材料力学性能总结3
材料力学性能与应用总结
![材料力学性能与应用总结](https://img.taocdn.com/s3/m/25023f8f112de2bd960590c69ec3d5bbfd0adacb.png)
材料力学性能与应用总结在现代工程领域中,材料的力学性能是决定其能否成功应用的关键因素之一。
材料的力学性能涵盖了众多方面,包括强度、硬度、韧性、塑性、疲劳性能等等。
这些性能不仅影响着材料在各种工况下的表现,也直接关系到工程结构的安全性、可靠性和使用寿命。
首先,让我们来谈谈强度。
强度是材料抵抗外力而不发生破坏的能力。
常见的强度指标有屈服强度、抗拉强度和抗压强度等。
屈服强度是材料开始产生明显塑性变形时的应力值,抗拉强度则是材料在拉伸过程中所能承受的最大应力。
以钢铁为例,高强度钢通常具有较高的屈服强度和抗拉强度,因此被广泛应用于建筑结构、桥梁、船舶等领域,能够承受巨大的载荷而不发生断裂。
然而,过高的强度有时也会带来一些问题,比如可能导致材料的韧性下降,使其在受到冲击时容易发生脆性断裂。
硬度是衡量材料抵抗局部塑性变形的能力。
常见的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等。
硬度高的材料通常具有较好的耐磨性,例如在机械制造中,用于制造刀具、模具等零部件的材料往往需要具备较高的硬度,以延长其使用寿命。
但硬度并非越高越好,因为过硬的材料可能在加工过程中造成困难,而且在某些情况下,过于硬脆的材料可能会因为无法承受冲击而失效。
韧性是材料在断裂前吸收能量的能力。
具有良好韧性的材料能够在承受较大变形或冲击时不发生突然断裂。
例如,一些高强度合金在经过特殊的热处理工艺后,能够在保持高强度的同时获得较好的韧性,被广泛应用于航空航天领域,确保飞机结构在极端条件下的安全性。
塑性则反映了材料发生永久变形而不破坏的能力。
良好的塑性对于材料的加工成型非常重要。
例如,铝合金具有较好的塑性,因此在汽车制造中常用于冲压成型各种零部件。
疲劳性能是材料在循环载荷作用下的抵抗能力。
许多工程结构,如发动机的零部件、桥梁的钢梁等,都承受着周期性的载荷。
材料的疲劳性能不佳可能会导致在远低于其静态强度的载荷作用下发生过早失效。
通过优化材料的成分、组织结构以及制造工艺,可以显著提高材料的疲劳性能。
材料力学性能-考前复习总结(前三章)
![材料力学性能-考前复习总结(前三章)](https://img.taocdn.com/s3/m/4e6d32ef9fc3d5bbfd0a79563c1ec5da50e2d6c3.png)
材料力学性能-考前复习总结(前三章)金属材料的力学性能指标是表示其在力或能量载荷作用下(环境)变形和断裂的某些力学参量的临界值或规定值。
材料的安全性指标:韧脆转变温度Tk;延伸率;断面收缩率;冲击功Ak;缺口敏感性NSR材料常规力学性能的五大指标:屈服强度;抗拉强度;延伸率;断面收缩率;冲击功Ak;硬度;断裂韧性第一章单向静拉伸力学性能应力和应变:条件应力条件应变 =真应力真应变应力应变状态:可在受力机件任一点选一六面体,有九组应力,其中六个独立分量。
其中必有一主平面,切应力为零,只有主应力,且,满足胡克定律。
应力软性系数:最大切应力与最大正应力的相对大小。
1 弹变1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
ae=1/2σeεe=σe2/2E。
取决于E和弹性极限,弹簧用于减震和储能驱动,应有较高的弹性比功和良好弹性。
需通过合金强化及组织控制提高弹性极限。
2)弹性不完整性:纯弹性体的弹性变形只与载荷大小有关,而与加载方向及加载时间无关,但对实际金属而言,与这些因素均有关系。
①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
与材料成分、组织及试验条件有关,组织约不均匀,温度升高,切应力越大,滞弹性越明显。
金属中点缺陷的移动,长时间回火消除。
弹性滞后环:由于实际金属有滞弹性,因此在弹性区内单向快速加载、卸载时,加载线与卸载线不重合,形成一封闭回路。
吸收变形功循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力(塑性区加载,塑性滞后环),也叫内耗(弹性区加载),或消震性。
②包申格效应:定义:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
(反向加载时弹性极限或屈服强度降低的现象。
特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了)解释:与位错运动所受阻力有关,在某滑移面上运动位错遇位错林而使其弯曲,密度增大,形成位错缠结或胞状组织,相对稳定。
2024年材料力学性能总结
![2024年材料力学性能总结](https://img.taocdn.com/s3/m/73fb1d23b94ae45c3b3567ec102de2bd9705de68.png)
2024年材料力学性能总结材料科学与工程是一个不断发展的领域,随着科技的进步和经济的发展,新材料的研发和应用越来越受到关注。
在2024年,材料力学性能方面取得了一系列的突破和进展。
以下是对2024年材料力学性能的总结。
一、新材料的涌现在2024年,新材料的研发持续推进,涌现了一批具有优异力学性能的新材料。
其中包括高性能金属材料、高强度复合材料、高韧性陶瓷材料等。
这些新材料的力学性能远超传统材料,具有更高的强度、硬度、韧性、耐磨性等特点,为各行各业提供了更多的选择和可能。
二、金属材料的强度与塑性提升在金属材料领域,研究人员通过优化合金配方和热处理工艺,成功提升了金属材料的强度和塑性。
