离心泵特性曲线

合集下载

离心泵特性曲线

离心泵特性曲线

2.2.1 离心泵的工作原理
1.离心泵的构造:
1、叶轮: 2、泵壳: 3、泵轴及轴封装置:
气缚现象:泵壳和吸入管路内没有充满液体, 泵 内有空气,由于空气密度远小于液体的 密度,叶轮旋转对其产生的离心力很小,叶 轮中心处所形成的低压不足以形成吸上液体 所需要的真空度,泵就无法工作。
(3) 导轮
思考4: 为什么导轮的弯曲方向与叶 片弯曲方向相反?
(4). 轴封装置
旋转的泵轴与 固定的泵壳之 间的密封。 作用:防止高 压液体沿轴漏 出或外界空气 漏入。
填料密封 机械密封
离心泵的理论压头和实际压头
压头:单位重量液体所获得的能量称为泵的压头,用 H表示,单位m。 理论压头:理想情况下单位重量液体所获得的能量称 为理论压头,用HT表示。
离心泵:靠高速旋转的叶轮,液体在离心力作用下 获得能量,以提高压强。 往复泵:利用活塞的往复运动,将能量传给液体, 以完成输送任务。 旋转泵:靠泵内一个或一个以上的转子旋转来吸入 和排出液体。 旋涡泵:一种特殊类型的离心泵。
气体输送机械:据出口气体压强可分为通风机, 鼓风机,压缩机,真空泵
压缩比=出口压力/进口压力
1. 理论压头表达式的推导
w2 液体在高速旋转的叶轮中的运动分为2种: 2 2 2 c2 u2
周向运动:
u r
w1 1 1 c1
与叶片的相对运动:
处处与叶片相切
u1
在 1 与 2 之间列机械能衡算方程式,得:
2 2 p 2 p1 c 2 c 1 HT g 2g
(1)
转速
n
流量 qV,泵单位时间实际输出的液体量,m3/s或m3/h。 可测量 压头 He,又称扬程,泵对单位重量流体提供的有效能量,m。 可测量

离心泵特性曲线

离心泵特性曲线

离心泵特性曲线离心泵的特性曲线是将由实验测定的q、h、n、η等数据标绘而成的一组曲线。

此图由泵的制造厂家提供,供使用部门选泵和操作时参考。

不同型号泵的特性曲线不同,但均有以下三条曲线:(1)h-q线表示压头和流量的关系;(2)n-q线表示泵轴功率和流量的关系;(3)η-q线表示泵的效率和流量的关系;(4)泵的特性曲线均在一定输出功率下测量,故特性曲线图上Mercoeur输出功率n值。

离心泵特性曲线上的效率最高点称为设计点,泵在该点对应的压头和流量下工作最为经济。

离心泵铭牌上标出的性能参数即为最高效率点上的工况参数。

离心泵的性能曲线可以做为挑选泵的依据。

确认泵的类型后,再依流量和压头选泵。

例2-2用清水测定一台离心泵的主要性能参数。

实验中测得流量为10m/h,泵出口处压力表的读数为0.17mpa(表压),入口处真空表的读数为-0.021mpa,轴功率为 1.07kw,电动机的转速为2900r/min,真空表测压点与压力表测压点的垂直距离为0.2m。

试计算此在实验点下的扬程和效率。

解泵的主要性能参数包括转速n、流量q、扬程h、轴功率n和效率。

直接测出的参数为转速n=2900r/min流量q=10m/h=0.00278m/s轴功率n=1.07kw需要进行计算的有扬程h和效率。

用式排序扬程h,即为已知:于是二、影响离心泵性能的主要因素1液体物理性质对特性曲线的影响生产厂所提供更多的特性曲线就是以清水做为工作介质测量的,当运送其它液体时,必须考量液体密度和粘度的影响。

(1)粘度当输送液体的粘度大于实验条件下水的粘度时,泵体内的能量损失增大,泵的流量、压头减小,效率下降,轴功率增大。

(2)密度离心泵的体积流量及压头与液体密度毫无关系,功率则随其密度减小而减少。

2离心泵的输出功率对特性曲线的影响当液体粘度不大,泵的效率不变时,泵的流量、压头、轴功率与转速可近似用比例定律计算,即式中:q1、h1、n1离心泵输出功率为n1时的流量、扬程和功率。

