则点C是[A,B]的亮点,又是[A,D]的暗点;点D是[B,A]的亮点,又是[B,C]的暗点(1)如图2,M,N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.[M,N]的亮点表示的数是,[N,M]的亮点表示的数是;[M,N]的暗点表示的数是,[N,M]的暗点表示的数是;(2)如图3,数轴上点A所表示的数为﹣20,点B所表示的数为40.一只电子蚂蚁P 从B出发以2个单位每秒的速度向左运动,设运动时间为t秒.①求当t为何值时,P是[B,A]的暗点;②求当t为何值时,P,A和B三个点中恰有一个点为其余两点的亮点.附加卷26.(7分)古希腊毕达格拉斯学派的数学家常用小石子在沙滩上摆成各种形状来研究各种多边形数,比如:他们研究过图1中的1,3,6,10,由于这些数能够表示成三角形,将其称为三角形数(三边形数);类似的,称图2中的1,4,9,16,这样的数为正方形数(四边形数).(1)请你写出既是三角形数又是正方形数,且大于1的最小正整数为;(2)记第n个k边形数为N(n,k).例如N(1,3)=1,N(2,3)=3,N(2,4)=4.①N(3,3)=,N(n,3)=,N(n,4)=.②通过进一步研究发现N(n,5)=n2﹣n,N(n,6)=2n2﹣n,请你推测N(n,k)(k≥3)的表达式,并由此计算N(10,24)的值.27.(4分)对于三个数a,b,c,用M{a,b,c}表示a,b,c这三个数的平均数,用min{a,b,c}表示a,b,c这三个数中最小的数,如:M{﹣1,2,3}==,min{﹣1,2,3}=﹣1.(1)若M{x﹣1,﹣5,2x+3}=(1+3x),求x的值;(2)已知M{2x,﹣x+2,3},min{﹣1,0,4x+1},是否存在一个x值,使得2×M{2x,﹣x+2,3}=min{﹣1,0,4x+1}.若存在,请求出x的值;若不存在,请说明理由.28.(3分)如图,若点A、B、C、D在数轴上表示的有理数分别为a,b,c,d,则|a﹣2x|+|2x+b|+|2x ﹣c|+|2x+d|的最小值为.(用含有a,b,c,d的式子表示结果)29.(6分)阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的k个数:x1,x2,x3,…,x k,称为数列A k:x1,x2,x3,x k,其中k为整数且k≥3.定义V(A k)=|x1﹣x2|+|x2﹣x3|+…+|x k﹣1﹣x k|.例如,若数列A5:1,2,3,4,5,则V(A5)=|1﹣2|+|2﹣3|+|3﹣4|+|4﹣5|=4.根据以上材料,回答下列问题:(1)已知数列A3:3,5,﹣2,求V(A3);(2)已知数列A4:x1,x2,x3,x4,其中x1,x2,x3,x4,为4个互不相等的整数,且x1=3,x4=7,V(A4)=4,直接写出满足条件的数列A4;(3)已知数列A5:x1,x2,x3,x4,x5中5个数均为非负数,且x1+x2+x3+x4+x5=25.直接写出V(A5)的最大值和最小值,并说明理由.2019-2020学年北京四中七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)﹣2的倒数是()A.﹣2B.﹣C.D.2【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.【解答】解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.2.(3分)举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于等于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:55000这个数用科学记数法可表示为5.5×104,故选:D.3.(3分)下列运算正确的是()A.5a2﹣3a2=2B.2x2+3x2=5x4C.3a+2b=5ab D.7ab﹣6ba=ab【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、5a2﹣3a2=2a的平方,故A错误;B、2x2+3x2=5x2,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.4.(3分)有理数a,b在数轴上的对应位置如图,则下列结论正确的是()A.ab>0B.<0C.a+b<0D.a﹣b<0【分析】根据所给的图形判断出a>0,b<0,|a|>|b|,再对每一选项进行分析,即可得出答案.【解答】解:根据图形可知:a>0,b<0,|a|>|b|,则ab<0,<0,a+b>0,a﹣b>0,下列结论正确的是B;故选:B.5.(3分)用代数式表示“m的2倍与n平方的差”,正确的是()A.(2m﹣n)2B.2(m﹣n)2C.2m﹣n2D.(m﹣2n)2【分析】根据题意可以用代数式表示m的2倍与n平方的差.【解答】解:用代数式表示“m的2倍与n平方的差”是:2m﹣n2,故选:C.6.(3分)下列说法正确的是()A.平方等于本身的数是0和1B.﹣a一定是负数C.一个有理数不是正数就是负数D.一个数的绝对值一定是正数【分析】根据有理数的乘方的运算方法,有理数的分类,正数和负数的含义和判断,以及绝对值的含义和求法,逐项判断即可.【解答】解:∵平方等于本身的数是0和1,∴选项A符合题意;∵﹣a可能是负数,也可能是正数或0,∴选项B不符合题意;∵一个有理数有可能是正数、负数或0,∴选项C不符合题意;∵一个数的绝对值是正数或0,∴选项D不符合题意.故选:A.7.(3分)下列关于单项式﹣2x2y的说法中,正确的是()A.系数为2,次数为2B.系数为2,次数为3C.系数为﹣2,次数为2D.系数为﹣2,次数为3【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而分析即可.【解答】解:单项式﹣2x2y的系数为﹣2,次数为3.故选:D.8.(3分)方程x﹣4=3x+5移项后正确的是()A.x+3x=5+4B.x﹣3x=﹣4+5C.x﹣3x=5﹣4D.x﹣3x=5+4【分析】把3x移到等号左边,﹣4移到等号右边,注意移项要变号.【解答】解:∵x﹣4=3x+5,∴x﹣3x=5+4,故选:D.9.(3分)下列各式中去括号正确的是()A.﹣(﹣a﹣b)=a﹣bB.a2+2(a﹣2b)=a2+2a﹣2bC.5x﹣(x﹣1)=5x﹣x+1D.3x2﹣(x2﹣y2)=3x2﹣x2﹣y2【分析】根据各个选项中的式子,进行变形,即可判断是否正确,本题得以解决.【解答】解:﹣(﹣a﹣b)=a+b,故选项A错误;a2+2(a﹣2b)=a2+2a﹣4b,故选项B错误;5x﹣(x﹣1)=5x﹣x+1,故选项C正确;3x2﹣(x2﹣y2)=3x2﹣x2+y2,故选项D错误;故选:C.10.(3分)如图是一个圆,一只电子跳蚤在标有数字的五个点上跳跃.若它停在奇数点上时,则一次沿顺时针方向跳两个点;若停在偶数点上时,则下一次沿逆时针方向跳一个点.若这只跳蚤从1这点开始跳,则经过2019次跳后它所停在的点对应的数为()A.1B.2C.4D.5【分析】根据题意,分析可得电子跳蚤的跳动规律为3﹣5﹣2﹣1,周期为4;又由2019=4×504+3,经过2019次跳后它停在的点所对应的数为2.【解答】解:由1起跳,1是奇数,沿顺时针下一次能跳2个点,落在3上.由3起跳,3是奇数,沿顺时针下一次能跳2个点,落在5上由5起跳,5是奇数,沿顺时针下一次能跳2个点,落在2上由2起跳,2是偶数,沿逆时针下一次只能跳一个点,落在1上.3﹣5﹣2﹣1﹣3,周期为4;又由2019=4×504+3,∴经过2019次跳后它停在的点所对应的数为2.故选:B.二、填空题(每小题2分,共16分)11.(2分)0.03095精确到千分位的近似值是0.031.【分析】精确到千分位就是对千分位以后的数字进行四舍五入,据此即可求解.【解答】解:0.03095精确到千分位的近似值是0.031.故答案是:0.031.12.(2分)如图是我市12月份某一天的天气预报,该天的温差是7℃.【分析】用最高气温减去最低气温列出算式,然后再依据有理数的减法法则计算即可.【解答】解:该天的温差为5﹣(﹣2)=5+2=7(℃),故答案为:7℃.13.(2分)比较大小:<.【分析】先比较出两个数的绝对值,再根据两个负数比较,绝对值大的反而小,即可得出答案.【解答】解:∵>,∴<.故答案为:<.14.(2分)已知x=﹣3是关于x的方程kx﹣2k=5的解,那么k的值为﹣1.【分析】根据方程解的定义,将方程的解代入方程,就可得一个关于字母k的一元一次方程,从而可求出k的值.【解答】解:把x=﹣3代入,得﹣3k﹣2k=5.解得k=﹣1.故答案是:﹣1.15.(2分)已知有理数a,b,c在数轴上的位置如图所示,其中|c|<|a|<|b|,化简:|a|+2|a﹣b|﹣|c﹣2a|=﹣a+2b﹣c.【分析】先判断绝对值符号里面式子的正负,然后去绝对值即可.【解答】解:由数轴可得:a<0,b>0,c<0,∵|c|<|a|<|b|,∴a﹣b<0,c﹣2a>0,则原式=﹣a﹣2a+2b﹣c+2a=﹣a+2b﹣c.故答案为:﹣a+2b﹣c.16.(2分)若关于x的多项式x4﹣ax3+x3﹣5x2﹣bx﹣3x﹣1不存在含x的一次项和三次项,则a+b=﹣2.【分析】先确定三次项及一次项的系数,再令其为0即可得到a、b的值,再根据代数式求值,可得答案.【解答】解:x4﹣ax3+x3﹣5x2﹣bx﹣3x﹣1=x4+(1﹣a)x3﹣5x2﹣(b+3)x﹣1,∵多项式x4﹣ax3+x3﹣5x2﹣bx﹣3x﹣1不存在含x的一次项和三次项,∴1﹣a=0,b+3=0,解得a=1,b=﹣3,∴a+b=1﹣3=﹣2.故答案为:﹣2.17.(2分)请阅读一小段约翰•斯特劳斯的作品,根据乐谱中的信息确定最后一个音符的时间长应为.【分析】观察图形不难发现,音符数字的和为,然后列式计算即可得解.【解答】解:依题意得:﹣=,故答案为:.18.(2分)小宇计划在某外卖网站点如下表所示的菜品,已知每份订单的配送费为3元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元,如果小宇在购买下表中所有菜品时,采取适当的下订单方式,那么他点餐总费用最低可为54元.菜品单价(含包装费)数量水煮牛肉(小)30元1醋溜土豆丝(小)12元1豉汁排骨(小)30元1手撕包菜(小)12元1米饭3元2【分析】根据满30元减12元,满60元减30元,满100元减45元,即可得到结论.【解答】解:小宇应采取的订单方式是60一份,30一份,所以点餐总费用最低可为60﹣30+3+30﹣12+3=54元,答:他点餐总费用最低可为54元.故答案为:54.三、解答题19.(16分)计算:(1)(﹣11)+8+(﹣14);(2)8÷(﹣2)﹣(﹣4)×3;(3)(﹣+﹣)×16;(4)﹣12﹣(1﹣)÷3×(﹣)2【分析】(1)原式利用加法法则计算即可求出值;(2)原式先计算乘除运算,再计算加减运算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=(﹣11)+(﹣14)+8=(﹣25)+8=﹣17;(2)原式=﹣4﹣(﹣12)=﹣4+12=8;(3)原式=﹣×16+×16﹣×16=﹣12+14﹣8=﹣6;(4)原式=﹣1﹣××=﹣1﹣=﹣1.20.(8分)计算:(1)3x2﹣6x﹣x2﹣3+4x﹣2x2﹣1;(2)(5a2+2a﹣1)﹣4(3﹣8a+2a2)【分析】(1)首先找出同类项,再合并即可;(2)先去括号,再合并同类项即可.【解答】解:(1)原式=3x2﹣x2﹣2x2﹣6x+4x﹣3﹣1,=﹣2x﹣4;(2)原式=5a2+2a﹣1﹣12+32a﹣8a2,=﹣3a2+34a﹣13.21.(8分)解方程:(1)3(2x﹣1)=4x+3;(2)﹣=1【分析】(1)方程去括号,移项合并,把x系数化为,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6x﹣3=4x+3,移项合并得:2x=6,解得:x=3;(2)去分母得:2x﹣5﹣9x﹣3=6,移项合并得:﹣7x=14,解得:x=﹣2.22.(5分)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.【分析】先根据整式的加减运算法则把原式化简,再把x=2,y=代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:x﹣2(x﹣y2)+(﹣x+y2),=x﹣2x+y2﹣x+y2,=﹣3x+y2,当x=﹣2,时,原式=﹣3×(﹣2)+()2=6+=6.23.(4分)工厂加工一批比赛用乒乓球,按国际比赛规定要求乒乓球的直径标准为40mm,但是实际生产的乒乓球直径可能会有一些偏差,以下是该工厂加工的20个乒乓球的直径检验记录:(“+”表示超出标准,“﹣”表示不足标准.)个数1211132偏差/mm﹣0.4﹣0.2﹣0.10+0.3+0.5(1)其中偏差最大的乒乓球直径是40.5mm;(2)这20个乒乓球平均每个球的直径是多少mm?(3)若误差在“±0.25”以内的球可以作为合格产品,若误差在“±0.15mm”以内的球可以作为良好产品,这些球的合格率是70%,良好率是60%.【分析】(1)根据题意列式计算即可;(2)根据平均数的定义即可得到结论;(3)根据误差在“±0.25”以内的球可以作为合格产品,若误差在“±0.15mm”以内的球可以作为良好产品分别占总数的百分比即可得到结论.【解答】解:(1)其中偏差最大的乒乓球直径是40mm+0.5mm=40.5mm,故答案为:40.5mm;(2)这20个乒乓球平均每个球的直径是40+(1×(﹣0.4)+2×(﹣0.2)+1×(﹣0.1)+11×0+3×0.3+2×0.5)=40.05mm;(3)这些球的合格率是×100%=70%,良好率是×100%=60%,故答案为:70%,60%.24.(6分)一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值;(2)若(m,n)是“相伴数对”,其中m≠0,求;(3)若(m,n)是“相伴数对”,求代数式m﹣﹣[4m﹣2(3n﹣1)]的值.【分析】(1)结合题中所给的定义将(1,b)代入式子求解即可;(2)由定义知+=,整理得9m+4n=0,据此进一步求解可得;(3)原式去括号、合并同类项、整理得出原式=﹣﹣2,将(2)中9m+4n=0代入可得.【解答】解:(1)将a=1,代入有,+=,化简求得:b=﹣;(2)根据题意,得:+=,则15m+10n=6m+6n,∴9m+4n=0,9m=﹣4n,=﹣;(3)由(2)知9m+4n=0,则原式=m﹣n﹣4m+2(3n﹣1)=m﹣n﹣4m+6n﹣2=﹣3m﹣n﹣2=﹣﹣2=﹣2.25.(7分)在同一直线上的三点A,B,C,若满足点C到另两个点A,B的距离之比是2,则称点C是其余两点的亮点(或暗点).具体地,当点C在线段AB上时,若=2,则称点C是[A,B]的亮点;若=2,则称点C是[B,A]的亮点;当C在线段AB的延长线上时,若=2,称点C是[A,B]的暗点.例如,如图1,数轴上点A,B,C,D分别表示数﹣1,2,1,0.则点C是[A,B]的亮点,又是[A,D]的暗点;点D是[B,A]的亮点,又是[B,C]的暗点(1)如图2,M,N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.[M,N]的亮点表示的数是2,[N,M]的亮点表示的数是0;[M,N]的暗点表示的数是10,[N,M]的暗点表示的数是﹣8;(2)如图3,数轴上点A所表示的数为﹣20,点B所表示的数为40.一只电子蚂蚁P 从B出发以2个单位每秒的速度向左运动,设运动时间为t秒.①求当t为何值时,P是[B,A]的暗点;②求当t为何值时,P,A和B三个点中恰有一个点为其余两点的亮点.【分析】(1)设其亮点或暗点表示的未知数,再根据定义列出方程;(2)根据新定义列出进行解答便可.【解答】解:(1)设[M,N]的亮点表示的数是x,根据定义有,解得x=2;设[N,M]的亮点表示的数是y,根据定义有,解得y=0;设[M,N]的暗点表示的数是z,根据定义有,解得z=10;设[N,M]的暗点表示的数是k,根据定义有,解得k=﹣8;故答案为:2;0;10;﹣8.(2)①当P为[B,A]暗点时,P在BA延长线上且PB=2P A=120,t=120÷2=60秒②P为[A,B]亮点时,P A=2PB,40﹣2t﹣(﹣20)=2×2t,t=10;P为[B,A]亮点时,2P A=PB,2[40﹣2t﹣(﹣20)]=2t,t=20;A为[B,P]亮点时,AB=2AP,60=2[﹣20﹣(40﹣2t)],t=45;A为[P,B]亮点时,2AB=AP,120=﹣20﹣(40﹣2t),t=90;综上,t=10或20或45或90.附加卷26.(7分)古希腊毕达格拉斯学派的数学家常用小石子在沙滩上摆成各种形状来研究各种多边形数,比如:他们研究过图1中的1,3,6,10,由于这些数能够表示成三角形,将其称为三角形数(三边形数);类似的,称图2中的1,4,9,16,这样的数为正方形数(四边形数).(1)请你写出既是三角形数又是正方形数,且大于1的最小正整数为36;(2)记第n个k边形数为N(n,k).例如N(1,3)=1,N(2,3)=3,N(2,4)=4.①N(3,3)=6,N(n,3)=n(n+1),N(n,4)=n2.②通过进一步研究发现N(n,5)=n2﹣n,N(n,6)=2n2﹣n,请你推测N(n,k)(k≥3)的表达式,并由此计算N(10,24)的值.【分析】(1)由题意正方形数是n2,探究出三角形数是平方数是最小的值即可解决问题.(2)①探究规律,利用规律解决问题即可.②提供公式变形,探究规律解决问题即可.【解答】解:(1)由题意第8个图的三角形数为×8(8+1)=36,∴既是三角形数又是正方形数,且大于1的最小正整数为36,故答案为36.(2)①N(3,3)=6,N(n,3)=n(n+1),N(n,4)=n2,故答案为6,n(n+1),n2.②∵N(n,3)===,N(n,4)=n2==,N(n,5)==,N(n,6)=2n2﹣n==,由此推断出N(n,k)=(k≥3),∴N(10,24)==1000.27.(4分)对于三个数a,b,c,用M{a,b,c}表示a,b,c这三个数的平均数,用min{a,b,c}表示a,b,c这三个数中最小的数,如:M{﹣1,2,3}==,min{﹣1,2,3}=﹣1.(1)若M{x﹣1,﹣5,2x+3}=(1+3x),求x的值;(2)已知M{2x,﹣x+2,3},min{﹣1,0,4x+1},是否存在一个x值,使得2×M{2x,﹣x+2,3}=min{﹣1,0,4x+1}.若存在,请求出x的值;若不存在,请说明理由.【分析】(1)由M{x﹣1,﹣5,2x+3}==x﹣1,结合题意得x﹣1=(1+3x),解之可得;(2)由M{2x,﹣x+2,3}==,再分4x+1≥﹣1和4x+1<﹣1两种情况分别求解可得.【解答】解:(1)由题意:M{x﹣1,﹣5,2x+3}==x﹣1,∴x﹣1=(1+3x),解得:x=﹣3.(2)由题意:M{2x,﹣x+2,3}==,若4x+1≥﹣1,则2×=﹣1.解得x=﹣.此时4x+1=﹣25<﹣1.与条件矛盾;若4x+1<﹣1,则2×=4x+1.解得x=.此时4x+1=>﹣1.与条件矛盾;∴不存在.28.(3分)如图,若点A、B、C、D在数轴上表示的有理数分别为a,b,c,d,则|a﹣2x|+|2x+b|+|2x ﹣c|+|2x+d|的最小值为﹣a﹣b+c+d.(用含有a,b,c,d的式子表示结果)【分析】先找到b和d的相反数所在位置,可得|a﹣2x|+|2x+b|+|2x﹣c|+|2x+d|取最小值时,2x在﹣d和c之间,依此去绝对值再化简即可求解.【解答】解:如图所示:,当2x在﹣d和c之间时,|a﹣2x|+|2x+b|+|2x﹣c|+|2x+d|有最小值,最小值|a﹣2x|+|2x+b|+|2x﹣c|+|2x+d|=2x﹣a﹣2x﹣b﹣2x+c+2x+d=﹣a﹣b+c+d.故答案为:﹣a﹣b+c+d.29.(6分)阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的k个数:x1,x2,x3,…,x k,称为数列A k:x1,x2,x3,x k,其中k为整数且k≥3.定义V(A k)=|x1﹣x2|+|x2﹣x3|+…+|x k﹣1﹣x k|.例如,若数列A5:1,2,3,4,5,则V(A5)=|1﹣2|+|2﹣3|+|3﹣4|+|4﹣5|=4.根据以上材料,回答下列问题:(1)已知数列A3:3,5,﹣2,求V(A3);(2)已知数列A4:x1,x2,x3,x4,其中x1,x2,x3,x4,为4个互不相等的整数,且x1=3,x4=7,V(A4)=4,直接写出满足条件的数列A4;(3)已知数列A5:x1,x2,x3,x4,x5中5个数均为非负数,且x1+x2+x3+x4+x5=25.直接写出V(A5)的最大值和最小值,并说明理由.【分析】(1)根据定义V(A k)=|x1﹣x2|+|x2﹣x3|+…+|x k﹣1﹣x k|,代入数据即可求出结论;(2)在数轴上标出x1、x4表示的点,利用数形结合可得出x2、x3在3到7之间且x2≤x3,找出符合题意的搭配方式即可;(3)由数列A5:x1,x2,x3,x4,x5中5个数均为非负数,结合V(A k)的定义,即可得出结论.【解答】解:(1)V(A3)=|3﹣5|+|5﹣(﹣2)|=2+7=9;(2)V(A4)=|3﹣x2|+|x2﹣x3|+|x3﹣7|=4可看成3条线段的长度和,如图所示.∵7﹣3=4,∴x2、x3在3到7之间,且x2≤x3.∵x1,x2,x3,x4为4个互不相等的整数,∴数列A4为:3,4,5,7;3,4,6,7;3,5,6,7.(3)∵数列A5:x1,x2,x3,x4,x5中5个数均为非负数,∴当x1=x2=x3=x4=x5=5时,|x1﹣x2|+|x2﹣x3|+|x3﹣x4|+|x4﹣x5|取最小值,最小值为0;晨鸟教育当x1=x3=x5=0,x2+x4=25或x1=x2=x4=x5=0,x3=25时,|x1﹣x2|+|x2﹣x3|+|x3﹣x4|+|x4﹣x5|取最大值,最大值为2×25=50.∴V(A5)的最大值为50,最小值为0.Earlybird。

