几何光学(课堂PPT)
合集下载
大学物理第20章几何光学.ppt
心处.对于厚透镜,如果两侧的折射率相同,物方焦
距等于像方焦距.
21
三、成像公式
图中△PA1B1~△F1A2B2,△RB2A2~△F2H2A2
所以
f1 u
h/ h + h/
f2
h h + h/
两式相加得
f1 + f2 1
u
若系统两侧的折射率相同,此时有f1=f2= f 22
1+1 1
u f
注意式中u、、f 都是从相应的主平面算起的
一、光的直线传播定律
光在均匀介质中沿直线传播.
二、光的独立传播定律
不同的光线以不同的方向通过空间某一点时彼
此不发生影响.
三、折射定律和反射定律
1.折射定律
相对折射率 绝对折射率
sin i1 sin i2
n21
n2 n1
n cP
o
Q
i2 n2
N/ C
为光在介质中的速度
3
2.反射定律
A
N
B
7
n1
n2
n1
n2
F1
A
A
F2
物方焦点
像方焦点
物方焦距f1. u=f1, =∞
f1
n1 n2 n1
r
像方焦距f2. u=∞,=f2
f2
n2 n2 n1
r
1.焦距f1和f2可能是正数,也可能是负数 2. 一般地,n1≠n2,对于同一折射面, f1 ≠f2
f1 n1
f2 n2
8
3. 曲率半径 r↑→f1 ↑(f2↑),折射本领就越差 媒质的折射率与该侧焦距的比值来表示折射本 领,称为折射面的焦度,用Φ表示,
18
几何光学ppt
几何光学的基本概念
01
光线
光线是几何光学的最基本概念,它表示光的传播方向和路径。
02
成像
成像是指光线经过透镜或其他介质后,在另一侧形成光像的过程。
02
光线的基本性质
光线传播的基本原理
光线的直线传播
光在均匀介质中是沿直线传播的,大气层是不均匀的,当光从大气层外射到地面时,在空中的传播路线变成曲线。
反射定律
光线从一种介质射向另一种介质时,在两种介质的分界面处,一部分光线会改变传播方向,回到第一种介质中传播,这种现象称为光的反射。
折射定律
光线从一种介质射向另一种介质时,在两种介质的分界面处,光线与界面不平行,而是发生偏折,这种现象称为光的折射。
反射定律与折射定律
光线的干涉
当两束或多束相干光波在空间某一点叠加时,它们的振幅相加,而光强则与振幅的平方成正比。当两束光波的相位差为2π的整数倍时,它们的光强相加,产生干涉现象。
几何光学与量子力学的关系
量子力学在光学中的应用
量子力学对光的相干性的研究有助于理解光场的波动性质,解释例如干涉和衍射等现象。
另一方面,量子力学对光的量子性质的研究揭示了光子的粒子性质,为量子信息处理和量子计算等领域提供了基础。
量子力学在光学中的应用主要集中在光的相干性和光的量子性质的研究上。
06
光学系统的组合与优化
显微镜和望远镜都是通过组合不同的透镜和反射镜等光学元件来优化光学性能,以实现更好的成像效果。
照相机的基本结构
照相机的工作原理
照相机的自动对焦与防抖功能
照相机的基本原理
04
几何光学应用实例
近视、远视和散光现象
01
近视、远视和散光是常见的视力问题,几何光学原理在眼镜设计中起到关键作用,通过矫正镜片的光学特性,能够减少或消除这些视力问题。
几何光学资料课件
素有关。
焦距
透镜的两个焦点到透镜的距离之 和,决定了透镜的成像特性。
成像公式
通过物距、像距、焦距之间的关 系,可以推导出透镜成像的公式,
以指导实践中光学系统的设计。
透镜组及其应用
透镜组的种类
透镜组的应用 设计考虑因素
CHAPTER
光学仪器及其应用
放大镜和显微镜
放大镜
放大镜是一种简单的光学仪器,使用凸透镜来放大物体。通过放大镜,我们可以 看到比肉眼所能看到的更小的细节。放大镜的放大倍数取决于透镜的曲率和与物 体的距离。
光路的搭建和调整
搭建基本光路
光路调整与优化
光学仪器的使用和操作
要点一
仪器介绍与操作演示
教师或实验指导员将向学习者介绍常见的光学仪器(如显 微镜、望远镜、分光仪等),并演示其基本操作方法。
要点二
仪器实践操作
学习者将在指导下,亲自操作这些光学仪器,完成一些基 本的观测或测量任务。这一实践环节有助于学习者熟悉光 学仪器的使用,并理解其在科学研究、工业生产等领域的 应用。
几何光学的基本原理
01
直线传播原理
02
反射定律
03
折射定律
04
成像原理
CHAPTER
光线和线的传播路径
直线传播
光线路径的可逆性
光线的反射和折射
反射:当光线遇到光滑表面时,按照入射角等于反射角的规律进行反射,称为镜面反射。
折射:当光线从一个介质传播到另一个介质时,其传播方向发生改变,遵循斯涅尔定律,即 入射光线、折射光线和法线在同一平面内,入射角与折射角的正弦之比等于两种介质的折射 率之比。
研究内容
非线性光学主要研究光的非线性传播、 光的频率转换、光与物质的相互作用 等内容。
焦距
透镜的两个焦点到透镜的距离之 和,决定了透镜的成像特性。
成像公式
通过物距、像距、焦距之间的关 系,可以推导出透镜成像的公式,
以指导实践中光学系统的设计。
透镜组及其应用
透镜组的种类
透镜组的应用 设计考虑因素
CHAPTER
光学仪器及其应用
放大镜和显微镜
放大镜
放大镜是一种简单的光学仪器,使用凸透镜来放大物体。通过放大镜,我们可以 看到比肉眼所能看到的更小的细节。放大镜的放大倍数取决于透镜的曲率和与物 体的距离。
光路的搭建和调整
搭建基本光路
光路调整与优化
光学仪器的使用和操作
要点一
仪器介绍与操作演示
