能被7 11 13整除的数规律

合集下载

数的整除的综合运用(一) 3.差系:7 11 13 能否被 7 11 …

数的整除的综合运用(一) 3.差系:7 11 13 能否被 7 11 …

数的整除的综合运用(一)【大海传功】 数的整除特征1.末位系:2,5;4,25;8,125能否被2或5整除是看末一位 能否被4或25整除是看末两位 能否被8或125整除是看末三位2.和系:3,9,99⑴能否被3或9整除是看数字之和是否为3或9的倍数这个数除以3或9的余数等于这个数的数字之和除以3或9的余数 弃九法⑵能否被99整除是从这个数的末位开始,两位一段,看这些数段的和能否被99整除3.差系:7,11,13 能否被7,11,13整除规律是把这个数的末三位与末三位之前的数作差(大减小),看这个差是否为7,11,13的倍数能否被11整除规律是从右开始数奇数位数字之和与偶数位数字之和的差(大减小)是否为11的倍数这个差除以余几就代表这个数除以11余几(注:计算余数时必须是奇数位的数字和去减偶数位的数字和)4.拆分系:72=8×9,12=3×4,1001=7×11×13……【例1】(★★★)在方框中填上两个数字,可以相同也可以不同,使4□32□是9的倍数。

⑴请随便填出一种,并检查自己填的是否正确; ⑵一共有多少种满足条件的填法?【例2】()★★★要使15ABC 6能被36整除,而且所得的商最小,那么A 、B 、C 分别是多少?【例3】()★★★ 某个七位数1993能够同时被2,3,4,5,6,7,8,9整除,那么它的最后三位数字依次是多少?【例4】(★★★)★在523后面写出三个数字,使所得的六位数被7、8、9整除。

那么这三个数字的和是_______。

【例5】()★★从50到100的这51个自然数的乘积的末尾有多少个连续的0?1【例6】(★)★★下图中最上排有五个数,将相邻两个数的乘积写在它们之间下方的圈内。

第二排的四个数填完后,再依次填第三、四、五排,第五排中的数A 的末尾共有多少个0?【例7】() ★★★★右图的方格表中已经填入了9个数,其余20个方格内的数都等于它左侧方格中的数乘以它上面方格中的数。

能被3、7、11、13、17、19、23整除的数的特征

能被3、7、11、13、17、19、23整除的数的特征

能被3、7、11、13、17、19、23 等整除的数的特征能被11 整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11 整除. 例如:判断491678能不能被11 整除.奇位数字的和9+6+8=23 偶位数位的和4+1+7=12 23-12=11 因此,491678能被11 整除. 这种方法叫"奇偶位差法".除上述方法外,还可以用割减法进行判断.即:从一个数里减去11 的10倍,20倍,30 倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11 整除.又如:判断583 能不能被11 整除.用583减去11的50倍(583-11X 50=33)余数是33, 33能被11整除,583也一定能被11 整除.(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a^ 0,a为整数,则a|0.(2)能被 2 整除的数的特征若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

(3)能被 3 整除的数的特征若一个整数的数字和能被3整除,则这个整数能被3整除。

(4)能被 4 整除的数的特征若一个整数的末尾两位数能被4 整除,则这个数能被4 整除。

(5)能被 5 整除的数的特征若一个整数的末位是0或5,则这个数能被5整除。

(6)能被 6 整除的数的特征若一个整数能被2 和3 整除,则这个数能被6 整除。

(7)能被7 整除的数的特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2 倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13- 3X 2= 7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9X2 = 595 , 59-5 X 2= 49,所以6139是7的倍数,余类推。

能被7-11-13整除的数的特征

能被7-11-13整除的数的特征

能被7,11,13整除的数的特征被7、11、13整除的数,是三个质数的积,它们分别是7、11、13。

那么,能被7、11、13整除的数具有什么特征呢?下面将介绍一些常见的数学知识和规律。

1、数位相间差别为2的倍数一个数的数位相间差别为2的倍数,它能被11整除。

例如,1234,数位相间差别为2的倍数为:(2-1)+(4-3)=2,2是2的倍数,所以1234能被11整除。

2、个位是5或0的数个位数是5或0的数,它们能被5整除。

如果它们的其他数位上的数位相间差别为2的倍数,那么它们能被11整除。

例如,如45605,数位相间差别为2的倍数为:(5-0)+(6-5)+(5-4)+(0-6)=(-5)+1+1+(-6)=-9,-9是11的倍数,所以45605能被11整除。

