数字电子技术基础学习总结讲解学习
数字电子技术基础第五版期末知识点总结

数字电子技术基础第五版期末知识点总结摘要:《数字电子技术基础》作为电子工程领域的基础教材,涵盖了数字逻辑电路设计的基本原理和应用。
本文将对第五版教材的核心知识点进行总结,以帮助学生复习和掌握课程内容。
**关键词:**数字电子技术;逻辑电路;知识点总结;期末复习一、引言数字电子技术是现代电子工程的核心,它涉及到从基本的逻辑门到复杂的集成电路设计。
《数字电子技术基础》第五版为学生提供了一个全面了解数字电子世界的平台。
二、数字逻辑基础数制与编码:介绍了二进制、十进制、十六进制数制及其转换方法,以及常见的编码方式如BCD码、格雷码等。
逻辑代数基础:详细讲解了逻辑代数的基本规则、逻辑门电路的设计和逻辑表达式的化简。
三、逻辑门电路基本逻辑门:包括与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)和同或门(NOR)等。
复合逻辑门:介绍了通过基本逻辑门组合形成的复合门,如与非门(NAND)、或非门(NOR)等。
四、组合逻辑电路编码器和解码器:编码器将输入的二进制数转换为对应的输出信号,解码器则相反。
多路选择器:根据选择信号从多个输入中选择一个输出。
加法器:包括半加器和全加器,是构成算术逻辑单元(ALU)的基础。
五、时序逻辑电路触发器:包括SR触发器、JK触发器、D触发器和T触发器等,是构建时序逻辑电路的基础。
寄存器和计数器:寄存器用于存储数据,计数器则用于实现计数功能。
存储器:介绍了RAM和ROM的基本概念和应用。
六、脉冲波形的产生和整形555定时器:一种多功能的集成电路,可用于产生精确的时间延迟和振荡。
施密特触发器:用于消除噪声和稳定信号边缘。
七、半导体存储器随机存取存储器(RAM):可以随机访问和修改存储的数据。
只读存储器(ROM):存储的数据在制造时写入,用户不能修改。
八、数字系统设计系统设计流程:从需求分析到系统实现的整个设计过程。
硬件描述语言(HDL):如VHDL和Verilog,用于设计和模拟复杂的数字电路。
数字电子技术基础知识总结

数字电子技术基础知识总结一、模拟电路与数字电路的定义及特点:模拟电路(电子电路)模拟信号处理模拟信号的电子电路。
“模拟”二字主要指电压(或电流)对于真实信号成比例的再现。
其主要特点是:1.函数的取值为无限多个;2.当图像信息和声音信息改变时, 信号的波形也改变, 即模拟信号待传播的信息包含在它的波形之中(信息变化规律直接反映在模拟信号的幅度、频率和相位的变化上)。
3、初级模拟电路主要解决两个大的方面: 1放大、2信号源。
4.模拟信号具有连续性。
数字电路(进行算术运算和逻辑运算的电路)数字信号用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路, 或数字系统。
由于它具有逻辑运算和逻辑处理功能, 所以又称数字逻辑电路。
其主要特点是:1.同时具有算术运算和逻辑运算功能数字电路是以二进制逻辑代数为数学基础, 使用二进制数字信号, 既能进行算术运算又能方便地进行逻辑运算(与、或、非、判断、比较、处理等), 因此极其适合于运算、比较、存储、传输、控制、决策等应用。
2.实现简单, 系统可靠以二进制作为基础的数字逻辑电路, 可靠性较强。
电源电压的小的波动对其没有影响, 温度和工艺偏差对其工作的可靠性影响也比模拟电路小得多。
3.集成度高, 功能实现容易集成度高, 体积小, 功耗低是数字电路突出的优点之一。
电路的设计、维修、维护灵活方便, 随着集成电路技术的高速发展, 数字逻辑电路的集成度越来越高, 集成电路块的功能随着小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)的发展也从元件级、器件级、部件级、板卡级上升到系统级。
电路的设计组成只需采用一些标准的集成电路块单元连接而成。
对于非标准的特殊电路还可以使用可编程序逻辑阵列电路, 通过编程的方法实现任意的逻辑功能。
二、模拟电路与数字电路之间的区别模拟电路是处理模拟信号的电路;数字电路是处理数字信号的电路。
数电基本知识点总结

数电基本知识点总结数电(数字电子技术)是研究数字信号的产生、处理、传输和存储的科学与技术。
在现代社会中,数字电子技术已经深入各个领域,发挥着重要作用。
本文将从几个基本知识点入手,总结数电的一些基本概念和原理。
一、二进制二进制是数电中最基础的概念之一。
在二进制系统中,只存在两个数字0和1,这两个数字代表了电路中的两个状态。
二进制系统的优势在于可以方便地进行数值表示和逻辑运算。
在二进制中,每个位上的数值表示的是2的幂次。
例如,二进制数1101表示的是1*2^3 + 1*2^2 + 0*2^1 + 1*2^0 = 13。
二、逻辑门逻辑门是数电中常见的基本电路,用于实现特定的逻辑功能。
最常见的逻辑门包括与门、或门和非门。
与门的输出只有当所有输入都是高(1)时才为高,否则为低(0)。
或门的输出只有当任一输入为高时才为高,否则为低。
非门则是将输入取反,即输入为高时输出低,输入低时输出高。
逻辑门可以通过组合和级联的方式构成复杂的逻辑电路,实现各种复杂的逻辑功能。
三、触发器触发器是用于存储数据的元件,也是数字电子中的重要组成部分。
最常见的触发器是D触发器和JK触发器。
D触发器具有存储功能,利用时钟信号确定存储的时间,而JK触发器则具有存储与反转的功能。
触发器可以用于存储状态、实现时序控制和生成频率分频信号等。
四、进位加法器进位加法器是用于进行二进制数加法的电路。
最简单的进位加法器是半加器,可以实现两个一位二进制数的加法。
而全加器则可以实现三个一位二进制数的加法,并考虑了进位的情况。
进一步地,多个全加器可以级联构成更高位数的加法器,实现多位二进制数的加法运算。
五、时序控制时序控制是数字电子中的重要内容之一,它涉及到电路的时序运算以及各个部件之间的时序关系。
时序控制可以实现各种复杂的功能,例如计时器、状态机等。
常用的时序控制电路有时钟发生器、时钟分频电路、计数器等。
总结起来,数电是研究数字信号的产生、处理、传输和存储的科学与技术。
数字电子技术基础知识点