教师或实验指导员将向学习者介绍常见的光学仪器(如显 微镜、望远镜、分光仪等),并演示其基本操作方法。
要点二
仪器实践操作
学习者将在指导下,亲自操作这些光学仪器,完成一些基 本的观测或测量任务。这一实践环节有助于学习者熟悉光 学仪器的使用,并理解其在科学研究、工业生产等领域的 应用。
几何光学的基本原理
01
直线传播原理
02
反射定律
03
折射定律
04
成像原理
CHAPTER
光线和线的传播路径
直线传播
光线路径的可逆性
光线的反射和折射
反射:当光线遇到光滑表面时,按照入射角等于反射角的规律进行反射,称为镜面反射。
折射:当光线从一个介质传播到另一个介质时,其传播方向发生改变,遵循斯涅尔定律,即 入射光线、折射光线和法线在同一平面内,入射角与折射角的正弦之比等于两种介质的折射 率之比。
研究内容
非线性光学主要研究光的非线性传播、 光的频率转换、光与物质的相互作用 等内容。
几何光学PPT教学课件
SS
由折射定律n sin sin
可得 n
③
联立①、②、③式可得
n SO SO 2d SS
∴
d n SS
2
【例3】如图所示,宽为a的平行光束从空气 斜向入射到两面平行的玻璃板上表面,入射 角为45°。光束中包含两种波长的光,玻璃
对这两种波长的光的折射率分别为 n1 1, .5
n2 。3 (1)求每种波长的光射入玻璃板上表面后 的折射角r1,r2; (2)为了使光束从玻璃板下表面出射时能 分成不交叠的两束,玻璃板的厚度d至少为 多少?并画出光路示意图。
【析与解】如图(b)所示,物AB通过小孔 能在平面镜后形成虚像 。A由B 于平面镜反 射到达凹镜的光束可以看作是由平面镜后 的虚像 发出AB的 一样。
物AB对平面镜所成的虚像 A由B平 面镜成像 规律可知位于平面镜后3cm处,且和物等 大、正立。 =ABB= 0.1cm。
A对B凹镜来说是实物,其物距是5cm,
uv f
(2)薄透镜成像的放大率公式 像高 v
m 物高 u
八、球面镜成像 1.球面镜成像规律
球面镜类型 物的位置
像的特点
像的位置
凹镜 凸镜
u>2f u=2f f<u<2f u<f 任意位置
倒立、缩小、实像 倒立、等大、实像 倒立、放大、实像 正立、放大、虚像
f<v<2f,物 像同侧
v=2f,物像 同侧
v>2f,物像 同侧
︱v︱>u,物 像异侧
正立、缩小、虚像 物像异侧
2.球面镜成像作图 3.球面镜成像公式 九、简单的光学仪器
11 1 uv f
1.眼睛
2.显微镜 显微镜的视角放大倍数 3.望远镜 望远镜的放大倍数
M d L f2 f1
《几何光学》PPT课件
0
sin 1
r
sin 1
sin(
cos1
z)
r0
sin( Az )
29
表明光线在光纤中是弯曲的,正弦振荡 其Z向空间周期为:
L cos1 2
若考虑近轴光线(与光纤轴夹角很小)cos1 1, 在轴上一点所发出的近轴光线都聚焦在z 2 点。
有自聚焦效应,可用来成像等
30
其数值孔径也定义为光纤端面处介质折射率与最大 接光角正弦的乘积。
Outline of Geometric optics
几何光学的三个基本定律 费马原理 近轴成像理论
1
几何光学
以光线概念为基础研究光的传播和成像规律,光线 传播的路径和方向代表光能传播的路径和方向。
作为实验规律,三定律是近似的,几何光学研究 的是光在障碍物尺度比光波大得多情况下的传播 规律。这种情况下,相对而言可认为波长趋近于 零,几何光学是波动光学在一定条件下的近似。
n(0) cos1 n(r) cos n(rmax )
1
n2 (r)
cos2 n2 (0) cos2 1
28
路径光线在某点的斜率
dr dz
tg
1
(cos2
1
1) 2
dz
n(0) cos1
dr
[n2 (r) n2 (0) cos2 1]1 2
z r dr cos1 arcsin( r )
光在介质中走过的光程,等于以相同的时间在真空中走过的
距离。光在不同介质中传播所需时间等于各自光程除以光速
C
s s L t l
V cn c
c
32
n1 S1 n2
S2
Av
v2
几何光学完整PPT课件
3. 物空间(不论是实物还是虚物)介质的折射率是指实际入射光 线所在空间介质折射率,像空间(不论是实像还是虚像)介质的 折射率是指实际出射光线所在空间介质的折射率。
4. 物和像都是相对某一系统而言的,前一系统的像则是后一系统 的物。物空间和像空间不仅一一对应,而且根据光的可逆性,若 将物点移到像点位置,使光沿反方向入射光学系统,则像在原来 物点上。这样一对相应的点称为“共轭点”。
1. 共轴球面系统的结构参量: 各球面半径:r1 、 r2 …… rk-1 、 rk 相邻球面顶点间隔:d1 、 d2 …… dk-1 各球面间介质折射率:n1 、 n2 …… nk-1 、 nk n 、 k+1
精选
31
2. 转面公式
原则:前一折射面的象为后一面的物 ,前一面的象空间为后一面的物空间
4. C-球心 r-球面曲率半径 I 、I′-入、折射角
5. A 、A′-物点、象点 L、L′-物距、象距
精选
20
2. 符号法则(便于统一计算) 规定光线从左向右传播
a)沿轴线段 L、L′、r 以O为原点, 与光线传播方向相同,为“+” 与光线传播方向相反,为“-”
b)垂轴线段 h 在光轴之上,为“+” 在光轴之下,为“-”
例:某物体通过一透镜成像后在透镜内部,透镜材 料为玻璃,透镜两侧均为空气。问该像所处的空间 介质是玻璃还是空气?