3、将一个数从最后一位开始,每隔三位数位相同的,这个数就能被37整除比如说,123456123456,将这个数从最后一位开始,每隔三位数位相同,即为:$123, 456, 123, 456$,每组数的和为:$123+456+123+456=1158$。

1158是37的倍数,所以123456123456能被37整除。

4、将一个数的最后一位去掉,然后减去这个数的五倍,如果所得结果能被7整除,则这个数能被7整除例如,427,去掉最后一位,得42,42减去5倍的7即为:$42-5×7=7$,7能被7整除,所以427能被7整除。

5、将一个数的最后一位去掉,然后减去这个数的9倍,如果所得结果能被13整除,则这个数能被13整除例如,376,去掉最后一位,得37,37减去9倍的3即为:$37-9×3=10$,10不能被13整除,所以376不能被13整除。

6、将一个数分为两段,其中一段减去另一段,得到的差能被7整除,则这个数能被7整除例如,3714,将它分为两段,得到37和14,37减去14得到23,23能被7整除,所以3714能被7整除。

能被3、7、11、13、17、19、23整除的数的特征之欧阳学创编

能被3、7、11、13、17、19、23整除的数的特征之欧阳学创编

能被3、7、11、13、17、19、23等整除的数的特征能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.例如:判断491678能不能被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种方法叫"奇偶位差法".除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不能被11整除.用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0. (2)能被2整除的数的特征若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

(3)能被3整除的数的特征若一个整数的数字和能被3整除,则这个整数能被3整除。

(4) 能被4整除的数的特征若一个整数的末尾两位数能被4整除,则这个数能被4整除。

(5)能被5整除的数的特征若一个整数的末位是0或5,则这个数能被5整除。

(6)能被6整除的数的特征若一个整数能被2和3整除,则这个数能被6整除。

(7)能被7整除的数的特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

能被3、7、11、13、17、19、23整除的数的特征之欧阳主创编

能被3、7、11、13、17、19、23整除的数的特征之欧阳主创编

能被3、7、11、13、17、19、23等整除的数的特征能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.例如:判断491678能不能被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种方法叫"奇偶位差法".除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不能被11整除.用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0. (2)能被2整除的数的特征若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

(3)能被3整除的数的特征若一个整数的数字和能被3整除,则这个整数能被3整除。

(4) 能被4整除的数的特征若一个整数的末尾两位数能被4整除,则这个数能被4整除。

(5)能被5整除的数的特征若一个整数的末位是0或5,则这个数能被5整除。

(6)能被6整除的数的特征若一个整数能被2和3整除,则这个数能被6整除。

(7)能被7整除的数的特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

7、11、13的整除判定法则

7、11、13的整除判定法则

7、11、13的整除判定法则华图教育邹维丽在公务员考试数学运算这部分中,不少题目通过适当运用数的整除性质就可快速选出答案,这就要求考生对数的整除判断法则要熟练掌握。

下面我们先给出一些特殊数的整除判定基本法则:一、能被2、4、8、5、25、125 整除的数的数字特性能被2 (或 5)整除的数,末位数字能被2(或 5)整除;能被4 (或25)整除的数,末两位数字能被4(或25)整除;能被8 (或125)整除的数,末三位数字能被8(或125)整除;一个数被2(或5)除得的余数,就是其末位数字被2(或5)除得的余数一个数被4(或25)除得的余数,就是其末两位数字被4(或25)除得的余数一个数被8(或125)除得的余数,就是其末三位数字被8(或125)除得的余数二、能被3、9 整除的数的数字特性能被3(或9)整除的数,各位数字和能被3(或9)整除。

