解析几何第四版复习重点第二章轨迹与方程

合集下载

《解释几何 第四版》讲解与习题 第二章 轨迹与方程

《解释几何 第四版》讲解与习题  第二章   轨迹与方程

x (tx b) 1 2 2 a b
2 2
在第二式中取t=0,得x=0,所以舍去第一式,取 从而
b(b 2 a 2t 2 ) y 2 b a 2t 2
在法二中,若令u=-t,则得椭圆的另一种表示式为
2a2bu x 2 b a 2u 2 ( u ) 2 2 2 y b(b a u ) 2 2 2 b a u
(x x0)2 + (y y0)2 + (z z0)2 = R2 (1) 称方程(1)为球面的标准方程. 特别: 当球心在原点O(0, 0, 0)时,
M0
M
R
球面方程: x2 + y2 + z2 = R2
例 4 求与原点O 及 M 0 ( 2,3,4)的距离之比为1 : 2的点的全 体所组成的曲面方程.

根据题意有 z 1
用平面z c 去截图形得圆:
z
( x 1)2 ( y 2)2 1 c (c 1)
当平面z c 上下移动时, 得到一系列圆
c
o
x
y
圆心在(1,2, c ),半径为 1 c
半径随c 的增大而增大. 图形上不封顶,下封底.
二、曲面的参数方程 1、双参数向量函数 在两个变数u,v的变动区域内定义的函数 r=r(u,v) 或 r(u,v)=x(u,v)e1+y(u,v)e2+z(u,v)e3 (2) 称为双参数向量函数,其中x(u,v),y(u,v),z(u,v)是变 向量r(u,v)的分量,它们都是变数u,v的函数。 当u,v取遍变动区域的一切 值时,径矢
a b r (a b) cos b cos i b a b (a b) sin b cos j b 特殊地,当 a 4b 应用公式

解析几何第二章轨迹与方程PPT课件

解析几何第二章轨迹与方程PPT课件
①由 r t x te 1 y te 2 a t b 表示的向径 r t 的终点总在一条曲线上
②在这条曲线上的任意点,总对应着以它为终点的向径,而这向径可由 t
的某一值t0at0 b 通过r t x te 1 y te 2 a t b 完全决定
那么就把 r t x te 1 y te 2 a t b 叫做曲线的向量式参数方程,
其中 t 为参数。
其坐标式参数方程为 xyxytt,at b
例3 一个圆在一直线上无滑动地滚动,求圆周上一定点的轨迹 该定点的轨迹为旋轮线或摆线(cycloid)
三、常见曲线的参数方程
(1) 一个半径为r 的小圆在半径为R 的大圆内无滑动地滚动,小圆周上一 定点P 的运动轨迹称为内摆线(hypocycloid)
一、曲面的方程
求曲线方程一般需要下面的5个步骤:
1)选取适当的坐标系(如题中已给定,这一步 可省);
2)在曲线上任取一点,也就是轨迹上的流动点;
3)根据曲线上的点所满足的几何条件写出 等式;
4)用点的坐标x,y,z的关系来表示这个等式,并化简 得方程;
5)证明所得的方程就是曲线的方程,也就是证明它符合定
《》
-Chapter 2
§1 平面曲线的方程
Contents
• 一、曲线的方程 • 二、曲线的参数方程 • 三、常见曲线的参数方程
一、曲线的方程
定义1 当平面上取定了坐标系之后,如果一个方程与一条曲线之
间有着关系:
①满足方程的 x , y 必是曲线上某一点的坐标;
②曲线上任何一点的坐标 x , y 满足这个方程,
函数关系. 注意 空间曲面的参数方程的表达式不是惟一的.
二、曲面的参数方程
x xu,v,