4 5
6
3 2 1
位标器动平衡调试系统光源
第二章 球面与共轴球面系统
§ 2-1 光线光路计算与共轴光学系统
共轴球面系统— 光学系统一般由球面和平面组成, 各球面球心在一条直线(光轴)上。
精选
28
2. 轴向放大率:光轴上一对共轭点沿轴移动量之间的比值
4. 物和像都是相对某一系统而言的,前一系统的像则是后一系统 的物。物空间和像空间不仅一一对应,而且根据光的可逆性,若 将物点移到像点位置,使光沿反方向入射光学系统,则像在原来 物点上。这样一对相应的点称为“共轭点”。
1. 共轴球面系统的结构参量: 各球面半径:r1 、 r2 …… rk-1 、 rk 相邻球面顶点间隔:d1 、 d2 …… dk-1 各球面间介质折射率:n1 、 n2 …… nk-1 、 nk n 、 k+1
精选
31
2. 转面公式
原则:前一折射面的象为后一面的物 ,前一面的象空间为后一面的物空间
4. C-球心 r-球面曲率半径 I 、I′-入、折射角
5. A 、A′-物点、象点 L、L′-物距、象距
精选
20
2. 符号法则(便于统一计算) 规定光线从左向右传播
a)沿轴线段 L、L′、r 以O为原点, 与光线传播方向相同,为“+” 与光线传播方向相反,为“-”
b)垂轴线段 h 在光轴之上,为“+” 在光轴之下,为“-”
例:某物体通过一透镜成像后在透镜内部,透镜材 料为玻璃,透镜两侧均为空气。问该像所处的空间 介质是玻璃还是空气?
4 5
6
3 2 1
位标器动平衡调试系统光源
第二章 球面与共轴球面系统
§ 2-1 光线光路计算与共轴光学系统
共轴球面系统— 光学系统一般由球面和平面组成, 各球面球心在一条直线(光轴)上。
精选
28
2. 轴向放大率:光轴上一对共轭点沿轴移动量之间的比值
《几何光学基本原理》课件
太阳镜、摄影、显示技术等。
光线的全反射原理
全反射
当光线从光密介质射入光疏介质 时,如果入射角大于某一临界角 ,光线将在界面上被完全反射回
原介质的现象。
临界角
光线从光密介质射入光疏介质时, 发生全反射的入射角。
全反射的应用
光纤通信、内窥镜、全反射镜面等 。
偏振与全反射的应用
光学仪器制造
利用光的偏振和全反射原理,制 造出各种光学仪器,如显微镜、
光学传感与检测技术
几何光学在光学传感和检测技术方面的发展,使得光学仪 器在医疗、环境监测等领域的应用更加精准和高效。
光学信息存储与处理
随着大数据和云计算的普及,几何光学在光学信息存储和 处理方面的研究不断深入,为大数据时代的海量信息处理 提供了新的解决方案。
几何光学的前沿技术
01 02
超透镜技术
超透镜技术是近年来几何光学领域的一项重要突破,通过超透镜可以实 现亚波长尺度下的光学操控,为光学成像、光通信等领域带来了革命性 的变化。
光线传播的定律
反射定律和折射定律
光线在界面上的反射遵循入射角等于反射角的反射定律;光线从一 种介质进入另一种介质时,遵循折射定律,即斯涅尔定律。
费马原理
光线在真空中或均匀介质中传播时,总是沿着所需时间为极值的路 径传播,即光程取极值的路径。
光的干涉与衍射定律
当两束或多束相干光波相遇时,它们会相互叠加产生干涉现象;当光 波绕过障碍物边缘时,会产生衍射现象。
光线沿直线传播
在均匀介质中,光线沿直线传 播,不发生折射或反射。
02
光的能量守恒
光在传播过程中,其能量不会 消失或产生。
03
光沿直线传播定律
光线在同一种均匀介质中沿直 线传播,不发生折射或反射。
光线的全反射原理
全反射
当光线从光密介质射入光疏介质 时,如果入射角大于某一临界角 ,光线将在界面上被完全反射回
原介质的现象。
临界角
光线从光密介质射入光疏介质时, 发生全反射的入射角。
全反射的应用
光纤通信、内窥镜、全反射镜面等 。
偏振与全反射的应用
光学仪器制造
利用光的偏振和全反射原理,制 造出各种光学仪器,如显微镜、
光学传感与检测技术
几何光学在光学传感和检测技术方面的发展,使得光学仪 器在医疗、环境监测等领域的应用更加精准和高效。
光学信息存储与处理
随着大数据和云计算的普及,几何光学在光学信息存储和 处理方面的研究不断深入,为大数据时代的海量信息处理 提供了新的解决方案。
几何光学的前沿技术
01 02
超透镜技术
超透镜技术是近年来几何光学领域的一项重要突破,通过超透镜可以实 现亚波长尺度下的光学操控,为光学成像、光通信等领域带来了革命性 的变化。
光线传播的定律
反射定律和折射定律
光线在界面上的反射遵循入射角等于反射角的反射定律;光线从一 种介质进入另一种介质时,遵循折射定律,即斯涅尔定律。
费马原理
光线在真空中或均匀介质中传播时,总是沿着所需时间为极值的路 径传播,即光程取极值的路径。
光的干涉与衍射定律
当两束或多束相干光波相遇时,它们会相互叠加产生干涉现象;当光 波绕过障碍物边缘时,会产生衍射现象。