学年北京市第四中学七年级第一学期期中数学试题含答案

学年北京市第四中学七年级第一学期期中数学试题含答案

D C B A 321-1-2-3数 学 试 卷(时间100分钟 满分120分)班级:________ 分层班级:_________ 姓名:______一.选择题(每题2分,共20分)1.15-的绝对值是( ).A.15-B.15C.5D.5-2.北京某天的最高气温是8℃,最低气温是-2℃,则这天的温差是( ). A .10℃ B .-10℃ C .6℃ D .-6℃ 3.下列各式中一定为负数..的是( ). A .(2)-- B .2-- C .3(2)-- D .2(3)-. 4.研究表明,可燃冰是一种可替代石油的新型清洁能源.在我国某海域已探明的可燃冰储存量达150 000 000 000立方米,其中数字150 000 000 000用科学记数法可表示为( ).A .15×1010B .0.15×1012C .1.5×1011D .1.5×1012 5.下列代数式中,多项式共有( ).22311,,3,,23,,4x b a b c x x abc a x-------+- . A .1个 B .2个 C .3个 D .4个6.数轴上有A 、B 、C 、D 四个点,其中绝对值相等的数所对应的点是( ). A .点A 与点D B .点A 与点C C .点B 与点C D .点B 与点D 7.下列各式中去括号正确的是( ).A .22(22)22x x y x x y --+=--+B .n m mn n m mn -+--=-+--1)()1(C .5)5(-=+--ab abD .y x y x y x x 22)2()35(+-=-+-- 8.若多项式223y x +的值为1,则多项式2469y x +-的值是( ). A .2 B .17 C .-7 D .79. 下列解方程去分母正确的是( ).A .由2113xx -=-,得x x 3312-=-. B .由142322-=---x x ,得423)2(2-=---x x .C .由y y y y ---=+613321,得y y y y 613233-+-=+.D .由44153x y +-=,得451512+=-y y . 10.下列数轴上的点A 都表示实数a ,其中,一定满足2a >的是( ).A. ①③B. ②③C. ①④D. ②④二.填空题(每题2分,共20分)11.比较大小:(8)-+ 3)2(-;(填“>”,“=”,或“<”).12.在一次立定跳远测试中,合格的标准是2.00 m ,小明跳出了2.12 m ,记为+0.12 m ;小敏跳出了1.95 m ,记为__________ m . 13.把0.0158精确到0.001是_____________. 14.单项式yz x 232-的系数是_______,次数是_________. 15.写出一个系数是2017,且只含x 、y 两个字母的三次单项式是 . 16.设0,0a b <> ,且a b >,用“<”号把,,,a a b b --连接起来为 . 17.已知03)2(2=++-b a ,则+a b = .18.减去3m -后,等于231m m -+-的代数式是 . 19.右边的框图表示解方程320425x x +=-的流程, 第3步的依据是____ ______.20.按一定规律排列的一列数依次为:-2,5,-10,17,-26,…,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是 .三.解答题21.有理数运算(每题4分,共20分): (1) ()()13121718+-++- (2) )31()21(74)32(21-+-++-+(3) 11(6)767⎛⎫⨯-÷-⨯ ⎪⎝⎭(4) ()311233-+-+-÷(5) 220172123(1)()30.523⎛⎫-+-÷--⨯- ⎪⎝⎭22.解关于x 的方程(每题4分,共8分):(1)()43257x x x +-=- (2)2531162x x -+-= 解: 解:23.整式加减(每题4分共8分):(1)22226547a b ab ab a b +-- (2)2222252(2)42a b a b ab a b ab ⎡⎤-----⎣⎦24.先化简,再求值(每题4分,共8分): (1)222222532()(53)a b a b a b ++---,其中11,2a b =-=. 解:(2)已知2a b -=,1ab =-,求(45)(235)a b ab a b ab ----+的值. 解:25.(5分)对于有理数a ,b ,规定一种新运算:b ab b a +=*.(1)计算:=*-4)3( ; (2)若方程634=*-)(x ,求x 的值; (3)计算:[]235*-*)(的值.26.(5分)从1开始,连续的奇数相加,和的情况如下:(1)从1开始,n 个连续的奇数相加,请写出其求和公式; (2)计算:2523211917151311+++++++. (3)已知()202512531=-++++n ,求整数n 的值.27.(6分)如图,点A ,B ,C 是数轴上三点,点C 表示的数为6,BC =4,BAOC 6AB =12.(1)写出数轴上点A ,B 表示的数:_______,________;(2)动点P ,Q 同时从A ,C 出发,点P 以每秒4个单位长度的速度沿数轴向右匀速运动,点Q 以每秒2个单位长度的速度沿数向左匀速运动,设运动时间为t (t >0)秒.① 求数轴上点P ,Q 表示的数(用含t 的式子表示); ② t 为何值时,点P ,Q 相距6个单位长度.附加题(每题4分)28.设记号*表示求a ,b 算术平均数的运算,即,则下列等式中对于任意实数a ,b ,c 都成立的是( ). ① ② ③ ④A .①②③B .①②④C .①③④D .②④29.有n 个数,第一个数记为1a ,第二个数记为2a ,…,第n 个数记为n a . 若11-=a ,且从第二个数起每个数都等于“1与它前一个数的倒数的差”. (1)写出2a ,3a 的值:_______,_______;(2)根据(1)的计算结果,请猜想并写出2017a 的值:________.30.循环小数 写成最简分数时,分子和分母的和是150,写出这个循环小数: ______________.31.已知 是关于未知数 的一元一次方程,求代数式的值.32.小明在黑板上写有若干个有理数.若他第一次擦去个,从第二次起,每次都比前一次多擦去1个,则6次刚好擦完;若他每次都擦去个,则9次刚好擦完.请你求出小明在黑板上共写了多少个有理数.。