解析几何专题轨迹方程第2课时课件高三数学一轮复习

解析几何专题轨迹方程第2课时课件高三数学一轮复习

讨论:
已知圆A : (x 2)2 y2 1,圆B : (x 2)2 y2 4,
圆C与圆A、圆B都相切,请问动圆圆心C的轨迹形状是什么?
圆C与圆A、圆B位置关系
|பைடு நூலகம்A|
|CB|
数学表达式
轨迹形状
圆C与圆A、圆B都内切
圆C与圆A、圆B都外切
圆C与圆A内切、与圆B外切
圆C与圆A外切、与圆B内切
x
y
x0 2 y0 2
xy00
2x 2y
.B
O
代入 AB 2n,得 4x2 + 4y2 = 4n2
x
轨迹方程为 x2+y2=n2
课堂探究
问题1:长为2n(n>0)的线段AB的两个端点在 x 轴和 y 轴上滑动,求线段AB的中点M的轨迹方程,并说明轨 迹形状.
y
思路三:
. 设M x, y , A 0, y0 , B x0,0
数缺形时少直觉,形缺数时难入微; 数形结合百般好,隔离分家万事非。
——华罗庚
小试牛刀
点P2,2与圆x2 y2 4上任一点连线的中点的轨迹方程是(A) A.x 12 y 12 1 B.x 12 y 12 4 C.x 42 y 22 4 D.x 22 y 12 1
感谢聆听!
OM 1 AB n 2
.A .M
动点M的轨迹是以O为圆点, 以n为半径的圆
.B
O
x
轨迹方程为 x2+y2=n2
课堂探究
问题1:长为2n(n>0)的线段AB的两个端点在 x 轴和 y
轴上滑动,求线段AB的中点M的轨迹方程,并说明轨
迹形状.
y
思路二:
设M x, y, A0, y0 , Bx0,0

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.2曲面的方程

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.2曲面的方程

故动点轨迹为
y 0,
z
0,
x
c.
这是x轴上的线段.
② 当a c时,令b2 a2 c2,则动点轨迹为
x2 a2
y2 b2
z2 b2
1,
(旋转椭球面 ).
例 3 建立球心在点 M0 ( x0 , y0 , z0 )、半径为R
的球面方程.
解 设M( x, y, z)是球面上任一点,
根据题意有 | MM0 | R
OM r(u,v), 的终点M (x(u, v), y(u, v), z(u, v))所画出的轨迹一般
为一张曲面.(图1) 定义2.2.2 对u, v (a u b, c v d ),若由(2.2 5)
表示的向径r(u, v)的终点M总在曲面上,同时,曲面
上的任意点M总对应着以它为终点的向径, 而这向径
面,如
x2 y2 z2 1 0,
又 三元方程F(x, y, z) 0有时代表一条曲线(包
括直线),如
x2 y2 0,
代表直线 x y 0,即z 轴.
有时代表一个点,如
x2 y2 z2 0, 即坐标原点 (0,0,0). 曲面与方程研究中的两个基本问题: 1) 给定作为点的几何轨迹 的曲面,建立其方程.
(讨论旋转曲面)
2) 给定坐标x, y, z间的方程, 研究这方程的曲面的
形状. (讨论柱面、二次曲面)
以下讨论问题 1)的实例.
例1 求两坐标面 xoz, yoz所成二面角的平分面方 程.
解 因所求平分面是与xoz, yoz面有等距离的点的
轨迹, 所以
点M(x, y, z)在平分面上 y x.
§2.2曲面的方程
1.曲面的方程
曲面的实例: 水桶的表面、台灯的罩子面等.

解析几何第二章第一二节

解析几何第二章第一二节
规定: 0 r ,
0 2,
z
( M ( x, y, z )) M (r, , z )
z .
x
o

r
P(r , )

y
如图,三坐标面分别为
圆柱面; 为常数 半平面; z 为常数 平 面. 柱面坐标与直 角坐标的关系为 x r cos , y r sin , z z.
y
y
作业:P52
3,5,7
§2 平面的方程
1.1平面的参数方程和一般方程 1.2 两平面的相关位置 1.3三平面恰交于一点的条件
M 0 ( x0 , y0 , z 0 ) ,向量 1 ( X 1 ,Y1 , Z1 ) 和向量 ) 2( X 2 ,Y2 , Z 2,其中 1 与 2 不共线, 求由点 M 0 和 1 2 确定的平面 的方程。 z M x , y , z 在平面上 点 2 M M0 M 0 M 与v1 ,v2 共面 e3 e 2 1 v1 // v2 o y e1 M 0 M , v1 , v2共面,则存在唯一的一对实数 x , 使得: M 0 M v1 v2 .
三元二次方程:Ax By Cz Dxy Eyz Fzx Gx Hy Kz L 0 若A B C 0, D E F 0,整理得:
2 2 2
x y z 2b1 x 2b2 y 2b3 z c 0;
2 2 2
( x b1 ) ( y b2 ) ( z b3 ) b1 b2 b3 c .
2. 如果取u, v (a≤u≤b, c≤v≤d)的一切可能 取值,向量 r ( u, v ) x( u, v )e1 y( u, v )e2 z(u, v )e3 的终点 M 总在一个曲面上;反过来, 在这个曲面上的任意点M总对应着以它为 终点的向量, 且该向量可由u, v的值通过 (a≤u≤b, c≤v≤d)完全决定; 那么我们就把上式叫做曲面的向量式参 数方程,其中u, v为参数.

