高中物理万有引力与航天试题(有答案和解析)
高中物理万有引力与航天练习题及答案含解析
![高中物理万有引力与航天练习题及答案含解析](https://img.taocdn.com/s3/m/7e22229de87101f69f319507.png)
高中物理万有引力与航天练习题及答案含解析一、高中物理精讲专题测试万有引力与航天1.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:(1)该星球表面的重力加速度; (2)该星球的密度; (3)该星球的第一宇宙速度v ;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;02tanav R t;(4)02tan Rt v α【解析】 【分析】 【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tan α2gt y gt x v t v ===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R= 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:v ===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:22T π==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.2.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) v 【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度v v ==3.在月球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该月球半径为R ,万有引力常量为G ,月球质量分布均匀。
(物理)物理万有引力与航天练习题20篇含解析
![(物理)物理万有引力与航天练习题20篇含解析](https://img.taocdn.com/s3/m/21980aaf0b4c2e3f56276324.png)
(物理)物理万有引力与航天练习题20篇含解析一、高中物理精讲专题测试万有引力与航天1.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3μ=,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11226.6710N?m /kg G -=⨯,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】26/g m s =,【解析】 【分析】 【详解】(1)对物块受力分析如图所示;假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有:211111sin 02F s fs mgs mv θ--=- N mgcos θ= f N μ=小物块在力F 2作用过程中有:222221sin 02F s fs mgs mv θ---=-由题图可知:1122156?3?6?F N s m F N s m ====,;, 整理可以得到:(2)根据万有引力等于重力:,则:,,代入数据得2.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
这颗卫星是地球同步卫星,其运行周期与地球的自转周期T 相同。
已知地球的 半径为R ,地球表面的重力加速度为g ,求该卫星的轨道半径r 。
【答案】22324R gTr π= 【解析】 【分析】根据万有引力充当向心力即可求出轨道半径大小。
【详解】质量为m 的北斗地球同步卫星绕地球做匀速圆周运动,根据牛顿第二定律有:2224Mm G m r r Tπ=; 在地球表面:112Mm Gm g R= 联立解得:222332244GMT R gTr ππ==3.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr = 将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤ 代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算4.我国航天事业的了令世界瞩目的成就,其中嫦娥三号探测器与2013年12月2日凌晨1点30分在四川省西昌卫星发射中心发射,2013年12月6日傍晚17点53分,嫦娥三号成功实施近月制动顺利进入环月轨道,它绕月球运行的轨道可近似看作圆周,如图所示,设嫦娥三号运行的轨道半径为r ,周期为T ,月球半径为R .(1)嫦娥三号做匀速圆周运动的速度大小 (2)月球表面的重力加速度 (3)月球的第一宇宙速度多大.【答案】(1) 2r T π;(2) 23224r T R π;2324rT Rπ【解析】 【详解】(1)嫦娥三号做匀速圆周运动线速度:2rv r Tπω==(2)由重力等于万有引力:2GMmmg R= 对于嫦娥三号由万有引力等于向心力:2224GMm m rr T π=联立可得:23224r g T Rπ=(3)第一宇宙速度为沿月表运动的速度:22GMm mv mg R R== 可得月球的第一宇宙速度:2324r v gR T Rπ==5.我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L ,质量分别为M 1、M 2(万有引力常量为G)试计算:()1双星的轨道半径 ()2双星运动的周期.【答案】()2112121?M M L L M M M M ++,;()()122?2LL G M M π+;【解析】设行星转动的角速度为ω,周期为T .()1如图,对星球1M ,由向心力公式可得: 212112M M GM R ωL=同理对星2M ,有:212222M M G M R ωL= 两式相除得:1221R M (R M ,=即轨道半径与质量成反比) 又因为12L R R =+ 所以得:21121212M M R L R L M M M M ==++,()2有上式得到:()12G M M 1ωLL+=因为2πT ω=,所以有:()12L T 2πL G M M =+答:()1双星的轨道半径分别是211212M M L L M M M M ++,;()2双星的运行周期是()12L2πLG M M +点睛:双星靠相互间的万有引力提供向心力,抓住角速度相等,向心力相等求出轨道半径之比,进一步计算轨道半径大小;根据万有引力提供向心力计算出周期.6.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用7.设想若干年后宇航员登上了火星,他在火星表面将质量为m 的物体挂在竖直的轻质弹簧下端,静止时弹簧的伸长量为x ,已知弹簧的劲度系数为k ,火星的半径为R ,万有引力常量为G ,忽略火星自转的影响。
高中物理万有引力与航天专项训练及答案及解析.docx
![高中物理万有引力与航天专项训练及答案及解析.docx](https://img.taocdn.com/s3/m/e6f1c830a0116c175f0e48ed.png)
高中物理万有引力与航天专项训练及答案及解析一、高中物理精讲专题测试万有引力与航天1. 据每日邮报 2014 年 4 月 18 日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地 ”行星 .假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星 “北极 ”距该行星地面附近 h 处自由释放 -个小球 ( 引力视为恒力 ),落地时间为 t. 已知该行星半径为 R ,万有引力常量为 G ,求:1 2该行星的第一宇宙速度;该行星的平均密度.【答案】 12h R ?2 ? 3h. t 2 2 R2Gt【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求 M 出质量与运动的周期,再利用,从而即可求解.V【详解】1 根据自由落体运动求得星球表面的重力加速度h1 gt 22解得: g 2ht2则由 mgm v 2R求得:星球的第一宇宙速度vgR2h 2 R ,t2 由 GMm mg m2h R 2t 2有: M2hR 2Gt2所以星球的密度M3hV2Gt 2R【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2. 宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个星体的质量均为m,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为G,则 :(1)直线三星系统中星体做囿周运动的周期为多少?(2)三角形三星系统中每颗星做囿周运动的角速度为多少?L3( 2)3Gm【答案】( 1)435Gm L【解析】【分析】(1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期;(2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度;【详解】(1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则:Gm2Gm2m( 2 )2L(2 L)2L2TT 4L35Gm(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗Gm2L星,满足:2m (2)2 cos30cos30L解得:=3GmL33.