中南大学线性代数考试卷
线性代数单元测试卷(含答案)
线性代数单元测试卷(含答案)一、选择题(每题2分,共20分)1. 在线性代数中,什么是矩阵的秩?A. 矩阵的行数B. 矩阵的列数C. 矩阵的非零行数D. 矩阵的最大线性无关行数正确答案:D2. 下列哪个不是矩阵的运算?A. 矩阵的加法B. 矩阵的减法C. 矩阵的除法D. 矩阵的乘法正确答案:C3. 矩阵的转置满足下列哪个性质?A. (A^T)^T = AB. (AB)^T = B^T * A^TC. (A + B)^T = A^T + B^TD. (AB)^T = A^T + B^T正确答案:B4. 什么是向量的线性组合?A. 向量相加B. 向量相减C. 向量乘以常数后相加D. 向量与常数相乘正确答案:C5. 下列哪组向量线性无关?A. (1, 0)B. (0, 1)C. (1, 1)D. (1, -1)正确答案:C二、填空题(每题3分,共30分)1. 给定矩阵A = [[1, 2], [3, 4]],求A的逆矩阵。
正确答案:[[-2, 1], [1.5, -0.5]]2. 给定矩阵B = [[2, 4], [1, 3]],求B的特征值。
正确答案:[5, 0]3. 给定向量v = (1, 2, 3),求v的范数。
正确答案:sqrt(14)4. 给定矩阵C = [[1, 2, 3], [4, 5, 6]],求C的秩。
正确答案:25. 给定矩阵D = [[1, 2], [3, 4], [5, 6]],求D的转置矩阵。
正确答案:[[1, 3, 5], [2, 4, 6]]三、解答题(每题10分,共40分)1. 什么是线性相关和线性无关?线性相关表示向量之间存在线性组合的系数不全为零的情况,即存在非零向量组合得到零向量。
线性无关表示向量之间不存在这样的关系,即只有全为零的线性组合才能得到零向量。
2. 什么是矩阵的行列式?矩阵的行列式是一个标量,它是一个方阵中各个元素按照一定规律相乘再求和的结果。
行列式可以用来判断方阵的逆是否存在,以及计算方阵的特征值等。
11级线性代数试卷A答案
中南大学考试试卷答案2011——2012学年第二学期(2012.4) 时间:100分钟《线性代数》 课程 32 学时 2 学分 考试形式:闭卷专业年级:2011级 总分:100分一、填空题(本题15分,每题3分)1、0;2、8132(练习册P99); 3、3-; 4、⎪⎪⎪⎪⎭⎫ ⎝⎛=--12333212312113311n n A ;5、12+⎪⎪⎭⎫⎝⎛λA (练习册P113)。
二、选择题(本题15分,每题3分)1、D ;2、B (练习册P106);3、C ;(教材P55)4、D ;5、A (练习册P120)。
三、(本题10分) (练习册P102)解:解: D n ====+++c c c c c c n 131121000120012201222=2n –1, 设D n 展开式中正、负项总数分别为x 1, x 2, 则x 1+x 2=n !,x 1–x 2=2n –1,于是正项总数为x 1=1221(!)n n -+。
四、(本题10分)(典型题解P121)解:由X A E AX +=+2,得:E A X E A -=-2)(,)(,010********E A E A -∴≠-==- 可逆,故⎪⎪⎪⎭⎫⎝⎛=+=201030102E A X ;由于09≠=X ,()⎪⎪⎪⎭⎫⎝⎛===∴---*-201030102911)(1111X X X X X 。
五、(本题14分)解:将矩阵()4321,,,αααα化为最简形阶梯形矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000011003101032001000011001030101121306014211035271,(1)()3,,,4321=ααααR ;(2)321,,ααα为所求的一个最大线性无关组,且32143132αααα++=。
六、(本题14分)解:()0311********--=-⎪⎪⎪⎭⎫ ⎝⎛----==λλλααA E A T,(1)A 的特征值为0,0,3;由0=AX 得对应0的特征向量为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛101011l k ,l k ,为不全为零的任意常数,由0)3(=-X A E 得对应3的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-111c ,c 为任意非零常数。
线性代数试题及答案解析
线性代数试题及答案解析一、选择题(每题4分,共40分)1. 矩阵A和矩阵B相乘,得到的结果矩阵的行列数为()。