数字电子技术基础知识点数字电子技术是现代电子领域中的重要分支,广泛应用于计算机、通信、控制系统等领域。
掌握数字电子技术的基础知识点对于从事电子工程技术的人员来说是至关重要的。
本文将介绍数字电子技术的基础知识点,帮助读者更好地了解和掌握这一领域的基础概念。
一、二进制系统在数字电子技术中,二进制系统是最基本的数制系统。
二进制系统由0和1两个数字构成,是一种适合于电子系统处理的数制系统。
在二进制系统中,每位数字称为一个比特(bit),8个比特组成一个字节(byte)。
通过不同的排列组合,可以表示各种不同的数字和字符。
二、逻辑门逻辑门是数字电路的基本组成单元,用于实现逻辑运算。
常见的逻辑门包括与门、或门、非门等。
与门实现逻辑与运算,只有所有输入信号都为高电平时输出才为高电平;或门实现逻辑或运算,只要有一个输入信号为高电平输出就为高电平;非门实现逻辑非运算,对输入信号取反输出。
三、触发器触发器是数字电路中的存储元件,用于存储和延时信号。
常见的触发器包括RS触发器、D触发器、JK触发器等。
RS触发器由两个输入端和两个输出端组成,输入端用于控制信号的写入和清零,输出端用于输出存储的数据。
四、计数器计数器是一种特殊的触发器,用于实现计数功能。
计数器可以按照一定的规则递增或递减输出信号。
常见的计数器包括二进制计数器、BCD计数器等。
计数器在数字电子技术中被广泛应用于时序控制、频率测量等领域。
五、编码器和解码器编码器用于将输入信号编码为特定的代码,解码器用于将代码解码为特定的输出信号。
常见的编码器和解码器包括十进制编码器、十六进制编码器、BCD解码器等。
编码器和解码器在数字电子系统中扮演着重要的角色,用于数据传输和控制信号的处理。
六、存储器存储器是数字电子系统中的重要组成部分,用于存储程序和数据。
常见的存储器包括随机存储器(RAM)、只读存储器(ROM)、闪存等。
存储器按照数据访问速度和可擦写性能不同分为不同的类型,适用于不同的应用场景。
数字电子技术基础学习总结讲解学习

数字电子技术基础学习总结光阴似箭,日月如梭。
有到了这个学期的期末,对我来说又是一次对知识的大检查。
这学期总共学习了4章,分别是数字逻辑基础、逻辑门电路基础、组合逻辑电路、触发器。
在第一章学习数字逻辑基础包括模拟信号与数字信号、数字电路、数制、各种数制之间的转换和对应关系表、码制(BCD码、格雷码、ASCII码)、逻辑问题的描述(这个是重点)、逻辑函数的五种描述方法、逻辑函数的化简;在数制里学习四种进制十进制、二进制、八进制、十六进制;十进制是逢十进一,二进制是逢二进一,在八进制中只是二进制的一种简便表示方法而已,它的规律是逢八近一,而十六进制有0123456789ABCDEF十六个数码这个要记住和一些算法。
比如十进制的534,八进制为1026,过程为:534/8=66,余数为6;66/8=8,余数为2;8/8=1,余数为0;1/8=0,余数为1;仍然是从下往上看这些余数,顺序写出,答案为1026所以在数制的之间转换有5种转换,10和2转换(除2取余数法,如上题一样),10和8转换对整数除8取余,对小数点乘8取整。
10和16转换对整数除16取余,对小数点乘16取整,2和8转换对应关系3位二进制对应1位八进制可看对应关系图。
2和16转换4位二进制对应1位十六进制数,可看对应关系图。
在码制的学习中学习了3种码BCD码、格雷码、ASCII码。
BCD码:用4位二进制数来表示1位十进制数中的0~9这10个数码,简称BCD码,还有几个常用的BCD码:8421(常用)、5421、2421、余3。
如8421码321的8421码就是(查表)3 2 10011 0010 0001原因:0011=8x0+4x0+1x2+1x1=3 、0010=8x0+4x0+2x1+1x0=2、0001=8x0+4x0+2x0+1x1=1;格雷码:有两个特点1相邻性2循环性。
ASCII码:ASCII(American Standard Code for Information Interchange,美国信息互换标准代码)是基于拉丁字母的一套电脑编码系统。
数字电子技术大一知识点

数字电子技术大一知识点数字电子技术是电子信息工程专业的一门基础课程,涉及到数字电路的设计与实现。
本文将介绍数字电子技术大一知识点,包括数字逻辑门、布尔代数、数制转换、编码与译码等。
一、数字逻辑门数字逻辑门是数字电子技术的基础,由逻辑门组成的数字电路可以实现各种逻辑功能。
主要包括与门、或门、非门、与非门、或非门、异或门等。
这些逻辑门可通过晶体管、集成电路等元器件实现。
1. 与门(AND Gate):输入信号全部为高电平时,输出高电平;否则输出低电平。
2. 或门(OR Gate):输入信号中至少一个为高电平时,输出高电平;否则输出低电平。
3. 非门(NOT Gate):输入信号为高电平时,输出低电平;输入信号为低电平时,输出高电平。
4. 异或门(XOR Gate):输入信号相同时,输出低电平;输入信号不同时,输出高电平。
二、布尔代数布尔代数是一种逻辑运算及符号表示方法,用于描述逻辑函数和逻辑运算。
它基于布尔变量及其逻辑值,包括与、或、非、异或等运算。
1. 与运算(AND):两个变量的逻辑乘积,主要用于逻辑判断和条件筛选。
2. 或运算(OR):两个变量的逻辑和,主要用于逻辑联结和条件判断。
3. 非运算(NOT):对一个变量进行逻辑取反,将1变为0,0变为1。
4. 异或运算(XOR):两个变量相同时结果为0,不同时结果为1。
常用于数据校验和编码。
三、数制转换在数字电子技术中,常用的数制有二进制、八进制、十进制和十六进制。
数制转换是指在不同进制之间进行转换。
1. 二进制转八进制和十六进制:将二进制数按照3位或4位组合成八进制或十六进制数。
2. 八进制和十六进制转二进制:将八进制或十六进制数的每一位转换为对应的二进制数。
3. 十进制转二进制、八进制和十六进制:将十进制数通过除以2或8或16取余,得到对应位的二进制、八进制和十六进制数。
四、编码与译码编码与译码是将信息进行编码和解码的过程,常用于数据传输和存储。
数电知识点总结