光线沿直线传播
在均匀介质中,光线沿直线传 播,不发生折射或反射。
02
光的能量守恒
光在传播过程中,其能量不会 消失或产生。
03
光沿直线传播定律
光线在同一种均匀介质中沿直 线传播,不发生折射或反射。
几何光学PPT【2024版】
只与两种介质有关,折射率
i 介质1
1
分界面
介质2
i2
像 物
13
折射光在入射面内
入射面
n
i1 i1
界面
i2
n1 sin i1 n2 sin i2 Snell定律
Descartes 定律 14
光的色散
• 一束平行的白光(复色光)从一种媒质 (例如真空或空气)射入另一种媒质时, 只要入射角不等于0,不同颜色的光在空间 散开来。
这种情况就是全反射,也称全内反射
30
全反射临界角
• 光线从光密介质射向光疏介质,折射角比
入射角大
•
入射角满足
i1
arcsin
n2 n1
就会出现全反射
• 出现全反射的最小入射角
称作全反射临界角
n1
iC
iC
arcsin
n2 n1
n2
31
4.全反射棱镜
屋脊形五棱镜
67.5
67.5
倒转棱镜(阿米西棱镜) 32
• 根据这一事实,也可以得出这样的结论, 既然在媒质中,光总是沿直线、折线、或 曲线传播,那么就可以用一条几何上的线 来描述和研究光的传播,这就是“光线”。
8
几何光学的局限
• 几何光学是关于光的唯象理论。 • 不涉及光的物理本质。 • 对于光线,是无法从物理上定义其速度的。 • 在几何光学领域,也无法定义诸如波长、
51
n n n n s s r
平行光入射 s n
n
M
n n
r
Q
O
C
Q
r
n
s
s
s nr f n
n n
O
Q
i 介质1
1
分界面
介质2
i2
像 物
13
折射光在入射面内
入射面
n
i1 i1
界面
i2
n1 sin i1 n2 sin i2 Snell定律
Descartes 定律 14
光的色散
• 一束平行的白光(复色光)从一种媒质 (例如真空或空气)射入另一种媒质时, 只要入射角不等于0,不同颜色的光在空间 散开来。
这种情况就是全反射,也称全内反射
30
全反射临界角
• 光线从光密介质射向光疏介质,折射角比
入射角大
•
入射角满足
i1
arcsin
n2 n1
就会出现全反射
• 出现全反射的最小入射角
称作全反射临界角
n1
iC
iC
arcsin
n2 n1
n2
31
4.全反射棱镜
屋脊形五棱镜
67.5
67.5
倒转棱镜(阿米西棱镜) 32
• 根据这一事实,也可以得出这样的结论, 既然在媒质中,光总是沿直线、折线、或 曲线传播,那么就可以用一条几何上的线 来描述和研究光的传播,这就是“光线”。
8
几何光学的局限
• 几何光学是关于光的唯象理论。 • 不涉及光的物理本质。 • 对于光线,是无法从物理上定义其速度的。 • 在几何光学领域,也无法定义诸如波长、
51
n n n n s s r
平行光入射 s n
n
M
n n
r
Q
O
C
Q
r
n
s
s
s nr f n
n n
O
Q
基础光学第1章几何光学1课件
2)透射次波
当入射光n从An入射至Bn 反射次波面:A1C1 = v1tn , B2C2 = v1 (tn - t2), ……, Bn , 波面为C1Bn。 透射次波面:A1D1 = v2tn , B2D2 = v2 (tn - t2), ……, Bn ,波面为D1Bn。
利用惠更斯原理解释 反射和折射定律:
1.1几何光学的基本概念和基本定律
1.1-1 光源、光波与光线的概念
光源:能够发光或能够辐射光能量的物体
光线:发光点发出的携带能量并具有方向的几何线,它的位 置和方向代表了光能向外传播的领域和方向。
光束:光线的集合体,分为平行光束、同心光束
1.1-2 光线传播的基本定律
光的直线传播定律:
光在均匀媒质中沿直线传播。
惠更斯 (1629~1695)
波动的几个基本概念
波动是扰动在空间里的传播 波面
光扰动同时到达的空间曲面称为波面。 波面上的各点具有相同的相位(等相位面)
波线
球面波
平面波
波线
波面
波场中的一组线,线上每点切线方向代表该点处光扰动传播的方向。
波线代表能量流动的方向,于波面正交。
球面波的波线构成同心波束,平面波的波线构成平行波束;
折射定律
折射率与光速比
由: sin i1 n2 sin i2 n1
sin i1 v1 sin i2 v2
得到: n2 v1
n1
v2
设入射方为真空,n1 = 1,v1 = c 。则媒质的绝对折射率为:
n c v
或:
v
c
n
光在媒质中的速度小于光在真空中的速度
1.3 费马原理
1.3-1 光程的概念
光的独立传播定律:
几何光学(课堂PPT)
l
r1 ( r2)
l
近轴条件下,略去 项, h 2
l s l s
n 1hn 1hnhn hn 2hn 2h0 r1 s r1 r2 r2 s
.