一个数被3(或9)除得的余数,就是其各位相加后被3(或9)除得的余数。

三、能被7 整除的数的数字特性能被7 整除的数,其末一位的两倍与剩下的数之差为7的倍数。

能被7 整除的数,其末三位数与剩下的数之差,能被7 整除。

四、能被11 整除的数的数字特性能被11 整除的数,奇数位的和与偶数位的和之差,能被11 整除。

能被11 整除的数,其末三位数与剩下的数之差,能被11 整除。

五、能被13 整除的数的数字特性能被13 整除的数,其末三位数与剩下的数之差,能被13 整除。

从上述表述中,我们发现7、11、13有一个相同的整除判断法则,就是判断其末三位与剩下的数之差,那么,为什么7、11、13有相同的整除判断法则呢?事实上,这一规律源自经典分解1001=7×11×13。

下面我们利用1001=7×11×13来证明能被7整除的数,其末三位数与剩下的数之差,能被7整除。

设abcd为超过三位的数,其中b, c, d分别为百位数、十位数、个位数,则1000=+,abcd a bcd-,于是我们有为了凑出1001,我们将1000a写成1001a a=+=-+=+-abcd a bcd a a bcd a bcd a100010011001()-能被7 整除,则上式右边能被7整除,因此左边因为1001能被7整除,所以,若bcd a-不能被7 整除,则上式右边不能被7整除,也能被7整除,即abcd能被7整除;若bcd a因此左边也不能被7整除,即abcd不能被7整除。

能被71113整除的数规律

能被71113整除的数规律

若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

能被9整除的数的规律规律:能被9整除的数,这个数的所有位上的数字的和一定能被9整除。

能被11整除的数的规律若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

11的倍数检验法:去掉个位数,再从余下的数中,减去个位数,如果差是11的倍数,则原数能被11整除。

如果差太大或心算不易看出是否11的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断132是否11的倍数的过程如下:13-2=11,所以132是11的倍数;又例如判断10901是否11的倍数的过程如下:1090-1=1089 ,108-9=99,所以10901是11的倍数,余类推。

相当于1000除以13余-1,那么1000^2除以13余1(即-1的平方),1000^3除以13余-1,……所以对一个位数很多的数(比如:51 578 953 270),从右向左每3位隔开从右向左依次加、减,270-953+578-51=-156能被13整除,则原数能被13整除什么样的数能被7和11和13整除???有什么规律是分开来的三个问题还是同时被这三个整除?若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.例如:判断491678能不能被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种方法叫"奇偶位差法".除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不能被11整除.用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

能被7 11 13整除的数规律

能被7 11 13整除的数规律

能被七整除得数规律若一个整数得个位数字截去,再从余下得数中,减去个位数得2倍,如果差就是7得倍数,则原数能被7整除。

如果差太大或心算不易瞧出就是否7得倍数,就需要继续上述「截尾、倍大、相减、验差」得过程,直到能清楚判断为止。

例如,判断133就是否7得倍数得过程如下:13-3×2=7,所以133就是7得倍数;又例如判断6139就是否7得倍数得过程如下:613—9×2=595 ,59-5×2=49,所以6139就是7得倍数,余类推。

能被9整除得数得规律规律:能被9整除得数,这个数得所有位上得数字得与一定能被9整除。

能被11整除得数得规律若一个整数得奇位数字之与与偶位数字之与得差能被11整除,则这个数能被11整除.11得倍数检验法:去掉个位数,再从余下得数中,减去个位数,如果差就是11得倍数,则原数能被11整除。

如果差太大或心算不易瞧出就是否11得倍数,就需要继续上述「截尾、倍大、相减、验差」得过程,直到能清楚判断为止.例如,判断132就是否11得倍数得过程如下:13-2=11,所以132就是11得倍数;又例如判断10901就是否11得倍数得过程如下:1090—1=1089,108-9=99,所以10901就是11得倍数,余类推.被13整除得数规律相当于1000除以13余-1,那么1000^2除以13余1(即-1得平方),1000^3除以13余-1,……所以对一个位数很多得数(比如:51578 953270),从右向左每3位隔开从右向左依次加、减,270—953+578—51=—156能被13整除,则原数能被13整除什么样得数能被7与11与13整除???有什么规律就是分开来得三个问题还就是同时被这三个整除?若一个整数得个位数字截去,再从余下得数中,减去个位数得2倍,如果差就是7得倍数,则原数能被7整除。