《解析几何》(第四版)吕林根许子道编第2章轨迹与方程21平面曲线的方程

《解析几何》(第四版)吕林根许子道编第2章轨迹与方程21平面曲线的方程

线直一同示表都后t 去消在
与 .t � 2 � y � � ,t � 1 � x �
如,程方数参的式形同 不种多有以可线曲条一同① 意注应还,时此
参去消于在键关 , 时 程方通普为程方数参化)1(
.t 数
程方数参的圆椭则 , � � � � � � 且数参为� 取以所
�� nis b� � y �� soc a � x �� nis b � � y
迹轨的点一的上周圆
圆求�动滚地动滑
程方通普得可即) 能可若( t 去消中)5 � 1. 2 ( 从
.0 � ) y , x ( F
无上是线直一在圆个一 1例
)6-1.2( , j ) � soc � 1( a � i ) � nis � �( a � r � � � , j a � CA , i � a � AO 以所 � �
齿为用采被常上业工在 , 线曲种这 , 线展切或
)31 -1. 2(
为程方数

式标坐的迹轨该得可则 ,) y , x ( 为标坐的点 P 设
当适择选要仅不 ,时 .3 � y � x
.程方通普成化能都程方数参有所是不并②
. t3 � 2 � y , t3 � 1 � x
程方数参为程方通普化 ) 2 (
三意任上线曲双轴等是 R , Q , P 设 7 例
上线曲双轴等一同在必 H 心垂的 RQP �
参的线曲双轴等知已设 , 图如 证
,
2 1
tc � 0 x
tc � 0 x

c � 2 t0y c � 1t 0 y
得, ② ÷ ①

,) 2 tc � 0x ( 3 t 2 t1t � c � 2 t 0 y

解析几何第四版吕林根期末复习课后习题重点详解

解析几何第四版吕林根期末复习课后习题重点详解

解析几何第四版吕林根-期末复习-课后习题(重点)详解第一章 矢量与坐标§1.3 数量乘矢量4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B、D 三点共线.证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382 ∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B、D 三点共线.6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量, , CN 可 以构成一个三角形.证明: )(21AC AB AL += )(21BM +=)(21CB CA CN +=)(21=+++++=++∴BM7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明OB OA ++OC =OL ++.[证明] LA OL OA += MB OM OB += +=)(NC MB LA ON OM OL OC OB OA +++++=++∴ =)(CN BM AL ON OM OL ++-++由上题结论知:0=++ ON OM OL OC OB OA ++=++∴从而三中线矢量,,构成一个三角形。

8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明OA +OB +OC +=4.[证明]:因为=21(OA +OC ), =21(OB +OD ), 所以 2OM =21(OA +OB +OC +) 所以OA +OB +OC +=4. 10、 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.证明 已知梯形ABCD ,两腰中点分别为M 、N ,连接AN 、BN .→→→→→→++=+=DN AD MA AN MA MN ,→→→→→→++=+=CN BC MB BN MB MN ,∴ →→→+=BC AD MN ,即§1.4 矢量的线性关系与矢量的分解 3.、设一直线上三点A , B , P 满足AP =λ(λ≠-1),O 是空间任意一点,求证:OP =λλ++1 [证明]:如图1-7,因为图1-5=OP -, =-OP ,所以 OP -=λ (-OP ), (1+λ)OP =+λ,从而 OP =λλ++1OB. 4.、在ABC ∆中,设,1e =2e =.(1) 设E D 、是边BC 三等分点,将矢量,分解为21,e e 的线性组合;(2)设AT 是角A 的平分线(它与BC 交于T 点),将AT 分解为21,e e 的线性组合解:(1)()12123131,e e e e -==-=-= ,2111231323131e e e e e +=-+=+=,同理123132e e +=(2)因为 ||||TC ||11e 且 BT 与方向相同,所以 BT ||21e e . 由上题结论有AT||||1||212211e e e e e +||||21e e +.5.在四面体OABC 中,设点G 是ABC ∆的重心(三中线之交点),求矢量对于矢量,,,的分解式。