离心泵特性曲线

离心泵特性曲线

离心泵特性曲线
离心泵特性曲线是衡量离心泵性能总体效率的一种重要标准,从它可以了解离心泵的流量、压力、运行电流强度之间的关系。

根据离心泵的结构,可以区分水力性能和电气性能,他们各自的特性曲线不完全一样。

离心泵的水力特性曲线,正输出量随压力的变化构成,是衡量特定离心泵的水力效率的基本依据。

水力特性曲线表明离心泵在静态工作条件下,输出流量与压力之间的变化关系,且一般情况下压力越高,可输出流量越低。

另一方面,电气性能特性曲线,它表述的是当离心泵输出流量变化时,所需的电功率的变化。

电气性能特性曲线表明,一般情况下,当输出液体流量增加,电功率也会增加。

离心泵特性曲线提供了对离心泵功能表现的观察和分析,有帮助于检查污染排放,故障排除,优化设计及宣传技术,运行状态查看等,所以它对于查验离心泵性能非常重要和实用。

此外,离心泵特性曲线也常常被用来研究离心泵的可靠性以及未来配置的升级,如加入变频器,以节约能源。

4.3离心泵的特性曲线 - Copy

4.3离心泵的特性曲线 - Copy

qv = qt - ∑q
一般取:v 0.93 ~ 0.98
qv q v 1 qt qt
(3)水力损失:包括流动阻力损失 hhyd 和冲击损失 hsh。 其中:流动阻力损失 hhyd =沿程摩擦损失+局部阻力损失 冲击损失 hsh=叶轮进口冲击损失
总损失:h水=hhyd+hsh
hyd
(三).联合特性曲线
泵与管路联合工作,遵守质量守恒和能量守恒原理。
稳定工况:q泵 = q管
H泵 = H管
H
稳定工况点为:A点。 此时的压头、流量:HA、qA。
HA
A
qA
q
• 4.3.2
离心泵的流量调节
B
A
(1).改变泵出口阀开度
改变管路特性曲线。在排出管路上安装闸阀。 阀开大时:q↑,H↓ 阀管小时:q↓,H↑ 特点:简单、方便、灵活,普遍采用;
H 泵 1.05 ~ 1.1H
v
离心泵的选型
离心泵的选型
• 单级离心泵系列型谱:
4.3.5 离心泵的启动与运行
(1)启动前检查 ① 泵轴润滑油是否达到油标尺度。 ② 安装是否牢固。 ③ 叶轮转动是否灵活。 ④ 大功利泵排除阀是否关闭。 (2)充水 向泵壳和吸入管内充满水,泵壳要放气。输送高温液体要先暖 泵。
A B
能量损失大。
(2).出口旁路分流调节 改变管路特性曲线。排出管接一支路,
用于泄流。支路管开启时,系统流量被泄掉。
此时: H↓、q↑ 特点:简单、方便;不经济。
(3). 液位或出口压力调节
改变管路特性曲线。利用排出管液位或压力的升高或降低,
即改变△Z或pB。 使HT 变化。 B A 液位升高时:H↑、q↓

离心泵特性曲线

离心泵特性曲线

离心泵特性曲线首先离心泵的特性曲线图如下接下来是对于这个图的一些解读:离心泵的性能曲线包括流量-扬程(Q-H)曲线、流量-功率曲线(Q-N)、流量-效率曲线(Q-ŋ)以及流量-汽蚀余量(Q-NPSHr)曲线。