如果差太大或心算不易瞧出就是否7得倍数,就需要继续上述「截尾、倍大、相减、验差」得过程,直到能清楚判断为止。

数的整除特征(上)

数的整除特征(上)

数的整数特征1.末位系:2,5;4,25;8,125能否被2和5整除是看末一位能否被4和25整除是看末两位能否被8和125整除是看末三位2.和系:3,9能否被3,9整除是看数字之和是否3,9的倍数这个数除以9的余数和这个数数字之和除以9的余数相同弃九法3.差系:7,11,13能否被7,11,13整除规律是把数从末三位断开,用末三位与末三位之前的数做差,看这个差是否为7,11,13的倍数能否被11整除规律是从右开始数奇数位数字之和与偶数位数字之和的差是否为11的倍数这个差除以11余几就代表这个数除以11余几4.拆分系:72=8×9,12=3×4,1001=7×11×13……一、特征应用在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除。

两个四位数275A 和275B 相乘,要使它们的乘积能被72整除,求A 和B 。

【拓展】(★★★)两个四位数275A 和475B 相乘,要使它们的乘积能被72整除,求A 和B 。

设六位数N =1527x y ,又N 是4的倍数,且被11除余5,那么x +y 等于多少?数的整除特征(上)(★★) (★★★) (★★★)在所有各位数字互不相同的五位数中,能被45整除的数最小是多少?⑴(★★★) 已知222ab ab ab 能被91整除,那么ab 是多少?⑵(★★★★) 将三位数3ab 连续重复地写下去,共写2005个3ab ,所得的数2005333ab ab ab ab 个3正好是91的倍数,那么ab =________。

(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)(★★★)。

能被3、7、11、13、17、19、23整除的数的特征之令狐文艳创作

能被3、7、11、13、17、19、23整除的数的特征之令狐文艳创作

能被3、7、11、13、17、19、23等整除的数的特征令狐文艳能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.例如:判断491678能不能被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种方法叫"奇偶位差法".除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不能被11整除.用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)能被2整除的数的特征若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

(3)能被3整除的数的特征若一个整数的数字和能被3整除,则这个整数能被3整除。

(4) 能被4整除的数的特征若一个整数的末尾两位数能被4整除,则这个数能被4整除。

(5)能被5整除的数的特征若一个整数的末位是0或5,则这个数能被5整除。

(6)能被6整除的数的特征若一个整数能被2和3整除,则这个数能被6整除。

(7)能被7整除的数的特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

7、11、13整除判定法则

7、11、13整除判定法则

7、11、13的整除判定法则华图教育邹维丽在公务员考试数学运算这部分中,不少题目通过适当运用数的整除性质就可快速选出答案,这就要求考生对数的整除判断法则要熟练掌握。

下面我们先给出一些特殊数的整除判定基本法则:一、能被2、4、8、5、25、125 整除的数的数字特性能被2 (或5)整除的数,末位数字能被2(或5)整除;能被4 (或25)整除的数,末两位数字能被4(或25)整除;能被8 (或125)整除的数,末三位数字能被8(或125)整除;一个数被2(或5)除得的余数,就是其末位数字被2(或5)除得的余数一个数被4(或25)除得的余数,就是其末两位数字被4(或25)除得的余数一个数被8(或125)除得的余数,就是其末三位数字被8(或125)除得的余数二、能被3、9 整除的数的数字特性能被3(或9)整除的数,各位数字和能被3(或9)整除。