数电知识点总结数电(数位电子)是一门研究数字电子技术的学科,涉及到数字电路、数字信号处理、数字系统等多个方面的知识。
数字电子技术已经成为现代电子工程技术的基础,并且在通信、计算机、控制、显示、测量等领域都有广泛的应用。
本文将从数字电路、数字信号处理和数字系统三个方面对数电的知识点进行总结。
1. 数字电路数字电路是将数字信号作为输入、输出,通过逻辑门、存储器等数字元器件完成逻辑运算和信息处理的电路。
数字电路是实现数字逻辑功能的基本组成单元,包括组合逻辑电路和时序逻辑电路两种类型。
1.1 组合逻辑电路组合逻辑电路是由若干逻辑门进行组合而成的电路,其输出仅取决于当前输入的组合,不受到电路内过去的状态的影响。
组合逻辑电路主要包括门电路(与门、或门、非门等)、编码器、译码器、多路选择器、加法器、减法器等。
常用的集成逻辑门有 TTL、CMOS、ECL、IIL 四种族类。
常见的集成逻辑门有 TTL、 CMOS、 ECL、 IIL 四种。
1.2 时序逻辑电路时序逻辑电路是组合电路与触发器相结合,结构复杂。
时序逻辑电路主要包括触发器、寄存器、计数器、移位寄存器等。
在传统的 TTL 集成电路中,触发器主要有 RS 触发器、 JK触发器、 D 触发器和 T 触发器四种。
在 CMOS 集成电路中一般用 T 触发器,D 触发器和 JK 触发器等。
2. 数字信号处理数字信号处理(DSP)是利用数字计算机或数字信号处理器对连续时间的信号进行数字化处理,包括信号的采样、量化和编码、数字滤波、谱分析、数字频率合成等基本处理方法。
数字信号处理已广泛应用于通信、音频、视频、雷达、医学影像等领域。
2.1 信号采样和量化信号采样是将连续时间信号转换为离散时间信号的过程,采样频率必须高于信号频率的两倍才能保证信号的完全重构。
信号量化是将采样得到的连续幅度信号转换为一个有限数目的离散的幅度值的过程,量化误差会引入信号失真。
2.2 数字滤波数字滤波是利用数字计算机对数字信号进行特定频率成分的增益或者衰减的处理过程。
数字电子技术基础总结

01
如果要实现的逻辑函数中的变量个数与数据选择器的地址输入端的个数不同,不能用前述的简单办法。应分离出多余的变量,把它们加到适当的数据输入端。
d、处理数据输入D0~D7信号电平。逻辑表达式中有mi ,则相应Di =1,其他的数据输入端均为0。
02
解法一:
其中:S2=A,S1=B,S0=C
选取编码方案的原则应有利于所选触发器的驱动方程及电路输出方程的简化和电路的稳定
例 设计一个串行数据检测器。对它的要求是:连续输入3个或3个以上的1时输出为1,其它情况下输出为0. 解:设输入数据为输入变量,用X表示;检测结果为输出变量,用Y表示,其状态转换表为 其中S0为没有1输入的以前状态,S1为输入一个1以后的状态,S2为输入两个1以后的状态,S3为连续输入3个或3个以上1的状态。 由状态表可以看出,S2和S3为等价状态,可以合并成一个。
A B C D
L
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1
试分别用以下方法设计一个七进制计数器:
试分别用以下方法设计一个七进制计数器:
利用74290的异步清零功能;(2)利用74163的同步清零功能;(3)利用74161的同步置数功能。
74161
试分别用以下方法设计一个七进制计数器: 利用74290的异步清零功能;(2)利用74163的同步清零功能;(3)利用74161的同步置数功能。
第三章 组合逻辑电路的分析与设计 基本要求 1.正确理解以下基本概念:逻辑变量、逻辑函数、“与、或、非”基本逻辑关系、竞争冒险。 2.熟练掌握逻辑函数的几种常用的表示方法:真值表、逻辑表达式、逻辑图、卡诺图。并能熟练的相互转换。 3. 熟练掌握逻辑代数基本定律、基本运算规则,能够熟练用其对逻辑函数进行代数化简及表达式转换。 4. 熟练掌握卡诺图化简法。 5.熟练掌握组合逻辑电路的分析方法和设计方法。
数字电子技术基础总结

数字电子技术基础总结篇一:数字电子技术基础学习总结数字电子技术基础学习总结光阴似箭,日月如梭。
有到了这个学期的期末,对我来说又是一次对知识的大检查。
这学期总共学习了4章,分别是数字逻辑基础、逻辑门电路基础、组合逻辑电路、触发器。
在第一章学习数字逻辑基础包括模拟信号与数字信号、数字电路、数制、各种数制之间的转换和对应关系表、码制(Bcd码、格雷码、aScii码)、逻辑问题的描述(这个是重点)、逻辑函数的五种描述方法、逻辑函数的化简;在数制里学习四种进制十进制、二进制、八进制、十六进制;十进制是逢十进一,二进制是逢二进一,在八进制中只是二进制的一种简便表示方法而已,它的规律是逢八近一,而十六进制有0123456789aBcdEF十六个数码这个要记住和一些算法。
比如十进制的534,八进制为1026,过程为:534/8=66,余数为6;66/8=8,余数为2;8/8=1,余数为0;1/8=0,余数为1;仍然是从下往上看这些余数,顺序写出,答案为1026所以在数制的之间转换有5种转换,10和2转换(除2取余数法,如上题一样),10和8转换对整数除8取余,对小数点乘8取整。
10 和16转换对整数除16取余,对小数点乘16取整,2和8转换对应关系3位二进制对应1位八进制可看对应关系图。
2和16转换4位二进制对应1位十六进制数,可看对应关系图。
在码制的学习中学习了3种码Bcd码、格雷码、aScii码。
Bcd码:用4位二进制数来表示1位十进制数中的0~9这10个数码,简称Bcd码,还有几个常用的Bcd码:8421(常用)、5421、2421、余3。
如8421码321的8421码就是(查表)321001100100001原因:0011=8x0+4x0+1x2+1x1=3、0010=8x0+4x0+2x1+1x0=2、0001=8x0+4x0+2x0+1x1=1;格雷码:有两个特点1相邻性2循环性。
aScii码:aScii(americanStandardcodeforinformationinterchange,美国信息互换标准代码)是基于拉丁字母的一套电脑编码系统。
数字电子技术基础简明教程总结

