燃气轮机原理 第四章 燃烧室4-1&4-2&4-3

合集下载

【知识讲解】燃气轮机燃烧室

【知识讲解】燃气轮机燃烧室

【知识讲解】燃气轮机燃烧室展开全文燃烧室在燃机中的作用:1将天然气与空气混合后燃烧,生成的燃烧产物送入压气机中做功2控制燃烧温度3控制燃烧产物的温度使其能满足透平第一级做功的温度需求燃烧室的燃烧方式:1扩散燃烧:扩散燃烧时始终满足过量空气系数=1,燃烧火焰温度高,燃烧稳定,产生的NOx 多由催化剂还原,2预混燃烧:在预混燃烧时过量空气系数可根据燃烧温度的需要进行调节,燃烧温度可控,较扩散燃烧,不如扩散燃烧时稳定,但能控制NOx的生成。

以GE机组为例:GE机组使用的是分管式燃烧室,每个燃烧室都有五个喷嘴,每个喷嘴上都有扩散燃烧和预混燃烧的管线。

图上为一个喷嘴的结构图。

一部分燃气进过扩散通道进入喷嘴,在B处与空气边汇合边燃烧,此时为扩散燃烧。

一部分冷却空气从喷嘴的中心通过各结构,给各结构进行冷却后在B处参与燃烧。

另一部分燃气进入预混燃气通道,在A处和压气机的排气进行混合,然后在B处燃烧,此时为预混燃烧。

压气机的一部分排气进入喷嘴后,首先对燃料喷嘴组件进行冲击冷却,再逆流向前在A处前端的开口和燃气混合。

燃烧室有三根管线供燃料,分别是D5 ,PM1,PM4管线。

D5管线给燃烧室的每个燃烧喷嘴的扩散通道提供燃料。

PM1给每个燃烧室中的一个燃烧喷嘴的预混燃气通道提供燃料PM4 给每个燃烧室中的四个燃烧喷嘴的预混燃气通道提供燃料。

燃烧的方式有扩散燃烧,次先导预混燃烧,和预混燃烧在扩散燃烧时,D5管线供燃气,PM1,PM4不供燃气。

此时在B出口只有扩散燃烧的燃气,其余的管线出来的均为空气。

在次先导预混燃烧时,由D5管线,PM1管线供燃气,PM4管线不供气,此时只有扩散燃烧,和一个喷嘴进行预混燃烧,其余喷嘴的预混燃气通道在B出口均为空气在预混燃烧时,由D5管线,PM1,PM4管线供燃气,此时五个喷嘴均有扩散燃烧和预混燃烧。

后来经过改进变成下图将PM1移至中心位置,并去除中心喷嘴的扩散燃烧管线。

此时周围五个喷头既有扩散燃烧过线又有预混燃烧管线,而中心喷头只有预混燃烧管线。

燃气轮机第四章 燃气透平 PPT课件

燃气轮机第四章 燃气透平 PPT课件
轮和气缸)的高温强度和使用寿命问题。 一是不断研制新的耐高温的合金材料; 一是采用冷却透平热端高温部件。 着重研究叶轮和叶片的冷却问题: 工作叶轮的应力最大; 叶片承受的温度最高。 叶片冷却效果显著、费用低,称为突破性进展!
一、先进的透平材料和涂层
图4-26透平叶片材料发展趋势
图4-27先进涂层及其降温效应
二、叶片的冷却技术
两类冷却方式: 叶根冷却
一类把冷却空气吹向叶片外表进行冷却; 叶片冷却 一类把冷却空气通入叶片内部的专门流道进行冷却。
非常复杂:
叶片整个浸浴在高温燃气中,无法实现外部冷却; 叶片本身尺寸小,形状也较复杂,内部冷却复杂。
采用空气冷却叶片——从压气机引来一定量的空气,使 其流过叶片内部的冷却通道后,排入主燃气流中。
措施:在冷却空气入口处加装滤网;自压气机内径处引来冷 却空气;在动叶顶开清除孔 。
三、透平叶片的闭环蒸汽冷却
从外部引来蒸汽,对透平的静叶和动叶片冷却后再 引至外部,即蒸汽与燃气隔开而不流入燃气中.
优点:
①消除了冷却空气掺入导致的燃气温度降低; ②无冷却空气掺混引起的扰动,消除扰动损失; ③不需要从压气机中引气,减少了抽气损失。
i > 12~15°
用特性曲线定量估算这种影响。
二、透平特性线的表示方法
通常采用相似参数来绘制
以相似参数为坐标绘制的特性线为通用特性, 不受具体参数变化的影响。
qT T3* p3*
n T3*
T

p3* p4*
T
PT T3*
流量相似参数 转速相似参数
Macz
MauBiblioteka 流动相似=几何相似+运动相似+动力相似

燃气轮机热力循环原理

燃气轮机热力循环原理
燃料的热值是指单位燃料在量热计中燃烧后测得 的热量数值。由于燃料燃烧产物中的H2O在冷凝 的过程中会放出潜热包括在量热计所测的数值中, 所以测出的数值称为高热值。这部分潜热在发动 机中是无法利用的,因此要将这部分热量从高热 值中减去。燃料在气缸中燃烧后发出的有效热量 称为低热值。
• 热耗率 机组每输出产生l kW·h的功需要多
少焦耳的热量。
• 油耗 每产生lkW·h的功所消耗的标准燃
油(是指发热量为43124kJ/kg的燃油) 的克数。
燃气轮机理想简单循环性能分析
理想简单循环比功
w G Tcp T 1 * [(1 m ) (m 1 )]
推导上式
压气机耗功的计算:
3 T
w ch 2h 1cp(T 2T 1)
单机功率
• 合同额定功率 指在事先确定的运行工况下连续运行,
发电机能够保证的出力。
单机功率
• 现场额定功率 指在燃气轮机发电厂所处的当前环境
的条件下,诸如大气压、大气温度、压力 损失等条件下的最大持续功率。
单机功率
• 尖峰功率 在规定的运行条件下,保持一个约定
的短时间内,燃气轮机以高于连续额定功 率安全运行的最大功率。
k1
cpT1TT12
1cpT1
p2 p1
k
1
p 4
2 p
1
k1
cpT1( k 1)
s
燃气轮机作功量的计算:
w Th 3h 4cp(T 3T 4)
k1
k1
cpT 4 T T 4 31 cpT 4 p p4 3 k
1 cpT 4 p p1 2 k
1
一般来说,T3*每提高 100℃,机组比功大约增加 20%~40%,热效率增加 2%~5%