水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。

水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。

它是离心泵的基本的性能曲线。

比转速小于80的离心泵具有上升和下降的特点称驼峰性能曲线。

比转速在80~150之间的离心泵具有平坦的性能曲线。

比转数在150以上的离心泵具有陡降性能曲线。

一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。

上述曲线都是在一定的转速下,以试验的方法求得的。

不同的转速,可以通过公式进行换算。

在性能曲线上,对于一个任意的流量点,都可以找出一组与其相对应的扬程、功率、效率以及汽蚀余量值。

通常,把这一组相对应的参数称为工作状况,简称工况或工况点。

对于离心泵最高效率点的工况称为最佳工况点。

泵在最高效率点工况下运行是最理想的。

但是用户要求的性能千差万别,不一定和最高效率点下的性能相一致。

要想使每一个用户要求的泵都在泵最高效率点下运行,那样做需要的泵规格就太多了。

为此,规定一个范围(通常以效率下降5%~8%为界),称为泵的工作范围。

我们利用叶轮的切割或者变频技术可以扩大泵的工作范围。

我们把同一类型的水泵,将它的各种不同比转数以及相同比转数不同口径的泵的工作区域集中画在同一个Q-H坐标平面上。

为了使图面上大泵的方块不致太大,坐标可以采用对数坐标,于是就得到了该类型泵的系列型谱。

各类型的泵均有各自的型谱,使用户选用水泵十分方便。

每种系列用几种比转数的水力模型,泵的口径按一定的流量间隔比变化。

同一口径的泵扬程也按一定的间隔变化。

ISO 2858规定了标准的型谱。

离心泵的曲线

离心泵的曲线

离心泵的曲线
离心泵的曲线是用来描述离心泵性能的一种图形表示。

它展示了离心泵在不同工况下的流量、扬程和效率之间的关系。

通常,离心泵的曲线包括以下几个主要参数:
1. 流量-Q:表示单位时间内通过泵的液体体积。

通常以立方米每小时(m³/h)或升每秒(L/s)来表示。

2. 扬程-H:表示泵能够提供的压力。

通常以米(m)为单位。

3. 效率-η:表示泵转化输入功率为输出功率的能力。

通常以百分比形式表示。

离心泵的曲线通常由以下几条线组成:
1. H-Q曲线(等速曲线):在恒定转速下,流量与扬程之间的关系曲线。

当流量增大时,扬程会逐渐降低。

2. η-Q曲线(效率曲线):在恒定转速下,效率与流量之间的关系曲线。

通常在设计流量附近效率较高,而在低流量和高流量处效率较低。

3. NPSHr曲线(净正吸入头曲线):表示给定流量下泵要求的最低净正吸入头。

当净正吸入头低于该值时,泵可能会产生气穴或性能下降。

4. NPSHa曲线(净正吸入头可利用余量曲线):表示给定流量下实际系统提供的净正吸入头与NPSHr之间的差值。

当可利用余量大于零时,系统运行正常。

不同型号和尺寸的离心泵有不同的曲线特征,根据具体工程要求选择合适的泵型和工作点是非常重要的。

实验五 离心泵特性曲线实验

实验五  离心泵特性曲线实验

实验五 离心泵特性曲线实验一、实验目的1、了解离心泵的结构组成及特性, 掌握理性泵的操作方法;2、观察离心泵的气体现象;3、熟悉离心泵操作方法和特性曲线的应用;掌握离心泵特性曲线的测定方法、表示方法, 加深对离心泵性能的了解; 测定离心泵在一定转速下的特性曲线: N-Q 、H-Q 、η-Q 曲线。

二、实验装置本实验用离心泵进行实验,其装置如图1所示, 离心泵用三相电动机带动, ,经整个管线返回水池。

在吸入管进口处装有阀, 以便启动前灌满水;在泵的吸入口和出口分别装有真空表和压力表, 以测量离心泵的进出口处压力;泵的出口管路装有孔板流量计用做流量测量, 并装有阀门以调节流量。

三、实验原理在离心泵进出口管装设真空表和压力表, 在相应的两截面列出机械能衡算方程式(以单位重量液体为衡算基准):f 22222111H 2g u g p z H 2g u g p z +++=+++ρρ (1)1、排水阀;2、吸水阀;3、水槽;4、泵;5、引水漏斗;6、真空表;7、功率表盒;8、压力表;9、文士管; 10、压力计图1 离心泵特性曲线实验装置图由于在测试离心泵特性曲线时, 直管段摩擦损失很小, 其损失归入离心泵的效率, 所以上式(1)的能量损失Hf=0。

令:gp H 11ρ= g p H 22ρ= 120z z h -= (2) 所以式(1)变为:2gu u h H H H 2122021-+++= (3) 式中: H1-泵入口真空表读数, 换算为mH2O 表示;H2-泵出口压力表读数, 换算为mH2O 表示;h0-压力表与真空表测压孔之间的垂直距离, m ;u1-吸入管内水的流速, m /s ;u2-排出管内水的流速, m /s ;g -重力加速度, 9. 8lm /s2。

由式(3)计算出扬程, 此即为离心泵给单位重量流体提供的能量, 由于体积流量可由涡轮流量计测得, 因此流体获得的有效功率Ne 为:Ne = Q ·H ·ρ·g (4)根据离心泵效率的定义及有效功率表达式(5), 有:1000N g QH ρη=(5) 式中: Q -流量, m3/s ;H -压头, m ;ρ-被输送液体密度, kg /m3;N -泵的轴功率, kW 。

泵—离心泵的性能曲线

泵—离心泵的性能曲线
4. NPSHr-Q曲线
NPSHr-Q曲线是检查泵工作时是否发生汽蚀的依据,应全面考虑泵的安装高度、
入口阻力损失等,防止泵发生汽蚀现象。
例2-2:用清水测定一台离心泵的主要性能参数。实验中测得流量为10m3/h,泵出口 处压力表的读数为0.17MPa(表压),入口处真空表的读数为-0.021Mpa,轴功率为 1.07KW,电动机的转速为2900r/min,真空表测压点与压力表测压点的垂直距离为 0.2m。试计算此在实验点下的扬程和效率。
见图2-35所示,M、D、C点都是离心泵的工作点。
图2-35 泵的工作点
二、工作点的类型
离心泵的性能曲线有平坦、陡降和驼峰三种,显然, 对于平坦和陡降性质的性能曲线,交点只有一个,该点 称为稳定工作点(M)。
对于驼峰性质的性能曲线,交点有两个(D、C), 但只有一个是稳定工作点(C),另一个工作点称为不稳 定工作点(D),泵只能在稳定工作点下工作。
图2-38 改变转速的调节
2. 特点
① 用这种方法调节流量,没有附加能量损失,所以是一种最经济的调节方法。
3. 驼峰H-Q曲线
具有这种性能的泵在运行中容易出现不稳定工况, 一般应在下降曲线部分操作。
图2-26 三种形状的H-Q曲线
四、离心泵性能曲线的应用
到目前为止,离心泵的性能曲线,还不能用理论计算方法精确确定,只能通过实验 获得。 离心泵的性能曲线,一般由泵的制造厂家提供,供使用部门选泵和操作时参考。
管路性能曲线
在石油化工生产中,泵和管路一起组成了一个输送系统。 能否保证泵在管路系统装置中处于最高效率点下运转,不仅取决于离心泵的性能特 性曲线,还与离心泵所在的管路特性曲线有关。
一、 管路性能曲线
所谓管路性能曲线是指使一定液体流过管路时,需 要从外界给予单位重量液体的能头HC(m)与管路液体 流量Q(m3/h)之间的关系曲线。

解析离心泵的特性曲线(图文)

解析离心泵的特性曲线(图文)