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为,引力常量为,求:R G(1)该星球表面的重力加速度;(2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】 (1) g 2v0(2)3v0(3)2v0 R t2πRGtvt【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间2v0 tg可得星球表面重力加速度: g2v0.tGMm (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:mg R2gR22v0 R2得:MGtG4 R3因为V3M3v0则有:2πRGtV(3)重力提供向心力,故该星球的第一宇宙速度mg m v2Rv gR2v0Rt【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.4.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度 v0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t. 已知引力常量为G,月球的半径为 R,不考虑月球自转的影响,求:(1)月球表面的重力加速度大小g月;(2)月球的质量 M;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T.【答案】 (1)2v0; (2)2R2v0; (3)2Rt t Gt2v0【解析】【详解】(1) 小球在月球表面上做竖直上抛运动,有2v0 tg月月球表面的重力加速度大小g月2v 0t (2)假设月球表面一物体质量为m,有MmGR2=mg月月球的质量M 2R2v0 Gt(3) 飞船贴近月球表面做匀速圆周运动,有G Mmm22RR 2T飞船贴近月球表面绕月球做匀速圆周运动的周期T 2Rt2v 05. 一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为 r ,周期为 T ,引力常量为 G ,行星半径为求:(1)行星的质量 M ;(2)行星表面的重力加速度 g ;(3)行星的第一宇宙速度v .【答案】 (1) ( 2) ( 3)【解析】【详解】(1)设宇宙飞船的质量为 m ,根据万有引力定律求出行星质量(2)在行星表面求出 :(3)在行星表面求出 :【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.6. 如图所示, A 是地球的同步卫星.另一卫星B 的圆形轨道位于赤道平面内.已知地球自转角速度为0 ,地球质量为 M , B 离地心距离为 r ,万有引力常量为G , O 为地球中心,不考虑 A 和 B 之间的相互作用.(图中 R 、h 不是已知条件)(1)求卫星 A 的运行周期T A(2)求 B 做圆周运动的周期T B(3)如卫星 B 绕行方向与地球自转方向相同,某时刻A、B 两卫星相距最近(O、 B、 A 在同一直线上),则至少经过多长时间,它们再一次相距最近?2r3t2【答案】(1)T A(2) T B2( 3)GMGM r30【解析】【分析】【详解】(1) A 的周期与地球自转周期相同2T AGMm m(2)2 r(2)设 B 的质量为 m,对 B 由牛顿定律 :r 2T B解得:T Br 3 2GM(3) A、 B 再次相距最近时 B 比 A 多转了一圈,则有:(B0 ) t2t2GM解得:r 3点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第 3 问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.7.假设在月球上的“玉兔号”探测器,以初速度v0竖直向上抛出一个小球,经过时间t 小球落回抛出点,已知月球半径为R,引力常数为G.(1)求月球的密度.(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度至少为多大?3v02Rv0【答案】(1)( 2)2 GRt t【解析】【详解】(1) 由匀变速直线运动规律:v0gt 2所以月球表面的重力加速度g 2v0 t由月球表面,万有引力等于重力得GMmmg R2gR 2 MG月球的密度M3v0=2 GRtV2(2) 由月球表面,万有引力等于重力提供向心力:mg m vR2Rv0可得: vt8.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度v0竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求:(1)行星的半径R;(2)小石子能上升的最大高度.GM v02【答案】 (1) R =( 2)hg2g【解析】GMm(1)对行星表面的某物体,有:mg-2R得: R =GM g(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:0v022ghv02得: h2g9.“场”是除实物以外物质存在的另一种形式,是物质的一种形态.可以从力的角度和能量的角度来描述场.反映场力性质的物理量是场强.(1)真空中一个孤立的点电荷,电荷量为 +Q,静电力常量为 k,推导距离点电荷 r 处的电场强度E 的表达式.(2)地球周围存在引力场,假设地球是一个密度均匀的球体,质量为 M ,半径为 R ,引力常量为 G .a .请参考电场强度的定义,推导距离地心r 处(其中 r ≥R )的引力场强度E 引 的表达式.b .理论上已经证明:质量分布均匀的球壳对壳内物体的引力为零.推导距离地心r 处(其中 r <R )的引力场强度 E 引 的表达式.【答案】( 1)kQGM GMr2 ( 2) a . E 引r 2b . E 引R 3rE【解析】【详解】(1)由 EF , Fk qQ,得 EkQqr 2r 2(2) a .类比电场强度定义,E 引F 万 ,由 F 万GMm ,m r 2得 E 引 GMr2b .由于质量分布均匀的球壳对其内部的物体的引力为 0,当 r < R 时,距地心 r 处的引力场强是由半径为 r 的“地球 ”产生的.设半径为 r 的“地球 ”质量为 M r ,M r4 M4 r 3 r 3 M.R 33R 33得 E引GM r GM rr 2R 310. 2017 年 4 月 20 日 19 时 41 分天舟一号货运飞船在文昌航天发射中心由长征七号遥二运载火箭成功发射升空。
高考物理万有引力与航天题20套(带答案)含解析
![高考物理万有引力与航天题20套(带答案)含解析](https://img.taocdn.com/s3/m/22f18befa417866fb94a8e72.png)
高考物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.据每日邮报2014年4月18日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地”行星.假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星“北极”距该行星地面附近h 处自由释放-个小球(引力视为恒力),落地时间为.t 已知该行星半径为R ,万有引力常量为G ,求:()1该行星的第一宇宙速度; ()2该行星的平均密度.【答案】(()231 2?2hGt R π. 【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求出质量与运动的周期,再利用MVρ=,从而即可求解. 【详解】()1根据自由落体运动求得星球表面的重力加速度212h gt =解得:22h g t=则由2v mg m R=求得:星球的第一宇宙速度v ==()2由222Mm hG mg m Rt==有:222hR M Gt= 所以星球的密度232M h V Gt R ρπ== 【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(2)02V hR L (3)0()2()L R H R H T RV hπ++=【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R= 22022hv RM GL= (2)012v GMv RG hR R L===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:()()2L R H R H T Rv hπ++=3.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv t= 【解析】【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R 月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .4.