第四章 燃烧室的工作原理与结构分析

第四章  燃烧室的工作原理与结构分析
2 燃烧室的性能指标
第二节 扩散燃烧型燃烧室的工作过程与结构
图 4-1 所示的就是一种扩散燃烧型的燃烧室。图 4-3 中则给出了与之相配的喷油嘴的结构图。 从图 4-1 中可以看出:由压气机送来的压缩空气,在逆流进入遮热筒与火焰管之间的环腔 7 时,因受火焰管结构形状的制约,将分流成为几个部分,逐渐流入火焰管,以适应空气流量与燃 料流量的比值总是要比理论燃烧条件下的配比关系大很多的特点。其中的一部分空气称为“一次 空气”,它分别由旋流器 15、端部配器盖板 14、过渡椎顶 13 上的切向孔,以及开在火焰管前段 的三排一次射流孔 11,进到火焰管前端的燃烧区 12 中去。在那儿,它与由燃烧喷嘴 1 喷射出来 的液体燃料或天然气,进行混合和燃烧,转化成为 1500-2000℃的高温燃气。这部分空气大约占 进入燃烧室的总空气量的 25%;另一部分空气称为“冷却空气”,它通过许多排开在火焰管壁面 上的冷却射流孔,逐渐进入火焰管的内壁部位,并沿着内壁的表面流动。这股空气可以在火焰管 的内壁附近形成一层温度较低的冷却空气膜,它具有冷却高温的火焰管壁、使其免遭火焰烧坏的 作用。此外,剩下来的那一部分空气则称为“二次空气”或“掺混空气”,它是由开在火焰管后段 的混合射流孔 10,射到由燃烧区流来的 1500-2000℃的高温燃气中去的,它具有掺冷高温燃气, 使其温度比较均匀地降低到透平前燃气初温设计值的作用。
68
惠州天然气发电有限公司产前培训专用教材
图 4-3 所示的是一种双燃料喷 嘴,它既能向燃烧室的火焰管头部 供给天然气,又能供给液体燃料。 为了增强液体燃料的燃烧速度,专 门 用高压 雾化空气来帮助液体燃 料雾化成为 100μm 左右的细雾 滴。这种细雾滴在进入高温的燃烧 区 后,就 会逐渐蒸发成为气相 燃 料,通过扩散和旋流的湍流的混合 作用,逐渐与燃烧区内的新鲜空气 掺混,在余气系数α =1 的空间范 围内起燃,形成一个温度高达理论 燃烧温度水平的火焰。这种燃料与 空气没有预先均匀混合,而是依靠 图 4-3 MS6001 系列燃气轮机上采用的分管型燃烧室的喷油嘴 扩散和湍流交换的作用,使她们彼 1-雾化空气进口 2-喷嘴本体 3-天然气进口 4-喷嘴的顶盖 此相互掺混,进而在α =1 的火焰 与空气选流器 5-天然气喷口 6-液体燃料喷嘴的组合件 上 面上进行燃烧的现象, 称之为 7-雾化空气切向槽 “扩散燃烧”。那时,燃烧速度主要取决于燃料与空气相互扩散和掺混的时间,而不是取决与它 们的化学反应所需要的时间。这种燃烧现象的一大特点是,火焰面上的α =1 ,其温度甚高,通 常为理论燃烧温度(它总是高于空气中的 N 与 O 起化学反应而生成 NO 时的起始温度 1650℃)。 因而按这种方式组织的燃烧过程必然会产生数量较多的“热 NO ”污染物。 为了解决这类燃烧过程中 NO 排放量超过环保要求的问题,可以采取三种措施,即:①在 高负荷条件下,向扩散燃烧的燃烧室中喷射一定数量的水或水蒸气,借以降低燃烧火焰的温度; ②在余热锅炉中安装所谓的选择性催化还原反应器(SCR);③采用催化燃烧法。 众所周知:燃烧过程中产生的 NO 有燃料 NO 和热 NO 之分。前者取决于燃料中所含的氮 化合物的数量,燃烧过程中无法控制它的生成。热 NO 则是在燃烧过程的高温条件下,环境中所 含的 N 气与 O 气化合物而成的产物,它是按 Zeldovich 机理生成的。热 NO 的生成率与燃烧火 焰的温度成指数函数关系。在燃烧过程中生成的 NO 之总数 量则不仅是火焰温度的函数, 而且是可燃混合物在火焰温度条 件下逗留时间的线性函数。燃料已定时,燃烧火焰的温度则是 燃料/空气混合化学当量比的函数。图 4-4 中给出了 2 蒸馏油 与 590K 的空气混合燃烧时,燃烧火焰的温度 T 以及 NO 的 反应生成率 dC /dτ与燃烧/空气混合化学当量比的相互变化 关系。 由上图可知: NO 的最高生成率发生在燃烧/空气混合化 学当量比等于 1 的地方,那时,燃烧火焰的温度 T 为最高。 图 4-4 火焰温度 T 以及 因而,倘若能使燃料与较多的空气相混合,即:在比较稀释的 dC /dτ与燃料/空气混合 燃料浓度下进行低温的燃烧,那么,就能减少 NO 排放物的 化学当量的关系 生成。当然,向燃烧火焰区喷散水或水蒸气,以迫使降低燃烧 dC 为 NO 的浓度 火焰的温度,同样能够起到抑制生成 NO 的作用。

燃气轮机教学课件12-透平1

燃气轮机教学课件12-透平1
承力构件
转子由转盘、轴和动叶组成,有盘式和盘鼓式结构。 本体结构
良好的空气冷却系统 使动叶、转子和静子都有效地冷却。
透平气缸
排气扩压机闸
静动 叶叶
静动 叶叶
静动 叶叶
排气扩压器
排气道
一级轮盘 二级轮盘 三级轮盘
透平后半轴
1、静子
扩压机闸 —由排气扩压器内、外流道组成,扩压器内外环
间用筋板连接为一体。 —两种型式:铸造和焊接 气缸 —一般不再轴向分段,仅分为上下两半的单个气
缸,且铸造得到。
原因:透平级数少,轴向尺寸短;双层结构;空气冷却, 其工作温度相差不大。
1、静子
静叶
又称喷嘴,使高温高压的燃气在静叶中膨胀加速,把 燃气的热能转化为动能,然后推动转子旋转做功。
静叶通过持环和护环而固定在气缸上。 静叶组:两叶、三叶、四叶、五叶组 等等
刚性增强,不易扭曲或弯曲变形,广泛应用。
燃气在动叶中的膨胀程度
u
常用反动度T表示。
压气机用反力度C衡量在动叶栅中直接
把机械功转变为压力能的能力特性。
a.级示意图
一台燃气轮机模型 负荷
进气