一个数被3(或9)除得的余数,就是其各位相加后被3(或9)除得的余数。

三、能被7 整除的数的数字特性能被7 整除的数,其末一位的两倍与剩下的数之差为7的倍数。

能被7 整除的数,其末三位数与剩下的数之差,能被7 整除。

四、能被11 整除的数的数字特性能被11 整除的数,奇数位的和与偶数位的和之差,能被11 整除。

能被11 整除的数,其末三位数与剩下的数之差,能被11 整除。

五、能被13 整除的数的数字特性能被13 整除的数,其末三位数与剩下的数之差,能被13 整除。

从上述表述中,我们发现7、11、13有一个相同的整除判断法则,就是判断其末三位与剩下的数之差,那么,为什么7、11、13有相同的整除判断法则呢?事实上,这一规律源自经典分解1001=7×11×13。

下面我们利用1001=7×11×13来证明能被7整除的数,其末三位数与剩下的数之差,能被7整除。

设abcd为超过三位的数,其中b, c, d分别为百位数、十位数、个位数,则abcd a bcd=+,1000为了凑出1001,我们将1000a写成1001a a-,于是我们有=+=-+=+-100010011001()abcd a bcd a a bcd a bcd a因为1001能被7整除,所以,若bcd a-能被7 整除,则上式右边能被7整除,。

能被2、3、5、7、11、13、17、19整除的数的特征

能被2、3、5、7、11、13、17、19整除的数的特征

【数学】能被2、3、5、7、11、13、17、19整除的数的特征★★能被2整除的数的特征是个位上是偶数,能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的倍感)能被5整除的数个位上的数为0或5,能被7整除的数的特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。

例如:判断491678能不能被11整除。

—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=1223-12=11因此,491678能被11整除。

这种方法叫“奇偶位差法”。

除上述方法外,还可以用割减法进行判断。

即:从一个数里减去11的10倍、20倍、30倍……到余下一个100以内的数为止。

如果余数能被11整除,那么,原来这个数就一定能被11整除。

又如:判断583能不能被11整除。

用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除。

能被13整除的数的特征把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

如:判断1284322能不能被13整除。

128432+2×4=12844012844+0×4=128441284+4×4=13001300÷13=100所以,1284322能被13整除。

能被1—31整除的数的特征

能被1—31整除的数的特征

能被1—31整除的数的特征能被质数整除的数的特征(1—31)7-2 11-1 13+4 17-5 19+2 23+7 29+3 31-3能被2整除:偶数。

能被3整除:各个数位的和,是3的倍数。

能被5整除:个位为0或5。

能被7整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数的2倍,差是7的倍数。

例如,6139是否7的倍数?613-9×2=595,59-5×2=49,所以6139是7的倍数。

方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是7的倍数。

例如,6139是否7的倍数?139-6=133,所以6139是7的倍数。

能被11整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数,差是11的倍数。

方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是11的倍数。

方法3:奇数位的和减去偶数位的和,差是11的倍数。

能被13整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的4倍,和是13的倍数。

方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是13的倍数。

能被17整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数的5倍,差是17的倍数。

方法2(能被17、19整除类似):末三位数与3倍的非末三位数的差,是17的倍数。

能被19整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的2倍,和是19的倍数。

方法2(能被17、19整除类似):末三位数与7倍的非末三位数的差,是19的倍数。

能被23整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的7倍,和是23的倍数。

方法2(能被23、29整除相同):末四位数与5倍的非末四位数的差,是23的倍数。

能被29整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的3倍,和是29的倍数。

方法2(能被23、29整除相同):末四位数与5倍的非末四位数的差,是29的倍数。

整除规律

整除规律
【数学】能被2、3、5、7、11、13、17、19整除的数的特征★★
能被2整除的数的特征是个位上是偶数,
能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为
3+1+5=9是3的倍感)
能被5整除的数个位上的数为0或5,
能被7整除的数的特征,若一个整数的个位数字去掉,再从余下的数中,减去个位数的
2倍,如果差是7的倍数,则原数能被7整除。
如果数字仍然太大不能直接观察出来,
就重复
此过程。
能被11
整除的数的特征,把一个数由右边向左边数,将奇位上的数字与偶位上的数字
分别加起来,再求它们的差,如果这个差是11的倍数
(包括0),那么,原来这个数就一定能被11整除。
例如:判断491678能不能被11整除。—→奇位数字的和9+6+8=23
整除。如果数字仍然太大不能直接观察出来,就重复此过程。
例如:判断1675282能不能被17整除。
167528-2×5=167518
16751-8×5=16711
1671-1×5=1666
166-6×5=136
到这里如果你仍然观察不出来,就继续??
6×5=30,现在个位×5=30>剩下的13,就用大数减去小数,
30-13=17,
17÷17=1;所以1675282能被17整除。
能被19整除的数的特征
把一个整数的个位数字去掉,再从余下的数中,加上个位数的2
倍,如果差是19的倍数,则原数能被19
整除。如果数字仍然太大不能直接观察出来,就重复此过程
—→偶位数位的和4+1+7=12