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大?(3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】(1)2GMm R (23【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.5.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gt π;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.6.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12p m m E Gr=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不能超过多少?【答案】(1)3M 0c 2(2)23024r M GT π=;22GM R c '=【解析】 【分析】 【详解】(1)合并后的质量亏损000(2639)623m M M M ∆=+-=根据爱因斯坦质能方程2E mc ∆=∆得合并所释放的能量203E M c ∆=(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律20202Mm G m r r T π⎛⎫= ⎪⎝⎭解得23024r M GT π=b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律2102Mm mv G R ⎛⎫+-= ⎪⎝⎭解得22GM R v '=因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过22GM R c '=7.“嫦娥一号”探月卫星在空中的运动可简化为如图5所示的过程,卫星由地面发射后,经过发射轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道.已知卫星在停泊轨道和工作轨道运行的半径分别为R 和R 1,地球半径为r ,月球半径为r 1,地球表面重力加速度为g ,月球表面重力加速度为.求: (1)卫星在停泊轨道上运行的线速度大小; (2)卫星在工作轨道上运行的周期.【答案】(1) (2)【解析】(1)卫星停泊轨道是绕地球运行时,根据万有引力提供向心力:解得:卫星在停泊轨道上运行的线速度;物体在地球表面上,有,得到黄金代换,代入解得; (2)卫星在工作轨道是绕月球运行,根据万有引力提供向心力有,在月球表面上,有,得,联立解得:卫星在工作轨道上运行的周期.8.宇航员王亚平在“天宫一号”飞船内进行了我国首次太空授课.若已知飞船绕地球做匀速圆周运动的周期为T ,地球半径为R ,地球表面重力加速度g ,求: (1)地球的第一宇宙速度v ; (2)飞船离地面的高度h . 【答案】(1)v gR =(2)22324gR T h R π= 【解析】 【详解】(1)根据2v mg m R=得地球的第一宇宙速度为:v gR =.(2)根据万有引力提供向心力有:()2224()Mm G m R h R h Tπ=++, 又2GM gR =, 解得:22324gR T h R π=- .9.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。
(物理)物理万有引力与航天练习题含答案含解析
![(物理)物理万有引力与航天练习题含答案含解析](https://img.taocdn.com/s3/m/d2203312d0d233d4b04e694a.png)
(物理)物理万有引力与航天练习题含答案含解析一、高中物理精讲专题测试万有引力与航天1.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv t= 【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R t月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .2.如图所示是一种测量重力加速度g 的装置。
在某星球上,将真空长直管沿竖直方向放置,管内小球以某一初速度自O 点竖直上抛,经t 时间上升到最高点,OP 间的距离为h ,已知引力常量为G ,星球的半径为R ;求:(1)该星球表面的重力加速度g ; (2)该星球的质量M ; (3)该星球的第一宇宙速度v 1。
【答案】(1)22hg t= (2)222hR Gt (32hR【解析】(1)由竖直上抛运动规律得:t 上=t 下=t由自由落体运动规律: 212h gt = 22h g t=(2)在地表附近: 2MmGmg R= 2222gR hR M G Gt== (3)由万有引力提供卫星圆周运动向心力得: 212v Mm G m R R=12GMhRv R t== 点睛:本题借助于竖直上抛求解重力加速度,并利用地球表面的重力与万有引力的关系求星球的质量。
高一物理万有引力与航天试题答案及解析
![高一物理万有引力与航天试题答案及解析](https://img.taocdn.com/s3/m/58ff705b3a3567ec102de2bd960590c69ec3d8ec.png)
高一物理万有引力与航天试题答案及解析1.把太阳系各行星的运动近似看做匀速圆周运动,则离太阳越远的行星A.周期越大B.线速度越小C.角速度越大D.加速度越小【答案】A【解析】设太阳的质量为M,行星的质量为m,轨道半径为r.行星绕太阳做圆周运动,万有引力提供向心力,则由牛顿第二定律得:G=m,G=mω2r,G=ma,解得:v=,ω=,a=,周期T==2π,可知,行星离太远越近,轨道半径r越小,则周期T越小,线速度、角速度、向心加速度越大,故BCD错误;故选:A.2.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图所示。
则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的角速度小于在轨道1上的角速度C.卫星在轨道1上运动一周的时间小于于它在轨道2上运动一周的时间D.卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度【答案】BCD【解析】根据公式,解得,即轨道半径越大,线速度越小,A错误;根据公式可得,即轨道半径越大,角速度越小,故B正确;根据开普勒第三定律可得轨道半径或半长轴越大,运动周期越大,故卫星在轨道1上运动一周的时间小于它在轨道2上运动一周的时间,故C正确;在轨道2和3上经过P点时卫星到地球的距离相等,根据,可得,半径相同,即加速度相等,D正确。
3.关于第一宇宙速度,下列说法正确的是A.它是人造地球卫星绕地球飞行的最小速度B.它是同步卫星的运行速度C.它是使卫星进入近地圆轨道的最大发射速度D.它是人造卫星在圆形轨道的最大运行速度【答案】D【解析】第一宇宙速度又称为环绕速度,是指在地球上发射的物体绕地球飞行作圆周运动所需的最小发射速度,为环绕地球运动的卫星的最大速度,即近地卫星的环绕速度,同步卫星轨道要比近地卫星的大,所以运行速度小于该速度,故D正确。
高中物理万有引力与航天题20套(带答案)含解析
![高中物理万有引力与航天题20套(带答案)含解析](https://img.taocdn.com/s3/m/f96eb75016fc700abb68fca2.png)
高中物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”. 【答案】(1)02v g t = (2) 032πv RGt ρ=(3)02v Rv t= 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度02v Rv gR t==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.2.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)(3)【解析】【详解】(1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量 (2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.3.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) 02v R h【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度02R v g R v h=='4.我国预计于2022年建成自己的空间站。
专题6 万有引力与航天(解析版)
![专题6 万有引力与航天(解析版)](https://img.taocdn.com/s3/m/36a08bc8846a561252d380eb6294dd88d0d23df9.png)