34
n2 n1 nn1n2n
s s
r1
r2
薄透镜的物像公式
物方焦距 像方焦距
fsl im sn1 n r1n1n2r 2n
fls i m sn2 n r1n1n2r 2n
.
5
4、物方空间和像方空间:一个成像的光 学系统将空间分成两部分,入射的同心 光束所在的空间为物方空间,出射的同 心光束所在的空间为像方空间。
5、折射率(n)
6、光程
.
6
2.2几何光学的基本定律、定理
1、光在均匀介质中的直线传播定律。 2、光通过两种介质分界面时的反射定律
和折射定律。 3、光的独立传播定律和光路可逆原理。 4、费马(Fermat)原理:两点间光的实际
基础,研究光在透明介质中传播和
成像问题的光学----几何光学
.
1
一、几何光学历史 二、几何光学基本概念、定理、定律 三、光在平面上的反射和折射、全反射 四、光在球面上的反射和折射 五、薄透镜成像
.
2
一、几何光学历史 墨子及其弟子在《墨经》中,记载着光的直线传播(影的形成和
针孔成像等)和光在镜面(凹面和凸面)上的反射等现象,并提 出了一系列经验规律,把物和像的位置及其大小与所用镜面曲率
1、墨克欧阿人联莱子几眼勒系蒙里构·起(哈得得造来增和前所及。著托著视这4有勒《觉6是《密8光作关光研-学用于前学究》做光全了3研了学书光7究详知6》的了尽识),折平的的研射面叙最究现镜述早了象成。记球,像反录面最问对。镜先题欧和测,几抛定指里物了出得面光了和镜通反托的过射勒性两角密质种等关,介于于并质眼对分 2、欧界入睛光面几射是发时角以出里的的球光入得反面线射射形才(角定式能和前律从看折。到光3射源物3角0发体。-出的前;学2反说7射,5光认)线为与光入线射来光自线于同看面到且的入物射体面,垂并直且 3、克于莱界面蒙。得(50-?)和托勒密(90-168) 4、阿沈入括的勒撰研·写究哈的,增《并梦说(溪明9笔了6谈月5》 相-1对 的0光 变3的 化8直规)线 律传 及播 月及 食球 的面成镜 因成 。像做了比较深 5、沈培根括提(出了1用0透31镜-矫1正09视5力)和采用透镜组构成望远镜的想法,并描述了 6、培透镜根焦(点的法位国置。1214-1294)
《几何光学基本原理》课件
了解杨氏双缝干涉实验、互补色和干涉条纹 的形成。
2 衍射现象
探索衍射的基本原理及其在实际应用中的重 要性。
光学仪器与光学系统
1
常见光学仪器
了解望远镜、显微镜、光谱仪等常见光学仪器的结构和工作原理。
2
透镜组
探索透镜组的组合方式和成像特性。
光学断层扫描技术及优化
光学断层扫描技术
介绍光学断层扫描技术及其在医学和科学研究中的应用。
几何光学基本原理
欢迎来到《几何光学基本原理》PPT课件。本课程将深入介绍几何光学的概 念和基础原理,帮助您全面了解光线的传播、球面成像和透镜成像等关键概 念。
光的传播和反射
1
直线传播
光线沿着直线路径传播,遵循直线传播原理。
2
反射
光线在反射时遵循入射角等于反射角的定律。
光的折射和球面成像
光的折射
当光线由一种介质射向另一种介 质时,会发生折射。
球面成像
透镜成像原理
球面透镜通过聚焦光线形成图像, 具有不同的分类。
通过透镜将平行光线聚焦成点或 通过透镜将点光源成像。
深入探索透镜和棱镜
透镜的参数
了解透镜的主要参数:焦距、倍率和视场角,对透镜的使用非常重要。
棱镜的分类
光的干涉和衍射现象
1 干涉现象
光学系统的调试与优化
了解调试和优化光学系统的方法,以获得最佳的成像效果。
2 衍射现象
探索衍射的基本原理及其在实际应用中的重 要性。
光学仪器与光学系统
1
常见光学仪器
了解望远镜、显微镜、光谱仪等常见光学仪器的结构和工作原理。
2
透镜组
探索透镜组的组合方式和成像特性。
光学断层扫描技术及优化
光学断层扫描技术
介绍光学断层扫描技术及其在医学和科学研究中的应用。
几何光学基本原理
欢迎来到《几何光学基本原理》PPT课件。本课程将深入介绍几何光学的概 念和基础原理,帮助您全面了解光线的传播、球面成像和透镜成像等关键概 念。
光的传播和反射
1
直线传播
光线沿着直线路径传播,遵循直线传播原理。
2
反射
光线在反射时遵循入射角等于反射角的定律。
光的折射和球面成像
光的折射
当光线由一种介质射向另一种介 质时,会发生折射。
球面成像
透镜成像原理
球面透镜通过聚焦光线形成图像, 具有不同的分类。
通过透镜将平行光线聚焦成点或 通过透镜将点光源成像。
深入探索透镜和棱镜
透镜的参数
了解透镜的主要参数:焦距、倍率和视场角,对透镜的使用非常重要。
棱镜的分类
光的干涉和衍射现象
1 干涉现象
光学系统的调试与优化
了解调试和优化光学系统的方法,以获得最佳的成像效果。
几何光学讲解PPT课件
i2 i2 '