A. A的行数乘以B的列数B. A的行数乘以B的行数C. A的列数乘以B的列数D. A的列数乘以B的行数答案:D解析:矩阵乘法中,结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
2. 向量α和向量β线性相关,则下列说法正确的是()。
A. α和β可以是零向量B. α和β可以是任意向量C. α和β中至少有一个是零向量D. α和β中至少有一个是另一个的倍数答案:D解析:线性相关意味着存在不全为零的系数,使得这些系数乘以对应的向量和为零向量,因此至少有一个向量是另一个向量的倍数。
3. 对于n阶方阵A,下列说法不正确的是()。
A. A的行列式可以是0B. A的行列式可以是负数C. A的行列式可以是正数D. A的行列式一定是正数答案:D解析:方阵的行列式可以是正数、负数或0,因此选项D不正确。
4. 矩阵A和矩阵B相等,当且仅当()。
A. A和B的对应元素相等B. A和B的行数相等C. A和B的列数相等D. A和B的行数和列数都相等答案:A解析:两个矩阵相等,必须满足它们具有相同的行数和列数,并且对应元素相等。
5. 向量组α1,α2,…,αn线性无关的充分必要条件是()。
A. 由这些向量构成的矩阵的行列式不为0B. 这些向量不能构成齐次方程组的非零解C. 这些向量不能构成齐次方程组的非平凡解D. 这些向量可以构成齐次方程组的平凡解答案:C解析:向量组线性无关意味着它们不能构成齐次方程组的非平凡解,即唯一的解是零向量。
6. 矩阵A可逆的充分必要条件是()。
A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式为任何非零数答案:A解析:矩阵可逆当且仅当其行列式不为0。
7. 矩阵A的特征值是()。
A. 矩阵A的行数B. 矩阵A的列数C. 矩阵A的对角线元素D. 满足|A-λI|=0的λ值答案:D解析:矩阵的特征值是满足特征方程|A-λI|=0的λ值。
中南大学《线性代数》2021-2022学年第一学期期末试卷
中南大学期末考试试卷2021-2022-1《线性代数》课程32学时2学分考试形式:闭卷总分:100分一、填空题(每小题3分,共15分)⎛-10⎫⎪1、设f(x)=x-3,矩阵A=4⎪,则f(A)= .3⎝⎭22、设A,B为n阶矩阵,如果有n阶可逆矩阵P,使成立,则称A与B相似.3、n元非齐次线性方程组Am⨯nx=b有唯一解的充分必要条件是.22 +3x3-2x1x2+6x1x3-6x2x3,4、已知二次型f(x1,x2,x3)=5x12+5x2则二次型f对应的矩阵A=.5、设4阶方阵A满足:A<0,3E+A=0,AA T=2E(其中E是单位矩阵),则A 的伴随矩阵A*必有一个特征值为 .二、选择题(每小题3分,共15分)1、已知4阶方阵A的伴随矩阵为A*,且A的行列式A=3,则A*=().(A)81.(B)27.(C)12.(D)9.2、设A、B都是n阶方阵,且A与B有相同的特征值,并且A、B都有n个线性无关的特征向量,则()。
(A)A与B相似.(B)A=B.(C)A≠B,但|A-B|=0.(D)A与B不一定相似,但|A|=|B|.3、设n阶方阵A为正定矩阵,下面结论不正确的是((A)A可逆.(C)|A|>0.).(B)A-1也是正定矩阵.(D)A的所有元素全为正.4、若n阶实方阵A=A2,E为n阶单位阵,则().(A)R(A)+R(A-E)>n.(B)R(A)+R(A-E)<n.(C)R(A)+R(A-E)=n.(D)无法比较R(A)+R(A-E)与n的大小.⎛0⎫⎛0⎫⎛1⎫⎛-1⎫ ⎪ ⎪ ⎪ ⎪5、设α1= 0⎪,α2= 1⎪,α3= -1⎪,α4= 1⎪,其中c 1,c 2,c 3,c 4为任意常数, c ⎪ c ⎪ c ⎪ c ⎪⎝1⎭⎝2⎭⎝3⎭⎝4⎭则下列向量组线性相关的为((A )α1,α2,α3.(C )α1,α3,α4.三(本题满分10分)).(B )α1,α2,α4.(D )α2,α3,α4.x计算n (n ≥2)阶行列式D n =a x aa a x,D n的主对角线上的元素都为a ax ,其余位置元素都为a ,且x ≠a .四(本题满分10分)设3阶矩阵A ,B 满足关系:A -1BA =6A +BA ,⎛12 且A = 00⎝0140⎫0⎪⎪0⎪,求矩阵B .⎪⎪1⎪⎪7⎭五(本题满分10分)设方阵A 满足A 2-A -2E =0(其中E 是单位矩阵),求A -1,(A +2E )-1.六(本题满分12分)⎛1⎫⎛2⎫⎛1⎫⎛3⎫ ⎪ ⎪ ⎪ ⎪4-1-5-6已知向量组A :α1= ⎪,α2= ⎪,α3= ⎪,α4= ⎪,1⎪ -3⎪ -4⎪ -7⎪ ⎪ ⎪ ⎪ ⎪21-1⎝⎭⎝⎭⎝⎭⎝0⎭(1)求向量组A 的秩;(2)求向量组A 的一个最大线性无关组,并把不属于该最大无关组的其它向量用该最大无关组线性表示.