解析几何第四版吕林根课后习题答案第二章

解析几何第四版吕林根课后习题答案第二章

(2)由面 x2 4 y 2 16 z2 64 与 xoy 面 (z 0) , yoz面 (x 0) , zox 面 ( y 0) 的交线
分别为:
x 2 4y2 16z2 64 x 2 4 y 2 16z2 64 x2 4 y2 16z2 64
,
,
z0
x0
y0
x2 4 y 2 64 y 2 4 z2 16 x 2 16z2 64
a c 令b2 a2 c2
从而( 1)为 b 2 x 2 a 2 y 2 a 2 z 2 a2 b2
即: b 2 x 2 a 2 y 2 a 2 z 2 a 2 b 2
由于上述过程为同解变形,所以( 3)即为所求的轨迹方程。
(3)建立如( 2)的坐标系,设动点 M ( x, y, z) ,所求的轨迹为 C ,
y2 c(2 c) xc
从而:(Ⅰ)当 0 c 2 时,公共点的轨迹为:
y c(2 c)

xc
即为两条平行轴的直线;
(Ⅱ)当 c 0 时,公共点的轨迹为:
y
c(2 c)
xc
y0 x0
即为 z 轴;
(Ⅲ)当 c 2 时,公共点的轨迹为:
y0 x2
即过 (2,0,0) 且平行于 z 轴的直线;
(Ⅳ)当 c 2 或 c 0 时,两图形无公共点。
( 4)曲面 x 2 9 y 2 16 z 与 xoy 面 (z 0) , yoz 面 ( x 0) , zox 面 ( y 0) 的交线分别
为:
x 2 9 y2 16z x 2 9 y2 16z x2 9 y 2 16z
,
,
z0
x0
y0
x2 9 y 2 0 9 y 2 16z x 2 16z

空间解析几何-第2章 轨迹与方程

空间解析几何-第2章 轨迹与方程

②在这条曲线上的任意点,总对应着以它为终点的向径,而这向径可由 t
的某一值 t0 a t0 b 通过 r t x t e1 y t e2 a t b 完全决定, 那么就把 r t x t e1 y t e2 a t b 叫做曲线的向量式参数方程,


又因为 OA AP a,所以OA a i,AC a j, 故r a sin i a 1 cos j
即为所求P点轨迹的向量式参数方程, 其中( )为参数.

取直角坐标系,设半径为a的圆在x轴上滚动, 开始时点P恰好在原点O,设P点的坐标为(x,y),
x R cos sin y R sin cos
(4)椭圆的参数方程
设椭圆的方程为
x2 y 2 2 1 2 a b
x a cos 第一种参数方程以角度 为参数: , y b sin
设P点的坐标为(x,y),可得内旋轮线 的坐标式参数方程为 a b x (a b) cos b cos b ,( ) a b y (a b) sin b sin b
圆的内摆线
特殊的, 当a 4b时,应用公式 cos 3 4 cos 3 3cos , sin 3 3sin 4 sin 3 ,
其中 t为参数。
x x t , a t b 其坐标式参数方程为: y y t
例3 一个圆在一直线上无滑动地滚动,求圆上一定点的轨迹 该定点的轨迹称为旋轮线或摆线(cycloid)