专题6 万有引力与航天一.选择题1. (2021新高考福建)两位科学家因为在银河系中心发现了一个超大质量的致密天体而获得了2020年诺贝尔物理学奖.他们对一颗靠近银河系中心的恒星2S 的位置变化进行了持续观测,记录到的2S 的椭圆轨道如图所示.图中O 为椭圆的一个焦点,椭圆偏心率(离心率)约为0.87.P 、Q 分别为轨道的远银心点和近银心点,Q 与O 的距离约为120AU (太阳到地球的距离为1AU ),2S 的运行周期约为16年.假设2S 的运动轨迹主要受银河系中心致密天体的万有引力影响,根据上述数据及日常的天文知识,可以推出A.2S 与银河系中心致密天体的质量之比B.银河系中心致密天体与太阳的质量之比C.2S 在P 点与Q 点的速度大小之比D.2S 在P 点与Q 点的加速度大小之比【答案】B D【解析】设银河系中心超大质量的致密天体质量为M 银心,恒星2S 绕银河系中心(银心)做椭圆轨道运动的椭圆半长轴为a ,半焦距为c ,根据题述Q 与O 的距离约为120AU ,可得a-c=120AU ,又有椭圆偏心率(离心率)约为c/a=0.87.联立可以解得a 和c ,设想恒星S2绕银心做半径为a 的匀速圆周运动,由开普勒第三定律可知周期也为TS2,因此G 22S M m a 银心=mS2a (22S T π)2,对地球围绕太阳运动,有G 2M m r 太阳地=m 地a (12T π)2,而a=120r ,TS2=16T1,联立可解得银河系中心致密天体与太阳的质量之比,不能得出2S 与银河系中心致密天体的质量之比,选项A 错误B 正确;由于远银心点和近银心点轨迹的曲率半径相同,设为ρ,恒星S2在远银心点,由万有引力提供向心力,G()22S M m a c +银心=mS22Pv ρ,在近银心点由万有引力提供向心力,G()22S M m a c -银心=mS22Qv ρ,联立可解得2S 在P 点与Q 点的速度大小之比为P Qv v =a ca c -+,选项C 正确;在远银心点和近银心点,由万有引力定律和牛顿第二定律,分别有G()22S M m a c +银心=mS2aP ,G()22S M m a c -银心=mS2aQ ,联立可解得2S 在P 点与Q 点的加速度大小之比为P Qa a =()()22a c a c -+,选项D 正确。
物理万有引力与航天题20套(带答案)及解析
![物理万有引力与航天题20套(带答案)及解析](https://img.taocdn.com/s3/m/233d1699b52acfc788ebc991.png)
物理万有引力与航天题20套(带答案)及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,A是地球的同步卫星,另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.(1)求卫星B的运行周期.(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?【答案】(1)32()2BRhTgRp+= (2)23()tgRR hω=-+【解析】【详解】(1)由万有引力定律和向心力公式得()()2224BMmG m R hTR hπ=++①,2MmG mgR=②联立①②解得:()322BR hTR gπ+=③(2)由题意得()02Btωωπ-=④,由③得()23BgRR hω=+⑤代入④得()23tR gR hω=-+2.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡上另一点Q,斜面的倾角为α,已知该星球半径为R,万有引力常量为G,求:(1)该星球表面的重力加速度;(2)该星球的密度; (3)该星球的第一宇宙速度v ;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;;(4)2【解析】 【分析】 【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tan α2gt y gt x v t v ===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R= 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:v ===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:22T π==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.3.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gtπ;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.4.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。
高中物理《万有引力与航天》练习题(附答案解析)
![高中物理《万有引力与航天》练习题(附答案解析)](https://img.taocdn.com/s3/m/edda4144a55177232f60ddccda38376bae1fe04e.png)
高中物理《万有引力与航天》练习题(附答案解析)学校:___________姓名:___________班级:_________一、单选题1.如图所示,两球间的距离为r ,两球的质量分布均匀,质量大小分别为m 1、m 2,半径大小分别为r 1、r 2,则两球间的万有引力大小为( )A .122m m Gr B .2212221m m G r r r ++C .12212()m m G r r +D .12212()m m Gr r r ++2.2021年5月15日,我国首次火星探测任务天问一号探测器在火星乌托邦平原南部预选着陆区成功软着陆。
用h 表示着陆器与火星表面的距离,用F 表示它所受的火星引力大小,则在着陆器从火星上空向火星表面软着陆的过程中,能够描述F 随h 变化关系的大致图像是( )A .B .C .D .3.发现万有引力定律和测出引力常量的科学家分别是( ) A .牛顿、卡文迪许 B .开普勒、卡文迪许 C .开普勒、库仑D .牛顿、库仑4.经典力学有一定的局限性。
当物体以下列速度运动时,经典力学不再适用的是( ) A .32.910m/s -⨯ B .02.910m/s ⨯ C .42.910m/s ⨯ D .82.910m/s ⨯5.有a 、b 、c 、d 四颗地球卫星,a 还未发射,在地球赤道上随地球一起转动,b 在近地轨道做匀速圆周运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图所示。
关于这四颗卫星,下列说法正确的是( )A .a 的向心加速度等于重力加速度g B .c 在4 h 内转过的圆心角是6C .在相同时间内,这四颗卫星中b 转过的弧长最长D .d 做圆周运动的周期有可能是20小时6.2019年10月28日发生了天王星冲日现象,即太阳、地球、天王星处于同一直线,此时是观察天王星的最佳时间。
已知日地距离为0R ,天王星和地球的公转周期分别为T 和0T ,则天王星与太阳的距离为( )A 0B 0C 0D 07.如图所示,两颗人造卫星绕地球逆时针运动,卫星1、卫星2分别沿圆轨道、椭圆轨道运动,圆的半径与椭圆的半长轴相等,两轨道相交于A 、B 两点,某时刻两卫星与地球在同一直线上,如图所示,下列说法中正确的是( )A .两卫星在图示位置的速度v 1<v 2B .两卫星在A 处的加速度大小不相等C .两颗卫星可能在A 或B 点处相遇D .两卫星永远不可能相遇8.我们的银河系的恒星中大约四分之一是双星。
高中物理万有引力与航天题20套(带答案)含解析
![高中物理万有引力与航天题20套(带答案)含解析](https://img.taocdn.com/s3/m/6dc221974a7302768e9939ca.png)
高中物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加速度为g ,月球的半径为R ,轨道舱到月球中心的距离为r ,引力常量为G ,不考虑月球的自转.求:(1)月球的质量M ;(2)轨道舱绕月飞行的周期T .【答案】(1)GgR M 2=(2)2r rT R gπ=【解析】 【分析】月球表面上质量为m 1的物体,根据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞行的周期; 【详解】解:(1)设月球表面上质量为m 1的物体,其在月球表面有:112Mm Gm g R = 112Mm G m g R = 月球质量:GgR M 2=(2)轨道舱绕月球做圆周运动,设轨道舱的质量为m由牛顿运动定律得: 22Mm 2πG m r r T ⎛⎫= ⎪⎝⎭222()Mm G m rr T π= 解得:2rr T R gπ=2.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .(1)求静止轨道卫星的角速度ω;(2)求静止轨道卫星距离地面的高度h1;(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T,距离地面的高度为h2.视地球为质量分布均匀的正球体,请比较h1和h2的大小,并说出你的理由.