七(本题满分14分)⎡1α设矩阵A =⎢⎢α1⎢⎣1β1⎤⎡000⎤⎢010⎥相似,β⎥B =与矩阵⎥⎢⎥⎢1⎥⎦⎣002⎥⎦(1)求α,β;(2)求正交矩阵P ,使P -1AP =B .八(本题满分14分)设有线性方程组为⎧x 1+a 1x 2+a 12x 3=a 13⎪23⎪x 1+a 2x 2+a 2x 3=a 2⎨23x +a x +a x =a 3⎪1323323⎪⎩x 1+a 4x 2+a 4x 3=a 4(1)证明:若a 1,a 2,a 3,a 4两两不等,则此方程组无解.(2)设a 1=a 3=k ,a 2=a 4=-k (k ≠0),且已知β1,β2是该方程组的两个解,其中β1=(-1, 1, 1)T ,β2=(1, 1,-1)T ,写出此方程组的通解.参考答案一、填空题(每小题3分,共15分)⎛5-13⎫⎛-2 0⎫4 ⎪-1-15-31、 ;2、;3、;4、;5、P AP =B R (A )=R (A ,b )=n ⎪ ⎪38 6⎝⎭ 3-33⎪⎝⎭二、选择题(每小题3分,共15分) BADCC 三(本题满分10分,见教材P44习题第5题)x +(n -1)a 解:后面n -1列都加到第1列,得D n=a xa a xx +(n -1)ax +(n -1)a a1c 1÷[x +(n -1)a ]a x a 0a a x=(x -a )n -1[x +(n -1)a ].===[x +(n -1)a ]11 1[x +(n -1)a ]c ====+(-a )cc n +(-a )c n32c 2+(-a )c 11 1x -ax -a四、(本题满分10分,与典型题解P172例6类似)-1-1⎡⎛2⎫⎛1⎫⎤⎛1⎫⎛6⎫⎢⎥ ⎪ ⎪ ⎪ ⎪.解:B =6(A -1-E )-1=6⎢ 4-1=63=2⎪ ⎪⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎢7⎭⎝1⎭⎥6⎭1⎪⎝⎝⎭⎣⎝⎦五、(本题满分10分,见练习册P118第五大题第1小题和典型题解P173例7)A -E A -E解:A 2-A -2E =0⇒A .=E ⇒A -1=22(A -E )23E -AA -A -2E =0⇒A +2E =A ⇒(A +2E )=(A )=(A )=或4422-12-1-12六、(本题满分12分,见教材P89习题3第2题,或典型题解P178例6)3⎫⎛121⎪4-1-5-6⎪→解:1-3-4-7⎪ ⎪⎝21-10⎭⎛1 0→ 0 ⎝00-1-1⎫⎪112⎪,⎪000⎪000⎭R (A )=2,α1,α2为所求的一个最大线性无关组,且α3=-α1+α2,α4=-α1+2α2.七、(本题满分14分,见典型题解P190例14)解:(1)由A ,B 相似知,A ,B 有相同的特征值,而B 的特征值为0,1,2,⎧0⋅E -A =0⎪故得A 的特征值为λ1=0,λ2=1,λ3=2,从而有⎨,1⋅E -A =0⎪⎩由此解得α=0,β=0.⎛1⎫-⎪⎛-1⎫2⎪ ⎪(2)对于λ1=0,解(0⋅E -A )X =0,得特征向量 0⎪,单位化得:p 1= 0⎪;1⎪ 1⎪⎝⎭ ⎪2⎝⎭⎛0⎫⎪对于λ2=1,解(E -A )X =0,得特征向量为p 1= 1⎪;0⎪⎝⎭⎛ ⎛1⎫⎪0λ=2对于3,解(2E -A )X =0,得特征向量为 ⎪,单位化得:p 1=1⎪⎝⎭⎝⎛1 -2令P =(p 1,p 2,p 3)= 01 ⎝20101⎫⎪2⎪0⎪,则P 为正交阵,且使P -1AP =B .1⎪⎪2⎭1⎫⎪2⎪0⎪1⎪⎪2⎭八、(本题满分14分,见教材P87例3.13)解:(1)增广矩阵B 的行列式是4阶范德蒙行列式:11|B |=11a 1a 2a 3a4a 122a 22a 32a 4a 133a 2=∏(a j -a i )3a 31≤i <j ≤43a 4由于a 1,知|B |≠0,从而R (B )=4,但系数矩阵A 的秩R (A )≤3,a 2,a 3,a 4两两不等,故R (A )≠R (B ),因此方程组无解.(2)a 1=a 3=k ,a 2=a 4=-k (k ≠0)时,方程组变为⎧x 1+kx 2+k 2x 3=k 3⎪23⎧x 1+kx 2+k 2x 3=k 3⎪x 1-kx 2+k x 3=-k 即⎨⎨2323x +kx +k x =k x -kx +k x =-k 23⎩123⎪123⎪⎩x 1-kx 2+k x 3=-k 因为1k=-2k ≠0,故R (A )=R (B )=2,所以方程组有解,且对应的齐次方1-k程组的基础解系含3-2=1个解向量,又β1,β2是原非齐次方程组的两个解,故ξ=β2-β1=(2, 0,-2)T 是对应齐次方程组的解;由于ξ≠0,故ξ是它的基础解系。
完整版)线性代数试卷及答案
完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。