BC 01 11 10
BD
╳ ╳ ╳ ╳ ╳ ╳
1
1
五、逻辑函数常用的表示方法: 真值表、卡诺图、函数式、逻辑图和波形图。 它们各有特点,但本质相同,可以相互转换。尤 其是由真值表 → 逻辑图 和 逻辑图 → 真值表, 在逻 辑电路的分析和设计中经常用到,必须熟练掌握。
第二章
小结
一、半导体二极管、三极管和 MOS 管 是数字电路中的基本开关元件,一般都工作在开关 状态。
二、分立元件门电路
主要介绍了由半导体二极管、三极管和 MOS 管构成的与门、或门和非门。
虽然,分立元件门电路不是本章的重点,但是 通过对这些电路的分析,可以体会到与、或、非三 种最基本的逻辑运算,是如何用半导体电子电路实 现的,这将有助于后面集成门电路的学习。
三、集成门电路 — 本章重点
主要介绍了 CMOS 和 TTL 集成门电路,重点应 放在它们的输出与输入之间的逻辑特性和外部电气特 性上。
5. 数据选择器:在地址码的控制下,在同一时间内从 多路输入信号中选择相应的一路信号 输出的电路。常用于数据传输中的并串转换。 集成芯片:
74151、74LS151 74251、74LS251(TTL)— 8 选 1 数据选择器 6. 数据分配器:在地址码的控制下,将一路输入信号 传送到多个输出端的任何一个输出端 的电路。常用于数据传输中的串-并转 换。 集成芯片: 无专用芯片,可用二进制集成译码器实现。
1. 半导体二极管: 2. 半导体三极管:
是不可控的,利用其开关特性可构成 二极管与门和或门。 是一种用电流控制且具有放大特性的开 关元件, 利用三极管的饱和导通与截止 特性可构成 非门 和其它 TTL 集成门电 路。
3. MOS管: 是一种具有放大特性的由电压控制的开关元件, 利用 N 沟道 MOS 管和 P 沟道 MOS 管可构成 CMOS 反相器和其它 CMOS 集成门电路。
《数字电子技术》课程总结

特点:非易失性,只读不写; 一般结构:框图; 各种ROM特点;
二、随机存取存储器(RAM)
特点:易失性,随时读写; 一般结构:框图; 各种RAM特点;
三、扩展方法
位扩展,字扩展
四、应用
实现组合电路:将真值表(数据表)写入存储器; 可编程波形发生器:计数器+ROM+DAC;
要求:懂概念,会应用
3.多谐振荡器 *特点:自激振荡,无稳态; 分析方法:波形分析法; 参数:T,f 典型电路:对称式,施密特触发器构成,石英晶体; *用途:波形发生器;
*二、555定时器及应用 * 555
功能表与框图; 三种基本应用: 电路框图,原理分析,波形图,参数计算;
要求:懂原理,会画图,会计算
半导体存储器
二、一般分析方法
计算法分析步骤: 写方程式 求状态方程 计算 列表画图 分析功能 异步电路:注意有效时钟条件 直接法:画时序图 画状态图 分析功能
三、 一般设计方法
设计步骤: 逻辑抽象 状态化简 状态编码 求方程式 画电路图 自启动分析
四、常用电路
寄存器(移位寄存器) 计数器:同步,异步,二进制,十进制,任意进制; 序列信号发生器,顺序脉冲发生器 常用芯片:74LS194,74LS290,74LS160, 74LS161(框图、功能表、使用方法) 熟练掌握! 一般理解:74LS190,74LS191,74LS192,74LS193
二、CMOS门
1.典型电路:反相器、结构与原理 2.电气特性与参数 电压传输特性:VOH,VOL,VTH; 输入伏安特性:IIH?IIS? 输入负载特性:RON?ROFF? 输出特性:IOHMAX,IOLMAX,扇出系数N; △动态特性:Tpd,交流噪声容限,动态功耗; 3.使用方法:功能、符号、OD门,TS门,TG门;
数字电子技术知识点汇总

数字电子技术知识点汇总引言概述:数字电子技术是一门基础性学科,涉及数字信号的产生、传输、处理和存储等方面。
随着现代科技的迅速发展,数字电子技术已经成为了许多领域的核心技术,包括计算机科学、通信技术、嵌入式系统、控制系统等等。
本文将对数字电子技术的知识点进行汇总和详细介绍,以帮助读者更好地理解和应用这一重要学科。
正文内容:一、数字信号和模拟信号1.1数字信号与模拟信号的基本概念1.2数字信号与模拟信号的特点1.3数字信号的采样和量化1.4模拟信号的离散化和数字化二、数字电路的基础知识2.1逻辑门和布尔代数2.2码制和编码技术2.3数字电路的基本组成2.4数字电路的时序逻辑与组合逻辑2.5数字电路的可靠性和容错技术三、数字系统的设计与实现3.1数字系统的层次结构和组成原则3.2组合逻辑电路的设计方法3.3时序逻辑电路的设计方法3.4状态机的设计与实现3.5FPGA和CPLD的应用四、数字信号处理技术4.1数字信号的基本运算和变换4.2数字滤波器的设计与实现4.3数字信号的储存与读取4.4声音和图像的数字化处理4.5数字信号处理器(DSP)的应用五、数字系统测试与调试5.1数字系统测试的基本概念和方法5.2组合逻辑电路的测试与调试5.3时序逻辑电路的测试与调试5.4集成电路的测试与调试5.5数字系统故障的排查与修复总结:数字电子技术是一门极为重要的学科,广泛应用于现代科技的各个领域。
本文对数字信号和模拟信号、数字电路的基础知识、数字系统的设计与实现、数字信号处理技术以及数字系统的测试与调试等方面的知识点进行了详细的阐述。
通过学习这些知识点,读者可以更好地理解和应用数字电子技术,提高自己在相关领域的能力和竞争力。
在数字化时代的今天,掌握数字电子技术是每个科技工作者必不可少的素质,希望本文能够对读者起到一定的指导和帮助作用。
数电知识点总结