新型高强度钢材广泛应用于汽车、轨道交通、航空航天等领域,有效提高了产品的安全性和使用寿命。
同时,新型金属材料的塑性也得到了极大改善,使其更容易成形和加工,满足不同行业对材料的需求。
三、复合材料的应用扩展复合材料在2024年得到了进一步的应用扩展。
高强度复合材料被广泛应用于航空、航天、船舶等领域,可以减轻结构重量,提高载荷能力,提升产品性能。
新型的纳米复合材料在电子、光电、能源等领域也得到了广泛应用,具有优异的电、磁、光等特性,为新一代电子产品和能源装置的研发提供了重要支持。
四、陶瓷材料的韧性提升传统陶瓷材料脆性大,容易破裂,限制了其在工程应用中的广泛使用。
在2024年,陶瓷材料的韧性得到了重大突破。
通过引入纤维增强、晶体设计等手段,成功提升了陶瓷材料的韧性。
新型韧性陶瓷材料在航空、航天、汽车等领域得到了广泛应用,具有较高的强度和韧性,能够承受更大的载荷和冲击,提高了产品的安全性和可靠性。
五、仿生材料的发展仿生材料是以自然界生物体结构和性能为蓝本设计的新型材料。
在2024年,仿生材料得到了更多的关注和研究。
通过模仿昆虫翅膀、植物叶片等自然结构,研究人员开发出了一系列具有优异力学性能的仿生材料。
这些材料具有轻量化、高强度、高韧性的特点,适用于飞行器、船舶、建筑等领域。
材料力学性能复习总结
![材料力学性能复习总结](https://img.taocdn.com/s3/m/d1314d59fe00bed5b9f3f90f76c66137ef064f7c.png)
材料力学性能复习总结材料力学性能是指材料在外力作用下所表现出的力学特性和性能。
在材料力学性能的学习中,不仅需要了解材料的基本力学性质,还需要掌握材料的破坏机制、变形行为以及材料的力学性能测试方法等方面的知识。
以下是对材料力学性能复习的总结。
1.材料的破坏机制和破坏形态材料的破坏机制是指材料在受力作用下发生破坏的方式和过程。
常见的破坏机制有拉伸破坏、压缩破坏、剪切破坏等。
拉伸破坏时,材料会发生断裂;压缩破坏时,材料会出现压缩变形和压碎现象;剪切破坏时,材料会出现剪切变形和断裂等。
材料的破坏形态是指材料在受力作用下发生的形态变化。
常见的破坏形态有脆性断裂、塑性变形和疲劳破坏等。
脆性断裂是指材料在受静态或低应力下发生迅速断裂的性质;塑性变形是指材料在受力作用下发生塑性流动,而不发生断裂;疲劳破坏是指材料在反复受力下产生裂纹并最终导致断裂。
2.材料的变形行为和变形机制材料的变形行为是指材料在受力作用下发生的形变现象。
常见的变形行为有弹性变形、塑性变形和粘弹性变形等。
弹性变形是指材料在受力作用下发生的可逆性变形。
材料在弹性变形时能够恢复到原始形状和尺寸。
弹性变形的机制是原子之间的键能发生弹性形变,即在受力作用下原子间的距离发生变化,但不改变原子间的相对位置。
塑性变形是指材料在受力作用下发生的不可逆性变形。
材料在塑性变形时会发生晶格的滑移和位错的运动。
塑性变形的机制是原子间的键能发生塑性形变,即原子间的相对位置发生改变。
粘弹性变形是指材料在受力作用下表现出介于弹性变形和塑性变形之间的性质。
材料在粘弹性变形时有一部分能量会被消耗掉,导致材料的不完全恢复。
粘弹性变形的机制是在外力作用下,分子间的键发生的弹性形变和分子间的长距离位移。
3.材料力学性能的测试方法拉伸试验是指将材料置于拉力下进行测试。
通过拉伸试验可以了解材料的弹性性能、破坏强度、延展性以及断裂形态等。
压缩试验是指将材料置于压力下进行测试。
通过压缩试验可以了解材料的强度和刚度等。
材料力学性能总结
![材料力学性能总结](https://img.taocdn.com/s3/m/020ca849941ea76e59fa04a3.png)
材料力学性能总结1、内因:a)金属本性及晶格类型:金属本性及晶格类型不同,位错运动所受的阻力不同。
b)晶粒大小和亚结构:减小晶粒尺寸将使屈服强度提高。
c)溶质元素:固溶强化。
d)第二相2、外因:温度(-);应变速率(+);应力状态。
第二相强化(沉淀强化+弥散强化):通过第二相阻碍位错运动实现的强化。
强化效果:在第二相体积比相同的情况下,第二相质点尺寸越小,强度越高,强化效果越好;在第二相体积比相同的情况下,长形质点的强化效果比球形质点的强化效果好;第二相数量越多,强化效果越好。
细晶强化:通过减小晶粒尺寸增加位错运动障碍的数目(阻力大),减小晶粒内位错塞积群的长度(应力小),从而使屈服强度提高的方法。
同时提高塑性及韧性的机理:晶粒越细,变形分散在更多的晶粒内进行,变形较均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量,即表现出较高的塑性。
细晶粒金属中,裂纹不易萌生(应力集中少),也不易传播(晶界曲折多),因而在断裂过程中吸收了更多能量,表现出较高的韧性。
固溶强化:在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度。
原因:溶质原子与位错的弹性相互作用,使溶质原子扩散到位错周围,形成柯氏气团;柯氏气团钉扎位错,提高位错运动阻力。
强化效果:间隙固溶体的强化效果大于置换固溶体;溶质和溶剂原子尺寸差越大,强化效果越好;溶质浓度越大,强化效果越好。
应变硬化(形变强化):金属材料塑性变形过程中所需要的外力不断增大,表明金属材料有一种阻止继续塑性变形的能力。
原因:塑性变形过程中,位错不断增殖,运动受阻所致。
断裂韧度:临界或失稳状态下的应力场强度因子的大小。
塑性变形:作用在物体上的外力取消后,物体的变形不完全恢复而产生的永久变形。
1、单晶体:滑移+孪生;2、多晶体:各个晶粒塑性变形的综合结果。
特点:各晶粒变形的不同时性;不均匀性;相互协调性。
弹性变形:当外力去除后,能恢复到原来形状或尺寸的变形。
2024年材料力学性能总结范文