【答案】(1)2π=T ω;(2)2312=4GMTh Rπ-(3)h1= h2【解析】【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度;(2)根据万有引力提供向心力可以求出静止轨道到地面的高度;(3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度;【详解】(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=Tω(2)静止轨道卫星做圆周运动,由牛顿运动定律有:21212π=()()()MmG m R hR h T++解得:2312=4πGMTh R-(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T,根据牛顿运动定律,22222=()()()MmG m R hR h Tπ++解得:23224GMTh Rπ因此h1= h2.故本题答案是:(1)2π=T ω;(2)1h R (3)h 1= h 2 【点睛】对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.3.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR ,解得该星球的第一宇宙速度为:v ==4.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有2MmGmg R = 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m 【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.5.如图所示是一种测量重力加速度g 的装置。
高考物理万有引力与航天试题(有答案和解析)及解析
![高考物理万有引力与航天试题(有答案和解析)及解析](https://img.taocdn.com/s3/m/e91c8e2e65ce0508763213fb.png)
高考物理万有引力与航天试题(有答案和解析)及解析一、高中物理精讲专题测试万有引力与航天1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】(1)02v g t = (2) 032πv RGt ρ=(3)v = 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度02v Rv gR t==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.3.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv =【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R 月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .4.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT +=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT +=. 联立得()2πR H R HV TR++=5.我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v ,已知万有引力常量为G ,月球半径为R ,h R <<,忽略月球自转,求: (1)月球表面的重力加速度0g ; (2)月球的质量M ;(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1至少为多大?【答案】(1)202v g h =(2)222v R M hG =(3)212v R v h= 【解析】(1)根据自由落体运动规律202v g h =,解得202v g h=(2)在月球表面,设探测器的质量为m ,万有引力等于重力,02MmGmg R =,解得月球质量222v R M hG=(3)设小球质量为'm ,抛出时的速度1v 即为小球做圆周运动的环绕速度万有引力提供向心力212''v Mm G m R R =,解得小球速度至少为212v Rv h=6.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。
高中物理万有引力与航天练习题及答案
![高中物理万有引力与航天练习题及答案](https://img.taocdn.com/s3/m/87875b40a58da0116d174946.png)
高中物理万有引力与航天练习题及答案一、高中物理精讲专题测试万有引力与航天1.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:(1)该星球表面的重力加速度; (2)该星球的质量。
【答案】(1)02tan v g t θ=(2)202tan v R Gtθ【解析】 【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度;根据万有引力等于重力求出星球的质量; 【详解】(1)根据平抛运动知识可得200122gt y gt tan x v t v α===解得02v tan g tα=(2)根据万有引力等于重力,则有2GMmmg R = 解得2202v R tan gR M G Gtα==2.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .(1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1;(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.【答案】(1)2π=T ω;(2)2312=4GMT h R π- (3)h 1= h 2 【解析】 【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=Tω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:21212π=()()()Mm Gm R h R h T++ 解得:2312=4πGMTh R -(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,22222=()()()Mm Gm R h R h Tπ++ 解得:23224GMTh R π因此h 1= h 2.故本题答案是:(1)2π=T ω;(2)2312=4GMTh R π- (3)h 1= h 2 【点睛】对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.3.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R= 3310m/s v gR ==⨯4.地球同步卫星,在通讯、导航等方面起到重要作用。
高中物理万有引力与航天试题(有答案和解析)及解析
![高中物理万有引力与航天试题(有答案和解析)及解析](https://img.taocdn.com/s3/m/ce76d01cec3a87c24128c410.png)
由以上各式得, r
m1 m2 m2
r1 ①
由万有引力定律得
FA
G
m1m2 r2
将①代入得 FA G
m1m23 m1 m2
r12
令
FA
G
m1m ' r12
,比较可得
m'
m23 m1 m2
2
②
(2)由牛顿第二定律有: G
m1m ' r12
m1
v2 r1
③
又可见星的轨道半径 r1
vT 2
④
求出行星质量
(2)在行星表面
求出:
(3)在行星表面
求出: 【点睛】 本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.
4.我国科学家正在研究设计返回式月球软着陆器,计划在 2030 年前后实现航天员登月,
对月球进行科学探测。宇航员在月球上着陆后,自高 h 处以初速度 v0 水平抛出小球,测量 出小球的水平射程为 L(这时月球表面可以看成是平坦的),已知月球半径为 R,万有引力常
联立可得
3 GT 2
5.我国首个月球探测计划“嫦娥工程”将分三个阶段实施,大约用十年左右时间完成,这极
大地提高了同学们对月球的关注程度.以下是某同学就有关月球的知识设计的两个问题,
请你解答:
(1)若已知地球半径为 R,地球表面的重力加速度为 g,月球绕地球运动的周期为 T,且
把月球绕地球的运动近似看做是匀速圆周运动.试求出月球绕地球运动的轨道半径.
由②③④得 m1
m23
m2 2
v3T 2 G
(3)将 m1
6ms 代入
m23 m1 m2
2
v3T 2 G
高中物理万有引力与航天专题训练答案及解析.docx
![高中物理万有引力与航天专题训练答案及解析.docx](https://img.taocdn.com/s3/m/9c0842ddddccda38376bafec.png)