数电知识点总结数电,即数字电子技术,是现代电子科学和技术的重要组成部分。
它研究如何使用数字信号来处理和传输信息。
在这篇文章中,我们将对数电的一些基本概念和知识点进行总结和讨论。
一、数电基础理论1. 二进制二进制是计算机中常用的数字表示方式,使用0和1来表示数字。
它是整个数电系统中的基础。
2. 逻辑门逻辑门是数电中常用的基本单元。
有与门、或门、非门等。
通过组合不同的逻辑门可以实现各种电路功能。
3. 真值表真值表是描述逻辑门输入输出关系的表格。
它能够帮助我们清晰地了解逻辑门的工作原理和功能。
4. 布尔代数布尔代数是一种逻辑系统,它基于二进制值和逻辑运算。
它能够简化和优化逻辑电路的设计。
二、数电电路设计1. 加法器加法器是数电中重要的电路,用于实现数字的加法运算。
全加器是最基本的加法器。
2. 编码器编码器用于将一个多位数字编码为一个较小的码。
常见的是4-2编码器和8-3编码器等。
3. 解码器解码器正好与编码器相反,它用于将一个码解码为一个多位数字。
常见的是2-4解码器和3-8解码器等。
4. 翻转器翻转器是一种存储元件,可以存储和改变输入信号的状态。
常见的有RS触发器、D触发器和JK触发器等。
三、数电应用领域1. 计算机计算机是数电应用最广泛的领域之一。
计算机内部的逻辑电路和芯片基于数电原理。
2. 通信数字通信是现代通信技术的基础。
数电提供了快速、准确和可靠的数字信号处理方法。
3. 数字电视机数字电视机通过数电技术将模拟信号转换为数字信号,并在数字领域进行处理。
4. 数字音频设备数字音频设备使用数电技术处理和转换音频信号,提供更高的音频质量和灵活性。
结语数电是现代科技的基石之一,它通过数字信号的处理和传输,推动了科学技术的发展。
本文简要总结了数电的基础理论、电路设计和应用领域等知识点。
深入了解数电原理和应用,不仅能够更好地理解数字技术的工作原理,而且可以为我们进行相关领域的研究和应用提供帮助。
希望本文对读者有所启发和帮助。
《数字电子技术基础》核心知识总结

0CO
0 S3
S 0
和小于、等于9(1001) 0 0 0 0 1 0 0 0 0
时,相加的结果和按二进制
…
…
数相加所得到的结果一样。 0 1 0 0 1 0 1 0 0
当两数之和大于9(即等于 1010~1111)时,则应在 按二进制数相加的结果上加
0 0 0 0
1 01 0 1 01 1 1 10 0 1 10 1
11
输出 Y=AB Y=A+B Y=A ⊕ B Y=A
Z A S 1 S 0 B ( A B ) S 1 S 0 ( A B A B ) S 1 S 0 A S 1 S 0 A S 1 S 0 B A S 1 S 0 B S 1 S 0 A B S 1 S 0 A B 1 S 0 A S S 1 S 0
B3 BBB210
CI
74LS283
CO S3 S2 S1 S0
Y3 Y2 Y1 Y0
例:试利用两片4位二进制并行加法器74LS283和必要 的门电路组成1位二-十进制加法器电路。
解:根据BCD码中8421码 的加法运算规则,当两数之
二进制数
BCD码
C0’O 0S’30S’02 S’01 S’00
Y3Y2Y1Y0=P3P2P1P0- Q3Q2Q1Q0 =P3P2P1P0+[Q3Q2Q1Q0]补
= P3P2P1P0+Q3Q2Q1Q0 +1P3
引进中间变量Z
PPP210
AAA321 A0
M 0 1
输出
Z=Q Z MQMQ Z=Q M Q
QQQ321 Q0
M
=1 =1 =1 =1
ZZZ321 Z0
信号M=0时它将两个输入的4位二进制数相加,而M=1时它将两个
《数字电子技术》课程总结-精品文档

要求:会分析,会设计
触发器
一、触发器结构与动作特点
了解结构、原理、动作特点 基本RS:直接控制(无时钟); 同步RS:选通控制; 主从触发器:间接控制; 边沿触发器:边沿触发。
二、触发器功能
描述方法:特性方程、特性表、状态图; RS触发器:Qn+1=S+RQn,约束条件:RS=0 JK触发器: Qn+1=JQn+KQn D触发器: Qn+1=D T触发器: Qn+1=TQn+TQn T'触发器: Qn+1=Qn
三、函数化简
公式法:以常用公式为基础
图形法:卡诺图、画圈方法 具有约束的函数化简:图形法 注意:不同方法的特点和适用范围。 要求:会运算,会转换,会化简。
门电路
一、半导体器件的开关特性 (二极管、三极管、MOS管) 导通条件与特点、截止条件与特点 了解动态特性:传输延时
二、典型门电路的结构与原理 1.TTL与非门 2.CMOS反相器
四、常用时序电路
1.功能特点、框图形式、应用
寄存器(移位寄存器) 计数器:同步,异步,二进制,十进制,任意进制; 序列信号发生器,顺序脉冲发生器
2.常用芯片:
熟练掌握: 74LS194,74LS290,74LS160, 74LS161(框图、信号、功能表) 一般理解:74LS190,74LS191,74LS192,74LS193
五、设计方法
1.特殊设计方法: 同步二进制计数器:T触发器,T’触发器; 异步二进制计数器:T’触发器; 任意进制计数器:复位法,置数法,多片连接, 暂态的判断(同步?异步?); 序列信号发生器:计数器+数据选择器; 顺序脉冲发生器:环型计数器,同步计数器+译 码器,扭环型计数器+译码器
数电期末总结报告

数电期末总结报告一、引言数字电子技术是一门研究数字电路设计和数字系统原理的基础课程,作为电子信息类相关专业的重要组成部分,对我们的专业知识水平的提升和实践能力的培养起到了重要作用。
本学期我们学习了数字电子技术的基本原理和设计方法,通过理论学习和实验实践,深入了解了数字电路的组成与工作原理,为我们今后的职业生涯打下了坚实的基础。
二、理论知识回顾与应用本学期我们学习了数字电子技术的基本知识和原理,掌握了数字信号的表示、逻辑代数、逻辑门电路、计数器与时序电路等内容。
我们通过理论课程的学习和课后的作业练习,深入理解了数字信号和模拟信号的区别与联系,掌握了数字信号的离散性、二进制表示等特点。
同时,我们学习了逻辑代数和逻辑门的基本原理和实现方法,掌握了逻辑门电路的常用类型和逻辑运算的基本规则。
我们还学习了计数器与时序电路的设计原理和方法,了解了时序电路的功能和工作原理,并通过实验实践对其进行了深入的掌握。
在实际应用中,我们将所学的理论知识运用到数字电路的设计与实现过程中。
通过实验的模拟和设计实践,我们掌握了数字电路的设计流程和方法,学会了使用EDA工具进行电路图设计和仿真。
在实验中,我们通过设计和实现各种逻辑门电路、计数器和时序电路,检验和验证了学习过的理论知识,在实践中进一步加深了对数字电子技术的理解和应用。
三、实验与项目应用在本学期的实验课程中,我们完成了一系列的实验项目,通过实验掌握了数字电路的设计和实现方法,并通过实验验证了所学的理论知识。
以下是几个我们完成的比较具有代表性的实验和项目。
3.1 逻辑门电路实验在这个实验中,我们通过电实验箱和逻辑芯片,设计和实现了与、或、非、与非等逻辑门电路,并在示波器上观察并分析了电路的工作波形。
这个实验帮助我们深入理解了逻辑门电路的基本原理和实现方法,加深了对输入输出关系的认识,培养了我们的动手能力和实际操作能力。
3.2 计数器实验在这个实验中,我们设计了一个二进制正计数器,通过多个触发器和逻辑门电路的组合,实现输入信号的计数和输出显示。
数电知识点讲解总结