2、最小偏向角
i1 i1',i2 i2 '
偏向角最小,称为最小偏向角。n sin ( m) / sin / 2
第5页/共69页
2
3、三棱镜的色散
法线
i1
i2
白光
三棱镜的色散
第6页/共69页
红
青 紫
第7页/共69页
第8页/共69页
§2 惠更斯原理
一、波的几何描述 波面(波阵面)、平面波、球面波的概念
第44页/共69页
第45页/共69页
四、薄透镜傍轴成像的牛顿公式 :
s, s 高斯公式中 是从O点算起的 ,薄透镜傍轴成像时也可以将物像方的焦
点
作为计算起点,此时成像的符号法则也要做如下的调整:
F , F
若入射光从左向右传播、计算起点分别是薄透镜的物方焦点
F F ' 和像方焦点
,物像点分别为
Q、Q ' 以及物像
二、实象 虚象 实物 虚物
实象(物):有实际光线会聚(发出)的点。 虚象(物):无实际光线会聚(发出)的点。
第17页/共69页
成 像 实 例
第18页/共69页
第19页/共69页
实物、实象、虚象的联系与区别
实物与实象: 联系:均为有光能量存在的光束顶点。 区别:光能量的传播范围不同。
实象与虚象: 联系:均为经反射、折射后所得的象点。 区别:象点处光能量有无状态不同。
平面反射能实现理想成象。
四、物像之间的等光程性 虚光程 等光程面
第21页/共69页
§5 共轴球面组傍轴成像
一、 球面的几个概念 符号法则
r
C
O
球面顶点:O
几何光学ppt
反射式光学系统
光线通过光学元件(如反射镜、反射棱镜等)反射回来的 光学系统。
反射式光学系统具有体积小、重量轻、结构紧凑等特点, 适合用于激光雷达、光谱仪器等领域。
光纤光学系统
光线通过光纤传输的光学系统。
光纤光学系统具有传输损耗低、带宽高、抗电磁干扰等特点,被广泛应用于通信 、医疗、传感等领域。
红外光学系统
VS
详细描述
光的反射定律表明,光线在传播过程中, 当遇到一个界面时,会按照入射角等于反 射角的规律反射。而折射定律则表明,光 线在从一种介质进入另一种介质时,会产 生折射现象,折射光线会偏离原来的直线 方向,其偏转角度与介质折射率有关,且 遵循一定的斯涅尔折射定律。
04
几何光学成像原理
成像的基本概念
光的独立传播定律
总结词
光的独立传播定律是指光在传播过程中,不受其他光束的影响,各自独立传 播。
详细描述
光的独立传播定律表明,在同一个均匀介质中,各个光束的传播速度相同, 且光线的传播方向不会因为其他光线的存在而改变。这个定律是几何光学中 光线追迹和光束分析的基础。
光的反射定律和折射定律
总结词
光的反射定律和折射定律是指在光的传播 过程中,光线与界面相遇时,光线会按照 一定的规律反射和折射。
场合。
照相机系统
03
照相机是一种捕捉图像的光学系统,可以记录和保存图像信息
。
计算机辅助光学设计软件的应用
TracePro
TracePro 是一款常用的光学设计软件,可用于 模拟和分析光学系统的性能。
Code V
Code V 是一款功能强大的光学设计软件,可以 用于设计和优化各种光学系统。
Zemax
直射光成像和折射光成像
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何光学
以几何定律和某些基本实验定律为
基础,研究光在透明介质中传播和
成像问题的光学----几何光学
.
1
一、几何光学历史 二、几何光学基本概念、定理、定律 三、光在平面上的反射和折射、全反射 四、光在球面上的反射和折射 五、薄透镜成像
.
2
一、几何光学历史 墨子及其弟子在《墨经》中,记载着光的直线传播(影的形成和
之后光学经历了波动光学时期和量子光学时期
发展到现代光学时期。
.
4
二、基本概念、定理、定律
2.1基本概念
1、光轴
2、物点和像点:若以A点为顶点的入射光束经过某 一光学系统后,变成了以A'为顶点的出射光束, 则称A为物点,A'为物点A经过光学系统所成的像。
3、物象的虚实:若物像点由实际光线相交而成, 则物像成为实物和实像;若物像点由光线的延长 线相交而成,则物像称为虚物和虚像。实物可能 成虚像,虚物也可能成实像。
.
5
4、物方空间和像方空间:一个成像的光 学系统将空间分成两部分,入射的同心 光束所在的空间为物方空间,出射的同 心光束所在的空间为像方空间。
5、折射率(n)
6、光程
.
6
2.2几何光学的基本定律、定理
1、光在均匀介质中的直线传播定律。 2、光通过两种介质分界面时的反射定律
和折射定律。 3、光的独立传播定律和光路可逆原理。 4、费马(Fermat)原理:两点间光的实际
7、波波特特发(明了1成53像5暗-箱16,1并5在)1589年的论文《自然的魔法》中讨论了复合
面镜以及凸透镜和凸透镜组合。
.