2019-2020学年北京四中七年级上学期期中考试数学试卷及答案解析

2019-2020学年北京四中七年级上学期期中考试数学试卷及答案解析

2019-2020学年北京四中七年级上学期期中考试数学试卷一、选择题(每小题2分,共20分)1.﹣2的相反数是()A.﹣B.2C.﹣2D.2.规定海平面的海拔高度为0米,珠穆朗玛峰高于海平面8844.43米,其海拔高度记作+8844.43米,那么吐鲁番盆地低于海平面155米,则其海拔高度记作()A.+155米B.﹣155米C.+8689.43米D.﹣8689.43米3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013km B.9.5×1012kmC.95×1011km D.950×1010km4.下列等式中是一元一次方程的有()A.3x2﹣2x=4x B.﹣5﹣4=﹣9C.x+3=5﹣y D.1+x=55.下列变形中,正确的是()A.若x+1=y﹣1,则x=y B.若﹣2x=1,则x=﹣2C.若x=y,则D.若a﹣1=b,则a=b﹣16.下列各式中一定为负数的是()A.﹣(﹣1)B.﹣|﹣1|C.﹣(﹣1)3D.(﹣1)27.下列计算正确的是()A.3a+b=3ab B.3a﹣a=3C.2a3+3a2=5a5D.2ab﹣ab=ab8.下列说法正确的是()A.如果两个数的绝对值相等,那么这两个数相等B.倒数等于它本身的数是1C.5m2n和﹣2nm2是同类项D.3×102x2y是5次单项式9.若a=﹣2×32,b=(﹣2×3)2,c=﹣(2×3)2,则下列大小关系中正确的是()A.a>b>c B.b>c>a C.b>a>c D.c>a>b10.实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a﹣b>0B.|a+b|=a+bC.|b|>|a|D.(a+2)(b﹣1)<0二、填空题(每题2分,共12分)11.|﹣2017|=.12.单项式﹣2ab2c4的系数是.13.数轴上点A表示﹣3,从A出发,沿数轴移动3个单位长度到达点B,则点B表示的数是.14.若x﹣y=1,则x+4﹣y的值是.15.对于有理数m,n,我们规定m⊗n=mn﹣n,例如3⊗5=3×5﹣5=10,则(﹣3)⊗4=.16.小红将边长为10cm的正方形纸片的4个角各剪去一个边长为xcm的小正方形,做成一个无盖的纸盒,那么纸盒的表面积为cm2.三、计算题(每题4分,共40分)17.(4分)﹣5+8﹣4.18.(4分)﹣5÷.19.(4分)﹣5.5+.20.(4分)计算:(﹣2)×(﹣5)÷(﹣5)+9.21.(4分)()×36.22.(4分)﹣14﹣(1﹣0.5×)×6.23.(4分)x+(4x﹣2)24.(4分)﹣5a﹣1﹣(3a﹣7)25.(4分)5x2+x+3+4x﹣8x2﹣2.26.(4分)(1)(x﹣3y)﹣2(y﹣2x)。

北京四中七年级上册数学期中考试数学试题

北京四中七年级上册数学期中考试数学试题

七年级期中联考数学学科试卷考试时间:90分钟一、选择题(每题3分,共12题,满分36分,请从A 、B 、C 、D 选项中选出一个最佳选项并填涂在答题卡的相应位置上) 1、 -3的相反数是( ★ )A 、-3B 、3C 、31 D 、 31- 2、观察下图,左边的图形绕着给定的直线旋转一周后可能形成的几何体是( ★ ).3、位于深圳侧海岸线的大亚湾核电站常年供应着深圳与香港两地的生活生产用电,据了解每年的总装机容量达16780000千瓦,用科学记数法表示总装机容量是 ( ★ ) A 、4101678⨯千瓦 B 、710678.1⨯千瓦 C 、61078.16⨯千瓦 D 、8101678.0⨯千瓦 4、在数轴上距离原点两个单位长度的点所表示的数是 ( ★ )A 、 -2B 、 2C 、-2或2D 、不能确定 5、某地区一月份的平均气温为-19℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高( ★ )A 、17℃B 、21℃C 、-17℃D 、-21℃ 6、下列计算正确的是( ★ )A 、(1)0+-=2-(-1)B 、37+-=2-2C 、8=3-(-2) D 、11()1122-+--=-127、下列各图形经过折叠不能围成一个正方体的是( ★ ).A 、B 、C 、D 、8、下列说法中错误的个数是( ★ )(1)绝对值是它本身的数有二个,它们是0和1; (2)一个有理数的绝对值必为正数; (3)2的相反数的绝对值是2;(4)任何有理数的绝对值都不是负数;A 、0B 、1C 、2D 、39、已知032=-++b a ,则ba 的值是( ★ )A 、-8B 、8C 、6D 、-6 10、如果a a =,则( ★ )A 、 a 是正数B 、 a 是负数C 、 a 是零D 、 a 是非负数 11、一列火车长m 米,以每秒n 米的速度通过一个长为p 米的桥洞,用代数式表示它通过桥洞所需的时间为( ★ ) A 、n m p +秒 B 、np秒 C 、n m p -秒 D 、n mn p +秒 12、为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ★ )A 、26n +B 、86n +C 、44n +D 、8n二、填空题(每题3分,共4题,满分12分,请将答案填写在答题卡的规定位置)13、单项式43232y x 的次数是_ 请在答题卡作答________14、现有四个有理数3,4,6-,10,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其运算的结果是24,请你写出一个符合条件的算式 请在答题卡作答 15、若代数式532++x x 的值是7,则代数式2932-+x x 的值是 请在答题卡作答 16、点A 、B 、C 的位置在数轴上表示为a 、b 、c ,且c a =,则化简:b c b a c a -++-+=_请在答题卡作答三、解答题(17题每小题4分共8分,18题每小题4分共8分,19题 8分,20题6分,21题5分,22题7分,23题10分,共52分) 17、计算:(每题4分,满分8分)(1) 33)6(1726--+- (2) 23)23(942-⨯÷- 请将答案填写在答题卡的对应位置18、计算:(每题4分,满分8分) (1) 321-×)325.0(-÷191 (2) )12116545()36(--⨯- 请将答案填写在答题卡的对应位置19、(本题满分8分) (1)图中是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图. (4分)请将答案填写在答题卡的对应位置主视图 左视图.(2)用小立方块搭成的几何体,主视图和俯视图如下,它最多需要 个小立方块,最少需要 个小立方块.(4分)主视图 俯视图请将答案填写在答题卡的对应位置20、(本题满分6分)为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为 :+2,-3,+2,+1,-2,-1,-2.(单位:千米);(1) 此时,这辆城管的汽车司机如何向队长描述他的位置?(2) 如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油 0.2升)请将答案填写在答题卡的对应位置21、(本题满分5分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于2,计算()32)(cd mb a m -+-的值。

2019-2020学年北京四中七年级上学期期中数学试卷

2019-2020学年北京四中七年级上学期期中数学试卷

2019-2020学年北京四中七年级上学期期中数学试卷一、选择题(每小题3分,共30分)1.(3分)﹣2的倒数是( )A .﹣2B .−12C .12D .2 【解答】解:∵﹣2×(−12)=1.∴﹣2的倒数是−12,故选:B .2.(3分)举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为( )A .5.5×103B .55×103C .0.55×105D .5.5×104 【解答】解:55000这个数用科学记数法可表示为5.5×104,故选:D .3.(3分)下列运算正确的是( )A .5a 2﹣3a 2=2B .2x 2+3x 2=5x 4C .3a +2b =5abD .7ab ﹣6ba =ab 【解答】解:A 、5a 2﹣3a 2=2a 的平方,故A 错误;B 、2x 2+3x 2=5x 2,故B 错误;C 、不是同类项不能合并,故C 错误;D 、合并同类项系数相加字母及指数不变,故D 正确;故选:D .4.(3分)有理数a ,b 在数轴上的对应位置如图,则下列结论正确的是( )A .ab >0B .a b <0C .a +b <0D .a ﹣b <0【解答】解:根据图形可知:a >0,b <0,|a |>|b |,则ab <0,a b <0,a +b >0,a ﹣b >0, 下列结论正确的是B ;故选:B .5.(3分)用代数式表示“m的2倍与n平方的差”,正确的是()A.(2m﹣n)2B.2(m﹣n)2C.2m﹣n2D.(m﹣2n)2【解答】解:用代数式表示“m的2倍与n平方的差”是:2m﹣n2,故选:C.6.(3分)下列说法正确的是()A.平方等于本身的数是0和1B.﹣a一定是负数C.一个有理数不是正数就是负数D.一个数的绝对值一定是正数【解答】解:∵平方等于本身的数是0和1,∴选项A符合题意;∵﹣a可能是负数,也可能是正数或0,∴选项B不符合题意;∵一个有理数有可能是正数、负数或0,∴选项C不符合题意;∵一个数的绝对值是正数或0,∴选项D不符合题意.故选:A.7.(3分)下列关于单项式﹣2x2y的说法中,正确的是()A.系数为2,次数为2B.系数为2,次数为3C.系数为﹣2,次数为2D.系数为﹣2,次数为3【解答】解:单项式﹣2x2y的系数为﹣2,次数为3.故选:D.8.(3分)方程x﹣4=3x+5移项后正确的是()A.x+3x=5+4B.x﹣3x=﹣4+5C.x﹣3x=5﹣4D.x﹣3x=5+4【解答】解:∵x﹣4=3x+5,∴x﹣3x=5+4,。

北京市 七年级(上)期中数学试卷 (含答案)

北京市 七年级(上)期中数学试卷  (含答案)