数电知识点讲解总结数电,即数字电子技术,是指通过数字信号进行信息处理和传输的一种电子技术。
在现代科技领域中,数电技术已经得到了广泛的应用,涉及到计算机、通信、控制等多个领域。
数电知识点的掌握对于学习和工作都具有重要的意义,下面将对数电知识点进行总结和讲解。
1. 数制及进位运算数制是指用几个记数符号表示数的一种方法,比如我们常见的十进制数是用0到9这10个数字表示的。
在数电中,常用的数制有二进制、八进制和十六进制等。
进位运算是指在进行加减乘除等运算时,当某一位上的数字超过了进位数时,需要向高一位进位的操作。
在数电中,进位运算是一个非常基础和重要的概念,它是进行数字运算的基础。
2. 逻辑门和布尔代数逻辑门是数电中最基本的组成单元,它可以接受多个输入信号,并根据输入信号产生一个输出信号。
常见的逻辑门有与门、或门、非门等。
逻辑门的运算规则体现了布尔代数的运算规则,布尔代数是一种用于描述逻辑运算规律的代数系统,它体现了逻辑运算的基本规律,是逻辑电路设计的理论基础。
3. 组合逻辑电路和时序逻辑电路组合逻辑电路是由一些互相连接的逻辑门组成的,它可以根据输入信号的不同产生不同的输出信号。
时序逻辑电路是在组合逻辑电路的基础上引入了时钟信号,根据时钟信号的不同产生不同的输出信号。
组合逻辑电路和时序逻辑电路是数字电路中最基本的两种电路,它们构成了数字系统的基本组成部分。
4. 计算机组成原理计算机组成原理是数电中一个非常重要的知识点,它包括了计算机的硬件和软件组成结构、运行原理以及计算机系统的设计和实现等内容。
在计算机组成原理中,涉及到了 CPU、内存、输入输出设备、系统总线等多个方面的知识。
5. 存储器和寄存器存储器是计算机中用于存储数据和程序的设备,它包括了内存和外存两种形式。
内存是计算机中的主要存储设备,用于存储正在运行的程序和数据,而外存则是用于长期存储数据和程序的设备。
寄存器是一种用于存储临时数据和控制信号的存储器,它是计算机中最快的存储设备。
数电知识点总结详细

数电知识点总结详细一、逻辑门逻辑门是数字电子学的基本单元,它能够根据输入的电信号产生特定的输出信号。
常见的逻辑门有与门、或门、非门、异或门等。
逻辑门的输入和输出都是逻辑电平,通常用0和1表示逻辑低电平和逻辑高电平。
逻辑门可以通过晶体管、集成电路等器件来实现,其原理基于基本的布尔代数。
二、组合逻辑电路组合逻辑电路是由多个逻辑门组成的电路,其输出只依赖于输入信号的组合。
组合逻辑电路没有存储元件,因此输出只在输入信号变化时才会改变。
组合逻辑电路常用于数字系统中的信号处理和转换,比如加法器、减法器、编码器、译码器等。
三、时序逻辑电路时序逻辑电路是由组合逻辑电路和存储元件组成的电路,其输出不仅依赖于输入信号的组合,还依赖于时钟信号。
时序逻辑电路可以实现状态的存储和控制,常用于数字系统中的时序控制和时序处理。
四、数字系统设计数字系统设计是数字电子学的重要内容,它涉及到数字系统的结构、功能和性能的设计和实现。
数字系统设计需要考虑逻辑门、组合逻辑电路、时序逻辑电路、存储元件、时钟信号、计数器、寄存器、状态机等因素,以实现特定的功能和性能要求。
五、应用领域数字电子学在信息技术、通信技术、计算机技术、控制技术等领域有着广泛的应用。
它在数字电路设计、数字信号处理、数值计算、数字通信、数字控制等方面发挥着重要作用。
数字电子学技术的发展也推动了数字产品的不断创新和应用,比如数字电视、数字音频、数字相机、数字手机等。
综上所述,数字电子学是现代电子科学中的重要分支,它研究数字信号的产生、传输、处理和存储。
数字电子学的基本概念包括逻辑门、组合逻辑电路、时序逻辑电路、数字系统设计等,其应用领域涵盖信息技术、通信技术、计算机技术、控制技术等。
通过对数字电子学的学习和应用,可以有效地设计和实现各种数字系统,满足不同领域的需求。
电子行业数字电子技术基础总结

电子行业数字电子技术基础总结引言数字电子技术是指利用数字信号进行操作和传输的电子技术。
在现代电子行业中,数字电子技术已经成为了大部分电子设备和系统的核心。
本文将对数字电子技术在电子行业中的基础知识进行总结。
一、数字电子技术概述1.1 数字信号与模拟信号在电子领域中,信号可以分为两类:模拟信号和数字信号。
模拟信号是连续变化的信号,可以用无限个连续的值来表示。
而数字信号是离散的信号,通过一系列离散的数值来表示。
数字电子技术主要处理的就是数字信号。
1.2 数字电子技术的优势数字电子技术相对于模拟电子技术有许多优势。
首先,数字电子技术的抗干扰能力更强。
数字信号的传输和处理过程中可以通过差错检测和纠正技术来提高传输的可靠性。
其次,数字电子技术运算更快、精度更高。
数字信号的处理可以利用现代计算机等高速数字芯片来实现,能够提供更高的计算速度和更精确的结果。
二、数字电子技术的基本元件2.1 逻辑门逻辑门是数字电子技术中的基本元件之一,它能够根据输入信号的逻辑关系生成输出信号。
典型的逻辑门包括与门、或门、非门、异或门等。
逻辑门的输出信号通常只有两种状态:高电平和低电平,分别表示1和0。
2.2 触发器触发器是一种能够存储和传输信息的数字电子元件。
它可以在时钟脉冲的作用下,将输入信号的状态存储起来,并在下一个时钟脉冲到来时传输到输出端。
触发器在数字电路设计中有着广泛的应用,是构建存储器和寄存器等重要元件的基础。
2.3 计数器计数器是一种能够对输入脉冲进行计数的数字电子元件。
它可以根据输入脉冲的个数,按照一定的规则输出相应的计数结果。
计数器在数字电路设计中常用于频率分频、时序控制等方面。
三、数字电子技术的应用3.1 通信领域在通信领域中,数字电子技术的应用非常广泛。
数字信号处理技术可以提高通信系统的抗干扰性能和传输速率。
数字调制技术可以将信号转换为数字形式进行传输,同时可以实现多路复用和频谱利用率的提高。
数字信号压缩技术可以有效地利用传输带宽,提高通信效率。
数字电子技术实训课程学习总结