![2024年材料力学性能总结范文](https://img.taocdn.com/s3/m/b1a9db21b94ae45c3b3567ec102de2bd9705de5d.png)
2024年材料力学性能总结范文____年材料力学性能总结摘要:本文对____年新材料的力学性能进行了总结。
通过对新材料的力学性能研究,可以更好地应用于工程实践中,提高产品的性能和可靠性。
本文主要对新材料的强度、硬度、韧性、耐热性等性能进行了介绍,并对其应用前景进行了展望。
关键词:新材料;力学性能;强度;硬度;韧性;耐热性一、强度强度是材料抵抗外力的能力,是一个材料最基本的力学性能之一。
____年新材料的强度有了显著的提高,主要得益于新材料结构和组成的优化。
新材料采用了多种复合材料技术,在不同材料的复合过程中,不同材料之间形成了一种互补的关系,使得新材料的强度得到了有效提升。
此外,新材料还采用了新的加工工艺,如纳米技术和超塑性成型技术,通过精确控制材料微观结构和缺陷,使新材料的强度得到了进一步提升。
二、硬度硬度是材料抵抗外界划痕和压痕的能力,表征了材料的抗磨性能。
____年新材料的硬度也得到了大幅提升。
在新材料的研发中,科学家们发现了一些新的硬化机制,如晶体缺陷的控制、固溶体弥散硬化和位错强化等。
通过合理地控制这些硬化机制,新材料的硬度可以得到有效提升。
此外,新材料还采用了一些表面处理技术,如化学镀、电沉积和离子注入等,通过改变材料表面的化学组成和相结构,来提高材料的硬度。
三、韧性韧性是材料抵抗破坏的能力,是反映材料抗拉伸、抗压和抗弯曲能力的重要指标。
____年新材料的韧性也得到了显著改善。
新材料采用了一些新的加工工艺,如冷变形和等离子注入等,通过调整材料的晶界和位错密度,使新材料的韧性得到了提高。
此外,新材料还采用了一些新的复合技术,如纳米复合和纤维复合等,通过增加材料内部的弥散相和增强相,来提高材料的韧性。
四、耐热性耐热性是材料在高温条件下能保持稳定性和性能的能力。
____年新材料的耐热性也得到了显著提升。
新材料采用了一些新的材料组成和结构设计,如金属间化合物、金属陶瓷复合材料和增强材料等,来提高材料的热稳定性。
材料力学性能总结(2篇)
![材料力学性能总结(2篇)](https://img.taocdn.com/s3/m/18e200e277eeaeaad1f34693daef5ef7ba0d1200.png)
材料力学性能总结第一章二节.弹变1。
弹性变形。
材料在外力作用下产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状的性质称为弹性。
这种可恢复的变形称为弹性变形。
2.弹性模量:表征材料对弹性变形的抗力3.弹性性能与特征是原子间结合力的宏观体现,本质上决定于晶体的电子结构,而不依赖于显微____,因此,弹性模量是对____不敏感的性能指标。
4.比例极限σp。
应力与应变成直线关系的最大应力。
5.弹性极限σe。
由弹性变形过渡到弹性塑性变形的应力。
6.弹性比功。
表示单位体积金属材料吸收弹性变形功的能力,又称弹性比应变能。
7.力学性能指标。
反映材料某些力学行为发生能力或抗力的大小。
8.弹性变形特点:应力与应变成比例,产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状9.滞弹性。
在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象,称为滞弹性。
10.循环韧性。
指在塑性区加载时材料吸收不可逆变形功的能力。
11.循环韧性应用。
减振、消振元件。
____包申格效应。
金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载规定残余伸长应力降低的现象,称为包申格效应。
____包申格应变。
指在给定应力下,正向加载与反向加载两应力-应变曲线之间的应变差。
14.消除包申格效应:预先进行较大的塑性变形。
在第二次反向受力前先使金属材料于回复或再结晶温度下退火。
三节:塑性晶粒小可以产生细晶强化。
都会使强度增加。
3.溶质原子:溶质元素溶入金属晶格形成固溶体,产生固溶强化应变速率越高强度越高。
3.细晶强化。
晶界是位错运动的阻碍,晶粒小相界多。
减少晶粒尺寸会减少晶粒内部位错塞积的数量,减少位错塞积群的长度,降低塞积点处的应力,相邻晶粒中位错源开动所需的外加切应力提高,屈服强度增加。
4.固溶强化。
在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度,此即为固溶强化。
溶质原子与基体原子尺寸差别越大,引起的弹性畸变越大,溶质原子浓度越高,引起的弹性畸变越大,对位错的阻碍作用越强,固溶强化作用越大。
关于材料性能总结
![关于材料性能总结](https://img.taocdn.com/s3/m/3bfa9a25a31614791711cc7931b765ce05087aaa.png)
关于材料性能总结材料性能是指材料在使用过程中所表现出的各种性质和特点,包括力学性能、物理性能、化学性能、热学性能等多个方面。
了解材料性能,可以帮助人们更好的选择和应用材料,提高制造品质和使用寿命。
本文将总结一些常见的材料性能。
1.力学性能材料的力学性能是指材料在受到力的作用下发生形变、破坏或者塑性变形的能力。
力学性能包括抗拉强度、屈服强度、硬度、韧性、疲劳强度等。
抗拉强度和屈服强度是弹性或塑性形变下的应力,是评价材料抵抗拉伸作用的指标。
硬度是材料抵抗刮擦和压痕的能力。
韧性是材料在受到外力作用下,抵抗断裂破坏的能力。
疲劳强度是材料在反复载荷作用下的耐用性能。
2.物理性能物理性能是指材料表现出的磁性、电性、超导性、光学性能等。