七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.-2的相反数是()A. B. C. D. 22.在-,0,,-1这四个数中,最小的数是()A. B. 0 C. D.3.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()A. B. C. D.4.A、B两地相距6980000m,用科学记数法表示为()m.A. B. C. D.5.下面各式中,与-2xy2是同类项的是()A. B. C. D.6.一个长方形的一边长是2a+3b,另一边的长是a+b,则这个长方形的周长是()A. B. C. D.7.下列代数式书写规范的是()A. B. C. ax3 D.8.关于多项式x5-3x2-7,下列说法正确的是()A. 最高次项是5B. 二次项系数是3C. 常数项是7D. 是五次三项式9.在代数式:,3m-3,-22,-,2πb2中,单项式的个数有()A. 1个B. 2个C. 3个D. 4个10.如果x是最大的负整数,y绝对值最小的整数,则-x2016+y的值是()A. B. C. 1 D. 2016二、填空题(本大题共10小题,共20.0分)11.的绝对值是______ ,的倒数是______ .12.在数轴上,若点P表示-2,则距P点3个单位长的点表示的数是______ .13.单项式-5πab2的系数是______ ,次数是______ .14.如图是一数值转换机,若输入的x为-1,则输出的结果为______ .15.绝对值小于3的所有整数的和是______ .16.数轴上表示数-5和表示-14的两点之间的距离是______ .17.在数4.3,-,|0|,-(-),-|-3|,-(+5)中,______ 是正数.18.已知|a|=2,|b|=5,且ab<0,那么a+b的值为______ .19.如果有|x-3|+(y+4)2=0,则x= ______ ,y x= ______ .20.现规定一种新的运算“*”:a*b=a b,如3*2=32=9,则()*3= ______ .三、解答题(本大题共13小题,共66.0分)21.把下面的有理数填在相应的大括号里:(★友情提示:将各数用逗号分开)15,,0,-30,0.15,-128,,+20,-2.6正数集合﹛______﹜负数集合﹛______﹜整数集合﹛______﹜分数集合﹛______﹜22.计算:28-37-3+52.23.计算:(-+)÷(-)24.计算(-4)×(-9)+(-)-23.25.化简:3x2-3+x-2x2+5.26.化简(5a-3a2+1)-(4a3-3a2).27.观察图形,写出一个与阴影面积有关的代数恒等式.28.(1)在数轴上表示下列各数,(2)用“<”连接:-3.5,,-1,4,0,2.5.29.先化简,再求值:5(a2b-ab2)-(ab2+5a2b),其中a=1,b=-2.30.10盒火柴如果以每盒100根为准,超过的根数记作正数,不足的根数记作负数,每盒数据记录如下:+3,+2,0,-1,-2,-3,-2,+3,-2,-2.求:这10盒火柴共有多少根.31.已知有理数a,b,c在数轴上的位置如图所示,(1)用<,>,=填空:a+c ______ 0,c-b ______ 0,b+a ______ 0,abc ______ 0;(2)化简:|a+c|+|c-b|-|b+a|.32.阅读下列解题过程,然后答题:已知如果两个数互为相反数,则这两个数的和为0,例如,若x和y互为相反数,则必有x+y=0.(1)已知:|a|+a=0,求a的取值范围.(2)已知:|a-1|+(a-1)=0,求a的取值范围.33.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.答案和解析1.【答案】D【解析】解:-2的相反数是2,故选:D.根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.此题主要考查了相反数,关键是掌握相反数的定义.2.【答案】D【解析】解:根据有理数大小比较的法则,可得-1<-,所以在-,0,,-1这四个数中,最小的数是-1.故选:D.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.【答案】D【解析】解:∵从数轴可知:b<0<a,|b|>|a|,∴A错误;B错误;∵a>0,b<0,∴ab<0,∴C错误;∵b<0<a,|b|>|a|,∴a-b>0,a+b<0,∴a-b>a+b,∴D正确;故选D.数轴可知b<0<a,|b|>|a|,求出ab<0,a-b>0,a+b<0,根据以上结论判断即可.本题考查了数轴,有理数的乘法、加法、减法等知识点的应用,关键是能根据数轴得出b<0<a,|b|>|a|.4.【答案】D【解析】解:6980000=6.98×106,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【答案】A【解析】解:由题意,得y2x与-2xy2是同类项,故选:A.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.6.【答案】B【解析】解:周长=2(2a+3b+a+b)=6a+8b.故选B.长方形的周长等于四边之和,由此可得出答案.本题考查有理数的加减运算,比较简单,注意长方形的周长可表示为2(长加宽).7.【答案】A【解析】解:选项A正确,B正确的书写格式是b,C正确的书写格式是3ax,D正确的书写格式是.故选A.根据代数式的书写要求判断各项即可得出正确答案.代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.8.【答案】D【解析】解:A、多项式x5-3x2-7的最高次项是x5,故本选项错误;B、多项式x5-3x2-7的二次项系数是-3,故本选项错误;C、多项式x5-3x2-7的常数项是-7,故本选项错误;D、多项式x5-3x2-7是五次三项式,故本选项正确.故选:D.根据多项式的项和次数的定义,确定各个项和各个项的系数,注意要带有符号.本题考查与多项式相关的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.9.【答案】C【解析】解:-22,-,2πb2中是单项式;是分式;3m-3是多项式.故选C.根据单项式的定义进行解答即可.本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.10.【答案】B【解析】解:∵x是最大的负整数,y绝对值最小的整数,∴x=-1,y=0,∴-x2016+y=-(-1)2016=-1.故选B.由于x是最大的负整数,y绝对值最小的整数,由此可以分别确定x=-1,y=0,把它们代入所求代数式计算即可求解.此题主要考查了有理数的混合运算,解题的关键是根据最大的负整数,绝对值最小的整数的性质确定x、y的值,然后代入所求代数式即可解决问题.11.【答案】;【解析】解:-的绝对值为,1的倒数为.故答案为:,.根据绝对值、倒数,即可解答.本题考查了绝对值、倒数,解决本题的关键是熟记绝对值、倒数的定义.12.【答案】-5或1【解析】解:设距P点3个单位长的点表示的数是x,则|x+2|=3,当x+2≥0时,原式可化为:x+2=3,解得x=1;当x+2<0时,原式可化为:-x-2=3,解得x=-5.故答案为:-5或1.设距P点3个单位长的点表示的数是x,则|x+2|=3,求出x的值即可.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.13.【答案】-5π;3【解析】解:单项式-5πab2的系数是-5π,次数是3.故答案为:-5π,3.根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.此题考查了单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.14.【答案】9【解析】解:(-1-2)×(-3)=(-3)×(-3)=9.故答案为:9.根据运算规则:先-2,再×(-3),进行计算即可求解.此题主要考察根据运算规则列式计算,读懂题中的运算规则,并准确代入求值是解题的关键.15.【答案】0【解析】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,±2.所以0+1-1+2-2=0.故答案为:0.绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.此题考查了绝对值的意义,并能熟练运用到实际当中.16.【答案】9【解析】解:|-5-(-14)|=9.数轴上两点之间的距离等于这两点的数的差的绝对值,即较大的数减去较小的数.考查了数轴上两点之间的距离的计算方法.17.【答案】4.3,-(-)【解析】解:在数4.3,-,|0|,-(-)=,-|-3|=-3,-(+5)=-5中,4.3,-(-)是正数.故答案为:4.3,-(-).首先将各数化简,再根据正数的定义可得结果.本题主要考查了有理数的定义,熟练掌握有理数的分类是解答此题的关键.18.【答案】3或-3【解析】解:①a>0,b<0,则a=2,b=-5,a+b=-3;②a<0,b>0,则a=-2,b=5,a+b=3.故填3或-3.根据题意可得a和b异号,分情况讨论①a>0,b<0;②a<0,b>0.本题考查有理数的加法,注意讨论a和b的取值范围得出a和b的值是关键.19.【答案】3;-64【解析】解:由题意得,x-3=0,y+4=0,解得,x=3,y=-4,则y x=-64,故答案为:3;-64.根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.【答案】【解析】解:∵a*b=a b,3*2=32=9,∴()*3=(-)3=-.故答案为:-.根据题中所给出的运算方法列出乘方的式子,再根据乘方的运算法则进行计算即可.本题考查的是有理数的混合运算,熟知数的乘方法则是解答此题的关键.21.【答案】15,0.15,,+20;,-30,-128,-2.6;15,0,-30,-128,+20;,0.15,,-2.6【解析】解:正数集合﹛15,0.15,,+20,﹜负数集合﹛,-30,-128,-2.6,﹜整数集合﹛15,0,-30,-128,+20,﹜分数集合﹛,0.15,,-2.6,﹜按照有理数的分类填写:有理数.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.22.【答案】解:28-37-3+52,=28+52-37-3,=80-40,=40.【解析】先根据加法交换律将同号数相加,再把两个异号数相加.本题是有理数的加减混合运算,可以看作是省略加号的加法,注意运用简便算法进行计算.23.【答案】解:原式=(-+)×(-36),=×(-36)-×(-36)+×(-36),=-8+9-2,=-1.【解析】首先根据除以一个不为0的数等于乘以这个数的倒数可得(-+)×(-36),再用乘法分配律计算即可.此题主要考查了有理数的除法,关键是掌握有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.24.【答案】解:(-4)×(-9)+(-)-23=36+(-)-8=27.【解析】根据有理数的乘法和加减法可以解答本题.本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.25.【答案】解:3x2-3+x-2x2+5=(3x2-2x2)+x+(5-3)=x2+x+2.【解析】首先找出同类项,进而合并同类项得出答案.此题主要考查了合并同类项,正确找出同类项是解题关键.26.【答案】解:(5a-3a2+1)-(4a3-3a2)=5a-3a2+1-4a3+3a2=-4a3+5a+1.【解析】先去括号,然后合并同类项即可解答本题.本题考查整式的加减,解题的关键是明确整式的加减的计算方法,注意去括号后,各项内的符号是否变号.27.【答案】解:阴影部分的面积可表示为:a2-b2或(a+b)(a-b),∴a2-b2=(a+b)(a-b).【解析】分别利用不同的方法表示出阴影部分的面积,得到恒等式.本题考查的是平方差公式的几何背景,掌握平方差公式、矩形的面积公式是解题的关键.28.【答案】解:(1)如图所示:(2)-3.5<-1<0<<2.5<4【解析】在数轴上表示各数,数轴上各数从左往右的顺序,就是各数从小到大的顺序.本题考查了用数轴表示有理数和有理数的大小比较.数轴上各数从左往右的顺序就是各数从小到大的顺序.29.【答案】解:原式=5a2b-5ab2-ab2-5a2b=-6ab2,∴当a=1,b=-2时,∴原式=-6×1×4=-24【解析】先将原式化简,然后将a与b的值代入即可求出答案.本题考查整式运算,涉及代入求值.30.【答案】解:先求超过的根数:(+3)+(+2)+0+(-1)+(-2)+(-3)+(-2)+(+3)+(-2)+(-2)=-4;则10盒火柴的总数量为:100×10-4=996(根).答:10盒火柴共有996根.【解析】首先审清题意,明确“正”和“负”所表示的意义;然后根据每盒的数据记录求出超过的根数,进而可求得10盒火柴的总数量.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.31.【答案】<;>;<;>【解析】解:(1)根据数轴可知:a<b<0<c,且|c|<|b|<|a|,∴a+c<0,c-b>0,b+a<0,abc>0,故答案为:<,>,<,>;(2)原式=-(a+c)+(c-b)+(b+a)=-a-c+c-b+b+a=0.(1)根据数轴,判断出a,b,c的取值范围,进而求解;(2)根据绝对值的性质,去绝对值号,合并同类项即可.本题主要考查数轴、绝对值、整式的加减等知识的综合运用,解决此题的关键是能够根据数轴上的信息,判断出a,b,c等字母的取值范围,同时解决此题时也要注意绝对值性质的运用.32.【答案】解:(1)∵|a|≥0,|a|+a=0,∴a≤0;(2)∵|a-1|≥0,∴a-1≤0,解得a≤1.【解析】(1)根据绝对值的性质可得出|a|≥0,再由相反数的定义即可得出结论;(2)根据绝对值的性质可得出|a-1|≥0,再由相反数的定义即可得出结论.本题考查的是有理数的加法,熟知相反数的定义是解答此题的关键.33.【答案】解:(1)如图,则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;(2)25-5×24+10×23-10×22+5×2-1.=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5.=(2-1)5,=1.【解析】(1)直接根据图示规律写出图中的数字,再写出(a+b)5的展开式;(2)发现这一组式子中是2与-1的和的5次幂,由(1)中的结论得:25-5×24+10×23-10×22+5×2-1=(2-1)5,计算出结果.本题考查了完全式的n次方,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b)n中,相同字母a的指数是从高到低,相同字母b的指数是从低到高.。

2019-2020学年北京四中七年级上学期期中考试数学试卷解析版

2019-2020学年北京四中七年级上学期期中考试数学试卷解析版

2019-2020学年北京四中七年级上学期期中考试数学试卷解析版一、选择题(每小题2分,共20分)1.﹣2的相反数是()A .﹣B.2C.﹣2D .【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得﹣2的相反数是:﹣(﹣2)=2.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.规定海平面的海拔高度为0米,珠穆朗玛峰高于海平面8844.43米,其海拔高度记作+8844.43米,那么吐鲁番盆地低于海平面155米,则其海拔高度记作()A.+155米B.﹣155米C.+8689.43米D.﹣8689.43米【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:海平面的海拔高度为0米,珠穆朗玛峰高于海平面8844.43米,其海拔高度记作+8844.43米,那么吐鲁番盆地低于海平面155米,则其海拔高度记作﹣155米,故选:B.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013km B.9.5×1012kmC.95×1011km D.950×1010km【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相第1 页共15 页。