数字电子技术实训课程学习总结数字电子技术是现代电子工程中的重要组成部分,通过对数字电路的设计和实现,可以实现各种数字系统的功能。
为了更好地掌握数字电子技术,我们参加了数字电子技术实训课程。
在这门课程中,我们学习了数字电路的基本知识和实践操作技巧,通过实验实践巩固了理论知识,提升了我们的技能水平。
在实验课程中,我们首先学习了数字电子技术的基本概念和原理。
我们了解了数字电子技术的基本逻辑门电路,包括与门、或门、非门、异或门等。
通过理论学习,我们了解了数字电路中信号的运算和转换原理,以及数字系统的构成和设计方法。
这为我们后续的实验操作提供了重要的基础。
接着,我们通过实验操作进一步巩固了所学的知识。
在实验课程中,我们使用数字集成电路和开发板进行实际的电路搭建和测试。
我们学会了使用电线、连接器和测试仪器,将数字电路中的各个元件根据设计要求进行连接和配置。
通过动手操作,我们更加深入地理解了数字电路的工作原理,加深了对数字电子技术的理解。
实验课程还帮助我们了解了数字电子技术在实际生活中的应用。
我们完成了一系列实际项目,如计算器电路、闹钟电路和数字计数器电路等。
通过这些实际项目,我们更加直观地感受到了数字电子技术的威力和应用前景。
我们深刻体会到,数字电子技术已经渗透到各个领域,如通信、计算机、汽车电子等,对现代社会的发展起到了重要的推动作用。
在实训课程中,我们不仅学习了数字电子技术的理论知识,还培养了重要的实践能力。
通过实验操作,我们的动手能力得到了提升,我们能够更加熟练地操作数字电路中的各个元件,理解并纠正电路出现的问题。
同时,我们还培养了团队合作能力,通过与同学们的合作完成实验项目,增强了互相学习和协作的能力。
通过数字电子技术实训课程的学习,我们不仅掌握了数字电子技术的基本知识和实践技巧,还培养了重要的实践能力和团队合作能力。
这门课程的学习使我们更加熟练地掌握了数字电子技术,为我们今后从事电子工程相关领域的工作打下了坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字电子技术基础学习总结数字电子技术基础学习总结光阴似箭,日月如梭。
有到了这个学期的期末,对我来说又是一次对知识的大检查。
这学期总共学习了4章,分别是数字逻辑基础、逻辑门电路基础、组合逻辑电路、触发器。
在第一章学习数字逻辑基础包括模拟信号与数字信号、数字电路、数制、各种数制之间的转换和对应关系表、码制(BCD码、格雷码、ASCII码)、逻辑问题的描述(这个是重点)、逻辑函数的五种描述方法、逻辑函数的化简;在数制里学习四种进制十进制、二进制、八进制、十六进制;十进制是逢十进一,二进制是逢二进一,在八进制中只是二进制的一种简便表示方法而已,它的规律是逢八近一,而十六进制有0123456789ABCDEF十六个数码这个要记住和一些算法。
比如十进制的534,八进制为1026,过程为:534/8=66,余数为6;66/8=8,余数为2;8/8=1,余数为0;1/8=0,余数为1;仍然是从下往上看这些余数,顺序写出,答案为1026所以在数制的之间转换有5种转换,10和2转换(除2取余数法,如上题一样),10和8转换对整数除8取余,对小数点乘8取整。
10和16转换对整数除16取余,对小数点乘16取整,2和8转换对应关系3位二进制对应1位八进制可看对应关系图。
2和16转换4位二进制对应1位十六进制数,可看对应关系图。
在码制的学习中学习了3种码BCD码、格雷码、ASCII码。
BCD码:用4位二进制数来表示1位十进制数中的0~9这10个数码,简称BCD码,还有几个常用的BCD码:8421(常用)、5421、2421、余3。
如8421码321的8421码就是(查表)3 2 10011 0010 0001原因:0011=8x0+4x0+1x2+1x1=3 、0010=8x0+4x0+2x1+1x0=2、 0001=8x0+4x0+2x0+1x1=1;格雷码:有两个特点1相邻性2循环性。
ASCII码:ASCII(American Standard Code for Information Interchange,美国信息互换标准代码)是基于拉丁字母的一套电脑编码系统。
第五节逻辑问题的描述在自然界中有3种基本逻辑关系1:与逻辑关系、2:或逻辑关系、3:非逻辑关系利用与、或、非、三种基本运算来了解门电路,门电路是数字电路的基本组成单元。
它有一个或多个输入端和一个输出端,输入和输出为低电平和高电平(分别代表2进制0和1)。
门电路一般有:与门、或门、非门、与非门、或非门等。
各种门电路有着不同的功能,即针对不同的输入数值给出输出数值(比如或门要求两个输入值中有一个或以上为1时输出1;与门在两个输入值都为1是输出1,否则输出0;非门只有一个输入,而输出与输入反相),就像数学上简单的方程式;不同种类的门就像不同的方程式;大量的各种门可以描述更为复杂的方程式。
符号!!与门、或门、非门。
与非门、或非门。
和它们的真值表。
还有P18页1-18题三人表决一件事,结果按少数服从多数的原则来决定。
逻辑函数的五种描述方法中什么是真值表:表征逻辑事件输入和输出之间全部可能状态的表格。
逻辑表达式有最小项和最小项表达式、最大项和最大项表达式、最大项与最大项之间的关系、两个最小项的逻辑相邻、两个与项(乘积项)的逻辑相邻。
卡诺图:逻辑函数的卡诺图是美国工程师卡诺发明的一种逻辑函数的图形描述方法。
结构:两变量的逻辑函数的卡诺图。
(两个变量的)。
三变量的逻辑函数的卡诺图。
(三个变量的)。
四变量的逻辑函数的卡诺图。
卡诺图的化简法卡诺图化简的原则是:☆在覆盖函数中的所有最小项的前提下,卡诺圈的个数达到最少。
☆在满足合并规律的前题下卡诺圈应尽可能大。
☆根据合并的需要,每个最小项可以被多个卡诺圈包围。
当需要求一个函数的最简“或-与”表达式时,可采用“两次取反法”。
具体如下:☆先求出函数F的反函数F的最简“与-或”表达(合并卡诺图上的0方格);☆然后对F的最简“与-或”表达式取反,从而得到函数F的最简“或-与”表达式。