(下面的r(A),r(B)分别表示矩阵A,B的秩)。
A) r(A)。
r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。
A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。
3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。
(B) B的每个行向量都是齐次线性方程组AX=O的解。
(C) BA=O。
(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。
5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。
11;(C) -1;(D)。
(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。
A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。
1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。
(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。
线性代数试题及答案
线性代数试题及答案一、选择题(每题5分,共20分)1. 下列矩阵中,哪个是可逆矩阵?A. \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)D. \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\)答案:C2. 矩阵\(A\)的行列式为0,那么\(A\)的秩是:A. 0B. 1C. 2D. 3答案:A3. 向量\(\vec{a} = (1, 2, 3)\)和向量\(\vec{b} = (4, 5, 6)\)的点积为:A. 14B. 32C. 8D. 22答案:A4. 矩阵\(A\)的转置矩阵记作\(A^T\),那么\((A^T)^T\)等于:A. \(A^T\)B. \(A\)C. \(A^{-1}\)D. \(A^2\)答案:B二、填空题(每题5分,共20分)1. 若矩阵\(A\)的行列式为-5,则\(A^{-1}\)的行列式为______。
答案:\(\frac{1}{5}\)2. 矩阵\(A\)的秩为2,那么\(A\)的零空间的维数为\(\_\_\_\_\)。
答案:\(n-2\)(其中n为\(A\)的列数)3. 向量\(\vec{a} = (1, 2)\)和向量\(\vec{b} = (3, 4)\)的叉积为______。
答案:\(-2\)4. 若\(\vec{a} = (1, 0, 0)\),\(\vec{b} = (0, 1, 0)\),\(\vec{c} = (0, 0, 1)\),则\(\vec{a} \times \vec{b} =\_\_\_\_\_\)。
线性代数考试题及答案
线性代数考试题及答案**线性代数考试题及答案**一、单项选择题(每题3分,共30分)1. 矩阵A的行列式为0,则矩阵A()A. 可逆B. 不可逆C. 可交换D. 不可交换答案:B2. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D3. 向量组α1,α2,…,αs线性无关,则()A. s ≤ nB. s > nC. s ≥ nD. s < n答案:A4. 矩阵A的特征值是()A. 矩阵A的行最简形式B. 矩阵A的列最简形式C. 矩阵A的对角线元素D. 满足|A-λE|=0的λ值答案:D5. 矩阵A和B相等的充要条件是()A. A和B的对应元素相等B. A和B的行向量组相同C. A和B的列向量组相同D. A和B的秩相等答案:A6. 若矩阵A可逆,则下列说法正确的是()A. |A|≠0B. A的秩为nC. A的行列式为1D. A的转置矩阵可逆答案:AA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:C8. 向量组α1,α2,…,αn线性相关,则()A. 存在不全为0的k个向量,使得k个向量线性组合等于0B. 存在不全为0的n个向量,使得n个向量线性组合等于0C. 存在不全为0的n+1个向量,使得n+1个向量线性组合等于0D. 存在不全为0的m个向量,使得m个向量线性组合等于0,其中1≤m≤n答案:DA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:B10. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D二、填空题(每题4分,共20分)1. 若矩阵A的行列式|A|=2,则矩阵A的伴随矩阵的行列式|adj(A)|= _ 。