北京四中初一上册期中考试数学(含解析).docx

北京四中初一上册期中考试数学(含解析).docx

北京四中初一上期中数学试卷一、选择题(每小题所给4个选项中只有一个符合要求,每题3分,共30分)1.甲、乙、丙三地海拔高度分别为20米,15-米,10-米,那么最高的地方比最低的地方高( ). A .10米 B .25米 C .35米 D .5米2.在国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为460000000帕的钢材,将460000000用科学记数法表示为( ). A .84.610⨯B .94.610⨯C .90.4610⨯D .74610⨯3.下列说法正确的是( ). ①0是绝对值最小的有理数; ②相反数大于本身的数是负数; ③一个有理数不是正数就是负数; ④两个数比较,绝对值大的反而小. A .①② B .①③C .①②③D .①②③④4.若2(2)30a b -++=,则2014()a b +的值是( ).A .0B .1C .1-D .20145.已知622x y 和313m n x y -是同类项,则29517m mn --的值是( ).A .1-B .2-C .3-D .4-6.关于x 的方程2152x kx x -+=-的解是1-,则k 的值为( ).A .4-B .6-C .8-D .107.下列等式变形正确的是( ). A .如果12s ab =,那么2s b a= B .如果162x =,那么3x =C .如果33x y -=-,那么0x y -=D .如果mx my =,那么x y =8.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( ). A .240元 B .250元C .280元D .300元9.a ,b 在数轴上的位置如图,化简a a b b a -++-=( ).A .2b a -B .a -C .23b a -D .3a -10.已知443212345(21)x a x a x a x a x a -=++++,则123451a a a a a -+-+-的值为( ).A .0B .13-C .82-D .80二、填空题(每题2分,共16分)11.213-的倒数是__________.12.比较大小:[]05().7-+-__________34--.13.用四舍五入法,对1.549取近似数(精确到十分位)是__________.14.单项式256x y-的系数是__________.15.多项式231245xy x y --是__________次三项式.16.已知3a =,2b =,且0ab <,则a b -=__________.17.定义新运算“※”:对于任意有理数a 、b ,都有22a b a b =+※.例如23423422=⨯+=※,那么当m 为有理数时,(2)m m =※※__________.18.一部分同学围在一起做“传数”游戏,我们把某同学传给后面的同学的数称为该同学的“传数”.游戏规则是:同学1心里先想好一个数,将这个数乘以2再加1后传给同学2,同学2把同学1告诉他的数除以2再减12后传给同学3,同学3把同学2传给他的数乘以2再加1后传给同学4,同学4把同学3告诉他的数除以2再减12后传给同学5,同学5把同学4传给他的数乘以2再加1后传给同学6,……,按照上述规律,序号排在前面的同学继续依次传数给后面的同学,直到传数给同学1为止.(1)若只有同学1,同学2,同学3做“传数”游戏,这三个同学的“传数”之和为17,则同学1心里先想好的数是__________.(2)若有n 个同学(n 为大于1的偶数)做“传数”游戏,这n 个同学的“传数”之和为20n ,则同学1心里先想好的数是__________.三、计算(每题4分,共16分)19.(8)102(1)-+++-.20.5431.5()12154-⨯-÷-.同学3同学2同学121.1111()()123218-+-÷-.22.4211(10.5)(1)2(3)3⎡⎤---⨯-⨯--⎣⎦.四、解方程(每题4分,共8分)23.2(4)3(51)2x x x +-+=-. 24.12223x x x -+-=-.五、化简(每题4分,共8分)25.222243244a b ab a b ++--.26.22225(3)3(5)a b ab ab a b --+.六、先化简再求值(每题5分,共10分)27.求22221313()43223a b a b abc a c a c abc ⎡⎤------⎢⎥⎣⎦的值,其中1a =-,3b =-,1c =.28.已知5a b -=,1ab =-,求(4)(232)(223)a b ab a b ab a b ab -++++---++的值.七、列方程解应用题(每题6分,共12分)29.北京某旅行社APEC 期间组织甲、乙两个旅游团分别到西安、苏州旅游,已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人?30.为体现党和政府对农民健康的关心,解决农民看病难问题,某县于064月1日开始全面实行新型农村合作医疗,对住院农民的医疗费实行分段报销制.下面是该县医疗机构住院病人累计分段报销表:医疗费报销比例(%)500元以下(含500元) 20 500元(不含)至2000元部分 30 2000元(不含)至5000元部分 35 5000元(不含)至10000元部分40 10000元以上部分45(例:某住院病人花去医疗费900元,报销金额为50020%40030%220⨯+⨯=元) (1)农民刘老汉在4月份因脑中风住院花去医疗费2200元,他可以报销多少元?(2)刘老汉在6月份脑中风复发再次住院,这次报销医疗费4880.25元,刘老汉这次住院花去医疗费多少元?八、附加题(每题4分,共20分,计入总分)31.如图所示,在1000个“〇”中依次填入一列数字1a ,2a ,3a ,…1000a 使得其中任意四个相邻“〇”中所填数字之和都等于10-,已知9992a x =-,251a x =-,可得x 的值为__________;501a =__________.32.设234922221335579799S =++++⨯⨯⨯⨯,248122235799T =++++,则S T -=( ). A .49299B .492199-C .492199-D .492199+33.方程1221x x +--=的解为__________.34.解关于x 的方程:2(2)44a x b x ab b -=-+.35.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了20分钟,货车追上了客车.问小轿车追上客车,需要多长时间?-7…………北京四中初一上期中数学试卷答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 CAABABCAAD二、填空题(每题2分,共16分)题号 11 1213 14 15 16 17 18 答案 35- >1.556- 四5±242m +3;13三、计算(每题4分,共16分)19.解:(8)102(1)-+++- (81)(102)=-+++ 912=-+ 3=.20.解:5431.5()12154-⨯-÷- 134()923=--⨯- 129=-+179=.21.解:1111()()123218-+-÷-146()(18)121212=-+-⨯-3()(18)12=-⨯-92=.22.解:4211(10.5)(1)2(3)3⎡⎤---⨯-⨯--⎣⎦ 141()(7)23=--⨯-⨯-1413=--173=-.四、解方程(每题4分,共8分)23.解:2(4)3(51)2x x x +-+=-, 去括号,得281532x x x +--=-, 移项,得215283x x x -+=-+, 整理,得123x -=-,系数化为1,得14x =. ∴原方程的解为14x =.24.解:12223x x x -+-=-, 去分母,得63(1)122(2)x x x --=-+,去括号,得6331224x x x -+=--, 移项,得6321243x x x -+=--, 整理,得55x =, 系数化为1,得1x =. ∴原方程的解为1x =.五、化简(每题4分,共8分)25.解:222243244a b ab a b ++--22(44)(34)2a b ab =-+-+ 22b ab =-+.26.解:22225(3)3(5)a b ab ab a b --+ 2222155315a b ab ab a b =---22(1515)(53)a b ab =--+ 28ab =-.六、先化简再求值(每题5分,共10分)27.解:22221313()43223a b a b abc a c a c abc ⎡⎤------⎢⎥⎣⎦222213(34)322a b a b abc a c a c abc =---+--22221334322a b a b abc a c a c abc =--+-+-2213()(33)(41)22a b abc a c =--+-+-2223a b a c =-+.∵1a =-,3b =-,1c =,∴原式222(1)(3)3(1)19=-⨯-⨯-+⨯-⨯=.28.解:(4)(232)(223)a b ab a b ab a b ab -++++---++4232223a b ab a b ab a b ab =---++-+-- (122)(432)(123)a b ab =-+++-+-+--- 336a b ab =-- 3()6a b ab =--.∵5a b -=,1ab =-, ∴原式35621=⨯+=.七、列方程解应用题(每题6分,共12分)29.解:设甲旅游团有x 人,则乙旅游团由(55x -)人. 依题意得,2(55)5x x =--, 解得35x =, 5520x -=.答:甲旅游团有35人,则乙旅游团由20人.30.解:(1)农民刘老汉在4月份因脑中风住院花去医疗费2200元, 报销金额为50020%150030%20035%620⨯+⨯+⨯=(元). 答:他可以报销620元. (2)当医疗费为10000元时,报销金额为50020%150030%300035%500040%3600⨯+⨯+⨯+⨯=(元). ∵4880.253600>, ∴医疗费大于10000元,设医疗费为x 元,依题意得45%(10000)4880.253600x -=-, 解得12845x =.答:刘老汉这次住院花去医疗费12845元.八、附加题(每题4分,共20分,计入总分)31.【答案】2;1【解析】由题意可知,“〇”中的数字以周期4T =循环,∴39992a a x ==-,1251a a x ==-, ∴271010x x --+-+=-,解得2x =,∴501111a a x ==-=.故答案为2;1.33.【答案】B【解析】234922221335579799S =++++⨯⨯⨯⨯22484812222221335579799=-+-+-++-. ∴224848248122222212221()33557979935799S T -=-+-+-++--++++ 223484922222221335579799=-+-+-++-492199=-.故选B .33.【答案】43x =或4x = 【解析】令10x +=,得1x =-;令20x -=,得2x =.当1x <-时,原方程化为1241x x --+-=,解得6x =,舍去; 当12x -≤≤时,原方程化为1241x x ++-=,解得43x =. 当2x >时,原方程化为1241x x +-+=,解得4x =. 综上,原方程的解为43x =或4x =.故答案为43x =或4x =.34.解:2(2)44a x b x ab b -=-+ 去括号,得2244ax ab x ab b -=-+, 整理,得2(24)4a x b -=,当2a ≠时,2424b x a =-;当2a =且0b =时,x 为任意实数;当2a =且0b ≠时,方程无解.35.解:设小轿车与货车之间的距离为s ,则货车与客车之间的距离为s ,小轿车与客车之间的距离为2s .设小轿车,货车,客车的速度分别为v 轿,v 货,v 客. 依题意,得1()6v v s -=轿货,1()2v v s -=货客,则()8v v s -=轿客, ∴21()4s v v =-轿客.答:小轿车追上客车,需要15分钟.北京四中初一上期中数学试卷部分答案解析一、选择题(每题3分,共30分)1.【答案】C【解析】最高的地方比最低的地方高20(15)35--=米.故选C .2.【答案】A【解析】460000000用科学记数法表示为84.610⨯.故选A .3.【答案】A【解析】③一个有理数不是正数就是负数,也可能是0; ④两个负数比较,绝对值大的反而小. ①和②正确.故选A .4.【答案】B【解析】由题意得,2a =,3b =-,∴20142014()(1)1a b +=-=.故选B .5.【答案】A【解析】由题意得,36m =,2n =,∴2m n ==,∴295173620171m mn --=--=-.故选A .6.【答案】B【解析】∵关于x 的方程2152x kx x -+=-的解是1-, ∴2152k -++=--,解得6k =-.故选B .7.【答案】C【解析】如果12s ab =,那么2sb a=;如果162x =,那么12x =;如果mx my =,那么x y =或0m =.故选C .8.【答案】A【解析】设进价为x ,则33080%10%x x ⨯-=,解得240x =.故选A .9.【答案】A【解析】由图可知,0a <,0b >,且a b >,∴2a a b b a a a b b a b a -++-=-+++-=-.故选A .10.【答案】D【解析】令1x =-,得1234581a a a a a -+-+=, ∴12345180a a a a a -+-+-=.故选D .11 二、填空题(每题2分,共16分)11.【答案】35- 【解析】213-的倒数是35-.故答案为35-.12.【答案】>【解析】[]0.753()4-+-=,3344--=-,∴[]0.753()4>----+.故答案为>.13.【答案】1.5【解析】1.549 1.5≈.故答案为1.5.14.【答案】56- 【解析】单项式256x y-的系数是56-.故答案为56-.15.【答案】四 【解析】多项式231245xy x y --是四次三项式.故答案为四.16.【答案】5± 【解析】∵3a =,2b =,且0ab <,∴3a =,2b =-,或3a =-,2b =,∴5a b -=±.故答案为5±.17.【答案】242m +【解析】2222(2)22)22242m m m m m m m =+=++=+※※※(.故答案为242m +.18.【答案】3;13【解析】(1)设同学1心里想的数为x ,则传给同学2的数为21x +, 传给同学3的数为x ,再传给同学1的数为21x +.由题意,得212117x x x ++++=,解得3x =.即同学1心里先想好的数是3.(2)由(1)可知,相邻两个同学的“传数”之和为21x x ++, ∵有n 个同学(n 为大于1的偶数)做“传数”游戏,∴这n 个同学的“传数”之和为(21)2n x x ++, ∴(21)220n x x n ++=,解得13x =.即同学1心里先想好的数是13.故答案为3;13.。