例如,用卡诺图求逻辑函数L(A,B,C,D)=∑m(3,4,6,7,11,12,13,14,15)的最简“或-与”表达式。
在第2章我们学习了关于逻辑门电路基础的概念和特性。
二极管。
逻辑门电路构成三极管。
MOS管。
二极管的开关特性中包括了几个方面:一是当做非线性电阻来使用,所有时间内二极管全部工作在正导通区;二是当做开关来使用,二极管某段时间内导通,某段时间内截止;三是当做小电压稳定器来使用,所有时间内的二极管全部工作在正向导通区,四是当做大电压稳定器件来使用是,所有时间内的二极管全部工作在反向击穿区。
这四点十分的重要,可以充分的了解二极管的特性。
二极管的静态开关特性:当二极管稳定地处于导通与截止状态时,所呈现出的性质特点。
二极管的动态开关特性:二极管在导通与截止两种状态转变过程中的行为特性。
一是在模拟电路中当做电压控制器用来组成放大电路。
MOS管的开关特性二是在数字电路中给当做电路中的开关元件。
三是当做压控可变电阻,即在非线性电阻中使用。
三个状态:放大、压控可变电阻、截止;两个特性:静态和动态;第两个二极管组成的与门电路,是理想二极管。
正与门电路正逻辑体系。
负逻辑体系。
在二极管逻辑门电路正或门电路正逻辑体系。
负逻辑体系。
非门电路无论使用正逻辑体系还是负逻辑体系都得到非门电路。
第三章组合逻辑电路在逻辑组合电路中我们主要学习了小规模集成现实完全描述的组合逻辑电路设计(简称“小完组”)我就得这个比较重要,还有不完全描述和编码器。
首先给大家说说小完组。
什么事小完组呢?就是所谓完全描述不含不关项的逻辑问题的描述。
如列题*设计一个楼上、楼下开关的控制逻辑电路来控制楼梯上的路灯,使之在上楼前,用楼下开关打开电灯,上楼后,用楼上开关关灭电灯;或者在下楼前,用楼上开关打开电灯,下楼后,用楼下开关关灭电灯。
解:a)由实际问题写出真值表设楼上开关为A,楼下开关为B,灯泡为Y。
并设A、B闭合时为1,断开时为0;灯亮时Y为1,灯灭时Y为0。
真值表逻辑电路编码器在编码器学习中,学习了普通编码器和优先编码器和其应用编码器有若干个输入时在某一时刻只有一个输入信号被转化成二进制码,用N位二进制代码可以实现最多对N=2N个信号进行编码在普通编码器在任何时刻中,只能输入一个信号有效,否则输出混乱。
(1):二进制普通编码:用N位二进制代码可以实现最多对N=2N个信号进行编码。
(2)二—十进制编码——————键控8421BCD码编码器所谓二—十进制编码是将十进制的十个数码0~9分别编成8421BCD的电路键控8421BCD码编码器真值表输入输出S9 S8S7S6S5S4 S3S2 S1 S0A B C D GS1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 0 10 1 1 1 11 0 0 0 1 1 0 0 1 1(3)优先编码器优先编码器——允许同时输入两个以上的编码信号,编码器给所有的输入信号规定了优先顺序,当多个输入信号同时出现时,只对其中优先级最高的一个进行编码。
第五节译码器译码器有时又叫做解码器,译码是编码的逆过程,它的功能是将具有特定含义的二进制数码的作何转换成对应的信号,具有译码功能的逻辑电路叫译码器.现在给大家介绍二进制译码器二进制译码器又称变量译码器、全译码器、最小项译码器、唯一地址译码器。
下面以2线—4线译码器的设计为例来说说译码器的工作原理。
2线—4线译码器功能表写出各输出函数表达式:EIY=ABY=EIAB1Y=EIBA2Y=EIAB3Y Y Y YAB2线—4线译码器的逻辑电路图四.数字显示译码器在数字系统中,常常需要将数字、字母、符号等直观地显示出来,供人们读取或监视系统的工作情况。
能够显示数字、字母或符号的器件称为数字显示器。
在数字电路中,数字量都是以一定的代码形式出现的,所以这些数字量要先经过译码,才能送到数字显示器去显示。
这种能把数字量翻译成数字显示器所能识别的信号的译码器称为数字显示译码器。
常用的数字显示器有多种类型。
按显示方式分,有字型重叠式、点阵式、分段式等。
按发光物质分,有半导体显示器,又称发光二极管(LED)显示器、荧光显示器、液晶显示器、气体放电管显示器等。
目前应用最广泛的是由发光二极管构成的七段数字显示器。
1.七段数字显示器原理七段数字显示器就是将七个发光二极管(加小数点为八个)按一定的方式排列起来,七段a、b、c、d、e、f、g(小数点DP)各对应一个发光二极管,利用不同发光段的组合,显示不同的阿拉伯数字。
七段显示译码器74X48七段显示译码器74X48是一种与共阴极数字显示器配合使用的集成译码器,它的功能是将输入的4位二进制代码转换成显示器所需要的七个段信号a ~g 。
数据选择器的基本概念及工作原理数据选择器——根据地址选择码从多路输入数据中选择一路,送到输出。
集成数据选择器74X151是一种典型集成8选1数据选择器,它有8个数据输入端D 0~D 7,3个地址输入端A 2、A 1、A 0,2个互补的输出端Y 和Y ,1个使能输入端G ,使能端G 仍为低电平有效。
数据选择器的应用数据选择器的通道扩展作为一种集成器件,最大规模的数据选择器是16选1。
如果需要更大规模的数据选择器,可进行通道扩展。
第四章 触发器第一节 触发器的电路结构及工作特点锁存器个触发器是构成各种时序电路的储存单元电路,其共同特点是具有0和1两种稳定状态,一旦状态被确定,就能自行保存,长期储存1位二进制码,直到有外部信号作用是才有可能改变。
基本RS 触发器的电路d c DPC O M O M逻辑电路图逻辑符号2 两个稳态这种电路结构,可以形成两个稳态,即Q =1,Q=0,Q=0,Q =1当 Q=1时,Q=1和 Rd =1决定了A门的输出,即Q=0 , Q=0反馈回来又保证了Q=1 ;当 Q=0时,Q=1,Q=1和 Sd =1决定了B门的输出,即 Q=0,Q=0又保证了Q =1 。
在没有加入触发信号之前,即 Rd和Sd 端都是高电平,电路的状态不会改变。
例:画出基本RS触发器在给定输入信号 Rd 、和Sd 的作用下,Q端和 Q 端的波形。