进气
C
工人
B 轴T B
排气 排气
轴流式压气机和轴流式透平
排气
T
排气
B轴
B C
进气

进气
轴流式压气机和轴流式透平
带动压气机
带动负荷
分轴燃气轮机装置
高速喷流→推力
喷气推进
继续膨胀
减压增速
涡轮喷气发动机
发电机
燃烧室 压气机
透平 火焰筒
燃气轮机装置
4-2 轴流式透平级的工作原理

燃气轮机原理(精华版)

燃气轮机原理(精华版)

QD20燃机轮机机组第 1章概述1.1 燃气轮机简介燃气轮机(Gas Turbine)是以连续流动的气体为工质、把热能转换为机械功的旋转式动力机械,包括压气机、加热工质的设备(如燃烧室)、透平、控制系统和辅助设备等。

走马灯是燃气轮机的雏形我国在11 世纪就有走马灯的记载,它靠蜡烛在空气燃烧后产生的上升热气推动顶部风车及其转轴上的纸人马一起旋转。

15世纪末,意大利人列奥纳多〃达芬奇设计的烟气转动装臵,其原理与走马灯相同。

现代燃气轮机发动机主要由压气机、燃烧室和透平三大部件组成。

当它正常工作时,工质顺序经过吸气压缩、燃烧加热、膨胀做功以及排气放热等四个工作过程而完成一个由热变功的转化的热力循环。

图1-2为开式简单循环燃气轮机工作原理图。

压气机从外界大气环境吸入空气、并逐级压缩(空气的温度与压力也将逐级升高);压缩空气被送到燃烧室与喷入的燃料混合燃烧产生高温高压的燃气;然后再进入透平膨胀做功;最后是工质放热过程,透平排气可直接排到大气、自然放热给外界环境,也可通过各种换热设备放热以回收利用部分余热。

在连续重复完成上述的循环过程的同时,发动机也就把燃料的化学能连续地部分转化为有用功。

燃气轮机动力装臵是指包括燃气轮机发动机及为产生有用的动力(例如:电能、机械能或热能)所必需的基本设备。

为了保证整个装臵的正常运行,除了主机三大部件外,还应根据不同情况配臵控制调节系统、启动系统、润滑油系统、燃料系统等。

燃气轮机区别于活塞式内燃机有两大特征:一是发动机部件运动方式,它为高速旋转、且工质气流朝一个方向流动(不必来回吞吐),使它摆脱了往复式动力机械功率受活塞体积与运动速度限制的制约,在同样大小的机器内每单位时间内通过的工质量要大得多,产生的功率也大得多,且结构简单、运动平稳、润滑油耗少;二是主要部件的功能,其工质经历的各热力过程是在不同的部件中进行的,故可方便地把它们加以不同组合处理,来满足各种用途的要求。

燃气轮机区别于汽轮机有三大特征:一是工质,它采用空气而不是水,可不用或少用水;另是多为内燃方式,使它免除庞大的传热与冷凝设备,因而设备简单,启动和加载时间短,电站金属消耗量、厂房占地面积与安装周期都成倍地减少;再是高温加热高温放热,使它有更大的提高系统效率的潜力,但也使它在简单循环时热效率较低,且高温部件需更多的镍、铬、钴等高级合金材料,影响了使用经济性与可靠性。

燃气轮机原理 (1)

燃气轮机原理 (1)
max k /( k 1) opt k / 2( k 1)
T2 T4
2
opt ( k 1) / k
此时输出功为最大。
理想燃气轮机循环其最大效率是随压比的增加而 上升。
TMI
复杂循环—回热循环
T3
T T5 T4 T2 T6 T1

c p (T3 T4 ) c p (T2 T1 ) c p (T3 T5 )
美国能源部21世纪先进燃气轮机系统研究(AGTSR)计划


高温和耐腐蚀材料科学
燃烧现象的深入了解 天然气或其他燃料燃烧时的污染物形成和减少 新型热力循环的基础理论 1992年-2003年向大学设立了74个项目,投资约$35,485,299.
TMI
思考题

1-1 为什么说燃气轮机在未来的发电设备中具有竞争力的动力形式?
And pressure ratio Then shown
p2 / p1 p3 / p4
1 ( )( k 1) / k
1
The efficiency thus depends only on the pressure ratio and nature of the gas.
现代燃气轮机的结构特点
轻型结构<10KG/PS, 重型结构 >15KG/PS
燃气轮机简图: 轻型结构: 航空机和航空改型舰用燃气轮机,工业轻型(重载轻型) 重型结构:工业燃气轮机 单位功率重量: 金属耐热极限---1100 ℃;涡轮进气温度:1460 ℃ 采用空气冷却叶片;--- 冷却技术 耐高温材料(单晶铸造,定向凝固等技术) 寿命:工业轻型 2-10 万小时;


TMI

第四章 燃烧室与尾喷管

第四章 燃烧室与尾喷管

第4章燃烧室、加力燃烧室和尾喷管Burner and Nozzle第4.1节燃烧的基本知识Basic Knowledge of Burn在空气流中连续不断的喷入燃油,形成火焰,稳定燃烧,必须满足以下两个条件:一、油气比在一定的范围内才能进行燃烧目前航空燃气轮机一般都使用航空煤油作为燃料。

航空煤油在燃烧前由喷咀在高压下将煤油喷成雾状,在空气中蒸发,与空气混合。

煤油与空气的混合比例(油气比)是一个重要的参数。

对一定量的空气来说,喷入的燃油量在燃烧后正好将空气中的氧气完全用完称为理论所需燃油量,实际喷入燃油量与理论所需燃油量之比称为燃料系数用β表示。

对一定量的燃油来说,将燃油完全烧完所需的空气量称为理论所需空气量,实际空气量与理论所需空气量之比称为空气系数或称为余气系数,以α表示。

β<1或α>1表示喷入空气的燃油较少,燃烧后不足以将空气中的氧气燃烧完,这种情况称为贫油;β>1或α<1则表示喷入空气的燃油太多,将空气中的氧气烧完后还有剩余的燃油,这种情况称为富油。