北京四中2019-2020学年上学期初中七年级期中考试数学试卷

北京四中2019-2020学年上学期初中七年级期中考试数学试卷

北京四中2019-2020学年上学期初中七年级期中考试数学试卷(考试时间为100分钟,试卷满分为120分)一、选择题(每小题3分,共30分) 1. -2的倒数是( ).A.-2B. 1-2C.12D.22. 港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.将55000用科学记数法表示应为( ).A.5.5×103B.55×103C.0.55×105D.5.5×104 3. 下列运算正确的是( ).A.5a 2-3a 2=2B.2x 2 +3x 2=5x 4C.3a+2b = 5abD.7ab - 6ba= ab4. 有理数a,b 在数轴上的位置如图所示,则下列结论正确的是( ).A.ab> 0B.0a b< C.a+b<0 D.a -b<05.用代数式表示“m 的两倍与n 的平方的差”,正确的是( ).A.2(m -n)2B.(2m -n)2C.2m -n 2D.(m -2n)26.下列说法正确的是( ).A.平方等于本身的数是0和1B.-a 一定是负数C.一个有理数不是正数就是负数D.一个数的绝对值一定是正数 7.下列关于单项式-2x 2y 的说法中,正确的是( ).A.系数为2,次数为2B.系数为-2,次数为2C.系数为-2,次数为3D.系数为2,次数为3 8.方程x -4=3x+5移项后正确的是( ).A.x+3x=5+4B.x -3x=-4+5C.x -3x=5-4D.x -3x=5+4 9.下列各式中去括号正确的是( ).A.-(-a -b)=a -bB.a 2+2(a -2b)=a 2 +2a -2bC.5x -(x -1)=5x -x+1D. ()22222211133444x x y x x y --=-- 10.如图是一个圆,一只电子跳蚤在标有数字的五个点上跳跃.若它停在奇数点上时,则下一次沿顺时针方向跳两个点;若停在偶数点上时,则下一次沿逆时针方向跳一个点.若这只跳蚤从1这点开始跳,则经过2019次跳后它所停在的点对应的数为( ).A.1B.2C.4D.5二、填空题(每小题2分,共16分)11. 0.03095 精确到千分位的近似值是__________.12. 如图是我市十二月份某一天的天气预报,该天的温差是___________℃.13. 比较大小:56-___________45-14. 已知x=-3是关于x的方程kx-2k=5的解,那么k的值为____________.15. 已知有理数a,b,c在数轴上的位置如图所示,其中|c|<|a|<|b|,化简:|a|+2|a-b|-|c-2a|=____________.16. 若关于x的多项式x4-ax3+x3-5x2-bx-3x-1不存在含x的一次项和三次项,则a+b=__________.17. 请阅读一小段约翰·斯特劳斯的作品,根据乐谱中的信息,确定最后一个音符的时间长应为__________.18. 小宇计划在某外卖网站点如下表所示的菜品.已知每份订单的配送费为3元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元.如果小宇在购买下表中的所有菜品时,采取适当的下订单方式,那么他点餐水煮牛肉(小)醋溜土豆丝(小)豉汁排骨(小)手撕包菜(小)米饭三、解答题19.(每小题4分)计算:(1) (-11)+8+(-14);(2) 8÷(-2)-(-4)×3;(3) 37116482⎛⎫-+-⨯ ⎪⎝⎭(4)221311332⎛⎫⎛⎫---÷⨯- ⎪ ⎪⎝⎭⎝⎭.20.(每小题4分) 计算:(1) 3x 2-6x -x 2-3+4x -2x 2-1; (2) (5a 2+2a -1)-4(3- 8a+2a 2). 21.(每小题4分) 解方程:(1) 3(2x -1)=4x+3;(2)2531162x x -+-= 22.(5分) 求22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭的值,其中22,3x y =-=. 23.(4 分)工厂加工一批比赛用乒乓球,按国际比赛规定要求乒乓球的直径标准为40mm.但是实际生产的乒乓球直径可能会有一些偏差,以下是该工厂加工的20个乒乓球的直径检验记录: (“+”表示超出标准,“-”表示不足标准.)(1)其中偏差最大的乒乓球直径是___________mm; (2)这20个乒乓球平均每个球的直径是多少mm?(3)若误差在“±0.25mm”以内的球可以作为合格产品,若误差在“±0.15mm”以内的球可以作为良好产品,这些球的合格率是___________,良好率是___________. 24.(6分) 一般情况下2323a b a b ++=+不成立,但有些数可以使得它成立,例如: a=b=0.我们称使得2323a b a b ++=+成立的一对数a,b 为“相伴数对”,记为(a,b). (1)若(1,b)是“相伴数对”,求b 的值; (2)若(m,n)是“相伴数对”,求代数式22[42(31)]3m n m n ----的值. 25.(7分)在同一直线上的三点A,B,C,若满足点C 到另两个点A, B 的距离之比是2,则称点C 是其余两点的亮点(或暗点).具体地当点C 在线段AB 上时,若2CACB=,则称点C 是[A,B]的亮点;若2CB CA =,则称点C 是[B,A]的亮点;当点C 不在线段AB 上时,若2CACB= ,称点C 是[A, B]的暗点.例如,如图1,数轴上点A,B,C,D 分别表示数-1,2,1,0,则点C 是[A,B]的亮点,又是[A,D]的暗点;点D 是[B,A]的亮点,又是[B,C]的暗点.(1)如图2,M,N 为数轴上的两点,点M 表示的数为-2,点N 表示的数为4,则[M,N]的亮点表示的数是___________, [N,M]的亮点表示的数是____________; [M,N]的暗点表示的数是____________,[N, M]的暗点表示的数是____________;(2)如图3,数轴上点A 所表示的数为-20,点B 所表示的数为40,一只电子蚂蚁P 从B 出发以每秒2个单位的速度向左运动,设运动时间为t 秒.①求当t 为何值时,P 是[B,A]的暗点;②求当t 为何值时,P,A 和B 三个点中恰有一个点为其余两点的亮点.附加卷1.(7分)古希腊毕达哥拉斯学派的数学家常用小石子在沙滩上摆成各种形状来研究各种多边形数,比如:他们研究过图1中的1, 3,6,10, ...,由于这些数能够表示成三角形,将其称为三角形数(三边形数);类似的,称图2中的1,4,9,16,…,这样的数为正方形数(四边形数).(1)请你写出既是三角形数又是正方形数且大于1的最小正整数为__________; (2)记第n 个k 边形数为N(n,k).例如N(1,3)=1,N(2,3)=3, N(2,4)=4.①N(3,3)=______________, N(n,3)=______________ N(n,4)=__________.②通过进一步的研究发现2231(,5),(,6)2,22N n n n N n n n =-=-,请你推测N(n,k)(k≥3)的表达式,并由此计算N(10,24)的值.2.(4 分)对于三个数a,b,c ,用M{a,b,c}表示a,b,c 这三个数的平均数,用min{a,b,c}表示a,b,c 这三个数中最小的数,如{}12341,2,333M -++-==, min{-1,2,3}=-1. (1)若M{x -1,-5,2x+3}=12(1+3x), 求x 的值; (2)已知M{2x,-x+2,3}, min{-1,0,4x+1}, 是否存在一个x 值,使得2·M{2x,-x+2,3}=min{-1,0,4x+1}.若存在,请求出x 的值;若不存在,请说明理由. 3.(3分)如图,若点A,B,C,D 在数轴上表示的有理数分别为a,b,c,d, 则|a -2x|+|2x+bl+|2x -c|+|2x+d|的最小值为___________.(用含有a,b,c,d 的式子表示结果)4.(6分)阅读下面材料:小丁在研究数学问题时遇到一个定义:将k 个数排成一列x 1,x 2,x 3,…,x k ,称为数列A k : x 1,x 2,x 3,…,x k ,其中k 为正整数且k≥3,定义V(A k)=|x1-x2|+|x2-x3|+...+|x k-1-x k|.例如:若数列A5: 1,2,3,4,5,则V(A5)=|1-2|+|2-3|+|3-4|+|4-5|=4.根据以上材料,回答下列问题:(1)已知数列A3:3,5,-2,则V(A3)=__________.(2)已知数列A4: x1,x2,x3,x4其中x1,x2,x3,x4为4个互不相等的整数,且x1=3,x4=7,V(A4)=4,则满足条件的数列A4为_________________.(3)已知数列A5:x1,x2,x3,x4, x5中5个数均为非负数,且x1+x2+x3+x4+x5=25,则V(A5)的最大值为_______________,最小值为_______________.参考答案一、选择题1.B2.D3.D4.B5.C6.A7.C8.D9.C 10.B二、填空题 11.0.031 ; 12.7; 13.< ; 14.-1 ; 15.-a+2b -c;16.-2;17.1418.54三、解答题19.(1) =-3+(-14)=-17(2) =-4+12 =8(3) =-12+14-8. =-6(4) =2191334--⨯⨯ =32-20.(1)解:原式=(3x 2-x 2 -2x 2)+(-6x+4x)+(-3-1)=- 2x -4(2)解:原式=5a 2 +2a -1-12+32a - 8a 2 =-3a 2 +34a -1321.(1) 解: 6x -3=4x+32x= 6 x=3(2)解: (2x -5)-3(3x+1)=6 2x -5-9x -3=6 -7x=14 x=-2 22.解:原式=22123122323x x y x y -+-+ =-3x+y 2当x=-2,23y =时,原式=22(3)(2)3⎛⎫-⨯-+ ⎪⎝⎭=446699+=23. (1) 40.5;(2) ()()10.420.21(0.1)11030.320.54040.0520⨯-+⨯-+⨯-+⨯+⨯+⨯+=.(3) 70% ; 60%.24. 解: (1) Q(a,b)是“相伴数对”,∴112323b b ++=+ 解得94b =-; (2) Q(m,n)是“相伴数对”, ∴3265m n m n++= ∴940m n +=, 则原式=224944623222333m nm n m n n m +--+-=---=--=-. 25.(1) 2; 0; 10; -8;(2)①QP 是[B,A]的暗点, ∴PB=2PA.即2t=2(2t -60),解得t= 60.②当P 是[A, B]的亮点时,60-2t=2×2t, 解得t=10; 当P 是[B,A]的亮点时,2t=2(60-2t), 解得t= 20; 当A 是[B,P]的亮点时,60=2× (2t - 60),解得t=45; 当A 是[P,B]的亮点时,2t - 60=2×60,解得t=90;综上,当t 为10,20,45,90时,点P, A 和B 中恰有一个点为其余两点的亮点.附加题 1.(1) 36;(2)①6;(1)2n n +; n 2; ②22(1)(32)(43)(,3)222n n n n n nQN n ++-+-=== 22220(42)(44)(,4)22n n n nN n n +⨯-+-===222313(52)(45)(,5)2222n n n n nN n n --+-=-==22242(62)(46)(,6)222n n n nN n n n --+-=-==由此推断出2(2)(4)(,)(3)2k n k nN n k k -+-=≥; ∴2(242)10(424)10(10,24)10002N -⨯+-⨯==. 2.(1)由题意得: {}15231,5,2313x x M x x x --++--+==-∴11(13)2x x -=+ ∴3x =-. (2)由题意得:{}22352,2,333x x x M x x +-+++-+==,若4x+1≥-1,则5213x +⨯=-,解得: 132x =-.此时4x+1=-25<-1,与条件矛盾;若4x+1<-1, 则52413x x +⨯=+,解得: 710x =.此时194115x +=>-,与条件矛盾;所以不存在. 3.c+d -b -a.4.(1) 9; (2) 3,4,5,7; 3,4,6,7; 3,5,6,7; (3) 25; 0.。

2020北京四中初一(上)期中数学(教师版)

2020北京四中初一(上)期中数学(教师版)
【详解】解:A.近似数5.1万精确到千位,此选项错误;
B.2.709精确到个位的近似数是3,此选项错误;
C.0.154精确到十分位为0.2,此选项错误;
D.近似数1.31×105精确到千位,此选项正确.
故答案为D.
【点睛】本题考查了近似数和有效数字,掌握确定有效数字的位数和精确的位数是解答本题的关键.
17.甲乙丙三个商店都在销售同一种排球,而且每个球的标价都是25元.但三个店的促销方式不一样:甲店的促销方式是每买十送二,乙店的促销方式是优惠16%,丙店的优惠方式是买球每满100元可返现金15元.学校准备买60个这种排球.你认为到______家商店买比较省钱,这时实际只需要付______元.
18.已知数 , , 在数轴上的对应点的位置如图所示,化简 的结果为______.
解决问题:(1)根据上面的定义将表格补充完整.
(2)仿照上面【步骤二】,完成“ ”的编码排布、运算及二维码填涂.“ ”二维码的其余部分已生成,你可以将获得的结果填涂在对于的空白位置.一个完整的二维码就大功告成啦,试着扫一扫它吧!
0
0
0
1
0
1
0
1
1
0
2020北京四中初一(上)期中数学
参考答案
一、选择题
21.计算
(1)
(2)
(3)
(4)
22.化简
(1) (2)
23.解方程
(1) (2)
24.先化简,再个有理数 , , , ,可以组成两个有理数对 与 .我们规定: .例如: .根据上述规定解决下列问题:
(1)有理数对 ______;
(2)若有理数对 ,则 ______
8.【答案】A
【解析】
【分析】

6北京市第四中学2019-2020学年七年级上学期期中考试数学试题(解析版)

6北京市第四中学2019-2020学年七年级上学期期中考试数学试题(解析版)