高中物理万有引力与航天专题训练答案及解析一、高中物理精讲专题测试万有引力与航天1. 如图所示,质量分别为m 和 M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在 O 的两侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ;(2)两星球做圆周运动的周期.M L, r= m L,( 2) 2πL 3【答案】 (1) R=m Mm MG M m【解析】(1)令 A 星的轨道半径为R , B 星的轨道半径为 r ,则由题意有 L r R两星做圆周运动时的向心力由万有引力提供,则有:GmM 4 2 4 2L 2mR2Mr2TT 可得 R =M,又因为 LR rrm所以可以解得: M L , rm L ;RMmMm(2)根据( 1)可以得到 : GmM4 2 4 2ML 2m2 Rm2MLTTm4 2L32L 3则: Tm GG m MM点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径 .2. 载人登月计划是我国的 “探月工程 ”计划中实质性的目标.假设宇航员登上月球后,以初速度 v 0 竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为 t. 已知引力常量为G ,月球的半径为 R ,不考虑月球自转的影响,求: (1) 月球表面的重力加速度大小g 月 ;(2) 月球的质量 M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T.2v 0 ; (2) 2R 2v 0 Rt【答案】 (1)Gt; (3) 2t 2v 0【解析】【详解】2v 0(1) 小球在月球表面上做竖直上抛运动,有tg 月月球表面的重力加速度大小g 月 2v 0t(2) 假设月球表面一物体质量为m ,有MmGR2=mg月月球的质量M2R 2v 0Gt(3) 飞船贴近月球表面做匀速圆周运动,有G Mmm22RR 2T飞船贴近月球表面绕月球做匀速圆周运动的周期T 2Rt2v 03.“嫦娥一号 ”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知 “嫦娥一号 ”绕月飞行轨道近似为圆形,距月球表面高度为 H ,飞行周期为 T ,月球的半径为R ,引力常量为 G .求:(1) 嫦“娥一号 ”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大.【答案】 (1)2 RH ( 2) 4 2R H32 R HR H ( 3) TGT 2TR【解析】( 1) “嫦娥一号 ”绕月飞行时的线速度大小 v 12π(R H ).T( 2 )设月球质量为M .“嫦娥一号”的质量为 m.2根据牛二定律得 G Mm m 4π (R H )(R H )2T 223解得 M4π (R H ).GT 2( 3)设绕月飞船运行的线速度为Mm0V2 V ,飞船质量为 m0,则G2m0又R R23 M4π (R 2 H ) .GT联立得 V 2π R H R H T R4.经过逾 6 个月的飞行,质量为 40kg 的洞察号火星探测器终于在北京时间2018 年 11 月27 日 03: 56 在火星安全着陆。
高中物理万有引力与航天(解析版)
![高中物理万有引力与航天(解析版)](https://img.taocdn.com/s3/m/c71e9ad7dd36a32d72758192.png)
A.核心舱进入轨道后所受地球的万有引力大小约为它在地面时的 倍
【答案】BC
14.2016年8月16日1时40分,我国在酒泉卫星发射中心成功将世界首颗量子卫星“墨子号”发射升空,在距离地面h高度的轨道上运行。设火箭在点火后时间t内竖直向上匀加速飞行,速度增大到v,起飞质量为m,忽略时间t内火箭的质量变化,不考虑空气阻力,重力加速度为g,引力常量为G,地球半径为R,下列说法正确的是()。
A.M与N的密度相等
B.Q的质量是P的3倍
C.Q下落过程中的最大动能是P的4倍
D.Q下落过程中弹簧的最大压缩量是P的4倍
【答案】AC
【解析】A、由a–x图象可知,加速度沿竖直向下方向为正方向,根据牛顿第二定律有: ,变形式为: ,该图象的斜率为 ,纵轴截距为重力加速度 。根据图象的纵轴截距可知,两星球表面的重力加速度之比为: ;又因为在某星球表面上的物体,所受重力和万有引力相等,即: ,即该星球的质量 。又因为: ,联立得 。故两星球的密度之比为: ,故A正确;B、当物体在弹簧上运动过程中,加速度为0的一瞬间,其所受弹力和重力二力平衡, ,即: ;结合a–x图象可知,当物体P和物体Q分别处于平衡位置时,弹簧的压缩量之比为: ,故物体P和物体Q的质量之比为: ,故B错误;C、物体P和物体Q分别处于各自的平衡位置(a=0)时,它们的动能最大;根据 ,结合a–x图象面积的物理意义可知:物体P的最大速度满足 ,物体Q的最大速度满足: ,则两物体的最大动能之比: ,C正确;D、物体P和物体Q分别在弹簧上做简谐运动,由平衡位置(a=0)可知,物体P和Q振动的振幅A分别为 和 ,即物体P所在弹簧最大压缩量为2 ,物体Q所在弹簧最大压缩量为4 ,则Q下落过程中,弹簧最大压缩量时P物体最大压缩量的2倍,D错误;故本题选AC。
高中物理万有引力与航天练习题及答案及解析
![高中物理万有引力与航天练习题及答案及解析](https://img.taocdn.com/s3/m/3ffd09723a3567ec102de2bd960590c69ec3d8b7.png)
高中物理万有引力与航天练习题及答案及解析1. 有两个质量分别为$m_1$ 和$m_2$ 的物体,它们的质心距离为$r$,求它们之间的引力大小。
答案:$F = G \frac{m_1 m_2}{r^2}$。
2. 一个质量为$m$ 的物体在距离地球表面高度为$h$ 的地方,求它所受的重力大小。
答案:$F = \frac{G M m}{(R+h)^2}$,其中$M$ 是地球的质量,$R$ 是地球的半径。
3. 地球的质量为$M$,半径为$R$,一个质量为$m$ 的物体在距离地心距离为$r$ 的地方,求它所受的重力大小。
答案:$F = \frac{G M m}{r^2}$。
4. 两个质量分别为$m_1$ 和$m_2$ 的物体,它们的距离为$r$,求它们之间的引力大小,如果它们的距离变为原来的$2r$,它们之间的引力会发生什么变化?答案:$F_1 = G \frac{m_1 m_2}{r^2}$,$F_2 = G \frac{m_1 m_2}{(2r)^2} = \frac{1}{4} F_1$。
引力大小变为原来的$\frac{1}{4}$。
5. 一个质量为$m$ 的物体在距离地球表面高度为$h$ 的地方,它的速度为$v$,求它的动能和势能。
答案:动能$K = \frac{1}{2} m v^2$,势能$U = -\frac{G M m}{R+h}$。
6. 一个质量为$m$ 的物体以速度$v$ 从地球表面垂直向上发射,求它的最大高度和离开地球的速度。
答案:最大高度$h = \frac{R}{1+\frac{v^2}{2gR}}$,离开地球的速度$v' = v \sqrt{\frac{2R}{R+h}}$,其中$g$ 是重力加速度,$R$ 是地球的半径。
7. 如果地球的质量和半径各增加一倍,一个质量为$m$ 的物体在距离地球表面高度为$h$ 的地方,它所受的重力会发生什么变化?答案:重力大小不变。
8. 如果地球的质量和半径各增加一倍,一个质量为$m$ 的物体在距离地心距离为$r$ 的地方,它所受的重力会发生什么变化?答案:重力大小变为原来的$\frac{1}{4}$。
(物理)物理万有引力与航天练习题含答案及解析
![(物理)物理万有引力与航天练习题含答案及解析](https://img.taocdn.com/s3/m/b190e186a300a6c30d229f96.png)
(物理)物理万有引力与航天练习题含答案及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加速度为g ,月球的半径为R ,轨道舱到月球中心的距离为r ,引力常量为G ,不考虑月球的自转.求:(1)月球的质量M ;(2)轨道舱绕月飞行的周期T .【答案】(1)GgR M 2=(2)2r rT R gπ=【解析】 【分析】月球表面上质量为m 1的物体,根据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞行的周期; 【详解】解:(1)设月球表面上质量为m 1的物体,其在月球表面有:112Mm Gm g R = 112Mm G m g R = 月球质量:GgR M 2=(2)轨道舱绕月球做圆周运动,设轨道舱的质量为m由牛顿运动定律得: 22Mm 2πG m r r T ⎛⎫= ⎪⎝⎭222()Mm G m rr T π= 解得:2rr T R gπ=2.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3μ=,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11226.6710N?m /kg G -=⨯,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】26/g m s =,【解析】 【分析】 【详解】(1)对物块受力分析如图所示;假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有:211111sin 02F s fs mgs mv θ--=- N mgcos θ= f N μ=小物块在力F 2作用过程中有:222221sin 02F s fs mgs mv θ---=-由题图可知:1122156?3?6?F N s m F N s m ====,;, 整理可以得到: (2)根据万有引力等于重力:,则:,,代入数据得3.