解析几何高考复习课件(第四课时)曲线方程与轨迹问题

解析几何高考复习课件(第四课时)曲线方程与轨迹问题
4
求证:直线BP与直线BQ的斜率之积为常数.
【分析】(1)等式法求轨迹方程; (2)AP为动直线,以AP斜率 为参数,找AQ、BP、BQ的关系解决问题.
【解析】设C x, y x 2,由此已知kAC kBC ,
所以 y y ,得 x2 y2 4 x 2,
x2 x2 即为所求C点的轨迹M的方程
曲线截得线段CD长为4,求双曲线的方程.
分析: 已知曲线类型为 双曲线用待定系数法,由 两个条件建立两个方程, 确定两个系数a、b.
y
l1
A
C
O
F
x
D
B l2
【解析】设双曲线方程为
x2 a2
y2 b2
1
(a>0,b>0),
右焦点F(c,0)(c>0),且 c2 a2 b2
y
l1
不妨设渐近线 a
x1 2 x2 2 x1 2 x2 2
3 4k 2
3k 2 4
9 ,为常数。 16
【回顾与反本思题】考查了等式法求轨迹方程,注意代数式
的整体代入,常能简化运算.
yl
为x轴、y轴,建立平面直角坐标系.
D
因为∠POB=30°,所以P( 3 ,1),
P
由||MA|-|MB||为定值知动点M的轨迹是以 A E O B x
A、B为焦点,且过点P的双曲线,
F
设其方程为 x2
a2
y2 b2
1 (a>0,b>0),
3
所以
a2
1 b2
1 ,
a2 b2 4
a 2
b
y
l1
A C
O Fx
D
B l2
设AB与双曲线的两交点的坐标分别为C(x1, y1), D(x2, y2 ),

平面曲线的参数方程

平面曲线的参数方程

Y
B P
uur R (i, BP)


(大小是
方向相反)
2
2
O
A
X
|
uuur BP
|
B»AR,
uuur BP
R
[i
cos(


)

jsin(


)]

r
2
2
R (i sin j cos ),故 r iR(cos sin ) jR(sin cos ),
O
是l的向量式参数方程,t 为参数。
Mg
X
得l
的坐标式参数方程

x y

x0 y0

Xt Yt
,(t为参数)





(1)
r
uuuuuur
当v是单位向量时有| M0M || t |,即M到M0间的距离为| t |。
7
例2
例2. 求圆心在A( a , 0),半径为 a 的圆的参数方程。
uuur
此时 r OA AC CP,设 R (CP, AC),而OA ai,AC aj,
又R
uur (i,CP)
(


),|
uuur CP
|
uuur a,CPa[icos(

)]
j sin(
)]

ia sin

2
ja cos,
r 所以r
15
二、求曲面方程的步骤
(1)建立适当的空间直角坐标系;
(2)设曲面上动点P(x, y, z), 按已知条件推出动点满足的方程;

《解析几何》第二章(吕林根-许子道第四版)

《解析几何》第二章(吕林根-许子道第四版)
解析几何课件(第四版)
吕林根 许子道等编
第一章 向量与坐标
第二章 轨迹与方程 第三章 平面与空间直线
第四章 柱面锥面旋转曲面与二次曲面
第五章 二次曲线的一般理论
第二章 轨迹与方程
§2.1 平面曲线的方程 §2.2 曲面的方程 §2.3 母线平行与坐标轴的柱面方程 §2.4 空间曲线的方程
§2.2 曲面的方程
曲面的实例: 水桶的表面、台灯的罩子面等.
曲面在空间解析几何中被看成是点的几何轨 迹.
曲面方程的定义:
如果曲面S 与三元方程F ( x, y, z) 0有下述关系:
(1)曲面S 上任一点的坐标都满足方程; (2)不在曲面S 上的点的坐标都不满足方程;
那么,方程F(x, y, z) 0就叫做曲面 S 的方程,
特殊地:球心在原点时方程为 x2 y2 z2 R2
上一页 下一页
返回
由 x x0 2 y y0 2 z z0 2 R2
得上、下半球面的方程分别是:
z z0 R2 (x x0)2 ( y y0)2
z z0 R2 (x x0)2 ( y y0)2
由上述方程可得球面的一般式方程为:
化简得所求方程 2x 6 y 2z 7 0.
上一页 下一页
返回
例 2 求与原点O 及M 0 (2,3,4)的距离之比为1 : 2
的点的全体所组成的曲面方程.
解 设M( x, y, z)是曲面上任一点,
根据题意有 | MO | 1 , | MM0 | 2
x2 y2 z2
1,
x 22 y 32 z 42 2
z vt
y 螺旋线的参数方程
返回
螺旋线的参数方程还可以写为
x a cos