北京市第四中学2019-2020学年七年级上学期期中考试数学试题一、选择题(每题2分,共20分)1. 的绝对值是().A. B. C. D.【答案】B【解析】试题分析:|-|=-(-)=.故选B.考点:绝对值.2. 北京某天的最高气温是,最低气温是,则这天的温差是().A. B. C. D.【答案】A【解析】因为,所以温差是,故选.3. 下列各式中一定为负数的是().A. B. C. D.【答案】B【解析】因为.;.;.;.,所以为负数,故选.4. 研究表明,可燃冰是一种可替代石油的新型清洁能源,在我国某海域乙探明的可燃冰储存量达立方米,其中数字用科学计数法可表示为().A. B. C. D.【答案】C【解析】,故选.5. 下列代数式中,多项式共有().,,,,,,.A. 个B. 个C. 个D. 个【答案】C【解析】几个单项式的和叫做多项式,则多项式有,,,共个,故选.点睛:本题主要考查了多项式的定义,①几个单项式的和叫做多项式;②在多项式中,每个单项式叫做多项式的项;③多项式中,次数最高的项的次数是这个多项式的次数;④一个多项式可根据次数和项数将其叫做“几次几项式”.6. 数轴上有、、、四个点,其中绝对值相等的数所对应的点是().A. 点与点B. 点与点C. 点与点D. 点与点【答案】C【解析】到原点的距离相等的点对应的数的绝对值相等,所以图中绝对值相等的数是点和点,故选.7. 下列各式中去括号正确的是().A. B.C. D.【答案】D【解析】试题解析:A.故错误.B.故错误.C.故错误.D. 正确.故选D.8. 若多项式的值为,则多项式的值是().A. B. C. D.【答案】C【解析】因为,所以,故选.9. 下列解方程去分母正确的是().A. 由,得B. 由,得C. ,得D. 由,得【答案】C【解析】A.,去分母得,则A错误;B.,去分母得,则B错误;C.,去分母得,则C正确;D.,去分母得,则D错误.故选C.点睛:本题主要考查了一元一次方程的解法,解一元一次方程的一般步骤是:①去分母,不要漏乘不含分母的项;②去括号,不要漏乘括号内的项,并注意符号的变化;③移项,移项要变号;④合并同类项,系数相加,字母及指数不变;⑤系数化为1,将方程两边都除以未知数的系数.10. 下列数轴上的点都表示实数,其中,一定满足的是().A. ①③B. ②③C. ①④D. ②④【答案】B学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...A在−2的左边,或A在2的右边,故选B.二、填空题(每题2分,共20分)11. 比较大小:__________,(填“”,“”或“”).【答案】<【解析】,,所以,故答案为<.12. 在一次立定跳远测试中,合格的标准是,小明跳出了,记为,小明跳出了,记为__________.【答案】【解析】以为标准,比多的部分记为正,比少的部分记为负,,所以,记作,故答案为.13. (精确到)是__________.【答案】【解析】由四舍五入可知,精确到哪一位就四舍五入到哪一位,所以0.0158精确到0.001是0.016,故答案为0.016.14. 单项式的系数是__________,次数是__________.【答案】;【解析】根据单项式系数和次数的意义可知,单项式是系数是,次数是4,故答案为,4.15. 写出一个系数是,且只含、两个字母的三次单项式是__________.【答案】【解析】答案不唯一,如,等,答案为.16. 设,,且,用“” 号把,,,连接起来为__________.【答案】【解析】因为,,且,所以,故答案为.点睛:本题主要考查了有理数的大小比较,有理数的大小比较注意以下几点:①正数大于0,负数小于0,正数大于一切负数;②负数比较大小:先求两个负数的绝对值,再比较绝对值的大小,最后根据“两个负数比较大小,绝对值大的反而小”来判断.17. 已知,则__________.【答案】-1【解析】试题分析:若,则所以所以所以2+(-3)=-1.考点:1.非负数的性质;2.有理数的计算.18. 减去后,等于的代数式是__________.【答案】【解析】根据题意得,故答案为.19. 如图的框图表示解方程的流程,第步的依据是__________.【答案】等式的性质【解析】第3步是等式的两边都乘以-1,依据的是等式的性质2,故答案为等式的性质2. 20. 按一定规律排列的一列数依次为:,,,,,,按此规律排列下去,这列数中第个数及第个数(为正整数)分别是__________.【答案】;【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有,又因为,,,,,所以第n个数的绝对值是,所以第个数是,第n个数是,故答案为-82,. 点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律.三、解答题21. 有理数运算:().().().().().【答案】见解析.【解析】试题分析:(1)去除括号和括号前的符号,再运用加法的结合律计算;(2)去除括号和括号前的符号,把分母相同的分数结合;(3)先确定结果的符号,再把除法转化为乘法;(4)注意运算顺序,先乘方,再乘除,后加减;(5)先乘方,再乘除,后加减,有括号先算括号里面的.试题解析:()=1-1.().().().().22. 解关于的方程:().().【答案】见解析.【解析】试题分析:(1)先去括号,再移项,合并同类项,系数化为1;(2)方程两边同时乘以6去分母,再去括号,再移项,合并同类项,系数化为1;().().23. 整式加减:().().【答案】见解析.【解析】试题分析:(1)先将式子中同类项结合,再合并;(2)先去小括号,再去中括号,注意当括号前是负号,去括号后,括号里的每一项都要改变符号.().().24. 先化简,再求值(每题分,共分):(),其中,.()已知,,求的值.【答案】见解析.【解析】试题分析:(1)先去括号,合并同类项后,再将a,b的值代入计算;(2)先去括号,合并同类项,注意使a-b和ab,成为一个整体,再将a-b,ab的值代入计算;试题解析:(),当,时,原式.(),因为,,所以,原式.25. (分)对于有理数,,规定一种新运算:.()计算:__________.()若方程,求的值.()计算:的值.【答案】();()见解析;()见解析.【解析】试题分析:(1)把a=-3,b=4代入到ab+b中计算;(2)把a=x-4,b=2代入到ab+b=3中得到方程,解方程求x的值;(3)先计算=-4,再计算5*(-4).试题解析:(1).()由,得.(),所以.点睛:本题考查了有理数的混合运算和新定义,有理数的混合运算顺序是①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行;对于新定义,要理解它所规定的运算规则,再根据这个规则,结合有理数的混合运算的法则进行计算.26. 从开始,连续的奇数相加,和的情况如下:,,,,.()从开始,个连续的奇数相加,请写出其求和公式.()计算:.()已知,求整数的值.【答案】见解析.【解析】试题分析:(1)由所给运算可知,从开始,个连续的奇数相加,则其和等于;(2)由(1)中的规律,分别计算出,然后两式相减即可;(3)由(1)中的规律,得到=,则=2025,即可求解.试题解析:()根据题意得:.()根据题意得:,,所以.()根据()得:,因为,所以.27. 如图,点、、是数轴上三点,点表示的数为,,.()写出数轴上点、表示的数:__________,__________.()动点,同时从,出发,点以每秒个单位长度的速度沿数轴向右匀速运动,点以个单位长度的速度沿数向左匀速运动,设运动时间为秒.①求数轴上点,表示的数(用含的式子表示);②为何值时,点,相距个单位长度.【答案】(),;()见解析.【解析】试题分析:(1)根据BC,AB的长和点B,A在数轴上的位置,可得到点B,A表示的数;(2)①点P表示的数比-10大4t,点Q表示的数比C小2t;②需要分两种情况讨论:若P在Q的左侧,PQ=6;若P在Q的右侧,PQ=6.试题解析:()因为,所以表示的数为,因为,所以表示的数为.()①根据题意得,点表示的数为,点表示的数为.②当点、相距个单位长度时,若P在Q的左侧,则,解得;若P在Q的右侧,则,解得,所以的值为或.28. 设记号*表示求、算术平均数的运算,即,则下列等式中对于任意实数,,都成立的是().①;②;③;④.A. ①②③B. ①②④C. ①③④D. ②④【答案】B【解析】①中,,所以①成立;②中,,所以②成立;③中,所以③不成立;④中,,所以④成立.故选B.29. 有个数,第一个数记为,第二个数记为,,第个数记为,若,且从第二个数起,每个数都等于“与它前一个数的倒数的差”.()写出,的值__________,__________.()根据()的计算结果,请猜想并写出的值.【答案】(),;().【解析】试题分析:(1)根据“从第二个数起,每个数都等于1与它前一个数的倒数的差”写出,;(2)分别计算出,,,会发现,他们的值的变化有一个周期,再根据这个周期确定结果.试题解析:(1),.(),,,,,又,由循环规律,得.30. 循环小数写成最简分数时,分子和分母的和是,写出这个循环小数:__________.【答案】.【解析】设,则,所以,因为,约分后,分子与分母的和为,所以约去的数可能是,,,,,,当约去的数是时,分母剩下,所以分子是,分数为,不符合题意,同理,可得,,,,不符题意,当约去的数为时,分母剩下,分子是,,符合题意.故答案为.31. 已知是关于未知数的一元一次方程,求代数式的值.【答案】见解析【解析】试题分析:根据题意可知x的二次项的系数为零,一次项的系数不等于零,求出m的值,再代入原方程求x的值,然后代入到代数式中求值.试题解析:由题意,得,,所以,此时原方程为,解得,所以.【答案】见解析.【解析】试题分析:第一次擦去个,从第二次起,每次比前一次多擦去个,则次刚好擦完,则这六次每一次擦的个数为:a,a+1,a+2,a+3,a+4,a+5,它们的和为9a,则可列方程求解.试题解析:由题意得,所以,解得,,所以小明在黑板上共写了个有理数.点睛:本题主要考查了有理数的加法运算的运用,首先要理解题意,分别列出用六次擦完的关于a的表达式,用9次擦完的关于a的表达式,得到关于a的简易方程,解这个方程求出a,即可得到有理数的个数.。

北京市第四中学2024-2025学年七年级上学期11月期中考试数学试题

北京市第四中学2024-2025学年七年级上学期11月期中考试数学试题

北京市第四中学2024-2025学年七年级上学期11月期中考试数学试题一、单选题1.5-的相反数是()A .5B .15C .15-D .5-2.中国船舶自主品牌在国际上发挥引领作用,年初已高质量完成多艘船舶的交船任务,其中包括满足最新环保排放标准的原油船“凯盟”轮,该船总重11.5万吨.将数据115000用科学记数法表示为()A .311510⨯B .61.1510⨯C .51.1510⨯D .60.11510⨯3.下列各式中计算正确的是()A .236-=-B .2(3)6-=C .239-=D .2(93)-=4.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是()A .a b <B .0ab >C .0b a ->D .0a b +>5.下列运算正确的是()A .a b ab+=B .32ab ba ab-=C .624a b -=D .235a b ab+=6.下列等式变形错误的是()A .若13x -=,则4x =B .若33x y -=-,则0x y -=C .若112x x -=,则12x x-=D .若342x x +=,则324x x -=-7.如图是一个“数值转换机”,按下面的运算过程输入一个数x ,若输入的数1x =-,则输出的结果为()A .11B .3C .5-D .21-8.我国古代数学著《算法统宗》中有这样一个数学问题,其大意是:现有一根竿和一条绳索,若用绳索去量竿,绳索比竿长5尺;若将绳索对折去量竿,绳索就比竿子短5尺,若设竿长为x 尺,则可列方程为()A .552x x +-=B .552x x +=-C .()255x x++=D .525x x++=-9.王涵同学在某月的日历上圈出了三个数a ,b ,c ,并求出了它们的和为45,则这三个数在日历中的排位位置不可能的是()A .B .C .D .10.正正和阳阳一起玩猜数游戏.正正说:“你随便选定三个小于8的正整数,按下列步骤进行计算:第一步把第一个数乘以4,再减去15;第二步把第一步的结果乘以2,再加上第二个数;第三步把第二步的结果乘以8,再加上第三个数.只要你告诉我最后的得数,我就能知道你所选的三个正整数.”阳阳表示不信,但试了几次以后,正正都猜对了.请你利用所学过的数学知识来探索该“奥秘”,回答:当“最后的得数”是102时,阳阳最初选定的三个正整数按顺序分别是()A .1,4,6B .6,4,1C .6,2,5D .5,2,6二、填空题11.中国古代著作《九章算术》在世界数学史上首次正式引入负数.如果盈利90元记作90+元,那么亏本70元记作元.12.比较大小:45-78-.(填“>”、“<”或“=”)13.用四舍五入法将1.8955取近似数并精确到0.001,得到的值是.14.单项式25x y -的系数是,次数是.15.用代数式表示y 的倒数与1的和:.16.若关于x 的方程mx+2=2(m ﹣x )的解是12x =,则m=.17.将二进制数2(1101)转化为十进制数是,十进制数35转化成二进制数是()2.18.在一个33⨯的正方形网格中,在每个小方格中各填一个正数,要求同时满足以下条件:a(1)每一行的数字乘积为1;(2)每一列的数字乘积为1;(3)任何一个22⨯的正方形中的数字乘积为2.则正方形网格中间的数字a 是.三、解答题19.计算:(1)()()231410+---;(2)45573144⎛⎫⎛⎫-⨯-⨯-÷- ⎪ ⎪⎝⎭⎝⎭;(3)()218(6)2⎛⎫-⨯-+- ⎪⎝⎭;(4)()58243-++÷-;(5)()15724368⎛⎫-⨯+- ⎪⎝⎭;(6)()()421110.4233---⨯⨯-.20.化简:(1)4696b a b a --+;(2)()()22423271a ab a ab -+---.21.解下列方程:(1)215x +=;(2)()3151x x +=-;(3)2121163x x +--=.22.已知3a ﹣7b =﹣3,求代数式2(2a +b ﹣1)+5(a ﹣4b )﹣3b 的值.23.一辆货车从百货大楼出发负责送货,向东走了4千米到达小袁家,继续走了1.5千米到达小平家,又向西走了10千米到达小爽家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小袁、小平、小爽家的位置并在数轴上面写出这些点所对应的数;(2)小袁家与小爽家相距多远?(3)若货车每千米耗油0.05升,那么这辆货车共耗油多少升?24.如图是某一长方形闲置空地,宽为3a 米,长为b 米.为了美化环境,准备在这个长方形空地的四个顶点处分别修建一个半径a 米的扇形花圃(阴影部分),然后在花圃内种花,中间修一条长b 米,宽a 米的小路,剩余部分种草.(1)小路的面积为平方米;种花的面积为平方米;(结果保留π)(2)请计算该长方形场地上种草的面积;(结果保留π)(3)当2a =,10b =时,请计算该长方形场地上种草的面积.(π取3.14,结果精确到1)25.对于有理数a 、b ,定义一种新运算“⊙”,规定||||a b a b a b =+-- .(1)直接写出()()34+- 的值为________;(2)当a 、b 在数轴上的位置如图所示时,化简a b ;(3)在条件(2)下,直接写出()()2b a b = ______.26.阅读与思考将新学的知识和已有的知识相互联系是数学学习的好方法.小赵同学在学习了《多项式》一章之后,发现了多项式和进位制的相似之处.在n 进制下,数110k k a a a a -…可以表示为1110k k k k a n a n a n a --++++ ,如果将n 看成变量,那么后面的代数式便是一个关于n 的多项式.如在十进制下,23213102101=⨯+⨯+;在n 进制下2(321)321(3)n n n n =++>.他在学习小组中分享了这个想法之后,小赵和他的同学们有了如下对话:悦悦:如果多项式2345A x x =++,那它是不是可以看成是“x 进制”下的“多项式”?正正:好像是这样.另外,多项式A 还可以写成()23(1)10112x x -+-+,那么它就可以看成是“()1x -进制”下的“多项式”了!小赵:这么看来,多项式是不是也能进行“进制转化”呢?为了解决小赵的问题,学习小组进行了更深入的探究.项目主题:多项式的“进制转化”.请阅读他们小组的项目实施过程,帮助他们解决实施过程中遇到的问题.项目实施:任务一搜集资料:我们可以用竖式进行类似演算,即先把被除式、除式按某个字母的指数从大到小依次排列项的顺序,并把所缺的次数项用零补齐,再类似数的竖式除法求出商式和余式,其中余式为0或余式的次数低于除式的次数.任务二竖式计算:例如我们计算()()23451x x x ++÷-,可以列出如下竖式:2237134533757712x x x x x x x x+-++-+-因此多项式2345x x ++除以1x -,商式为37x +,余式为12.我们可以写成:()()()234513712x x x x ++÷-=+ ,即:()()234537112x x x x ++=+-+.任务三学以致用:(1)请把23456x x x ++-按x 的降幂排列:________________;(2)请计算()()32331x x x x ++-÷-的商是________,余式是________;(3)直接写出3233x x x ++-展开成“()1x -进制”的“多项式”结果.四、填空题27.为庆祝“十一”国庆节,广场上要设计一排灯花增强气氛.其设计由如图所示图案逐步演变而成,其中圆圈代表灯花中的灯泡,n 代表第n 次演变过程,n s 代表第n 次演变后的灯泡总个数.仔细观察下列演变过程.(1)当5n =时,5s =;(2)用含n 的代数式表示第n 次演变后的灯泡总个数为.28.已知有理数a 满足|||1||26|x x a x ++-+-的最小值是8,那么a 的值是.五、解答题29.如图是一个400米长的圆形跑道,从O 点出发,沿跑道顺时针跑出52米的距离记作52+米,逆时针跑出60米记作60-米.已知跑道上的两点A ,B 对应的有理数分别为a ,b ,且满足:()280400a b ++-=,(1)a b +=________;(2)定义1:跑道上任意两点之间较短圆弧的长度叫做这两点的弧距.定义2:若点M 为跑道上A ,B 两点之间较短圆弧上的一点,且到A ,B 两点的弧距满足:其中一个弧距是另一个弧距的3倍,则称M 为A ,B 两点的“友谊点”.①直接写出A,B两点的“友谊点”M在跑道上对应的有理数;②点P以每秒40个单位长度的速度从点A出发,沿跑道逆时针运动,同时点Q以每秒20个单位长度的速度从点B出发,沿跑道顺时针运动.当Q与O重合时,运动停止.当P为O,Q两点的“友谊点”时,此时运动的时间为t秒,请直接写出t的所有可能取值.。