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:(1)该星球表面的重力加速度; (2)该星球的密度; (3)该星球的第一宇宙速度v ;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;02tanav R t;(4)02tan Rt v α【解析】 【分析】 【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tan α2gt y gt x v t v ===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R= 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:02tana v R GMv gR R t===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:0022tan αtan t RtT Rv R v ππα==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.4.某双星系统中两个星体 A 、B 的质量都是 m ,且 A 、B 相距 L ,它们正围绕两者连线上的某一点做匀速圆周运动.实际观测该系统的周期 T 要小于按照力学理论计算出的周期理论值 T 0,且= k () ,于是有人猜测这可能是受到了一颗未发现的星体 C 的影响,并认为 C 位于双星 A 、B 的连线中点.求: (1)两个星体 A 、B 组成的双星系统周期理论值; (2)星体C 的质量.【答案】(1);(2)【解析】 【详解】(1)两星的角速度相同,根据万有引力充当向心力知:可得:两星绕连线的中点转动,则解得:(2)因为C 的存在,双星的向心力由两个力的合力提供,则再结合:= k可解得:故本题答案是:(1);(2)【点睛】本题是双星问题,要抓住双星系统的条件:角速度与周期相同,再由万有引力充当向心力进行列式计算即可.5.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。
五年2024_2025高考物理真题专题点拨__专题05万有引力定律与航天含解析
![五年2024_2025高考物理真题专题点拨__专题05万有引力定律与航天含解析](https://img.taocdn.com/s3/m/6b0876b4b9f67c1cfad6195f312b3169a551ea11.png)
专题05 万有引力定律与航天【2024年】1.(2024·新课标Ⅰ)火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( )A. 0.2B. 0.4C. 2.0D. 2.5【答案】B【解析】设物体质量为m ,则在火星表面有1121M mF GR 在地球表面有2222M mF GR 由题意知有12110M M 1212R R = 故联立以上公式可得21122221140.4101F M R F M R ==⨯=,故选B 。
2.(2024·新课标Ⅱ)若一匀称球形星体的密度为ρ,引力常量为G ,则在该星体表面旁边沿圆轨道绕其运动的卫星的周期是()D.【答案】A【解析】卫星在星体表面旁边绕其做圆周运动,则2224GMm m R R T, 343V R π= ,M Vρ=知卫星该星体表面旁边沿圆轨道绕其运动的卫星的周期T =3.(2024·新课标Ⅲ)“嫦娥四号”探测器于2024年1月在月球背面胜利着陆,着陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径的K 倍。
已知地球半径R 是月球半径的P 倍,地球质量是月球质量的Q 倍,地球表面重力加速度大小为g 。
则“嫦娥四号”绕月球做圆周运动的速率为( )A.RKgQPB.RPKgQC.RQgKPD.RPgQK【答案】D【解析】假设在地球表面和月球表面上分别放置质量为m 和m 0的两个物体,则在地球和月球表面处,分别有2Mm Gmg R =,002M m QG m g R P '=⎛⎫⎪⎝⎭解得2P g g Q'= 设嫦娥四号卫星的质量为m 1,依据万有引力供应向心力得1212Mm v QG m R R KK P P =⎛⎫ ⎪⎝⎭解得RPgv QK=,故选D 。
4.(2024·浙江卷)火星探测任务“天问一号”的标识如图所示。
高中物理万有引力与航天及其解题技巧及练习题(含答案)含解析
![高中物理万有引力与航天及其解题技巧及练习题(含答案)含解析](https://img.taocdn.com/s3/m/e0e0aa5f8bd63186bcebbcc5.png)
高中物理万有引力与航天及其解题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力与航天1.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMm mv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.2.从在某星球表面一倾角为θ的山坡上以初速度v 0平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R ,一切阻力不计,引力常量为G ,求: (1)该星球表面的重力加速度的大小g (2)该星球的质量M .【答案】(1) 02tan v t θ (2) 202tan v R Gtθ【解析】 【分析】(1)物体做平抛运动,应用平抛运动规律可以求出重力加速度.(2)物体在小球的表面受到的万有引力等于物体的重力,由此即可求出. 【详解】(1)物体做平抛运动,水平方向:0x v t =,竖直方向:212y gt = 由几何关系可知:02y gt tan x v θ== 解得:02v g tan tθ=(2)星球表面的物体受到的重力等于万有引力,即:2MmGmg R = 可得:2202v R tan gR M G Gtθ==【点睛】本题是一道万有引力定律应用与运动学相结合的综合题,考查了求重力加速度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律可以解题;解题时要注意“黄金代换”的应用.3.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) v 【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度v v ==4.宇航员站在一星球表面上的某高处,沿水平方向抛出一小球.经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L .若抛出时的初速度增大到2倍,则抛出点.已知两落地点在同一水平面上,该星球的半径为R ,万有引力常量为G ,求该星球的质量M .【答案】M = 【解析】 【详解】两次平抛运动,竖直方向212h gt =,水平方向0x v t =,根据勾股定理可得:2220()L h v t -=,抛出速度变为2倍:2220)(2)h v t -=,联立解得:h =,g =,在星球表面:2Mm G mg R =,解得:2M =5.我国的火星探测器计划于2020年前后发射,进行对火星的科学研究.假设探测器到了火星上空,绕火星做匀速圆周运动,并测出探测器距火星表面的距离为h ,以及其绕行周期T 和绕行速率V ,不计其它天体对探测器的影响,引力常量为G ,求: (1)火星的质量M .(2)若4TVh π=,求火星表面的重力加速度g 火大小. 【答案】(1)32TV M Gπ= (2)8=V g T π火【解析】(1)设探测器绕行的半径为r ,则:2rT Vπ= 得:2TVr π=设探测器的质量为m ,由万有引力提供向心力得:22GMm V m r r = 得:32TV M Gπ=(2)设火星半径为R ,则有r R h =+ 又4TV h π=得:4TVR π= 火星表面根据黄金代换公式有:2=GMg R火 得:8=Vg Tπ火 【点睛】(1)根据周期与线速度的关系求出半径,再根据万有引力提供向心力求解火星质量;(2)根据黄金代换公式可以求出.6.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设该星球质量M,对该星球表现质量为m1的物体有 ,解得
由 ,得:
6.在月球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t落回抛出点,已知该月球半径为R,万有引力常量为G,月球质量分布均匀。求:
(1)月球的密度;
(2)月球的第一宇宙速度。
【答案】(1) (2)
【解析】
【详解】
(1)根据竖直上抛运动的特点可知:
所以:g=
设月球的半径为R,月球的质量为M,则:
体积与质量的关系:
联立得:
(2)由万有引力提供向心力得
解得;
综上所述本题答案是:(1) (2)
【点睛】
会利用万有引力定律提供向心力求中心天体的密度,并知道第一宇宙速度等于 。
7.我国的火星探测器计划于2020年前后发射,进行对火星的科学研究.假设探测器到了火星上空,绕火星做匀速圆周运动,并测出探测器距火星表面的距离为h,以及其绕行周期T和绕行速率V,不计其它天体对探测器的影响,引力常量为G,求:
(2)根据黄金代换公式可以求出.