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程小结

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程小结

y y
5x 2x
1 在平面解析几何中表示______; 3
在空间解析几何中表示_______________.
3、
x2 方程组 4
y2 9
1在平面解析几何中表示______
y 3
______,在空间解析几何中表示_______________.
二、画出下列曲线在第一卦限的图形:
1、z 4 x 2 y 2 x y 0
第二章 轨迹与方程小结
1.平面曲线的方程
F (x, y) 0, (隐方程)
y f (x). (显方程)
r (t) x(t)e1 y(t)e2 (a t b).
都是曲线的 一般方程
(向量式参数方程 )
x
y
x(t), y(t),
(a t b). (坐标式参数方程 )
几种常见平面曲线的参数方程
一般方程
r (u, v) x(u, v)e1 y(u, v)e2 z(u, v)e3
(向量式参数方程 )
x x(u, v),
y
y(u, v),
z z(u, v).
(坐标式参数方程 )
几种常见曲面的参数方程
球面的坐标式参数方程
x r cos cos,
y
r
c os
sin
,
z r sin .
,为参数,且 ,
圆柱面的坐标式参数方程
.
2
2
x R cos,
y
R
sin
,
z u.
, u为参数,且 , u ,
空间点的直角坐标 (x, y, z)与球坐标(,, ) 的关系
x cos cos,
y
c
os
sin

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.3空间曲线的方程

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.3空间曲线的方程

方程组
f (x, y, z) 0,
(x, y, z) 0.
表示两曲面的交线 (若存在的话 ), 如方程xy 0表示两 个坐标面x 0与y 0,而方程组
x 0,
y
0.
却表示两个坐标面 yoz与xoz的交线,即z轴.
二、空间曲线的参数方程(表示空间曲线的常用方法)
与平面曲线类似地 ,有空间曲线的向量式参 数方程
空间曲线——圆柱螺线
圆柱面 x 2 y 2 a 2
z
M(x,y,z)
x = acos t y = asin t
z = bt
(移动及转动都是等速进 行,所以z与t成正比。)
Q
当 t 从 0 2,
螺线从点P Q PQ 2b 叫螺距
.
0 t
P
x
点P在圆柱面上等速地绕z轴旋转; 同时又在平行于z轴的方向 等速地上升。 其轨迹就是圆柱螺线。
r r (t).

r (t) x(t)e1 y(t)e2 z(t)e3.
(2.3-2) (2.3-3)
坐标式参数方程
参数t [a,b].
x x(t)
y
y(t)
(a t b).
z z(t)
(2.3-4)
当给定t t1 时,就得到曲线上的一个点 ( x1 , y1 , z1 ),随着参数的变化可得到曲线上的全
注1 空间曲线L用一般式表示时 ,可根据需要选择
过曲线L的任意两曲面方程联立表示, 但必须注意这两 个曲面除去曲线L上的点是它们的公共点之外, 再无别 的公共点.
(已知曲线的一般方程 ,要判别其形状 ,须分析方程 组中每个方程表示的图 形及特征,再综合考察 ).
x2 y2 1
例 方程组

2-3解析几何吕林根第四版

2-3解析几何吕林根第四版

把曲线投影到yoz平面内,得
2 y2 z2 9
,
x 0
写出投影曲线的参数方程:
y
3 cos 2 ,(0 2 )
z 3 sin
再写出原空间曲线的 参数方程:
x
3 cos
2
y
3
cos ,(0 2 ).
2
z 3 sin
例8:有两条相互直交的直线 l1 与 l2 ,其中l1 绕l2作螺旋运动, 即一方面 l1 绕 l2 等速转动,另一方面又沿着l2 作等速直线运动 ,在运动中 l1 永远保持与 l2直交,这样由 l1 划出的曲面叫做螺旋 面,试建立螺旋面方程。
的角速度为,那么在t秒后质点从
起点A运动到P 的位置,P在xoy面
上的射影为Q, 设直线运动的速度
v与角速度之比为b,即 v b.
t
o
P

xA
Q
y
r uuur
uuur
ur
则 R(i,OQ) t, QP btk,所以有
r uuur uuur uuur r
r
ur
r OP OQ QP ia cost ja sint kb(t - t )
解: 取l2 为OZ轴,设 l1 的初始位置与OX轴重合,转动角为
r uuur uuuur uuur 则 r OM MN NP
uuur
r
r
而 OM ON cost i OP cost i
uuuur
r
r
MN ON sint j OP sint j
z
O l1
l2 r r
uuur ur
NP vt k
交线为椭圆.
二、空间曲线的参数方程
设向量函数