图文解析离心泵的特性曲线一、离心泵的特性曲线定义当转速n为常量时,列出扬程(H)、轴功率(N)、效率(η)以及允许吸上真空高度(Hs)等随流量(Q)变化的函数关系,即:H = f(Q);N = F(Q);Hs = Ψ(Q);η= φ(Q),我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。

离心泵的特性曲线是液体在泵内运动规律的外在表现形式,这三条曲线需要根据试验的方法(采用离心泵特性曲线的测定装置,逐渐开启水泵出口阀门改变其流量,测得一系列的流量及相应的扬程和轴功率,然后将H一Q、N —Q、η一Q曲线绘制在同一张坐标纸上,即为一定型式离心泵在一定转速下的特性曲线),不同的水泵特性曲线不同,水泵的特性曲线由设备生产厂家提供。

严格意义上讲,每一台水泵都有特定的特性曲线。

在水泵特性曲线上,对应任意流量点都可以找到一组与其相对应的扬程、轴功率和效率值,通常把这一组相对应的参数称为工况,其对应最高效率点的一组工况称为最佳工况。

在生产实践中,水泵的运行工况点是通过管路的特性曲线与水泵的特性曲线确定的(M工况点,见下图)。

在选择和使用泵时,使水泵在高效区运行,以保证运转的经济和安全。

二、影响离心泵特性曲线的因素离心泵的特性曲线与很多因素有关,如液体的粘度与密度、叶轮出口宽度、叶片的出口安放角与叶片数及离心泵的压出室形状等均会对离心泵的特性曲线产生影响。

1、叶轮出口直径对性能曲线的影响在叶轮其它几何形状相同的情况下,如果改变叶轮的出口直径,则离心泵的特性曲线平行移动,见下图。

根据这一特性,水泵制造厂和使用单位可以采用车削离心泵叶轮外径的方法改变一台泵的性能范围,以使泵的性能更适合实际运行需要。

例如,某厂的一台离心式循环泵,其运行压力偏高,为降低压力,将叶轮外径由270mm车削到250mm后,在流量相同的情况下,压力下降,给水泵的电机电流减小,满足了运行的要求。

2、转速与性能曲线的关系同一台离心泵输送同一种液体,泵的各项性能参数与转速之间的关系式为:Q1/Q2 = n1/n2H1/H2 = (n1/n2)2Nl/N2 = (n1/n2)2三、理论特性曲线的定性分析1、理论扬程特性曲线的定性分析由HT =中,将C2u = u2 - C2rctgβ2 代入,可得:HT =(u2 - C2rctgβ2)叶轮中通过的水量可用此式表示:QT = F2C2r,也即:C2r =式中QT:泵理论流量(m3/s);F2:叶轮的出口面积(m2);C2r:叶轮出口处水流绝对速度的径向(m/s)。

离心泵特性曲线

离心泵特性曲线

离心泵特性曲线
离心泵特性曲线(Centrifugal pump performance curve)是描述离心泵在不同工作条件下流量、扬程、效率和功率
等性能参数的变化关系的曲线。

离心泵特性曲线通常由以下几个要素构成:
1. 流量(Flow):流经离心泵的液体体积或质量的量度,
通常以升/秒或立方米/小时表示。

2. 扬程(Head):液体在离心泵内获得的压力能量,通常以米或千帕表示。

3. 效率(Efficiency):离心泵将输入的功率转化为输出的液体动能的比例。

效率通常以百分比表示。

4. 功率(Power):离心泵所需的电功率或机械功率,通常以千瓦或马力表示。

离心泵特性曲线一般由实验测量得到,根据不同工作条件下的流量、扬程和功率等数据绘制而成。

典型的离心泵特性曲线通常呈现出以下特点:
1. 最大扬程点(Maximum Head Point):离心泵在某一流量下能够提供的最大扬程。

该点通常是离心泵特性曲线上的最高点,也是离心泵的额定扬程。

2. 最大效率点(Maximum Efficiency Point):离心泵在某一流量下能够达到的最高效率。

该点通常是离心泵特性曲线上的效率最大值点。

3. 关闭阻塞点(Shut-off Head Point):离心泵在流量为零时的扬程。

该点通常是离心泵特性曲线上的最低点。

离心泵特性曲线的形状和特点对于选型和运行离心泵都具有重要的参考价值,可以帮助用户了解离心泵在不同工况下的性能和适用范围,并进行合理的运行和维护。

离心泵性能特性曲线

离心泵性能特性曲线

离心泵性能特性曲线一、原始数据记录:表一数据记录表二、数据计算表:计算示例: (1)1212122Z Z gu u g p p H -+-+-=ρ (2)s V /m 00362.03=时 (3)s S V u /m 50.42032.014.300362.0222=⎪⎭⎫ ⎝⎛⨯==(4)s S V u /m 88.22040.014.300362.0211=⎪⎭⎫ ⎝⎛⨯==()847.111028822.25034.4101000100000008.0032.0222121212=⨯-+⨯⨯+=-+-+-=Z Z g u u g p p H ρ(5)3187.01340/107.99500362.065.11/=⨯⨯⨯==N g HV ρη三、数据分析与绘图1 绘制H-V, η-V,N-V 图像于下图:图一 离心泵性能曲线图图表分析:由图可看出,轴功率随流量增大而增大,扬程随流量增大而减小,效率随流量增大呈现抛物线趋势。