8.假设在月球上的“玉兔号”探测器,以初速度v0竖直向上抛出一个小球,经过时间t小球落回抛出点,已知月球半径为R,引力常数为G.
(1)求月球的密度.
(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度至少为多大?
【答案】(1) (2)
【解析】
【详解】
(1)由匀变速直线运动规律:
(1)火星表面重力加速度的大小;
(2)火箭助推器对洞察号作用力的大小.
【答案】(1) (2)F=260N
【解析】
【分析】
火星表面或地球表面的万有引力等于重力,列式可求解火星表面的重力加速度;根据运动公式求解下落的加速度,然后根据牛顿第二定律求解火箭助推器对洞察号作用力.
【详解】
(1)设火星表面的重力加速度为g火,则
2.土星是太阳系最大的行星,也是一个气态巨行星。图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋 大红斑 ,假设朱诺号绕土星做匀速圆周运动,距离土星表面高度为h。土星视为球体,已知土星质量为M,半径为R,万有引力常量为 求:
土星表面的重力加速度g;
朱诺号的运行速度v;
朱诺号的运行周期T。
(1)该星球表面的重力加速度的大小g
(2)该星球的质量M.
【答案】(1) (2)
【解析】
【分析】
(1)物体做平抛运动,应用平抛运动规律可以求出重力加速度.(2)物体在小球的表面受到的万有引力等于物体的重力,由此即可求出.
【详解】
(1)物体做平抛运动,水平方向: ,竖直方向:
由几何关系可知:
解得:
(2)星球表面的物体受到的重力等于万有引力,即:
(2)此高度的数值为多少?(保留3位有效数字)
【答案】(1) (2)h=8.41×107m
【解析】
试题分析:(1)万有引力提供向心力,则
解得:
(2)将(1)中结果代入数据有h=8.41×107m
考点:考查了万有引力定律的应用
10.航天专家叶建培透露,中国将在2020年发射火星探测器,次年登陆火星.中国火星探测系统由环绕器和着陆巡视器组成.环绕器环绕火星的运动可看作匀速圆周运动,它距火星表面的高度为h,火星半径为R,引力常量为G.
解得g火=0.4g=4m/s2
(2)着陆下降的高度:h=h1-h2=700m,设该过程的加速度为a,则v22-v12=2ah
由牛顿第二定律:mg火-F=ma
解得F=260N
4.从在某星球表面一倾角为 的山坡上以初速度v0平抛一物体,经时间t该物体落到山坡上.已知该星球的半径为R,一切阻力不计,引力常量为G,求:
(1)火星的质量M.
(2)若 ,求火星表面的重力加速度g火大小.
【答案】(1) (2)
【解析】
(1)设探测器绕行的半径为r,则:
得:
设探测器的质量为m,由万有引力提供向心力得:
得:
(2)设火星半径为R,则有
又 得:
火星表面根据黄金代换公式有:
得:
【点睛】(1)根据周期与线速度的关系求出半径,再根据万有引力提供向心力求解火星质量;
【详解】
(1)月球表面附近的物体做自由落体运动h= g月t2
月球表面的自由落体加速度大小g月=
(2)若不考虑月球自转的影响G =mg月
月球的质量
质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m′g月=m′
月球的“第一宇宙速度”大小
【点睛】
结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v.
可得:
【点睛】
本题是一道万有引力定律应用与运动学相结合的综合题,考查了求重力加速度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律可以解题;解题时要注意“黄金代换”的应用.
5.宇航员站在某质量分布均匀的星球表面一斜坡上P点,沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡另一点Q上,斜坡的倾角α,已知该星球的半径为R,引力常量为G,求该星球的密度(已知球的体积公式是V= πR3).
(2)若不考虑月球自转的影响,求月球的质量M和月球的“第一宇宙速度”大小v.
【答案】(1) (2) ;
【解析】
【分析】
(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;
(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小.
高中物理万有引力与航天试题(有答案和解析)
一、高中物理精讲专题测试万有引力与航天
1.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤 是从高度为h处下落,经时间t落到月球表面.已知引力常量为G,月球的半径为R.
(1)求月球表面的自由落体加速度大小g月;
火星密度 ③,由①②③解得 ;
(2)根据万有引力提供向心力公式得:
解得: .
【答案】
【解析】
【分析】
土星表面的重力等于万有引力可求得重力加速度;由万有引力提供向心力并分别用速度与周期表示向心力可求得速度与周期。
【详解】
(1)土星表面的重力等于万有引力:
可得
(2)由万有引力提供向心力:
可得:
(3)由万有量为40kg的洞察号火星探测器终于在北京时间2018年11月27日03:56在火星安全着陆。着陆器到达距火星表面高度800m时速度为60m/s,在着陆器底部的火箭助推器作用下开始做匀减速直线运动;当高度下降到距火星表面100m时速度减为10m/s。该过程探测器沿竖直方向运动,不计探测器质量的变化及火星表面的大气阻力,已知火星的质量和半径分别为地球的十分之一和二分之一,地球表面的重力加速度为g = 10m/s2。求:
所以月球表面的重力加速度
由月球表面,万有引力等于重力得
月球的密度
(2)由月球表面,万有引力等于重力提供向心力:
可得:
9.地球的质量M=5.98×1024kg,地球半径R=6370km,引力常量G=6.67×10-11N·m2/kg2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s,求:
(1)用题中的已知量表示此卫星距地面高度h的表达式
(1)着陆巡视器的主要功能为实现在火星表面开展巡视和科学探索.着陆巡视器第一次落到火星时以v0的速度竖直弹起后经过t0时间再次落回火星表面.求火星的密度.
(2)“环绕器”绕火星运动的周期T.
【答案】(1) (2)
【解析】
(1)根据竖直上抛运动的基本规律可知,火星表面重力加速度 ;
根据火星表面万有引力等于重力得 ②,
【答案】
【解析】
试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度.
设该星球表现的重力加速度为g,根据平抛运动规律:
水平方向:
竖直方向:
平抛位移与水平方向的夹角的正切值