3
8、李李普普塞塞在(161058年87发-明1了61第9一)架望远镜。
简森和冯特纳在十七世纪初制造出最早的复合显微镜。
9、简1森61(0年1伽5利8略8用-1自6制3的2望)远和镜观冯察特星体纳发现了绕木星运行的卫星。 10、伽开上利均普可勒略以于和16现11代年几发何表光了学他教的材著相作媲《美折,光他学提》出,了该照书度在定形律式,上同和时内设容 11、开计普了开勒普(勒式1天57文1望-远16镜3。0) 12、斯笛斯卡涅涅尔尔尔((1(15599161--51169652106)-)1第于6一126个621)把年折从射实定验律中归发纳现成了解折析射式定。律。 13、笛费卡马(尔16(01-1165695)6-在11665510年)提出最小时间理论,并说明由此可以推 14、费牛出顿马折(射(1定641律26-和107反217射-)1定16律667。25年)进行白光实验,发现色散现象,他还仔细 15、牛观性质察顿,了(提牛出顿1了环64光。2是在-微1177粒042流年7的出)理版论的。《光学》一书中,根据光的直线传播
4.1符号法则
顶点:o 曲率中心:c 曲率半径:r 主轴:连接o和c的直线 主截面:通过主轴的平面
符号法则:为使计算结果普遍适用, 对线段和角度正负取法的规定。
.
新笛卡尔法则
17
① 线段长度均从顶点算起:
A.沿光线进行方向为正,逆光线进行方向为负.
B.在垂直方向上, 光轴上方为正、下方为负. ② 光线的倾角均从主轴或界面法线算起,并取小于90̊的角度;由 主轴(或法线)转向有关光线时:
定律
.
11
三、光在平面上的反射和折射
3.1光在平面上的反射
A
i1 i1
i2 i2
M
B 0 没有进入平面的下方 所以,像点并不是真实光线汇聚而成的 而是视觉上将反射光线反向延长后汇聚形成的
因而,这里反射光线的反向延长线就是“虚光 线”,这样形成的像就是“虚像”。
.
8
2.2.2折射定律
如图
因此折射点必在 OO’上,入射面和折射面在同一平面内。
.
9
.
10
2.3光路可逆原理:
当光线逆着原来
的反射光线(或折
射光线)的方向射
到媒质界面时,必会逆着原来的入射方向
反射(或折射)出去,这种性质叫光路可
逆性或光路可逆原理.
可用反射定律或折射定
律证明.
2.4光的独立传播
针孔成像等)和光在镜面(凹面和凸面)上的反射等现象,并提 出了一系列经验规律,把物和像的位置及其大小与所用镜面曲率
1、墨克欧阿人联莱子几眼勒系蒙里构·起(哈得得造来增和前所及。著托著视这4有勒《觉6是《密8光作关光研-学用于前学究》做光全了3研了学书光7究详知6》的了尽识),折平的的研射面叙最究现镜述早了象成。记球,像反录面最问对。镜先题欧和测,几抛定指里物了出得面光了和镜通反托的过射勒性两角密质种等关,介于于并质眼对分 2、欧界入睛光面几射是发时角以出里的的球光入得反面线射射形才(角定式能和前律从看折。到光3射源物3角0发体。-出的前;学2反说7射,5光认)线为与光入线射来光自线于同看面到且的入物射体面,垂并直且 3、克于莱界面蒙。得(50-?)和托勒密(90-168) 4、阿沈入括的勒撰研·写究哈的,增《并梦说(溪明9笔了6谈月5》 相-1对 的0光 变3的 化8直规)线 律传 及播 月及 食球 的面成镜 因成 。像做了比较深 5、沈培根括提(出了1用0透31镜-矫1正09视5力)和采用透镜组构成望远镜的想法,并描述了 6、培透镜根焦(点的法位国置。1214-1294)
虚光程:虚光线的光程称作虚光程
nAB 1nB 1AnAB2nB2A nAB1nB1A
nAB2 nB2A
.
13
3.2光在平面上的折射
3.2折射光 来自同一点光源的入射 光,经平面折射后,其 折射光线的反向延长线 不再汇聚于同一点。因 而严格说来,平面折射 是不能成像的 。其实 不是不能成像,而是不 能严格成像
路径,是光程平稳的路径。(1679年)
.
7
2.2.1反射定律:
反射定律证明 考虑由Q发出经反射面到达P的光线.相对于反射面
取P的镜像 对称点P’,从Q到P 任一可能路径QNP 的长度与QNP’相等. 显然,直线QNP’是 其中最短的一根, 从而路径QNP长度最短.根据费马原理,QMP是光
线的实际路径.
.
14
3.3光的全反射定律: 当光线和入射界面角度小到一定时 不发生折射现象 光线全部反射回原介
质
光线从光密介质射向光疏介质,折射角比入射角大
入射角满足
就会出现全反射
出现全反射的最小入射角称作全反射临界 角
.
15
全反射的利用:
1、光导纤维
2.内窥镜
3.双筒望远镜
.
16
四、光在球面上的反射和折射
以几何定律和某些基本实验定律为
基础,研究光在透明介质中传播和
成像问题的光学----几何光学
.
1
一、几何光学历史 二、几何光学基本概念、定理、定律 三、光在平面上的反射和折射、全反射 四、光在球面上的反射和折射 五、薄透镜成像
.
2
一、几何光学历史 墨子及其弟子在《墨经》中,记载着光的直线传播(影的形成和
之后光学经历了波动光学时期和量子光学时期
发展到现代光学时期。
.
4
二、基本概念、定理、定律
2.1基本概念
1、光轴
2、物点和像点:若以A点为顶点的入射光束经过某 一光学系统后,变成了以A'为顶点的出射光束, 则称A为物点,A'为物点A经过光学系统所成的像。
3、物象的虚实:若物像点由实际光线相交而成, 则物像成为实物和实像;若物像点由光线的延长 线相交而成,则物像称为虚物和虚像。实物可能 成虚像,虚物也可能成实像。
.
5
4、物方空间和像方空间:一个成像的光 学系统将空间分成两部分,入射的同心 光束所在的空间为物方空间,出射的同 心光束所在的空间为像方空间。
5、折射率(n)
6、光程
.