在一定的贫油或富油的范围内(油气比范围内)才能进行燃烧,过于贫油或富油是无法进行燃烧化学反应的。

可以进行燃烧的油气比范围与油气混合后的混气压力和温度有极大的关系。

二、火焰周围气流速度必须低于火焰传播速度β=1的均匀混气在常温常压下火焰的传播速度远低于1m/s,在紊流的气流中,火焰传播速度有所提高,能达到每秒数米或十多米,这与气流的紊流度有很大的关系。

要使火焰能稳定燃烧,它周围的气流速度必须低于火焰传播速度。

第4.2节主燃烧室Burner主燃烧室是航空燃气轮机的主要部件之一,它介于压气机与涡轮之间,压气机出口的气流进入燃烧室,在其中喷入燃油进行燃烧,成为高温燃气进入涡轮。

然而,压气机出口的气流速度一般在150m/s左右,在这样高速的气流里是无法稳定火焰进行燃烧的。

此外,受涡轮材料耐热性的限制,燃烧室出口的燃气温度一般在1200~1700K范围内,相当于燃料系数β大约在0.25~0.4范围内。

燃气轮机原理第四章 燃烧室4-6

燃气轮机原理第四章 燃烧室4-6

解决措施—燃料
从结垢和腐蚀的成因可见,重油灰分中的 Na、V、S是造成涡轮叶片和回热器表面结 垢和腐蚀的主要原因。结垢现象的发生又 为腐蚀想象的发生提供了先决条件。由此 可见,清除重油灰分中的Na、V、S,特别 是清除所含的 Na 盐是解决重油燃料在燃气 轮机中使用是产生结垢和腐蚀现象的主要 措施。
腐蚀问题
当燃气温度提高到900~950 C 时,会发生 碱金属硫酸盐腐蚀。碱金属硫酸盐与叶片 金属或其它金属氧化物发生化学作用生成 金属硫化物,同时氧化层呈多孔、松脆状 而剥落下来,使金属表面剥落暴露。同时, 金属硫化物因氧化释放出自由硫,使叶片 金属表面进一步硫化而完成硫化物的自行 再生过程,因而腐蚀过程不断向金属内部 发展。
结垢问题
由燃料灰分中的钒盐在温度低于 1200C 的 条件下与氧气化合成 V2O5 以及由 V2O5 与各 种金属氧化物相互作用而成的复杂化合物, 如 Na2O•V2O5 , Fe2O3•V2O5 等形成的结垢。 这些化合物的融点比较低,在高温燃气中 是以熔融的粘性状态出现,因而当遇到温 度较低的金属表面时就会粘在上面而凝结 成粘得很劳的结垢。
重油不是一种很容易燃烧的燃料,它 为在燃气轮机中的使用带来了一系列 困难: 燃烧问题 结垢问题 腐蚀问题
燃烧问题
在机组负荷变动时,燃用重油容易出现积 炭、积焦,甚至排气冒黑烟现象。原因:
由于雾化不良,重油液滴颗粒过大,因而 在低负荷工况下很容易未经燃烧就被带离 高温区,最后以液体状态积存在火焰管尾 部壁面上,经高温燃气烘烤而逐渐形成积 焦或积炭;
合理控制进入燃烧区的空气量,以确保在 低负荷工况下,燃烧区的温度不低于 1050~1200 C ,而在满负荷时,余气系数 在1.15~1.20左右(一次空气自调方案); 选择合适的旋流器结构型式以求得比较合 理的燃烧区温度场的分布特性(在火焰管 中心附近,占整个横截面积 2/3 以上的空间 内燃烧温度超过1050~1200 C ,无大颗粒 的油滴甩出此高温区);

燃气轮机原理

燃气轮机原理

燃气轮机原理燃气轮机是一种将燃料的热能转换为机械能的发动机。

它具有高效率、功率密度大、响应迅速等优点,被广泛应用于飞机、火车、船舶等领域。

本文将介绍燃气轮机的原理,从燃料燃烧到机械输出的整个过程,以及燃气轮机的工作原理和组成部分。

一、燃料燃烧燃料的燃烧是燃气轮机的核心过程之一。

首先,燃料与空气混合形成燃气混合物,然后在燃烧室中被点火。

燃料的选择通常以石油类产品为主,例如柴油、天然气等。

点火后,燃气混合物的化学能被释放,产生高温高压气体,这是燃气轮机工作的基础。

二、燃气扩张燃气轮机的下一个步骤是将燃气的热能转化为机械能。

在燃气扩张过程中,高温高压的燃气进入轮叶,施加压力在叶片上,使得轮叶开始旋转。

此时,燃气流过轮叶,产生了推力,推动轴承输出机械能。

三、轴承和连杆在燃气轮机中,轴承和连杆是非常重要的组成部分。

轴承负责支撑和稳定旋转的轴,使得轮叶能够顺利工作。

连杆则将轮叶的旋转运动转化为线性运动,从而输出机械能。

这两个部分的设计和制造对于燃气轮机的性能和寿命至关重要。

四、废气排放在燃气轮机工作过程中,废气的排放是一个需要关注的问题。

废气中含有大量的二氧化碳、氮氧化物等有害物质,对环境造成污染。

为了减少废气排放对环境的影响,燃气轮机通常采取多重净化处理,包括除尘、脱硫、脱氮等技术手段,以确保废气排放符合相关的环保标准。

五、效率和性能燃气轮机的效率和性能是衡量其优劣的重要指标。

燃气轮机的效率通常指热效率,即输入的热能中有多少被转换为机械能。

为了提高燃气轮机的效率,可以采取一系列措施,例如提高燃烧效率、减少能量损失等。

此外,燃气轮机还具有快速启动、高响应性和负载适应性强等优点,使其在航空、交通等领域得到广泛应用。

综上所述,燃气轮机通过燃料的燃烧和热能的转换将热能转化为机械能。

它的工作原理涉及燃料燃烧、燃气扩张、轴承和连杆以及废气排放等多个方面。

燃气轮机以其高效率、功率密度大、响应迅速等优点在各个领域得到广泛应用。

燃气轮机原理、结构及应用(上、下册)pdf

燃气轮机原理、结构及应用(上、下册)pdf

燃气轮机原理、结构及应用(上、下册)pdf燃气轮机原理、结构及应用(上、下册)PDF一、引言燃气轮机作为一种高效、清洁、低碳的能源转换设备,已经广泛应用于发电、工业驱动、航空航天、交通运输等领域。