解析几何第四版 第二章

解析几何第四版 第二章
第二章 轨迹与方程
本章主要内容: 1) 平面曲线的方程 2) 曲面的方程 3) 空间曲线的方程 本章基本要求: 1) 理解轨迹与方程的关系 2) 熟悉曲面、曲线的一般式和参数式 3) 熟练掌握球面、特殊柱面、圆柱螺旋线的方程
2.1 平面曲线的方程
1、曲线方程
曲线上点的特征性质: 1)曲线上的点都具有这些性质; 2)具有这些性质的点都在曲线上。 曲线上 点的特 征性质
例 3
一个质点一方面绕一条轴线作等角速度的圆周运动,
另一方面作平行于轴线的等速直线运动,其速度与角
速度成正比,求这个质点运动的轨迹方程.
参数方程
x a cos y a sin z b ( )
z
x
a
O
(圆柱螺线)
a
y
参数方程
x a cos y a sin z b ( )
例 1 求圆心在原点,半径为R的圆的方程。 例 2 已知两点A(2,2)和B(2,2),求满足条件MA MB 4
的动点M的轨迹方程。
2、参数方程
(t ),
at b
建立坐标系
{O;e1,e2}
(t ) x(t )e1 y(t )e2
or x x(t ) y y(t )
例4. 维维安尼曲线
x 2 + y 2 + z2 = a 2 2 2 2 (xa/2) + y = a /4
x=a (1+cos t ) 2 y = a sint 2 t z = asin 2 (0 t < 2)
(-2 t < 2)

例5. 双柱面曲线
y 2 + z2 = a 2 (b a > 0) 2 2 2 x +z =b 令y = acost, z = asint, 代入x2 + z2 = b2得 x = b2 a2sin2t 由此可得该双柱面曲线的参数方程为 x = b2 a2sin2t y = acost (0 t < 2) z = asint

解析几何全册课件

解析几何全册课件
e
e
上一页
下一页
返回
例5 证明四面体对边中点的连线交于一点,且互相平分.
A
B
C
D
E
F
P1
e1
e2
e3
.
,
,
3
2
1
叫做空间向量的基底
这时
e
e
e
.
,
,
,
.
,
,
,
,
,
,
,
,
3
2
1
1
3
2
1
3
2
1
3
2
1
关系式
线性表示的



先求
取不共面的三向量
就可以了
三点重合
下只需证
两组对边中点分别为
其余
它的中点为
§1.5 标架与坐标
§1.7 两向量的数量积
§1.9 三向量的混合积
§1.8 两向量的向量积
第二章 轨迹与方程
§2.1 平面曲线的方程
§2.2 曲面的方程
§2.3 空间曲线的方程
第三章 平面与空间直线
§3.1 平面的方程
§3.3 两平面的相关位置
1
2
1
2
2
1
1
2
1
2
1
关的向量叫做线性无关
性相
叫做线性相关,不是线
个向量
那么


使得
个数
在不全为零的
,如果存
个向量
对于
定义
n
n
n
n
n
a
a
a
n
a

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.1平面曲线的方程

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.1平面曲线的方程

r

a(

sin )i


a(1 cos ) j , (2.1-6)
(2.1-6) 是P点轨迹的向量式参数方程,参数
( ).
设P点坐标(x, y),由(2.1 6)得P点的坐标式参 数方程
x a( sin ),