其中,磁性是指材料具有磁感应强度、磁化强度等性能特点。
电性是指材料具有各种导电性和介电性。
超导性是指某些材料在一定的温度和磁场下,可以抑制电阻的产生。
光学性能是指材料在入射光线作用下,出现的折射、透射、反射、发射等特性。
3.化学性能化学性能主要涉及材料在各种化学环境中的耐腐蚀性能,包括物理腐蚀和化学腐蚀两种类型。
物理腐蚀多是由于机械力的磨损、挤压等引起的;化学腐蚀则是由于化学反应作用而导致的。
不同的材料在不同的化学环境中表现出不同的化学反应能力。
4.热学性能材料的热学性能包括导热性、膨胀性、热膨胀系数等。
导热性是指材料具有传导温度的能力。
膨胀性是指材料在受热时、体积会发生变化的特性。
热膨胀系数是指材料受温度变化时,长度、体积发生变化的系数。
总之,材料的性能是很多方面的,不同类型的材料表现出不同的性能特点。
故在应用材料时,需要根据实际情况来选择材料,以此来满足制造要求。
针对材料的性能特点进行合理选材,可有效提高制造成本和品质、使用寿命。
材料的力学性能重点总结
![材料的力学性能重点总结](https://img.taocdn.com/s3/m/14b6d6ed6294dd88d0d26b6e.png)
名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。
2弹性比功:表示金属材料吸收塑性变形功的能力。
3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。
4包申格效应:金属材料通过预先加载产生少来塑性变形,卸载后再同向加载,规定参与伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5塑性:金属材料断裂前发生塑性变形的能力。
常见塑性变形方式:滑移和孪生6应力状态软性系数:最大切应力最大正应力应力状态软性系数α越大,最大切应力分量越大,表示应力状态越软,材料越易产生塑性变形α越小,表示应力状态越硬,则材料越容易产生脆性断裂7缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生拜年话,产生所谓―缺口效应―①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。
②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。
8缺口敏感度:有缺口强度的抗拉强度ζbm与等截面尺寸光滑试样的抗拉强度ζb的比值. NSR=ζbn / ζs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。
材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间13疲劳贝纹线:以疲劳源为中心的近于平行的一簇同心圆.是疲劳源裂纹扩展时前沿的痕迹14疲劳条带:具有略显弯曲并相互平行的沟槽花样,是疲劳断口最典型的微观特征15驻留滑移带:金属在循环应力长期作用下,形成永久留或再现的循环滑移带称为驻留滑移带,具有持久驻留性.16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI 越大,则应力场各应力分量也越大17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象18氢致延滞断裂:高强度钢或α+β钛合金中,含有适量的处于固溶状态的氢,在低于屈服强度的应力持续作用下经过一段时间的孕育期后在金属内部,特别是在三向拉应力区形成裂纹,裂纹的逐步扩展,最后突然发生脆性断裂,这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂第一章2.力学性能指标的意义(1)δ0.2 对于拉伸曲线上没有屈服平台的材料,塑性变形硬化过程是连续的,产生0.2%残余伸长应力时刻的屈服强度。
材料力学性能重点总结
![材料力学性能重点总结](https://img.taocdn.com/s3/m/1bf57d8d9fc3d5bbfd0a79563c1ec5da51e2d66d.png)
材料力学性能重点总结1.强度:强度是材料抵抗外部载荷引起的破坏的程度,通常使用屈服强度、抗拉强度和抗压强度来评价。
强度越高,材料越能承受外部载荷。
2.韧性:韧性是材料在受力时发生塑性变形以及能够吸收能量的能力。
材料具有较高的韧性时,能够在受到巨大应力时仍然保持不破裂。
3.硬度:硬度是材料抵抗表面破坏的能力,也可以理解为材料的抗刮伤能力。
硬度可以衡量材料的耐磨性和耐磨损能力。
4.弹性模量:弹性模量是材料在受力后恢复原状的能力,可以评估材料在受力后的变形程度。
弹性模量越大,材料的刚性越高。
5.延展性:延展性是材料在受力时能够发生塑性变形而不破坏的能力。
延展性高的材料可以更好地适应复杂应力和形状变化。
6.断裂韧性:断裂韧性是材料在受到外部载荷时能够抵抗破坏的能力。
它是强度和韧性的综合指标,可评估材料在极限条件下的断裂性能。
7.蠕变性:蠕变性是材料在长期受力情况下发生的塑性变形。
材料的蠕变性能评估了其在高温和持续应力下的稳定性。
8.疲劳性:疲劳性是材料在受到反复应力循环后发生破坏的能力。
疲劳性能评估了材料在长期使用过程中的可靠性和耐久度。
9.冲击韧性:冲击韧性是材料在受到突然冲击加载时抵抗破坏的能力。
它可以评估材料在极端工作条件下的抗冲击性能。
10.耐腐蚀性:耐腐蚀性是材料抵抗环境介质侵蚀和化学反应的能力。
材料的耐腐蚀性能评估了其在特定环境中的稳定性和使用寿命。
以上是材料力学性能的重点总结,它们通常都与材料的微观结构、成分、加工工艺和使用条件有关。