本篇文章将详细介绍燃气轮机的原理、结构及应用,帮助读者深入了解这一重要的动力装置。

二、燃气轮机工作原理燃气轮机是一种旋转式热力发动机,它以连续流动的气体为工质,将燃料的化学能转化为机械能。

燃气轮机的主要工作过程包括吸气压缩、燃烧加热、膨胀做功和排气放热。

在这个过程中,气体依次经过压气机、燃烧室和透平,完成由热变功的热力循环。

1.吸气压缩:燃气轮机的压气机从外界大气环境中吸入空气,并逐级压缩空气。

随着压缩过程的进行,空气的温度和压力逐渐升高。

2.燃烧加热:压缩空气被送到燃烧室,与喷入的燃料混合燃烧,产生高温高压的燃气。

3.膨胀做功:高温高压的燃气进入透平,推动透平叶片旋转。

透平叶片经过设计,使燃气在通过时产生旋转动力,将燃气的压力能转化为机械能。

4.排气放热:经过透平膨胀做功后的燃气,温度和压力降低。

透平排气可以直接排放到大气中,自然放热给环境,也可以通过换热设备回收部分余热。

三、燃气轮机结构燃气轮机的主要结构包括压气机、燃烧室和透平。

1.压气机:压气机是燃气轮机的关键部件之一,负责吸入空气并压缩。

它由多个级数组成,随着级数的增加,空气的压力和温度逐渐升高。

2.燃烧室:燃烧室是燃气轮机中燃料与空气混合燃烧的场所。

燃烧室的设计需要确保高效、安全、稳定的燃烧过程。

3.透平:透平是燃气轮机中将燃气的压力能转化为机械能的关键部件。

透平叶片经过精密设计,使燃气在通过时产生旋转动力,驱动燃气轮机旋转。

四、燃气轮机应用燃气轮机在多个领域具有广泛的应用,包括:1.发电:燃气轮机发电机组具有启动快、调峰能力强、效率高等优点,适用于电力系统的调峰和应急电源。

2.工业驱动:燃气轮机可用于驱动压缩机、泵等工业设备,提高工业生产效率。

燃气轮机的工作原理

燃气轮机的工作原理

燃气轮机的工作原理燃气轮机是一种常见的发电机机型,它采用燃烧燃气的原理转化为动力,从而驱动涡轮旋转,进而产生电能。

燃气轮机在电力行业广泛应用,其高效率、低排放和快速启动等特点,使得它成为了当今发电行业的主流技术之一。

本文将详细介绍燃气轮机的工作原理。

一、燃气轮机的基本组成燃气轮机主要由压气机、燃烧室和涡轮组成。

压气机负责将空气加压,增加气流的能量;燃烧室则负责将燃气的化学能转化为高温高压的气体能量;而涡轮则利用气流的动能转动,驱动发电机或其他设备。

二、燃气轮机的工作过程1. 压气过程:压气机通过旋转的叶片将外界空气吸入,然后把空气加压,增加气体的能量。

被压缩后的空气温度会升高,压力也相应增加。

2. 加热过程:经过压气后,高压的空气进入燃烧室,同时喷入燃气。

在燃烧室内,燃气与空气混合并点燃,产生高温高压气体。

燃气的燃烧释放的能量将增加燃气的温度。

3. 膨胀过程:燃烧室内的高温高压气体进入涡轮,气体的能量转移到涡轮叶片上,使得涡轮旋转。

涡轮的旋转同时带动压气机,形成闭合回路。

涡轮旋转的同时,也可以驱动发电机产生电能。

4. 排气过程:在涡轮旋转完成后,高温高压的气体会被排出燃气轮机,避免对机器造成损坏。

在气体排出之前,可以通过余汽余热回收系统将废热转化为可再利用的能量,提高燃气轮机的整体效率。

三、燃气轮机的优势和应用领域1. 高效率:燃气轮机采用闭合回路工作,能充分利用能量,高效转化为电能。

相对于传统的煤炭发电机组,燃气轮机效率更高,能源消耗更少。

2. 低排放:燃气轮机燃烧过程中,排放的污染物相对较少。

它采用的是燃烧燃气的方式,减少了石油和煤炭的使用,大大降低了二氧化碳、二氧化硫和氮氧化物等排放物的产生。

3. 快速启动:相比于其他发电技术,燃气轮机启动快速,响应时间短。

这使得它在应对电力需求高峰时的调峰能力更强,可以迅速提供稳定的电力输出。

燃气轮机目前在许多不同的应用领域有着广泛的应用。

除了常见的发电行业之外,它还可以用于航空领域的飞机推进,以及工业领域的压缩空气和制冷系统。

电站燃气轮机燃烧室的工作原理与结构分析

电站燃气轮机燃烧室的工作原理与结构分析

电站燃气轮机燃烧室的工作原理与结构分析燃气轮机是一种利用燃气燃烧产生高温高压气体驱动涡轮转动,进而产生动力的装置。

燃气轮机是电站的重要设备之一,其燃烧室的工作原理和结构对于电站的运行效率和安全性有着重要影响。

一、燃气轮机燃烧室的工作原理:燃气轮机燃烧室的工作原理主要包括压气、混合、燃烧和排烟四个过程。

在压气过程中,进气压缩机将空气压缩至较高的压力,并通过喷嘴进入燃烧室。

高压空气在燃烧室中经过狭窄的进气道,形成剧烈的旋涡,增加燃烧室内部空气的混合程度。

混合过程中,燃气轮机通过喷嘴喷入燃烧器中的燃料与压缩空气充分混合,形成可燃混合气体。

混合气体的比例和均匀度对燃烧效率和排放性能具有重要影响。

燃烧过程中,混合气体在燃烧室内被点火燃烧,产生高温高压气体。

燃烧室内的温度和压力高度集中,碳氢化合物与氧气发生化学反应,释放出大量的热能。

排烟过程中,燃烧产生的废气通过排气管道排出,经过热交换器将废气中的热能回收利用,提高燃气轮机的效率。

二、燃气轮机燃烧室的结构分析:燃气轮机燃烧室的结构主要包括燃烧器、进气道、燃气轮机壳体等部分。

燃烧器是燃气轮机燃烧室的核心组件,用于混合和燃烧燃料。

燃烧器通常由喷嘴、燃料喷嘴、风道、燃气轨迹修正器等组成。

喷嘴用于喷注压缩空气和燃料,燃烧器内部的风道和燃气轨迹修正器用于增加空气与燃料的混合程度,形成均匀燃烧的环境。

进气道是连接燃烧器和压气机的通道。