y

a(1
cos
),
(
第二章 轨迹与方程
取定相应坐标系后
平面上的点 一一对应 空间上的点 一一对应
二元有序数组 (x, y). 三元有序数组(x, y, z).
将图形看作点的轨迹,本章将建立轨迹与方程的 对应。
2.1平面曲线的方程
曲线上点的特性,在坐标面上,反映为曲线上
点的坐标 x与y 应满足的制约条件,一般用方程表
示为
).
(2.1-7)
取0 时,消去 ,得P点轨迹在0 时
的一段的普通方程 x a arccosa y 2ay y2 . a
(2.1-8)
此方程要比参数方程 (2.1 7)复杂得多. 当圆在直线上每转动一 周时,点P在一周前后 的运动情况是相同的 ,因此曲线是由一系列完 全相 同的拱形组成 (如图),曲线叫旋轮线或摆线 .
F (x, y) 0.
例1 一个圆在一直线是上无 滑动地滚动,求圆 圆周上的一点的轨迹.
解 取直角坐标系,设半径为a的圆在x轴上滚动,
开始时点P恰在原点O
y
(如图),经一段时间的
滚动, 与直线的切点移
P r
Ca
到A点,圆心移到C的位 o A
x
置, 这时有
r OP OA AC CP.
P(x(t), y(t)) r (a)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 轨迹与方程
§2.1平面曲线的方程
1.一动点M 到A )0,3(的距离恒等于它到点)0,6(-B 的距离一半,求此动点M 的轨迹方程,并指出此轨迹是什么图形?
解:动点M 在轨迹上的充要条件是MB MA 21=。

设M 的坐标),(y x 有 2222)6(2
1)3(y x y x ++=+- 化简得36)6(22=+-y x 故此动点M 的轨迹方程为36)6(22=+-y x
此轨迹为椭圆
2.有一长度为a 2a (>0)的线段,它的两端点分别在x 轴正半轴与y 轴的正半轴上移动,
是求此线段中点的轨迹。

A ,B 为两端点,M 为此线段的中点。

解:
如图所示 设(,),A x o (,)B o y .则(,)22x y M .在Rt AOB 中有
222()(2)x y a +=.把M 点的坐标代入此式得: 222()x y a +=(0,0)x y ≥≥.∴此线段中点的轨迹为222()x y a +=
3. 一动点到两定点的距离的乘积等于定值2m ,求此动点的轨迹. 解:设两定点的距离为2a ,并取两定点的连线为x 轴, 两定点所连线段的中垂线为y 轴.现有:2AM BM m ⋅=.设(,)M x y 在Rt BNM 中 2
22()a x y AM ++=(1)
在Rt BNM 中222()a x y BM -+=.(2) 由(1)(2)两式得: 22222244
()2()x y a x y m a +--=-. §2.2 曲面的方程
2、在空间,选取适当的坐标系,求下列点的轨迹方程:
(1)到两定点距离之比为常数的点的轨迹;
(2)到两定点的距离之和为常数的点的轨迹;
(3)到两定点的距离之差为常数的点的轨迹;
(4)到一定点和一定平面距离之比等于常数的点的轨迹。

解:(1)取二定点的连线为x 轴,二定点连接线段的中点作为坐标原点,且令两距离之比的常数为m ,二定点的距离为a 2,则二定点的坐标为)0,0,(),0,0,(a a -,设动点),,(z y x M ,所求的轨迹为C ,则
222222)()(),,(z y a x m z y a x C z y x M +++=++-⇔∈
亦即])[()(2222222z y a x m z y a x +++=++-
经同解变形得:0)1()1(2))(1(2222222=-++-++-a m x m a z y x m
上式即为所要求的动点的轨迹方程。

(2)建立坐标系如(1),但设两定点的距离为c 2,距离之和常数为a 2。

设动点),,(z y x M ,要求的轨迹为C , 则a z y c x z y c x C z y x M 2)()(),,(222222=++++++-⇔∈ 亦即222222)(2)(z y c x a z y c x +++-=++-
两边平方且整理后,得:)()(2222222222c a a z a y a x c a -=++- (1) 222c a b c a -=∴>令
从而(1)为22222222b a z a y a x b =++
即:22222222b a z a y a x b =++
由于上述过程为同解变形,所以(3)即为所求的轨迹方程。

(3)建立如(2)的坐标系,设动点),,(z y x M ,所求的轨迹为C , 则a z y c x z y c x C z y x M 2)()(),,(222222±=++++++-⇔∈
类似于(2),上式经同解变形为:122
2222=--c
z b y a x 其中 )(222a c a c b >-= (*) (*)即为所求的轨迹的方程。

(4)取定平面为xoy 面,并让定点在z 轴上,从而定点的坐标为),0,0(c ,再令距离之比为m 。

设动点),,(z y x M ,所求的轨迹为C ,则
z m z y x C z y x M =++⇔
∈222),,( 将上述方程经同解化简为:02)1(22222=+--++c cz z m y x (*)
(*)即为所要求的轨迹方程。

相关文档
最新文档