2019年数学高考试题附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年数学高考试题附答案
一、选择题
1.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x-85.71,则下列结论中不正确的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )
C .若该大学某女生身高增加1cm ,则其体重约增加0.85kg
D .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg 2.设5sin
7a π=,2cos 7b π=,2tan 7
c π=,则( ) A .a b c << B .a c b <<
C .b c a <<
D .b a c <<
3.若圆与圆22
2:680C x y x y m +--+=外切,则m =( )
A .21
B .19
C .9
D .-11
4.从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( ) A .
110
B .
310
C .
35
D .
25
5.设ω>0,函数y=sin(ωx+3π
)+2的图象向右平移43π个单位后与原图象重合,则ω的最小值是 A .
23
B .43
C .
32
D .3
6.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23 B .35
C .
25 D .
15
7.在ABC ∆中,60A =︒,45B =︒,32BC =AC =( ) A 3B 3
C .23
D .438.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽取20人,各年龄段分别抽取的人数为( ) A .7,5,8
B .9,5,6
C .7,5,9
D .8,5,7
9.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则
A .1,1a b ==
B .1,1a b =-=
C .1,1a b ==-
D .1,1a b =-=-
10.已知抛物线2
2(0)y px p =>
交双曲线22
221(0,0)x y a b a b
-=>>的渐近线于A ,B 两点
(异于坐标原点O ),若双曲线的离心率为5,AOB ∆的面积为32,则抛物线的焦点为( ) A .(2,0)
B .(4,0)
C .(6,0)
D .(8,0)
11.样本12310,?
,?,? a a a a ⋅⋅⋅的平均数为a ,样本12310,?,?,? b b b b ⋅⋅⋅的平均数为b ,那么样本1122331010,? ,,? ,?,,?,? a b a b a b a b ⋅⋅⋅的平均数为( )
A .()a b +
B .2()a b +
C .
1
()2
a b + D .
1
()10
a b + 12.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪
⎝⎭
且
1
2AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形
D .以上均有可能
二、填空题
13.若双曲线22
221x y a b
-=()0,0a b >>两个顶点三等分焦距,则该双曲线的渐近线方程
是___________.
14.设正数,a b 满足21a b +=,则
11
a b
+的最小值为__________. 15.如图所示,平面BCC 1B 1⊥平面ABC ,∠ABC =120︒,四边形BCC 1B 1为正方形,且AB =BC =2,则异面直线BC 1与AC 所成角的余弦值为_____.
16.函数()2
3s 34f x in x cosx =+-
(0,2x π⎡⎤
∈⎢⎥⎣⎦
)的最大值是__________. 17.已知直线:与圆
交于
两点,过
分别作的垂线与
轴交于
两点.则
_________.
18.锐角△ABC 中,若B =2A ,则
b
a
的取值范围是__________. 19.已知四棱锥S ABCD -的三视图如图所示,若该四棱锥的各个顶点都在球O 的球面上,则球O 的表面积等于_________.
20.
3
4
33
1654
+log log
8145
-
⎛⎫
+=
⎪
⎝⎭
________.
三、解答题
21.如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=23,∠BAD=90°.
(Ⅰ)求证:AD⊥BC;
(Ⅱ)求异面直线BC与MD所成角的余弦值;
(Ⅲ)求直线CD与平面ABD所成角的正弦值.
22.“微信运动”是手机APP推出的多款健康运动软件中的一款,大学生M的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A、02000步,(说明:“02000”表示大于或等于0,小于2000,以下同理),B、20005000步,C、50008000步,D、800010000步,E、1000012000步,且A、B、C三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.
(Ⅰ)若以大学生M抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M的参与“微信运动”的400位微信好友中,每天走路步数在20008000的人数;
(Ⅱ)若在大学生M该天抽取的步数在800010000的微信好友中,按男女比例分层抽