进气道通过增加燃气轮机进气时的空气动力学特性,提高气流的流速和质量,保证充足的氧气供应量和混合气体的均匀度。

燃气轮机壳体是燃烧室的外围结构,主要用于固定压气机与燃气涡轮的位置,保护内部的燃烧室和喷嘴等部件。

燃气轮机壳体通常由静子和动子组成,静子是与转子共同构成活动环的固定部分,动子是与静子相对运动的部分,两者之间形成螺旋状的空气通道。

燃气轮机燃烧室的结构和排烟系统设计合理与否,直接影响着燃气轮机的效率和排放水平。

通过不断的工艺创新和技术改进,燃气轮机燃烧室的结构越来越精细和高效,大大提高了燃气轮机的运行性能。

燃气轮机燃烧室中的燃烧机理与控制

燃气轮机燃烧室中的燃烧机理与控制

燃气轮机燃烧室中的燃烧机理与控制1. 前言燃气轮机是一种常用的热能转换设备,它通过将高温高压燃气驱动涡轮,产生机械功,从而实现电力、动力等形式的能量输出。

在燃气轮机中,燃烧室是能量转换的核心部件,其性能和稳定性对整个系统运行效率和寿命有着至关重要的影响。

因此,燃烧室中的燃烧机理与控制研究对于提高燃气轮机的性能具有重要的意义。

本文将从燃烧机理、气体动力和控制技术等方面进行探讨。

2. 燃烧机理燃烧室中的燃烧机理主要包括燃料/空气混合、点火、燃烧和传热等多个环节。

燃料在燃烧室进口处与空气混合形成可燃气体,然后经过点火点火,燃烧产生高温高压燃气。

这个过程中,需要满足一定的燃料/空气比例和最适合的点火时机,以保证燃气轮机正常运行。

同时,燃烧过程中产生的高温高压燃气会对燃烧室内部结构造成较大的热负荷,因此还需要考虑传热和冷却等因素来保证燃烧室的稳定性和寿命。

3. 气体动力燃烧室中的气体动力主要包括燃料/空气混合和燃烧气体的流动等。

燃料/空气混合的质量流量、速度和温度等参数都会对燃烧室内的气体动力产生影响,而燃烧气体的流动也会受到各种因素的影响,如燃料喷射方式、燃料中的化学成分等。

这些因素必须在设计和控制燃气轮机时充分考虑,并采用合适的技术手段来进行优化。

4. 控制技术燃气轮机的控制技术是保证其稳定性和高效性的关键。

其中,燃烧控制系统是整个系统中最为重要的部分之一。

该系统需要通过传感器获取燃烧室内气体动力、温度、压力等参数,并将其反馈至控制器进行处理。

控制器根据这些参数的变化,实时调整燃料和空气的混合比例和进气量等,以保证燃烧室内的气体动力和温度控制在一定的稳定范围内。

此外,还需要考虑氧化还原控制、燃料预热技术、燃烧稳定性控制等因素,以实现更加高效、稳定的燃烧过程。

5. 结论燃气轮机燃烧室中的燃烧机理与控制技术是提高系统效率和稳定性的关键因素。

燃气轮机的发展趋势是高效、清洁、低排放和多燃料化,这将对燃烧室设计和控制技术提出更高的要求。

04燃烧室的基本原理及结构

04燃烧室的基本原理及结构
0778环型燃烧室环型燃烧室由于燃烧室间彼此沟通气流与燃料不容易组织燃烧性能较难控制燃气出口温度场受这气流场的影响较大而不易保持稳定而且需要用机组的整个进气量作燃烧试验试验周期长而耗费大加上结构的刚性差致使这种燃烧室曾长期末获广泛使用
第四章 燃烧室的原理和结构
09:45:31
1
燃烧室的原理和结构
燃烧室功用
24
燃烧区中气流流动过程的组织
5、燃烧区中的气流流动
09:45:31
25
燃烧区中燃料浓度场的组织 燃料的燃烧方式
气体的燃烧方式
{
预混燃烧
扩散燃烧
液体的燃烧方式: 雾化燃烧
雾化 蒸发 扩散混合 燃烧 掺冷
09:45:31
26
燃烧区中燃料浓度场的组织
09:45:31
27
燃烧室中燃烧火焰的概况
09:45:31
52
4、蒸发管式喷嘴 5、甩油盘式喷嘴
09:45:31
53
影响喷嘴喷雾特性的因素
1、喷嘴的结构特点 2、喷油压降 3、燃油物理性质 4、喷雾空间中气体介质参数
09:45:31
54
点火装臵
点火装置的作用是在启动时向燃烧 室提供初始点火炬。当燃烧室主燃 区能连续、稳定地燃烧时,点火装 置即停止工作。 点火设备要位于气体流速较低,油 气浓度较合适处,并要能提供足够 的能量才能点着。
一次空气 ≈ 25%
压气机送来的空气 冷却空气 二次空气
09:45:31
21
燃烧区中气流流动过程的组织
3、“火焰稳定器” — 旋流器
09:45:31
22
燃烧区中气流流动过程的组织
4、经火焰筒上孔、缝的气流流动
09:45:31

QD20燃气轮机原理

QD20燃气轮机原理

QD20燃气轮机机组第 1章概述1.1 燃气轮机简介燃气轮机(Gas Turbine)是以连续流动的气体为工质、把热能转换为机械功的旋转式动力机械,包括压气机、加热工质的设备(如燃烧室)、透平、控制系统和辅助设备等。

走马灯是燃气轮机的雏形我国在11世纪就有走马灯的记载,它靠蜡烛在空气燃烧后产生的上升热气推动顶部风车及其转轴上的纸人马一起旋转。

15世纪末,意大利人列奥纳多·达芬奇设计的烟气转动装置,其原理与走马灯相同。

现代燃气轮机发动机主要由压气机、燃烧室和透平三大部件组成。

当它正常工作时,工质顺序经过吸气压缩、燃烧加热、膨胀做功以及排气放热等四个工作过程而完成一个由热变功的转化的热力循环。

图1-2为开式简单循环燃气轮机工作原理图。

压气机从外界大气环境吸入空气、并逐级压缩(空气的温度与压力也将逐级升高);压缩空气被送到燃烧室与喷入的燃料混合燃烧产生高温高压的燃气;然后再进入透平膨胀做功;最后是工质放热过程,透平排气可直接排到大气、自然放热给外界环境,也可通过各种换热设备放热以回收利用部分余热。