通过评估和选择材料的力学性能,可以确保材料在各种应用中具有足够的强度、韧性和稳定性。
2024年材料力学性能总结(三篇)
![2024年材料力学性能总结(三篇)](https://img.taocdn.com/s3/m/3bb70f2803768e9951e79b89680203d8cf2f6a44.png)
2024年材料力学性能总结摘要:材料力学性能是材料科学研究中非常重要的一个方面,它描述了材料在力学作用下的行为和性能。
2024年,随着科学技术的进步和工程需求的不断提高,材料力学性能也将取得许多重要的突破和进展。
本文将对2024年材料力学性能的发展进行总结,并对未来可能的应用和研究方向进行展望。
关键词:材料力学性能;2024年;发展总结;应用展望一、引言材料力学性能是材料科学研究中的一个重要方向,它考察材料在外力作用下的响应和变形行为。
材料力学性能的研究不仅对于理论研究有重要意义,也对工程应用具有重要影响。
2024年,随着科学技术的不断进步,材料力学性能也将迎来许多新的挑战和机遇。
本文将对2024年材料力学性能的发展进行总结,并对未来可能的应用和研究方向进行展望。
二、材料力学性能的发展总结2024年,预计会有以下几个方面的材料力学性能发展和突破:1.高强度材料的研发随着科技进步和工程需求的不断提高,对于高强度材料的需求将越来越迫切。
2024年,预计会有许多新型的高强度材料得到开发和研究。
这些材料不仅具有优良的力学性能,还具有其他良好的特性,如轻质、高温稳定性等。
这些高强度材料的研发和应用将对于航空航天、汽车和能源等领域具有重要的意义。
2.新型复合材料的研究复合材料是一种具有多种材料组成的材料,它的力学性能往往比单一材料更优越。
2024年,预计会有许多新型的复合材料被研发和应用。
这些新型复合材料具有更好的强度、刚度和韧性,并且可以具备一些其他功能,如导电性、光学性能等。
这些新型复合材料的研究将有助于解决一些工程问题,同时也为制造行业提供更多的选择。
3.纳米材料的应用拓展纳米材料是一种具有纳米尺度结构的材料,具有许多特殊的力学性能。
2024年,预计纳米材料的应用范围将进一步拓展。
纳米材料不仅可以应用于催化剂、传感器等领域,还可以用于制备高强度和高韧性材料。
纳米材料的研究将有助于改进传统材料的性能,并带来许多新的应用领域。
01材料的力学性能3-断裂
![01材料的力学性能3-断裂](https://img.taocdn.com/s3/m/51842efce009581b6bd9ebdf.png)
3.1 断裂分类与宏观断口特征
3.1.2 断口的宏观特征
光滑圆柱拉伸试样的宏观韧性断口呈杯锥形,由纤维区、放射区 和剪切唇三个区域组成,这就是断口特征的三要素。
3.1 断裂分类与宏观断口特征
3.1.2 断口的宏观特征
韧性断裂的宏观断口同时具有上述三个区域,而脆性断口纤维区 很小,几乎没有剪切唇。 上述断口三区域的形态、大小和相对位置会因试样形状、尺寸和
3.3 材料的蠕变
对同一种材料, 蠕变曲线形状随应力、温度变化而变化, 温度升高或应 力升高, 曲线第Ⅱ阶段缩短。在高温或高应力下,甚至没有第Ⅰ或Ⅰ,Ⅱ阶 段,只有第Ⅱ或Ⅱ,Ⅲ阶段,而在另一些情况,如低应力低温度下,只有第 Ⅰ,Ⅱ阶段,即断裂,而没有第Ⅲ阶段。
3.4 蠕变变形及断裂机制
3.4.1 蠕变变形机制
断裂类似,故称此种晶体学平面为解理面。解理面一般是低指数晶面或表
面能最低的晶面。 剪切断裂是材料在切应力作用下,沿滑移面分离而造成的滑移面分离断 裂,其中又分滑断(纯剪切断裂)和微孔聚集型断裂。
3.1断裂类型
3.1.1 断裂的分类
正断和切断
按断裂面的取向可以将断裂分为正断和切断。
正断型断裂的断口与最大正应力相垂直,常见于解理断裂或约束较大 的塑性变形的场合。 切断型断裂的宏观断口的取向与最大切应力方向平行,而与主应力约 成450 角。切断常发生于塑性变形不受约束或约束较小的情况,如拉 伸断口上的剪切唇等。
3.5 蠕变性能指标
3.5.1 蠕变极限和持久强度极限
① 在规定温度(t)下,使试样产生规定的稳态蠕变速率的最大应力。 500 oC
500 1105
60MP a
蠕变速率1×10-5 %/h ② 在规定温度(t)和规定的试验时间τ内, 使试样产生规定的总应变量δ的最大应力σ
材料力学性能总结
![材料力学性能总结](https://img.taocdn.com/s3/m/745412f464ce0508763231126edb6f1aff007121.png)
材料力学性能总结首先是强度。
强度是材料在受力时抵抗变形和破坏的能力。
常见的强度指标包括抗拉强度、抗压强度、抗扭强度和抗剪强度。
抗拉强度是材料在拉伸状态下抵抗断裂的能力,抗压强度是材料在受压状态下抵抗压碎破坏的能力,抗扭强度是材料在扭转状态下抵抗破坏的能力,抗剪强度是材料在受剪应力状态下抵抗破坏的能力。
强度越高,材料的承载能力越强。
其次是刚度。
刚度是材料在受力时抵抗形变的能力。
刚度可以用杨氏模量来衡量,杨氏模量是材料在弹性阶段的应变应力比。
刚度越高,材料的刚性越好,在受力时形变较小,保持较好的形状稳定性。
再次是韧性。
韧性是材料在受力时能够吸收大量能量而不断延展的能力。
韧性可以用抗拉伸功和冲击韧性来衡量。
抗拉伸功是材料断裂前吸收的能量,冲击韧性是材料在受冲击载荷作用下的能量吸收能力。
高韧性的材料能够在受力时吸收更多的能量,具有较好的抗震和耐久性能。
此外,还有硬度。
硬度是材料抵抗刮痕或压痕的能力,常用硬度指标有布氏硬度、洛氏硬度和维氏硬度等。
硬度越高,材料越难被刮伤或压痕,具有较好的耐磨性能。
最后是塑性。
塑性是材料在受力时变形能保留在材料内部的能力。
塑性可以用屈服强度和延伸率来衡量,屈服强度是材料在破坏前的最大抗拗力,延伸率是材料在断裂前拉伸变形的百分比。