2 实验结论由图得到,转速一定时,离心泵的较为适宜的工作范围是 2.16×10-3m3/s—2.64×10-3m3/s.四、讨论:1.在启动泵前,一定要关闭出口阀,以使泵再低负荷下启动,避免启动电流过大损坏电机,同时关闭泵的时候也要先关闭出口阀,防止发生倒灌现象。

2.无法测电机的转速,泵的特性曲线是在指定的转速下的数据,特性曲线上的实验点其转速都是相同的。

但是实际上感应电动机再转矩改变时,其转速会有变化,随着流量的变化,多个实验点的转速将有所差异,如果不测转速会产生很大的误差。

3为了得到离心泵最佳工作范围,应该在其效率最高点附近多测几组数据,使图像更加清楚明显。

4 由于仪控表读数不稳定,因此应该等其稳定再读数,否则容易造成人为误差。

5 在流量从大往小调节的过程中,应避免等幅取点。

实验二 离心泵特性曲线的测定实验

实验二     离心泵特性曲线的测定实验

实验二离心泵特性曲线的测定实验一实验内容测定一定转速下离心泵特性曲线二实验目的1 了解离心泵的结构特点, 熟悉并掌握离心泵的工作原理和操作方法。

2 掌握离心泵特性曲线的测定方法三基本原理离心泵特性, 通常与泵的结构、泵的转数以及所输送的液体有关, 影响因素很多, 只能采用实验的方法实际测定。

根据伯努利方程得到扬程的计算公式He=P2gρ−P1gρ+h0+u22−u122g式中,h-二测压点截面之间的垂直距离, m 此次实验中h=0P1-真空表处截面的绝对压力, Mpa;P2-压力表处截面的绝对压力, Mpa U1-泵进口管流速, m/s;U2-出口管流速, m/s;He-泵的实际扬程离心泵的效率为泵的有效功率与轴功率之比值: ŋ=NeN轴式中ŋ-离心泵的效率;Ne-离心泵的有效功率, kw;N轴-离心泵的轴功率, kw。

有效功率可按下式计算:Ne= HeQρg[W]输入电机的电能在转变为机械能时存在一定的损失, 因此工程上有意义的是测定离心泵的总效率:ŋ总=ŋ轴ŋ电在此次实验中ŋ总≈1实验时, 使泵在一定转速下运转, 测出对应于不同流量的扬程、电机输入功率、效率等参数值, 将所得数据整理后用曲线表示, 即得到泵的特性曲线。

四实验设计流量用涡轮流量计测定, 计算式为: Q=f/ξ其中- Q流量, L/s;f-流量计的转子频率;ξ-涡轮流量计的仪表系数电机功率采用数字仪表测量:N电=15*显示读数(kw)水的温度由温度计测定, 温度及安装在泵出口管路的上方五实验装置及流程主要设备: 离心泵, 循环水箱, 涡轮流量计, 流量调节阀, 压力表, 真空表, 温度计1-水槽 2-真空表 3-压力表 4-离心泵 5-功率表 6-温度计 7-涡轮流量计 8-控制阀设备及流程说明实验装置及流程如上图所示, 由离心泵和进出口管路、压力表、真空表、涡轮流量计、和调节控制阀组成测试系统。

试验物料为自来水, 为节约起见, 配置水箱循环使用, 由这次试验的装置可以看到实验开始时不需要灌泵, 流量通过控制阀调节, 通过涡轮流量计测量其大小。

离心泵的特性曲线

离心泵的特性曲线

离心泵的特性曲线
离心泵是用于液体输送的工程设备,其具有流量、扬程、能量损耗等特性曲线。

离心泵的特性曲线,也叫性能曲线,是表示离心泵在不同工作条件下所取得的性能测试结果,其中包括流量曲线、扬程曲线、能量损失曲线等,可以根据这些曲线考查离心泵的性能情况。

1、流量曲线
流量曲线是离心泵性能曲线中最重要的一个曲线,它用抽水机的转速和流量的实验曲线做出来的,它表示离心泵在不同转速下输出的流量值。

流量曲线一般分为正端曲线和反比曲线。

正端曲线的表示,用抽水机的转速从低到高度和流量交点所构成的曲线,也说明着当抽水机转速提高1倍时,流量提高2倍。

反比曲线表示,流量与转速反比,当转速提高1倍时,流量减少1/2倍。

2、扬程曲线
扬程曲线表示离心泵在不同转速下所取得的扬程大小,即在1个固定的转速前提下,流量的增长会导致扬程的减小以及提高转速会带来扬程的增加。

从实际上来说,扬程曲线用于分析泵在不同转速下发出的压力,以及在设计离心泵的参数时的参照依据。

3、轴功率曲线
轴功率曲线是表示离心泵在不同情况下,轴承受的力和其产生的功率的相对大小的曲线,它可以用来检验泵的叶轮设计是否合理,以及它的效率,也可以用来加以改善泵的效率和能耗等。