北京四中第一学期期中考试

北京四中第一学期期中考试

北京四中第一学期期中考试初一年级数学试卷(考试时间为100分钟,试卷满分为100分) 班级________ 姓名________ 分数________一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共36分)1.下列说法正确的是( )A .一个数前面加上“-”号这个数就是负数;B . 非负数就是正数;C .正数和负数统称为有理数;D .0既不是正数也不是负数。

2. 在-(-8),-|-7|,-|0|,22()3-这四个数中,负数有( )A.1个;B.2个;C.3个;D.4个 3.若a 、b 互为相反数,那么( )。

A .ab<0; B.22a b =-; C.33a b =; D.|a|=|b| 。

4.近似数3.020×107有效数字的个数和精确度分别为( ) A .三个,精确到万位; B.三个,精确到十万位; C .四个,精确到万位; D.四个,精确到十万位。

5.下面运算正确的是( )A .3ab+3ac=6abc ; B.4a 2b-4b 2a=0C.224279x x x +=; D.22232y y y -=.6.设x 为有理数,若|x |>x ,则( )A .x 为正数; B. x 为负数; C. x 为非正; D. x 为非负数。

7.研究下面的一列数:1,-3,5,-7,9,-11,13,……照此规律,第n 个数应该是( ) A .2n -1; B.1-2n ; C.(2n -1)(-1)n; D.(2n -1)(-1)1n +8.下列结论中正确的是( )A .在等式3a-b=3b+5的两边都除以3,可得等式a-2=b+5;B .如果2=-x ,那么x =-2;C .在等式5=0.1x 的两边都除以0.1,可得等式x =0.5;D .在等式7x =5x +3的两边都减去x -3,可得等式6x -3=4x +6。

9.若2)1(3++-y x =0,n 为正整数,则nxy )4(--的值为( )A .1;B .-1; C.±1; D.不确实10.若0<a <1则a,2,1a a从小到排列正确的是( )A .aa a12<<; B.21a aa <<; C.21a a a<<; D.aaa 12<<11.某商品进价a 元,商店将价格提高30%作零售价销售,在销售旺季过后,商店双以8折(即售价的80%)的价格开展促销活动,这时一件商品的确售价为( )A .a 元; B.0.8a 元 C.1.04a 元; D.0.92a 元 12.下列方法,正确的是( )A .长方形的长是a 米,宽比长短25米,则它的周长可表示为(2a-25)米;B .6h 表示底为6、高上h 的三角形的面积;C .在10a+b 中,b 是个位数字,a 是十位数字;D .甲、乙两人分别以3千米/小时和5千米/小时的速度,同时从相距40千米的两地相向出发,设他们经过x 小时相遇,则可列方程为3x+5x=40.二.填空题(请把答案填到答题纸上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年北京四中初一上学期数学期中试卷一、选择题(本大题共10小题,每小题只有唯一正确答案.每小题3分,共30分)1.下列判断中,正确的是( ). A .一个有理数的相反数一定是负数 B .一个非正数的绝对值一定是正数 C .任何有理数的绝对值都是正数 D .任何有理数的绝对值都不是负数【答案】D【解析】A :0的相反数是0,故本选项错误; B :一个非正数的绝对值还可能为0,故本选项错误; C :有理数的绝对值还可能为0,故本选项错误; D :任何有理数的绝对值都不是负数,故本选项正确.2.a 、b 互为倒数,x 、y 互为相反数且0y ≠,则()()xa b x y ab y++--的值为( ). A .0 B .1 C .1- D .不能确定【答案】A【解析】∵a 、b 互为倒数,x 、y 互为相反数, ∴0x y +=,x y =-, ∴()()()01110x y a b x y ab a b y y-++--=+⋅--=-+=.3.2.01精确到( )位. A .个 B .十分 C .百分 D .千分【答案】C【解析】2.01最末位是百分位.4.下列各组中,一定相等的是( ). A .2a -与2()a - B .2()a --与2a C .2a -与2()a -- D .2()a -与2()a --【答案】C【解析】22()a a -=,22()a a --=-,故相等的是2a -与2()a --.5.一个三位数,百位上的数字是a ,十位上的数字是a 的2倍,个位上的数字比十位上的数字小1,这个三位数用代数式可以表示为( ). A .1221a - B .1131a - C .51a - D .1111a -【答案】A【解析】这个三位数表示为100102211221a a a a +⋅+-=-.6.设A 是一个三次多项式,B 是一个四次多项式,则A B +的次数是( ). A .7 B .4 C .3 D .不超过4次都有可能【答案】B【解析】多项式的次数由最高次数的项决定,故A B +的次数是四次.7.下列等式成立的是( ).A .325a b ab +=B .22423a a a +=C .333523y y y -=D .3232x x x -=【答案】C【解析】A :不能进行运算,故本选项错误; B :22223a a a +=,故本选项错误; C :333523y y y -=,故本选项正确; D :3223(31)x x x x -=-,故本选项错误.8.下列去(添)括号正确做法的有( ). A .()x y z x y z --=-- B .()x y z x y z --+=--- C .222()x y z x y z +-=-- D .()()a c d b a b c d -+++=--++【答案】D【解析】A .()x y z x y z --=-+,故本选项错误; B .()x y z x y z --+=-+-,故本选项错误; C .222()x y z x y z +-=+-,故本选项错误; D .()()a c d b a b c d -+++=--++,故本选项正确.9.两数相加,和比一个加数大,比另一个加数小,则这两个加数( ). A .有一个是0 B .都是正数C .都是负数D .一个是正数,一个是负数【答案】D【解析】a a b b <+<,∴0b >,0a <,a b <.10.三个连续奇数排成一行,第一个数为x ,最后一个数为y ,且x y <.用下列整式表示中间的奇数时,不正确的一个是( ). A .2x + B .2y -C .4x y -+D .1()2x y +【答案】C【解析】三个连续奇数,故中间的数122()2x y x y +=-=+,故答案为C .二、填空题(每空2分,共20分.请将答案写在题目的横线上)11.在数轴上,与表示1-的点距离为2的点所表示的数是__________. 【答案】1或3-【解析】与表示1-的点距离为2的点所表示的数是121-+=或123--=-.12.133-的相反数是__________,绝对值是__________,倒数是__________,平方是__________.【答案】133,133,310-,1009【解析】11(3)333--=,11|3|333-=,1311033=--,21100(3)39-=.13.用科学记数法表示507 100 000 000为__________. 【答案】115.07110⨯【解析】11507 100 000 000 5.07110=⨯.14.①225345x x y x +-=-(__________),②3313p q q -+-=-(__________). 【答案】2243y x -,31p +【解析】22225345(43)x x y x y x +-=--,3313(31)p q q p -+-=-+.15.若多项式223(1)1m x n x ---+是关于x 的二次二项式,则m =__________,n =__________. 【答案】2,1【解析】若多项式223(1)1m x n x ---+是关于x 的二次二项式,则222m -=,且10n -=, ∴2m =,1n =.16.若|1|2x a b --与2|2|12y a b +可以合并,则x =__________,y =__________.【答案】3或1-,0或4-【解析】若|1|2x a b --与2|2|12y a b +可以合并,则|1|2x -=,|2|2y +=,∴3x =或1-,0y =或4-17.若12x <<,则|||1||2|x x x +---=__________. 【答案】33x -【解析】∵12x <<,∴10x -<,20x ->,∴1233x x x x +--+=-.18.若3a b -=-,2c d +=,()()b c a d +--的值为__________. 【答案】5【解析】()()()()325b c a d a b c d +--=--++=+=.19.如图所示,将一张矩形纸片对折,可得到一条折痕(图中的虚线),连续对折,对折时每次折痕与上次折痕保持平行,连续操作三次可以得到7条折痕,那么对折n 次可得到折痕的条数是__________.【答案】21n -【解析】根据题意可知, 第1次对折,折痕为1, 第2次对折,折痕为12+,第3次对折,折痕为122++,第n 次对折,折痕为21122221n n -+++⋯+=-.20.让我们做一个数字游戏:第一步:取一个自然数15n =,计算211n +得1a ; 第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ;第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ; ……依此类推,则2015a =__________. 【答案】2015265a a ==【解析】当15n =,211126a n =+=; 当2268n =+=,22165a n =+=; 当36511n =+=,331122a n =+=; 当41225n =++=,44126a n =+=; 所以5265a a ==,…,则2015265a a ==.三、计算题21.155336⎛⎫-+ ⎪⎝⎭.【答案】32-【解析】原式16233362=-+=-. 22.13110.4 2.755612⎛⎫⎛⎫--+-- ⎪ ⎪⎝⎭⎝⎭. 【答案】0 【解析】原式13121110565412=-+--=.23.171139⎛⎫÷- ⎪⎝⎭.【答案】34-【解析】原式4933164⎛⎫=⨯-=- ⎪⎝⎭.24.225122.5833⎛⎫⎛⎫-÷-⨯÷- ⎪ ⎪⎝⎭⎝⎭.【答案】1【解析】原式581912594=⨯⨯⨯=25.12120.25233⎛⎫÷-+ ⎪⎝⎭.【答案】30- 【解析】原式51130243⎛⎫=÷-=- ⎪⎝⎭.26.4211(10.5)[2(3)]3---⨯⨯--.【答案】16【解析】原式1111(7)236=--⨯⨯-=.四、整式化简27.化简后按字母a 的降幂排列: @(1)222(3)(52)a a a a --+- 【答案】234a a + 【解析】原式234a a =+.@(2)236326(39)()a b ab b a b b --+---. 【答案】32236392a b a b ab b --+- 【解析】原式32236392a b a b ab b =--+-.28.化简:@(1)1323(1)2(21)4x x x x ⎡⎤--+--+-⎢⎥⎣⎦.【答案】1524x -【解析】原式115323342244x x x x x =---+++-=-. @(2)222222{2[22(2)]}xyz x y xy x y xyz x y xy -+-----. 【答案】22xy【解析】原式222222222242xyz x y xy x y xyz x y xy xy =-+-+++-=.五、化简求值29.先化简再求值:113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中1x =-,2y =.【答案】5【解析】原式23232323x yx y x x y =-+-+=-+, 当1x =-,2y =时,原式5=.30.若2|43|(32)0a b b +++=,求代数式222(23)3(23)8(23)7(23)a b a b a b a b +-+++-+的值. 【答案】20【解析】∵2|43|(32)0a b b +++=, ∴430320a b b +=⎧⎨+=⎩,∴1223a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴231a b +=-,∴原式238720=+++=.31.若代数式22(23)2(321)x ax y bx x y +---+-的值与字母x 的取值无关,求代数式()()a b a b --+的值.【答案】2m =【解析】原式2(22)(36)52b x a x y =-++-+, 若代数式与字母x 的取值无关,即无含x 的项, ∴220b -=,360a +=, ∴2a =-,1b =, ()()2a b a b --+=-.32.若25m n -+=,求代数式25(2)6360m n n m -+--的值. 【答案】2m =【解析】当“*运算”对于任意的有理数a ,b 都满足“交换律”,六、解答题33.已知0b a <<,且||0a c >>,化简:||||||||a a b c b a c -++-++. 【答案】a -【解析】∵0b a <<,||0a c >>, ∴a c a <<-,原式a a b c b a c a =-+++---=-.34.如图所示,每个圆周上的数是按下述规则逐次标出的:第一次先在圆周上标出19,29两个数(如图甲),第二次又在第一次标出的两个数之间的圆周上,分别标出这两个数的和(如图乙),第三次再在第二次标出的所有相邻数之间的圆周上,分别标出这相邻两数的和(如图丙);按照此规则,依此类推,一直标下去.丙乙甲5949594913131313292919192919@(1)设n 是大于1的自然数,第1n -次标完数字后,圆周上所有数字的和记为1n S -;第n 次标完数字后,圆周上所有数字的和记为n S ,猜想并写出n S 与1n S -的等量关系. 【答案】13n n S S -=【解析】∵当1n =时,13S =, 当2n =时,29S =, 当3n =时,327S =,∴123S S =,233S S =,13n n S S -=, ∴13n n S S -=.@(2)请你求出102S 的值. 【答案】1023 【解析】1021023S =.七、附加题35.计算:357911131517192612203042567290-+-+-+-+. 【答案】1110【解析】原式35791113151719()()()()1223344556677889910=-+-+-+-+⨯⨯⨯⨯⨯⨯⨯⨯⨯ 222219315356390=++++422195356390=+++621976390=++819990=+1110=.36.若2234P x x =--,2243Q x x =--,试比较P 、Q 的大小. 【答案】当1x =时,P Q =;当1x >时,P Q >;当1x <时,P Q <. 【解析】1P Q x -=-, 当1x =时,10x -=,P Q =; 当1x >时,10x ->,P Q >; 当1x <时,10x -<,P Q <.37.如果210x x +-=,求代数式432347x x x x +++-的值. 【答案】4-【解析】∵210x x +-=,∴21x x +=,原式2222()2()27x x x x x x x x =+++++-2337374x x =+-=-=-.38.代数式35(31)x x --展开后等于1514132151413210a x a x a x a x a x a ++++++.@(1)求0a . 【答案】1-【解析】当0x =时,3550(31)(1)1x x a --=-=-=. @(2)求151413210a a a a a a ++++++.【答案】243-【解析】当1x =时,355151413210(31)(3)243x x a a a a a a --=-=-=++++++.@(3)求15131131a a a a a +++++.【答案】122-【解析】当1x =-时,355151413210(31)11x x a a a a a a --===-+-++-+,∴15131131a a a a a +++++1514101514101[()()]1222a a a a a a a a =++++--++-+=-.。

相关文档
最新文档