高塑性的材料能够在受力时发生大量变形而不破裂,具有较好的可塑性。
总结起来,材料力学性能是评价和选择材料时需要考虑的重要因素,包括强度、刚度、韧性、硬度和塑性等指标。
不同材料的力学性能差异很大,根据具体应用需求进行选择合适的材料,以实现最佳性能。
材料力学性能总结
![材料力学性能总结](https://img.taocdn.com/s3/m/2ef92f78ff4733687e21af45b307e87100f6f84f.png)
材料力学性能总结材料力学性能是指材料在受到不同形式的载荷或应力下,表现出不同的物理性质和机械性能。
材料力学性能的总结可以帮助我们更好地认识材料的特性,从而更加科学地选材和设计各种工程应用。
下面将从以下几个方面对材料力学性能进行总结。
一、强度与韧性材料的强度是指其在受到载荷或应力时所能承受的最大应力值。
强度高的材料在设计中可以承受更大的载荷或应力。
常见的材料强度指标有屈服强度、抗拉强度、压缩强度等。
但是,仅依靠强度指标来选材是不够的,因为材料的强度高并不代表它具有优良的力学性能。
例如,脆性材料的强度很高,但其韧性较差,容易发生断裂。
因此,韧性也是一个重要的材料性能。
韧性是指材料在受到载荷时能够吸收能量的能力,也称为能量吸收能力。
通常使用断裂韧性、冲击韧性等来描述材料的韧性指标。
在实际应用中,需要兼顾材料的强度和韧性,以确保其不仅能够承受载荷,还能保证结构的安全稳定。
二、硬度和耐磨性硬度是指材料抵抗各种形式的本质上属于局部破坏的作用或物理和化学作用的能力。
通常使用洛氏硬度、布氏硬度等指标来描述材料的硬度。
硬度高的材料有较强的抵抗力,并能够减少磨损和划痕的发生。
与硬度相似,耐磨性也是一个测量材料抗磨损能力的重要指标。
材料的耐磨性受到多种因素的影响,如材料本身的硬度结构、尺寸、表面形貌和应力等。
在应用中,已经开发出多种表面处理和涂层技术,可以提高材料的硬度和耐磨性,以应对不同的工程需求。
三、热性能材料的热性能包括热膨胀系数、热导率和热扩散等。
热膨胀系数是描述材料在热膨胀时的变形情况的指标。
不同的材料具有不同的热膨胀系数,而这种变形会限制材料的可靠性。
热导率是指材料在温度差异下传导热能的速率。
高热导率的材料有助于热能的传导和散热,减少过热和热膨胀的问题。
热扩散是指一个材料在受到热载荷时,能够在较短时间内吸收和释放热能的能力。
材料的热性能也同样需要在应用时进行考虑和选择。
四、协变效应协变效应是指材料在光滑的表面上受到应力或载荷时出现的变形现象。
材料力学性能重点总结
![材料力学性能重点总结](https://img.taocdn.com/s3/m/453f930d842458fb770bf78a6529647d2628347f.png)
材料力学性能重点总结1.强度:材料的强度是指材料抵抗外力破坏的能力。
常见的强度指标有屈服强度、抗拉强度、抗压强度等。
屈服强度是指材料在受力后开始出现塑性变形的应力值;抗拉强度是指材料在拉伸状态下的最大应力值;抗压强度是指材料在受到压缩力时的最大应力值。
强度高的材料具有较高的抵抗破坏能力,适用于需要承受大力的场合。
2.韧性:韧性是材料在受力过程中能够吸收能量并发生大变形的能力。
具有良好韧性的材料能够抵抗冲击或拉伸等动力载荷的作用,不易发生断裂或失效。
韧性材料通常具有较高的延展性和断裂韧性。
3.硬度:硬度是材料抵抗刮擦或压痕的能力。
硬度高的材料具有较强的抗刮擦能力和耐磨损性能。
常用的硬度测试方法有洛氏硬度和布氏硬度等。
4.延展性:延展性是指材料在受力时的塑性变形程度。
延展性高的材料能够在受力后产生大的形变而不发生断裂。
材料的延展性通常与其抗拉强度、韧性和冷加工性能有关。
5.抗疲劳性:抗疲劳性是指材料在重复应力作用下不发生疲劳断裂的能力。
材料的抗疲劳性能决定了其在长期运行过程中的耐久性,具有抗疲劳性的材料能够在长期受力下保持稳定性能。
6.温度效应:材料在高温或低温环境下的性能表现。
高温下,材料可能会发生软化或氧化等变化,降低其强度和韧性;而低温下,材料可能变脆,容易发生断裂。
温度效应的了解对于材料的设计和应用非常重要。
除了上述重点性能指标外,材料力学性能还与其他因素有关,如材料的组织结构、制备工艺、应力条件等。
因此,在材料性能的研究和应用过程中,需要综合考虑多因素的影响。
综上所述,材料力学性能的研究对于材料的设计、选择和应用具有重要意义。
材料力学性能重点总结
![材料力学性能重点总结](https://img.taocdn.com/s3/m/4176776e580102020740be1e650e52ea5418ce53.png)
材料力学性能重点总结1.强度:材料的强度是指材料在外力作用下抵抗破坏的能力。
常用于评估材料抗拉强度、抗压强度、抗弯强度等。
强度与材料内部结构关系紧密,常用措施是通过原子间结合力和晶粒结构的稳定性提高强度。
2.韧性:材料的韧性是指承受冲击负载时材料能够发生塑性变形而不发生断裂的能力。
韧性与材料断裂韧度有关,断裂韧度越高,材料的韧性越好。
韧性的提高可以通过增加材料的塑性变形能力来实现,例如降低材料的晶界和相界的应力集中。
3.硬度:材料的硬度是指材料抵抗外部划痕或压痕的能力。
硬度可以用于评价材料的耐磨性和抗划伤性能。
通常,硬度较高的材料具有较好的耐磨性和较高的抗划伤能力。
硬度可以通过提高材料的晶粒尺寸和强化材料的位错密度来改善。
4.塑性:材料的塑性是指材料在受力后能够发生可逆性的非弹性形变的能力。
塑性变形是材料在受力过程中重要的变形方式,可以提高材料的韧性和变形能力。
材料的塑性与材料的熔点、晶粒尺寸和晶粒形态等因素有关。
5.疲劳寿命:材料的疲劳寿命是指材料在循环加载下能够承受的应力循环次数。
疲劳寿命是材料设计和选择的重要指标,特别是在机械和航空领域中。