6
2.2几何光学的基本定律、定理
1、光在均匀介质中的直线传播定律。 2、光通过两种介质分界面时的反射定律
和折射定律。 3、光的独立传播定律和光路可逆原理。 4、费马(Fermat)原理:两点间光的实际
7、波波特特发(明了1成53像5暗-箱16,1并5在)1589年的论文《自然的魔法》中讨论了复合
面镜以及凸透镜和凸透镜组合。
.
3
8、李李普普塞塞在(161058年87发-明1了61第9一)架望远镜。
简森和冯特纳在十七世纪初制造出最早的复合显微镜。
9、简1森61(0年1伽5利8略8用-1自6制3的2望)远和镜观冯察特星体纳发现了绕木星运行的卫星。 10、伽开上利均普可勒略以于和16现11代年几发何表光了学他教的材著相作媲《美折,光他学提》出,了该照书度在定形律式,上同和时内设容 11、开计普了开勒普(勒式1天57文1望-远16镜3。0) 12、斯笛斯卡涅涅尔尔尔((1(15599161--51169652106)-)1第于6一126个621)把年折从射实定验律中归发纳现成了解折析射式定。律。 13、笛费卡马(尔16(01-1165695)6-在11665510年)提出最小时间理论,并说明由此可以推 14、费牛出顿马折(射(1定641律26-和107反217射-)1定16律667。25年)进行白光实验,发现色散现象,他还仔细 15、牛观性质察顿,了(提牛出顿1了环64光。2是在-微1177粒042流年7的出)理版论的。《光学》一书中,根据光的直线传播
4.1符号法则
顶点:o 曲率中心:c 曲率半径:r 主轴:连接o和c的直线 主截面:通过主轴的平面
符号法则:为使计算结果普遍适用, 对线段和角度正负取法的规定。
.
新笛卡尔法则
17
① 线段长度均从顶点算起:
A.沿光线进行方向为正,逆光线进行方向为负.
B.在垂直方向上, 光轴上方为正、下方为负. ② 光线的倾角均从主轴或界面法线算起,并取小于90̊的角度;由 主轴(或法线)转向有关光线时:
定律
.
11
三、光在平面上的反射和折射
3.1光在平面上的反射
A
i1 i1
i2 i2
M
B 0 没有进入平面的下方 所以,像点并不是真实光线汇聚而成的 而是视觉上将反射光线反向延长后汇聚形成的
因而,这里反射光线的反向延长线就是“虚光 线”,这样形成的像就是“虚像”。
.
8
2.2.2折射定律
如图
因此折射点必在 OO’上,入射面和折射面在同一平面内。
.
9
.
10
2.3光路可逆原理:
当光线逆着原来
的反射光线(或折
射光线)的方向射
到媒质界面时,必会逆着原来的入射方向
反射(或折射)出去,这种性质叫光路可
逆性或光路可逆原理.
可用反射定律或折射定
律证明.
2.4光的独立传播
针孔成像等)和光在镜面(凹面和凸面)上的反射等现象,并提 出了一系列经验规律,把物和像的位置及其大小与所用镜面曲率
1、墨克欧阿人联莱子几眼勒系蒙里构·起(哈得得造来增和前所及。著托著视这4有勒《觉6是《密8光作关光研-学用于前学究》做光全了3研了学书光7究详知6》的了尽识),折平的的研射面叙最究现镜述早了象成。记球,像反录面最问对。镜先题欧和测,几抛定指里物了出得面光了和镜通反托的过射勒性两角密质种等关,介于于并质眼对分 2、欧界入睛光面几射是发时角以出里的的球光入得反面线射射形才(角定式能和前律从看折。到光3射源物3角0发体。-出的前;学2反说7射,5光认)线为与光入线射来光自线于同看面到且的入物射体面,垂并直且 3、克于莱界面蒙。得(50-?)和托勒密(90-168) 4、阿沈入括的勒撰研·写究哈的,增《并梦说(溪明9笔了6谈月5》 相-1对 的0光 变3的 化8直规)线 律传 及播 月及 食球 的面成镜 因成 。像做了比较深 5、沈培根括提(出了1用0透31镜-矫1正09视5力)和采用透镜组构成望远镜的想法,并描述了 6、培透镜根焦(点的法位国置。1214-1294)
虚光程:虚光线的光程称作虚光程
nAB 1nB 1AnAB2nB2A nAB1nB1A
nAB2 nB2A
.
13
3.2光在平面上的折射
3.2折射光 来自同一点光源的入射 光,经平面折射后,其 折射光线的反向延长线 不再汇聚于同一点。因 而严格说来,平面折射 是不能成像的 。其实 不是不能成像,而是不 能严格成像
路径,是光程平稳的路径。(1679年)
.
7
2.2.1反射定律:
反射定律证明 考虑由Q发出经反射面到达P的光线.相对于反射面
取P的镜像 对称点P’,从Q到P 任一可能路径QNP 的长度与QNP’相等. 显然,直线QNP’是 其中最短的一根, 从而路径QNP长度最短.根据费马原理,QMP是光
线的实际路径.
.
14
3.3光的全反射定律: 当光线和入射界面角度小到一定时 不发生折射现象 光线全部反射回原介
质
光线从光密介质射向光疏介质,折射角比入射角大
入射角满足
就会出现全反射
出现全反射的最小入射角称作全反射临界 角
.
15
全反射的利用:
1、光导纤维
2.内窥镜
3.双筒望远镜
.
16
四、光在球面上的反射和折射