4、能量损失曲线
能量损失曲线是表示泵在不同转速和扬程的情况下,其产生的能量损失的曲线。

能量损失曲线越平滑,表明扬程和流量在不同工况时的能量损失变化越不大,也就是泵的效率更高。

能量损失曲线可以用来预测离心泵的能耗情况,从而提高泵的性能。

第六节离心泵的特性曲线

第六节离心泵的特性曲线
轴流泵与离心泵相反。
三、流量效率曲线
效率曲线为从最高点向两侧下降的变化趋势。
四、流量与允许吸上真空度曲线 离心泵流量与允许吸上真空度曲线是一条下降的曲线。 而离心泵流量与汽蚀余量(HSV或Δh)曲线是一条上升的
曲线。
离心泵的试验性能曲线
离心泵的试验性能曲线:在一定的转速下测定水泵扬程、轴功率、效 率与流量之间的关系,并绘出完整的性能曲线。
一、流量和扬程曲线 结论: Q~H曲线是下降的曲线,即随流量Q的增大,
扬程H逐渐减少。相应与效率最高值的点的参数,即水泵 铭牌上所列的各数据。水泵的高效段(不低于最高效率 点10%左右)
二、流量与轴功率曲线
离心泵的轴功率随流量增加而逐渐增加,曲线有上升的 特点。
当流量为零时(闸阀关闭),轴功率最小。因此,为便 于离心泵的启动和防止动力机超载,启动时,应将出水 管路上的闸阀关闭,启动后,再将闸阀逐渐打开,即水 泵的闭阀启动。
水泵样本或产品目录中除了以性能曲线表示水泵的性能外,还以表 格的形式给出水泵的性能。
12SH-6型泵性能表
水泵 型号
流量Q
m3/h L/s
扬程 H(m)
转速 n
(r/min)
功率 P (KW)
轴 配套 功率 功率
效率 (%)
允许 吸上 真空 度(m)
叶轮 直径 D(mm)
重量 (kg)
12SH-6 590 164 792 220 936 260
IS型单级单吸泵的综合性能图
BA 型泵的综合性能图
98
213

74
5.4
90 1450 250 300 77.5 4.5
82
279
75
3.5
540 847

离心泵的特性曲线

离心泵的特性曲线

离心泵的特性曲线前言我们知道离心泵的流量和扬程是可以调节的,它不仅受管道条件的影响,也受液体粘度的影响。

泵在并联和串联工作时也不一样。

通常我们用泵的排量、扬程、轴功率和效率、转数等基本参数来表明泵的工作性能。

为了方便,我们常把它们之间的关系划成曲线图,用它正确的选择泵,确定电机的功率,使泵在最优工况下工作,并解决遇到的许多实际问题。

一、离心泵特性曲线的基本知识1、概念在泵的转速不变的情况下,泵的流量、圧头、功率和效率等之间存在着相互关系,这些相互关系可用Q—H(流量—扬程)、Q—N(流量—功率)、Q—η(流量—效率)曲线图来表示,这种曲线图就叫做泵的特性曲线。

2、作用离心泵的特性曲线是用来表示离心泵的主要参数之间的关系的曲线,是根据实验获得的数据绘制而成的。

曲线图上的任何一个参数发生变化,其它的数值都会随之改变。

3、性能参数离心泵特性曲线的主要性能参数有流量、扬程、有效功率、轴功率、效率。

①流量:又叫排量,表示泵在单位时间内输出液体的体积或重量的数值。

用Q表示。

体积流量的单位是m3/h(米3/小时)、m3/s(米3/秒)、L/s(升/秒);重量流量的单位是t/h(吨/小时)、kg/s(千克/秒)。

②扬程:它是每一单位重量的液体通过离心泵其能量的增加值,也就是这台离心泵能够扬水的高度。

用H表示,单位是m(米)。

压力与扬程的关系:P=H×γ即:压力=扬程×重度。

③有效功率:离心泵在单位时间内对液体所做的功。

用N表示,单位是kw(千瓦)。

④轴功率:离心泵的输入功率称轴功率,也就是原动机传给泵轴的功率。

用N 轴表示,单位是kw(千瓦)。

⑤效率:泵的有效功率与轴功率之比称泵的效率。

用η表示。

二、测定离心泵有关工作参数的方法1、测定前的准备工作①选用经过标定的外输油流量计(一般为0.2级)②选用标准的精密压力表安装在泵的出口管线上,真空表安装在泵进口管线上。

③选用电压表,电流表(或万用表)及功率因数表。

离心泵的特性曲线知识介绍

离心泵的特性曲线知识介绍

离心泵的特性曲线知识介绍一、离心泵的特性曲线定义离心泵的扬程(H)、功率(P)、效率(η)与流量(qv)之间的关系曲线称为特性曲线。

其数值通常是指额定转数和标准状况(大气压101.325kPa,20℃清水)下的数值,可用实验测得。

二、下图为某型号离心水泵在转速n=2900r/min下用20℃清水测得的特性曲线,效率某型号离心水泵在转速n=2900r/min下用20℃清水测得的特性曲线,离心泵的特性曲线有3条,分别表示如下:(1)H-qv曲线表示H与qv的关系,通常H随qv的增大而减小。

