最大信息熵计算公式

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最大信息熵计算公式

最大熵原理是一种选择随机变量统计特性最符合客观情况的淮则,也称为最大信息原理。信息熵这个词是香农从热力学中借用过来的。热力学中的热熵是表示分子状态混乱程度的物理量。香农用信息熵的概念来描述信源的不确定度。信息熵用于解决信息的量化问题,将原本模糊的信息概念进行计算得出精确的信息熵值,信息熵是描述消息中,不确定性的值。信息熵的计算公式为H(x) = E[I(xi)] =

E[ log(2,1/P(xi)) ] = -∑P(xi)log(2,P(xi))

(i=1,2,..n)。

最大熵模型(MaxEnt: Maximum Entropy Model,又称MEM), MaxEnt 是概率模型学习中一个淮则,其思想为:在学习概率模型时,所有可能的模型(即概率分布)中,熵最大的模型是最好的模型;

对一个随机事件的概率分布进行预测时,预测应当满足全部已知的约束,而对未知的情况不要做任何主观假设。在这种情况下,概率分布最均匀,预测的风险最小,因此得到的概率分布的熵是最大。

若概率模型需要满足一些约束,则最大熵原理就是在满足已知约束的条件集合中选择熵最大模型。

相关文档
最新文档