疲劳寿命与材料中的微观缺陷、动态应力等因素密切相关。
6.脆性:材料的脆性是指材料在受力时容易发生断裂的性质。
脆性材料在受力作用下会发生紧急的破坏,通常不会发生明显的可逆塑性变形。
与韧性材料相比,脆性材料更容易发生断裂。
材料的脆性取决于材料中的缺陷结构和应力分布。
总的来说,材料力学性能是评价材料质量的重要指标。
强度、韧性、硬度、塑性、疲劳寿命和脆性是材料力学性能的关键指标。
合理设计和选择材料可以改善材料力学性能,提高材料的耐久性和可靠性。
材料力学性能总结
![材料力学性能总结](https://img.taocdn.com/s3/m/4c2702f36f1aff00bed51e58.png)
材料力学性能材料受力后就会产生变形,材料力学性能是指材料在受力时的行为。
描述材料变形行为的指标是应力σ和应变ε,σ是单位面积上的作用力,ε是单位长度的变形。
描述材料力学性能的主要指标是强度、延性和韧性。
其中,强度是使材料破坏的应力大小的度量;延性是材料在破坏前永久应变的数值;而韧性却是材料在破坏时所吸收的能量的数值。
1.弹性和刚度材料在弹性范围内,应力与应变成正比,其比值E=σ/ε(MN/m2)称为弹性模量。
E标志着材料抵抗弹性变形的能力,用以表示材料的刚度。
E值主要取决于各种材料的本性,一些处理方法(如热处理、冷热加工、合金化等)对它影响很小。
零件提高刚度的方法是增加横截面积或改变截面形状。
金属的E值随温度的升高而逐渐降低。
2.强度在外力作用下,材料抵抗变形和破坏的能力称为强度。
根据外力的作用方式,有多种强度指标,如抗拉强度、抗弯强度、抗剪强度等。
当材料承受拉力时,强度性能指标主要是屈服强度和抗拉强度。
(1)屈服强度σs在图1-6(b)上,当曲线超过A点后,若卸去外加载荷,则试样会留下不能恢复的残余变形,这种不能随载荷去除而消失的残余变形称为塑性变形。
当曲线达到A点时,曲线出现水平线段,表示外加载荷虽然没有增加,但试样的变形量仍自动增大,这种现象称为屈服。
屈服时的应力值称为屈服强度,记为σS。
有的塑性材料没有明显的屈服现象发生,如图1-6(c)所示。
对于这种情况,用试样标距长度产生0.2%塑性变形时的应力值作为该材料的屈服强度,以σ0.2表示。
机械零件在使用时,一般不允许发生塑性变形,所以屈服强度是大多数机械零件设计时选材的主要依据也是评定金属材料承载能力的重要机械性能指标。
材料的屈服强度越高,允许的工作应力越高,零件所需的截面尺寸和自身重量就可以较小。
(2)抗拉强度σb材料发生屈服后,其应力与应变的变化如图1-1所示,到最高点应力达最大值σb。
在这以后,试样产生“缩颈”,迅速伸长,应力明显下降,最后断裂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.磨损量的估算:J.F.Archard提出了粘着磨损量 估算方法。
在摩擦副接触处为三向压缩应力状态,其
接触压缩屈服强度近似为单向压缩屈服强度sc
的三倍。
设真实接触面积为A,接触压缩屈服强度为3sc,
作用于表面上的法向力为P 。假定磨屑呈半球 形,直径为d,任一瞬时有n个粘着点,设所有
粘着点的尺寸相同,直径为d,则:
2020/5/4
p
n d 2
4
3 sc
单位滑动距离内的接触点数
N
n d
4p
3scd 3
W
KNV' L
K
4p
3scd 3
2
3
d 2
3
L
K
pL
9 sc
K
pL 3H
接触点半球体积
V
'
2
d
3
3 2
H 3 sc
磨屑形成有个几率问题,几率为K --粘着磨 损系数 ,随压力增大而增加。
二、 表面强化及残余应力的影响
表面热处理及表面化学热处理:
整体加热(低淬透性钢、薄壳件) 利 表面淬火 火焰加热
用组织
相变获得表
感应加热
面强化,可使机
渗碳
件获得表硬心韧的 表面化学热处理
良好综合性能,可利用 组织相变及组织应力、热应
渗氮 碳氮共渗
力的变化,使机件表层获得很 高的强度和残余压应力。
复合强化
铁qf=0-0.05。 • (铸铁中石墨片尺寸一般大于临界裂纹扩展尺
寸,再有缺口影响不大)
2020/5/4
• 第三节 疲劳裂纹扩展速率 a
及扩展门槛值
ac1
• 一、疲劳裂纹扩展曲线
ac2
•
σ2>σ1 σ1
σ2
• 疲劳裂纹扩展速率是指疲劳
da/dN
裂纹亚稳扩展阶段的速率。
•
• 通过三点弯曲切口试样TPB
I区为近门槛区:裂纹扩展速率 随着△K I的降低而迅速降低, 以至da/dN→0。(书中5-17、 5-18、5-21横坐标刻度应是对 数值)
与此相对应△K I值称为疲劳裂 纹扩展门槛值,记为△Kth。
da/dN
Ⅰ区
Ⅱ区
Ⅲ区
Kth
da c(K )n dN
lgK
图5-16 da/dN~K的关系曲线
❖对当应△于Kd1≤a/△KdthN时=, 10-8-10-6 m/cycle。
a
max
m
周期:T
t
a
最大应力: max
min
最小应力: min
平均应力:m 1 ( max min)
2
应力幅:a 1 ( max min)
2020/5/4
2
周期T
图5-4 正弦波循环应力特征参数
应力比:r min
max
• 二、 疲劳破坏本质和特点 • • 1.疲劳破坏的本质 • 疲劳破坏的过程是材料内部薄弱区域的组织
2020/5/4
过载损伤
区
过载持久值
r
过载损伤界
N
图5-13过载损伤界和 过载持久值
四、 疲劳缺口敏感度
机件由于使用的需要,常带有台阶、健槽、
油孔、螺纹等类似于缺口的结构,会改变应力状
态,产生应力集中。金属材料在交变载荷下的缺
口敏感性用疲劳缺口敏感度qf来表示:q f
Kf 1 Kt 1
式中:Kt-理论应力集中系数, 可从有关手册中查到;
图5-5
2020/5/4
图5-6
(二)疲劳曲线的测定
σ
大量的试验表明,金属的 σ1