不同型号的离心泵,H-qv曲线的形状有所不同。

有的离心泵)H-qv曲线较平坦,其特点是流量变化较大而压头变化不大;而有的泵H-qv 曲线陡降,当流量变动很小时扬程变化很大,适用于扬程变化大而流量变化小的情况。

(2)P-qv曲线表示P与qv 的关系,P随qv的增大而增大。

显然,当qv=0 时,P最小。

因此,启动离心泵时,应关闭出口阀,使电动机的启动电流减至最小,以保护电动机。

待转动正常后再开启出口阀,调节到所需的流量。

(3)η-qv曲线表示与qv的关系,开始η随qv的增大而增大,达到最大值后,又随qv的增大而下降。

曲线上最高效率点即为泵的设计工况点,在该点所对应的扬程和流量下操作最为经济。

实际生产中,泵不可能正好在设计工况点下运转,所以各种离心泵都规定一个高效区,一般取最高效率以下7%范围内为高效区。

工程上也将离心泵最高效率点定为额定点,与该点对应的流量称为额定流量。

三、离心泵的转速对特性曲线的影响离心泵的特性曲线是在一定转速n下测定的,当n改变时,泵的流量qv、扬程H及功率P也相应改变。

对同一型号泵、同一种液体,在效率η不变的条件下,扬程(H)、功率(P)、流量(qv)随n的变化关系如下式所示:qv2/qv1=n2/n1H2/H1=(n1/n2)2P2/P1=(n1/n2)3上式称为比例定律表达式。

当泵的转速变化小于20%时,效率基本不变。

离心泵特性曲线

离心泵特性曲线

离心泵特性曲线压头、流量、功率和效率是离心泵的主要性能参数。

这些参数之间的关系,可通过实验测定。

离心泵生产部门将其产品的基本性能参数用曲线表示出来,这些曲线称为离心泵的特性曲线(characteristic curves)。

以供使用部门选泵和操作时参考。

特性曲线是在固定的转速下测出的,只适用于该转速,故特性曲线图上都注明转速n的数值,图2-6为国产 4B20型离心泵在n=2900r/min 时特性曲线。

图上绘有三种曲线,即1.H-Q曲线H-Q曲线表示泵的流量Q和压头H的关系。

离心泵的压头在较大流量范围内是随流量增大而减小的。

不同型号的离心泵,H-Q曲线的形状有所不同。

如有的曲线较平坦,适用于压头变化不大而流量变化较大的场合;有的曲线比较陡峭,适用于压头变化范围大而不允许流量变化太大的场合。

2.N-Q曲线N-Q曲线表示泵的流量Q和轴功率N的关系,N随Q的增大而增大。

显然,当Q=0时,泵轴消耗的功率最小。

因此,启动离心泵时,为了减小启动功率,应将出口阀关闭。

3.η-Q曲线η-Q曲线表示泵的流量Q和效率η的关系。

开始η随Q的增大而增大,达到最大值后,又随Q的增大而下降。

该曲线最大值相当于效率最高点。

泵在该点所对应的压头和流量下操作,其效率最高。

所以该点为离心泵的设计点。

选泵时,总是希望泵在最高效率工作,因为在此条件下操作最为经济合理。

但实际上泵往往不可能正好在该条件下运转,因此,一般只能规定一个工作范围,称为泵的高效率区,如图2-6波折线所示。

高效率区的效率应不低于最高效率的92%左右。

泵在铭牌上所标明的都是最高效率下的流量,压头和功率。

离心泵产品目录和说明书上还常常注明最高效率区的流量、压头和功率的范围等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

式中:S——管路阻力损失
当V>1.2m/s
S 0.001735 li
d
5.3 j
当v<1.2m/s
S
0.00148
li
d
5.3 j
(1
0.681d
2 j
0.3
/ Q)
lj
1.2 管路系统特性曲线及方程表达式
P35图2-29
H
Q--∑h
K
hk
Hst
0
Qk
Q
物理意义:曲线上任一点K的纵坐标H表示水泵输 送流量Q所需提供的静扬程,以及为此而消耗于 管路中的水力损失hf ,即
第六节 离心泵特性曲线
—扬程、功率、效率随水流量变化规律 —曲线表示方法:试验性能曲线、相对性能 曲线、综合性能曲线(型谱图)通用性能曲 线(轴流泵)、全面性能曲线等 —汽蚀曲线
第六节 离心泵特性曲线
复习:扬程表达式
HT
u2C2u u1C1u g
H
h
HT 1 P
HT
u
2 2
u12
2g
w12 w22 2g