能被4、7、8、11、13整除的数的特征及习题

能被4、7、8、11、13整除的数的特征及习题

能被4、7、8、11、13整除的数的特征及其它一、被4或25整除的数的特征如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此, 因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.二、被7整除的数的特征方法1、(适用于数字位数少时)一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.例如:判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

方法2、(适用于数字位数在三位以上)一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被7整除,那么,这个多位数就一定能被7整除.如判断数280679末三位数字是679,末三位以前数字所组成的数是280,679-280=399,399能被7整除,因此280679也能被7整除。

此法也适用于判断能否被11或13整除的问题.如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除.如:判断383357能不能被13整除.这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除.方法3、首位缩小法,在首位或前几位,减于7的倍数。

被711131719整除的数的特点

被711131719整除的数的特点

被7、1一、13、17、19整除的数的特点那个问题从不同的视角观看,可能会取得不同的答案。

也确实是说,判定一个数可否被7、1一、13整除,有很多方式,但最根底最常常利用的是:一个多位数的末三位数与末三位以前的数字所组成的数之差,假设是能被7、1一、13整除,那么,那个多位数就必然能被7、1一、13整除.例如,能被13整除的数的特点是,一个多位数的末三位数与末三位以前的数字所组成的数之差,假设是能被13整除,那么,那个多位数就必然能被13整除.例如:判定383357能不能被13整除.那个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也必然能被13整除.那个方式也一样适用于判定一个数能不能被7或11整除.如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就必然能被11整除.仍以原数为例,末三位数字与前两数字的差是396,396不能被7整除,因此,283697就必然不能被7整除.还有一个方式是比拟常常利用的:因为7×11×13=1001,因此,能被1001整除的数,能够同时被7、1一、和13整除。

第二讲例8就用到那个结论。

其余的方式都没那么常常利用,但很多,例如:能被11整除的数的特点把一个数由右边向左侧数,将奇位上的数字与偶位上的数字别离加起来,再求它们的差,假设是那个差是11的倍数(包括0),那么,原先那个数就必然能被11整除。

例如:判定491678能不能被11整除。

奇位数字的和9+6+8=23 ;偶位数位的和4+1+7=12 23-12=11,因此,491678能被11整除。

这种方法叫“奇偶位差法〞。

能被13整除的数的特点把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,假设是和是13的倍数,那么原数能被13整除。

7,11,13的倍数

7,11,13的倍数

若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.例如:判断491678能不能被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种方法叫"奇偶位差法".除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不能被11整除.用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

还有简单的能被7、13、11整除的特征(实际是一个方法)是这样的:将一个多于4位的整数在百位与千位之间分为两截,形成两个数,左边的数原来的千位、万位成为个位、十位(依次类推)。

将这两个新数相减(较大的数减较小的数),所得的差不改变原来数能被7、11、13整除的特性。

这个方法可以连续使用,直到所得的差小于1000为止。

能被某数整除的数的特征

能被某数整除的数的特征

能被某数整除的数的特征1.能被2(4、8)或5(25、125)整除的数的特征:未位上的数字所表示的数能被2或5整除,这个数的末位数能被2或5整除。

(未位数是0、2、4、6、8的数能被2整除;未位数是0、5的数能被5整除)未两位数字所表示的数能被4或25整除,这个数能被4或25整除;未两位数能被25整除是00、25、50、75。

未三位数字所表示的数能被8或125整除,这个数能被8或125整除;2.能被3或9整除的数的特征:这个数的各个数位上的数字之和能被3或9整除,这个数能被3或9整除。