疲劳曲线有两种类型:一种
σ2 σ3
σ4
是有水平线段的疲劳曲线,
σR σ5
如图5-7(a)所示,一般的结 σ
构钢和球墨铸铁就是这种曲
线。另一种是无水平线段的
疲劳曲线,如图5-7(b)所示,σN 有色金属、不锈钢、高强度
• 二、 磨损的基本类型
• 粘着磨损、磨料磨损、腐蚀磨损 、氧化 磨损、麻点疲劳磨损(接触疲劳磨损)。粘 着磨损与氧化磨损相互转换。
滑动速度降 低磨损
压力增加磨 损
2020/5/4
第二节 磨损过程
一、粘着磨损
定义与特点:粘着磨损又称咬合磨损,是在滑动摩擦条件下, 当摩擦副相对滑动速度较小(1m/s)时发生的。它是因缺乏润滑 油,摩擦副表面无氧化膜,且单位法向载荷很大,以致接触应 力超过实际接触点的屈服强度而产生的一种磨损。 1.条件:滑动速度小,接触面氧化膜脆弱、润滑条件差以及接 触应力大。
2020/5/4
❖ II区为中部区或稳态扩展 区
❖ 裂纹扩展速率在logda/dN - log△K I 双对数坐标上呈 一直线。
❖ da/dN >10-5 - 10-2m/
cycle,
da c(K )n dN
❖ III区为裂纹快速扩展区
❖ 并随着△K I的增大而迅速 升高。
❖ 当△ K I =KIC 时,试件或 零件断裂。
第五章 材料的疲劳性能
第一节疲劳破坏的一般规律
•
一、 疲劳破坏的变动应力
• 疲劳:工件在变动载荷和应变长期作用下,因累积损伤而 引起的断裂现象。
变动载荷是指载荷的大小、甚至方向都随 时间变化的载荷,其单位面积上的平均值称为 变动应力。
2020/5/4
规则周期变动应力(循环应力) 无规则随机变动应力
循环应力波形有正弦 波、矩形波、三角波 等,其中常见的为正 弦波,如图5-4所示。 几个力学参量:
• 摩擦力(F)与施加在摩擦面上的法向压力(P)之比称为摩擦系 数,以μ表示,即μ=F/P。
2020/5/4
• 按照两接触面运动方式的不同,可以将摩擦 分为:①滑动摩擦:指的是一个物体在另一 个物体上滑动时产生的摩擦。②滚动摩擦: 指的是物体在力矩作用下,沿接触表面滚动 时的摩擦。
• 2. 磨损:在摩擦作用下物体相对运动时, 表面逐渐分离出磨屑从而不断损伤的现象, 磨屑的形成是变形和断裂的过程。
当压力超过屈服强度时,K剧增。
2020/5/4
3.粘着磨损量的影响因素:
材料特性: 塑性材料比脆性材料易于粘着; 互溶性大的材料(相同金属或晶格类型、点阵常 数、电子密度、电化学 固溶体比化合物粘着倾向大; 金属-金属摩擦副比金属-非金属粘着倾向大。
2020/5/4
③表面状态:在循环载荷作 用下,金属的不均匀滑移 主要集中在金属表面,裂 纹也常常在表面产生。表 面的微观几何形状如刀痕、 擦伤或磨削裂纹等都象小 缺口一样产生应力集中使 疲劳极限降低。表面粗糙 度越低,疲劳极限越高; 图5-36 材料强度越高,粗糙度对 疲劳极限的影响越显著。
2020/5/4
2020/5/4
疲劳寿命:机件疲劳失效前的工作时间。
按断裂寿命 和应力大小
高周疲劳 Nf≥105
≤s
低周疲劳 Nf=102~105
s≤
高周疲劳断裂寿命长,无变形。 低周疲劳断裂寿命短,应力高。
2020/5/4
• 三、 疲劳断口的宏观特征 • 包括疲劳源、疲劳区、瞬断区 • 疲劳源:比较光亮,有加工硬化现象,可以有多
2020/5/4
过载损伤区
通过反复实验便可确定某 一过载水平下,开始降低疲劳 寿命的应力循环周次。继续在 别的过载应力下实验,确定过 载损伤点,将其连接起来就得 到了过载损伤界,如图5-13 所示。过载损伤界越陡直,过 载损伤区越窄,说明材料的抗 过载能力越强。工程上有时宁 可选疲劳极限低而过载损伤区 窄的材料以保安全。
2020/5/4
• ②间歇效应:对应变时效材料,在循环加载运 行过程中,若间歇空载运行一定时间或适当加 温而使材料疲劳强度提高的现象。
加载的-1相比有明显的差别,
间歇是造成这种影响的主要原因。
• 具有强烈应变时效的20#、45#及40Cr钢在 循环加载运行中,若间歇空载一定时间后,可 以提高疲劳强度和疲劳寿命。
1 n2 a0 2
1
n2
ac 2
• 当n=2时,
2020/5/4
Nf
1
c(Y
)2
ln
ac
ln a0
• 第四节 疲劳破坏的机理
• 一、 金属材料的疲劳裂纹萌生 • 疲劳裂纹由不均匀滑移和显微开裂引起:
• 1)表面滑移带开裂;2)第二相、夹杂物和基体表面或夹杂 物本身开裂;3)晶界或亚晶界开裂。
在变动应力作用下,逐渐发生变化和损伤累积、 开裂,当裂纹扩展到一定程度后发生突然断裂 的过程,是一个从局部区域开始的损伤累积, 最终引起整体破坏的过程。σ-1<<σb
2020/5/4
2、疲劳现象分类
弯曲疲劳
扭转疲劳 按应力状态
拉压疲劳
复合疲劳
按环境情况
大气疲劳 腐蚀疲劳 高温疲劳 接触疲劳 热疲劳
2020/5/4
第六章 材料的磨损性能
• 第一节 磨损的基本概念及类型 • 一、 摩擦与磨损的概念 • 1. 摩擦:接触物体间一种阻碍运动的现象,动态摩擦系数
小于静态。 • 两个相互接触的物体或物体与介质之间在外力作用下,发生
相对运动,或者具有相对运动的趋势时,在接触表面上所产 生的阻碍作用称为摩擦。这种阻碍相对运动的阻力称为摩擦 力。摩擦力的方向总是沿着接触面的切线方向,跟物体相对 运动方向相反,阻碍物体间的相对运动。
个,与夹杂、缩孔、偏析、白点等相连,常和缺 口、裂纹、刀痕、蚀坑有关。 •
2020/5/4
• 第二节 疲劳曲线及基本疲劳力学性能
一、疲劳曲线和对称循环疲劳极限
• (一)疲劳曲线和疲劳极限 • 四0σ条.-6点件17表σ弯疲b示曲劳内疲实强选劳验度择强机。应度力。,。r=有S-1表色,平示合均最金应大无力应水σ力平m值=线0,,,对N有称表限循示寿环经命,历N在的=10循0.46环~~8下周的次,