在连续重复完成上述的循环过程的同时,发动机也就把燃料的化学能连续地部分转化为有用功。

燃气轮机动力装置是指包括燃气轮机发动机及为产生有用的动力(例如:电能、机械能或热能)所必需的基本设备。

为了保证整个装置的正常运行,除了主机三大部件外,还应根据不同情况配置控制调节系统、启动系统、润滑油系统、燃料系统等。

燃气轮机区别于活塞式内燃机有两大特征:一是发动机部件运动方式,它为高速旋转、且工质气流朝一个方向流动(不必来回吞吐),使它摆脱了往复式动力机械功率受活塞体积与运动速度限制的制约,在同样大小的机器内每单位时间内通过的工质量要大得多,产生的功率也大得多,且结构简单、运动平稳、润滑油耗少;二是主要部件的功能,其工质经历的各热力过程是在不同的部件中进行的,故可方便地把它们加以不同组合处理,来满足各种用途的要求。

燃气轮机的工作原理

燃气轮机的工作原理

燃气轮机的工作原理
燃气轮机是一种常见的热力设备,可将化学能转化为机械能。

其工作原理可以概括为以下几个步骤:
1. 空气进气:燃气轮机通过引入大量气体来驱动轴,以产生动力。

这些气体主要包括空气和燃料,通常是天然气或石油燃料。

2. 压缩空气:从大气中引入的空气经过空气压缩机,会被压缩到高压状态。

通过增加空气的压力,可以提高燃烧效率和动力输出。

3. 燃烧:在空气经过空气压缩机之后,经过高压燃料喷嘴注入燃料,以实现混合燃烧。

混合物在燃烧室中起火,产生高温燃烧膨胀气体。

4. 高温高压气体膨胀:燃烧膨胀气体在高温高压下,被送入燃气轮机的涡轮部分。

高速旋转的涡轮将气体的动能转化为机械能,驱动轴旋转。

5. 功率输出:通过涡轮的旋转,将机械能传递给输出设备,如发电机或其他机械装置,从而产生所需的功率输出。

6. 废气排放:燃气轮机在能量转化过程中会产生高温废气,这些废气通过排气系统排出,防止对轮机造成过热损害,并用于外部过程,如发电厂中的锅炉。

总体来说,燃气轮机通过压缩空气、燃烧燃料,然后利用高温
高压气体膨胀和涡轮转动,将热能转化为机械能,实现功率输出。

通过这样的工作原理,燃气轮机被广泛应用于发电、航空、海洋和工业等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
① 燃烧室进口气流速度很大,一般在 120~180m/s之间,相当于4倍12级台风的 速度。在如此高的气流速度下,组织燃烧 十分困难。高速气体在燃烧室内流动,还 会造成很大的总压损失。必须采取措施降 速,即使降速后的速度也还相当高,不采 取其它措施,仍不能保证火焰稳定。
② 燃烧室容积很小,但要在短时间内发出大 量的热能,要燃烧相当多的燃料,而且要 求燃烧完全。 涡喷-6发动机:10个火焰筒,总容积不到 0.07m3,但每小时要烧掉2.5吨燃油。 燃烧室的发展趋势:长度缩短,体积减 小,燃料燃尽程度接近100%。
3
航空燃气轮机
= (1.2 ~ 3.5) × 108 qvp
地面重型燃气轮机 主燃烧室 火焰筒 蜂窝煤炉
qvp = (1.2 ~ 5) × 107
qvp = (7.5 ~ 9.08) × 107
qvp = (12.34 ~ 20.73) × 107 qvp = 4.3 × 10
6
KJ /( m ⋅ bar ⋅ h )
一次空气供应方式
将一次空气全部通过装在火焰管头部旋流器供入 燃烧区 将一次空气分别由旋流器和开在火焰筒前段的几 排一次空气射流孔供入燃烧区
2—旋流器 5—一次空气射流孔
试验表明,第 种供气方式,即将一 次空气分别由旋流器和开在火焰筒前 段的几排一次空气射流孔供入燃烧 区,可以保证燃烧室具有比第 种供 气方式,即将一次空气全部通过装在 火焰管头部旋流器供入燃烧区,更为 宽广的负荷变化范围。这是由于在第 种供气方式中,燃烧室具有“一次空 气量自调特性”。
航空发动机的污染表现
• 由于燃烧组织的不完全,特别是富油时,排放大 量的CO直接造成对人类健康的危害; • 局部富油时因缺氧,生成大量的炭粒子,形成可 见黑烟雾,造成污染; • 由于燃烧时温度较高,特别是在地面起飞状态 时,容易形成NOx类物质,对人类及其他生物危 害很大; • 燃烧室工作时,特别是加力燃烧室在不稳定工作 时,产生低频高分贝的强噪声污染。
3
火焰筒的容热强度为蜂窝煤炉的40倍,从产生热量 的功能上来看,一个火焰筒相当于1300个蜂窝煤炉。
7.使用寿命长 燃烧室内火焰温度很高,火焰筒壁面 经常受着高温燃气的侵蚀,由于气流 和火焰的紊流脉动,使火焰筒承受着 交变高温燃气引起的热应力,经常产 生裂纹、烧蚀和变形等故障。
7.使用寿命长
影响燃烧室寿命的主要因素是火焰筒壁温, 延长寿命主要从以下方面入手: 火焰筒材料;
地面燃气轮机,用多级涡轮充分吸收能 量,然后以轴功率形式输出,带动其它 机件(如发电机)作功。 还有一部分能量随燃气以热能的形式排 放到大气。
燃烧室是一个能量转换器
燃料的化学能
燃 烧 涡轮
航空燃气轮机
机械功(经压气机增压空气) 动能(产生推力) 热能随燃气排放至大气
热能
尾喷管
燃烧室是动力机械的能量发源地。
* 3
一个矛盾
若达到烧着的程度,涡轮叶片承受不了; 若考虑涡轮叶片耐温程度而减少供油,又 烧不着。 解决办法:
先在火焰筒头部按接近恰当的油-空气比例(油和空气中 的氧基本上都用光)进行充分的燃烧,这时头部气流温 度接近2500K,然后用剩余的空气将高温气流掺混,把 温度降下来,以达到涡轮叶片接受的温度。 先燃烧后降温 一次空气和二次空气
6.尺寸小和重量轻
为了提高发动机的推重比和减小迎风面 积,力争在容积小的燃烧室中单位时间内 烧掉较多的燃料。 容热强度 qvp :每立方米的燃烧容积里在 单位压力下每小时实际放出多少热量。
3600 qma f H u η b qvp = * V B P2
VB :燃烧室空间容积
KJ /( m ⋅ bar ⋅ h )
ηb =