小知识:对于低比转速离心泵需要进行无过载设计
3.7 气蚀曲线反映相应流量下水泵允许的最大吸上真 空高度,并非运行时的实际真空值
3.8 水泵抽吸其他液体时应根据该液体的密度(功率) 及粘度(扬程)进行换算
作业:
第六节习题:P108 习题5、6(第五版)
第七节 离心泵定速运行工况
讨论额定转速下离心泵的运行参 数随流量的变化
(3)对泄漏与回流的修正:容积损失→ 曲线4 (4)对机械磨损的修正:机械损失对扬程无影响,对功率 有影响 (轴承、填料轴封、圆盘摩擦损失)
离心泵的理论特性曲线
H
B2>90°
冲击损失 反旋
QT-HT
B2=90°
B2<90°
效率
4
1
32
摩擦损失
离心泵的理论特性曲线
Q
2.3 效率 的概念
1.水力效率 2.容积效率 3.机械效率
C2u
u2
速度三角形
b'2>b''2>b'''2
b)
Q
D2和b2对特性的影响 a) D2对性能影响 b) b2对性能影响
理论特性曲线
试验特性曲线
2.2 对理论扬程的修正
Q QT q
(1)对一维流假定的修正:反旋引起扬程下降 → 曲线1
(2)对理想流体假定的修正:
泵内摩阻损失→ 曲线2,冲击损失 →曲线3
第七节 离心泵定速运行工况
引言:
特性曲线反映水泵本身潜在的工作能力 水泵装置的实际工况反映水泵实际做功情况
概念:
工况点——水泵装置在某瞬时的实际出水量、扬 程和功率以及吸上真空高度。
一、管道阻力特性曲线及表达式
P35图2-28
1.1 定义:水流经过管道时,水头损失与流量的关
系曲线 h SQ2
设计工况——设计离心泵时所采用的工况,此时离心泵效率最高
一、性能曲线名称及形式
1.1名称(在转速一定下)
扬程曲线: H f (Q) Q-H 功率曲线:N F(Q) Q-N
效率曲线: (Q) Q-
气蚀曲线:H s (Q) Q-Hs
一的变化规律 全面性能曲线:反映水泵工况、水泵制动工况、水 轮机工况和水轮机制动工况的四象限性能曲线 相对性能曲线:相似水泵的性能曲线,不同比转速 通用性能曲线:对离心泵为在不同转速下的各性能 曲线,对轴流泵为在不同叶片安放角下的性能曲线 综合性能曲线:不同水泵高效区性能曲线
H Hst hf
二、图解法求水箱出流工况点
P36图2-30 2.1 直接法(a):能量线与管路系统特性线求交点
物理意义:水箱所提供总比能H与管道所消耗的总比能
C
2 2
C12
2g
H H v H d Z (V22 V12 ) / 2g
H Hst hf
新问题:
1、实际工作除对扬程提出要求外,还对流量提出要求,对于泵的 其他基本参数在选型和使用时,也应有相关要求,故需要提出一 种能直接反映泵的基本参数之间关系的方程——特性方程
2、水泵实际工作流量和扬程往往是在某一个区间内变化的,当实 际工作偏离设计工况时,泵内的流态变得很复杂,由于理论方法 很难得到精确的表达式,因此采用性能实验和汽蚀试验绘制经验 曲线——性能曲线,同时根据对试验点回归得出经验方程
概念:
有效功率 水功率 轴功率
4 .总效率:
h H / HT v Q / QT
m Nh / N
Nu QH
Nh QT HT
N QH /
Nu N
QH
N
QH
QHT
QHT QT HT
QT HT
N
hvm
泵效率知识
在泵正常工作范围内:
水力阻力损失功率占30% 叶轮圆盘损失功率占8.2%(提高圆盘及泵体表面光滑度,
3.4 在最高效率点周围的一定范畴为水泵运行高效区 (不低于最高效率的10%)
3.5 启动时,水泵在零流量下运行,其功率(30%N) 消耗于机械摩擦,泵壳温度上升,故离心泵关阀启动 时间不宜过长
三. 实测特性曲线的讨论
3.6 选配电机(P33表2-1)
NP kN /传
(2-50)
考虑因素:选择水泵运行过程中可能遇到的最大轴功
二、理论性能曲线
—— (定性分析) H
2.1 公式推导(P28) 由 HT u2C2u / g

HT
u2 g
(u 2
QT F2
ctg 2 )
A BQT
D'2 D''2 D'''2
D'2>D''2>D'''2
a)
Q
H
b'2 b''2 b'''2
C1
w1
C 2 C2m w1
α1
β1
α2
β2
u1
尽量减小叶轮外径) 止推轴承摩擦损失功率占6%(合理的轴向力平衡措施可减
小)
水力损失组成:
主要由叶轮、圆盘摩擦损失、叶轮流道摩擦损失、叶轮流道 扩散损失组成
实测特性曲线(P32图2-27)
扬程曲线 效率曲线 功率曲线 汽蚀曲线
三. 实测特性曲线的讨论
3.1 与理论特性线的关系:
定性分析理论特性曲线有助于了解实测特性线的变 化趋势,水泵厂通过实测的方法得到水泵特性线
3.2 前弯式叶片的弊端
(1) 前弯式叶片:水泵扬程和轴功率随流量的升高 而升高,造成电机过载,对电机的稳定运行不利
(2) 动扬程大(C2),水力损失大,效率低。
三. 实测特性曲线的讨论
3.3 性能曲线具有“扬程随流量的上升而下降”的特 性,一方面有利于电机稳定运行,另一方面与管网 “阻力随流量的增加而上升”的特性相匹配,便于在 能量供求关系平衡的条件下达成工况点自动稳定。
相关文档
最新文档