3.能被7、11、13整除的数的特征:这个数的末三位上的数字所组成的数与末三位以前的数字所组成的数的差(大减小)能被7、11、13整除,这个数能被7、11、13整除。

例如:701239末三位:239 末三位之前的数为701701-239=462 462÷7=66 701239能被7整除462÷11=42 701239能被11整除462÷13=35……7 701239不能被13整除例如:642213末三位:213 末三位之前的数为642642-213=429 429÷7=61……2 701239不能被7整除429÷11=39 701239能被11整除429÷13=33 701239能被13整除例如:642213末三位:213 末三位之前的数为642642-213=429 429÷7=61……2 701239不能被7整除429÷11=39 701239能被11整除429÷13=33 701239能被13整除例如:694378906末三位:906 末三位之前的数为694378694378-906=693472太大了,不能直接看出被7、11、13整除,继续运用此方法检查:末三位:472 末三位之前的数为693693-472=221 221÷7=31……4 694378906不能被13整除221÷11=20……1 694378906不能被11整除221÷13=33 694378906能被13整除个位数字以前的数字按顺序组成的数字与个位数字的2倍之差(大减小)能被7整除,则这个数能被7整除。

能被3、7、11、13、17、19、23整除的数的特征

能被3、7、11、13、17、19、23整除的数的特征

能被3、7、11、13、17、19、23等整除的数的特征能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.例如:判断491678能不能被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种方法叫"奇偶位差法".除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不能被11整除.用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)能被2整除的数的特征若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

(3)能被3整除的数的特征若一个整数的数字和能被3整除,则这个整数能被3整除。

(4) 能被4整除的数的特征若一个整数的末尾两位数能被4整除,则这个数能被4整除。

(5)能被5整除的数的特征若一个整数的末位是0或5,则这个数能被5整除。

(6)能被6整除的数的特征若一个整数能被2和3整除,则这个数能被6整除。

(7)能被7整除的数的特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

能被9整除的数的规律
规律:能被9整除的数,这个数的所有位上的数字的和一定能被9整除。

能被11整除的数的规律
若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

11的倍数检验法:去掉个位数,再从余下的数中,减去个位数,如果差是11的倍数,则原数能被11整除。

如果差太大或心算不易看出是否11的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断132是否11的倍数的过程如下:13-2=11,所以132是11的倍数;又例如判断10901是否11的倍数的过程如下:1090-1=1089 ,108-9=99,所以10901是11的倍数,余类推。

相当于1000除以13余-1,那么1000^2除以13余1(即-1的平方),1000^3除以13余-1,……
所以对一个位数很多的数(比如:51 578 953 270),从右向左每3位隔开
从右向左依次加、减,270-953+578-51=-156能被13整除,则原数能被13整除
什么样的数能被7和11和13整除???有什么规律是分开来的三个问题还是同时被这三个整除?
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推
能被11整除的数的特征
把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.
例如:判断491678能不能被11整除.
—→奇位数字的和9+6+8=23
—→偶位数位的和4+1+7=12 23-12=11
因此,491678能被11整除.
这种方法叫"奇偶位差法".
除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.
又如:判断583能不能被11整除.
用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.
若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

什么样的数能被7和11和13整除???有什么规律
还有简单的
能被7、13、11整除的特征(实际是一个方法)是这样的:
将一个多于4位的整数在百位与千位之间分为两截,形成两个数,左边的数原来的千位、万位成为个位、十位(依次类推)。

将这两个新数相减(较大的数减较小的数),所得的差不改变原来数能被7、11、13整除的特性。

这个方法可以连续使用,直到所得的差小于1000为止。

例如:判断71858332能否被7、11、13整除,这个数比较大,
将它分成71858、332两个数(右边是三位数)
71858-332=71526
再将71526分成71、526两个数(右边是三位数)
526-71=455
由于455数比原数小得多,
相对来说容易判断455能被7和13整除,不能被11整除,
所以原来的71858332能被7和13整除,不能被11整除。

相关文档
最新文档