( qma + qmf ) h* g − ( qma h* a + qmf h*f ) 3 2 qmf H u
96~98%,甚至可达100% 90%
主燃烧室 : 加力燃烧室:
4.出口温度场符合要求
燃烧室出口气流温度场符合涡轮叶片高温强度 的要求,不要有局部过热点。要求: 火焰除点火过程的短暂时间外,不得伸出燃烧 室; 沿涡轮进口环形通道的圆周方向,温度尽可能 * 均匀,在整个出口环腔内最高温度 T 3 max 与平均 温度 T * m 之差不得超过100~120ºC; 3 沿叶高(径向)温度分布应符合等强度原则。
③ 燃烧室出口气流温度 T 受到涡轮叶片的 热强度的限制,不能过高,否则会使叶 片失稳变形,以至熔化或断裂,造成事 故。目前一般允许在1200K,叶片采取 冷却措施的发动机可达1600K。 由于涡轮叶片耐温的限制,燃烧室内供 油受到制约。燃烧室内供油只能烧掉空 气中氧的1/4。在贫油的均匀混气情况 下,火焰不能传播,燃烧不能进行。
在燃气轮机燃烧室中发生的燃烧过程总是 在余气系数 α 较大,且 α 的变化范围又很 宽的高速气流中进行的,因此燃烧室工作 有两点困难: 若把燃料直接喷到由压气机送来的全部空 气中去燃烧,那么燃烧区的温度必然很 低,燃料不能完全燃烧,燃烧效率非常 低; 由于气流的流动速度很高,因而燃烧火焰 很容易被吹熄。同时,还会产生非常大的 压降损失。
这种“分流”方法,相对于把燃料直接喷到 “全部空气”中去的燃烧方法,可以保证燃烧 区具有相当高的燃烧温度,有利于提高燃 烧反应的速度。 在分流方法中,控制“一次空气”的数量是改 善燃烧工况的关键。试验表明:在燃烧柴 油和天然气时,在满负荷工况下的一次空 气量控制在 α =1.1~1.3(相当于燃烧区温 度 为 1800℃ 左 右 ) , 在 空 载 工 况 下 , α =2.0~2.5(相当燃烧区温度为1000℃左右) 是合适的。否则,燃烧效率将严重恶化。
解决办法
1. 采用扩压器,使进入燃烧区的气流速度由 压 气 机 出 口 的 120~180m/s 降 低 到 20~30m/s左右,借以减小气流的压降损 失; 2. 采取气流“分流”的办法,以提高燃烧区的 温度; 3. 采用“火焰稳定器”,使在燃烧区内能够形 成一个特殊形态的气流结构,为稳定火焰 创造条件。
2.燃烧稳定性要好
燃烧室的稳定工作对发动机来说是至关重 要的。 燃烧稳定的两个含义: 在发动机工作过程中,通常情况下不熄 火; 不出现对发动机具有破坏性的燃烧,通常 为振荡燃烧。
稳定燃烧特性包线
燃料的成分主要为碳氢化合物 C x H y
C + O2 = C O2
2 H 2 + O2 = 2 H 2 O
机组负荷增加,燃烧火焰的伸长,后排射流孔供 入的空气向火焰补充所需的氧,防止缺氧引起的 燃烧不完全和火焰过长。
2—旋流器 5—一次空气射流孔
试验表明,具有一次空气量自调特性的供 气方式对于扩大燃烧室负荷变化范围的效 果是明显的。 例如,对某燃烧室 采用第 种供气方式
α = 4.94 → 14.4
采用第 种供气方式
3.413 = 14.7 L0 = 0.232
过量空气系数(余气系数)α :实际供给的 空气量与理0
油气比 f =1/40~1/330 α=2.7~30
稳定燃烧特性包线
C2
p
P = const * T 2 = const
* 2
C 2 > C 2 p 时,燃烧不稳定
燃烧室性能之间的矛盾: 火焰稳定性 高容热强度 解决办法: 根据用途,做折衷考虑(trade-off) 压力损失大 使用寿命长
4-3 燃烧室中燃烧过程的组织
燃烧室中发生的整个工作过程包括:
燃烧区中气流流动过程的组织; 燃烧区中燃料浓度场的组织; 燃烧区中可燃混合物的形成、着火与燃烧; 混合区中二次掺冷空气与高温燃气掺混过程 的组织; 火焰管壁冷却过程的组织。
相同C 2 时,
α max − α min
* 3
越大越好
α min
α max
α
T 受涡轮材料的限制,
燃烧室不容易发生富油 熄火,易贫油熄火,一 般 α max > 25 。
1 - 富油熄火极限 2 - 贫油熄火极限
3.燃烧要完全
将所供燃料全部烧完,将化学能释放出来。 燃烧效率 η b :燃料燃烧时实际用于加热 工质的热量(增加气体总焓)与这些燃料 完全燃烧时的理论放热量之比。
一次空气量自调特性
定义:随着火焰长度的伸缩能自动调整直 接参与燃烧反应的一次空气量的特性。
机组负荷降低,燃烧火焰的长度缩短,通过开在 火焰长度之后的一次空气射流孔供入的空气量不 会直接射到火焰中去掺冷火焰,低负荷时,燃烧 温度仍很高;
2—旋流器 5—一次空气射流孔
一次空气量自调特性
定义:随着火焰长度的伸缩能自动调整直 接参与燃烧反应的一次空气量的特性。
燃烧室出口温度径向分布
h
2 h 3
T 3 min
*
叶尖部分叶片很薄,散热条件差
温度系数 δ m :
T 3m
*
T 3 max
*
T 3 max − T 3m δm = * * T3 −T2
* *
δ m 通常不超过20%
由于离心力的作用,叶片及 涡轮盘榫头连接部位应力大
5.压力损失小
出于组织燃烧的需要,燃烧室采用了复杂 的结构。 阻力系数 ζ b :燃烧室总压损失与某参考 截面(最大截面或进口截面)气流动压头 之比。 * − P* P2 3 = ζb 1 2 ρ m Cm 主燃烧室 : 20~30 2 加力燃烧室: 3~4
1千克碳完全燃烧需要8/3千克氧气 1千克氢气完全燃烧需要8千克氧气
航空煤油(C8H16):含碳86%,含氢14%,1公斤煤油完全 燃烧需要消耗的氧气量(公斤)为
8 86% × + 14% × 8 = 3.413 3
稳定燃烧特性包线
大气中含氧气量为23.2%, 1公斤煤油完全燃烧需空气量(公斤)为
高性能耐热钢板
采取冷却措施; 分段气膜冷却,鱼鳞片气膜冷却 防止严重积炭。 火焰筒壁面温度不超过800度
相关文档
最新文档