线性代数试题及答案
线性代数试题及答案一、选择题(每题2分,共20分)1. 以下哪个矩阵是可逆的?A. [1 0; 0 0]B. [1 2; 3 4]C. [1 0; 0 1]D. [0 1; 1 0]2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行或列的最大数目D. 矩阵的对角线元素的个数3. 线性方程组有唯一解的条件是什么?A. 方程个数等于未知数个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩4. 向量空间的基具有什么性质?A. 基向量的数量必须为1B. 基向量必须是正交的C. 基向量必须是线性无关的D. 基向量必须是单位向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在非零向量v,使得A^Tv=λv,则λ是A 的特征值,v是A的特征向量C. 对于矩阵A,如果存在非零向量v,使得A^-1v=λv,则λ是A 的特征值,v是A的特征向量D. 对于矩阵A,如果存在非零向量v,使得Av=v,则λ是A的特征值,v是A的特征向量6. 线性变换的矩阵表示是什么?A. 线性变换的逆矩阵B. 线性变换的转置矩阵C. 线性变换的雅可比矩阵D. 线性变换的对角矩阵7. 以下哪个不是线性代数中的基本概念?A. 向量B. 矩阵C. 行列式D. 微积分8. 什么是线性方程组的齐次解?A. 方程组的所有解B. 方程组的特解C. 方程组的零解D. 方程组的非平凡解9. 矩阵的迹是什么?A. 矩阵的对角线元素的和B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆10. 什么是正交矩阵?A. 矩阵的转置等于其逆矩阵B. 矩阵的所有行向量都是单位向量C. 矩阵的所有列向量都是单位向量D. 矩阵的所有行向量都是正交的答案:1-5 C C C C A;6-10 D D C A A二、简答题(每题10分,共20分)11. 请简述线性代数中的向量空间(Vector Space)的定义。
线性代数大学试题及答案
线性代数大学试题及答案一、选择题(每题5分,共20分)1. 设A是一个3阶方阵,且满足A^2 = A,则下列说法正确的是:A. A是可逆矩阵B. A是幂等矩阵C. A是正交矩阵D. A是单位矩阵答案:B2. 若矩阵A的特征值为1,则下列说法正确的是:A. 1是A的迹B. 1是A的行列式C. 1是A的一个特征值D. 1是A的秩答案:C3. 设向量组α1, α2, ..., αn线性无关,则下列说法正确的是:A. 向量组中任意向量都可以用其他向量线性表示B. 向量组中任意向量都不可以被其他向量线性表示C. 向量组中任意向量都可以被其他向量线性表示D. 向量组中任意向量都不可以被其他向量线性表示,除非它们线性相关答案:B4. 若矩阵A的秩为2,则下列说法正确的是:A. A的行向量组线性无关B. A的列向量组线性无关C. A的行向量组线性相关D. A的列向量组线性相关答案:A二、填空题(每题5分,共30分)1. 若矩阵A的行列式为0,则A的______。
答案:秩小于矩阵的阶数2. 设向量空间V的一组基为{v1, v2, ..., vn},则任意向量v∈V可以唯一地表示为______。
答案:v = c1v1 + c2v2 + ... + cnn,其中ci为标量3. 设矩阵A和B可交换,即AB = BA,则A和B的______。
答案:特征值相同4. 若线性变换T: R^n → R^m,且T是可逆的,则T的______。
答案:行列式不为零5. 设A为n阶方阵,若A的特征多项式为f(λ) = (λ-1)^2(λ-2),则A的特征值为______。
答案:1, 1, 26. 若向量组α1, α2, ..., αn线性无关,则向量组α1, α2, ..., αn, α1+α2也是______。
答案:线性相关三、简答题(每题10分,共20分)1. 简述什么是矩阵的秩,并给出如何计算矩阵的秩的方法。
答案:矩阵的秩是指矩阵行向量或列向量组中线性无关向量的最大个数。
线代II
1---○---○------○---○---………… 评卷密封线………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理…………评卷密封线………… 中南大学考试试卷2010 ~2011 学年 2 学期 线性代数Ⅱ 课程 时间100分钟24 学时,1.5学分,闭卷,总分100分,占总评成绩70 %一、单项选择题(本题15分,每小题3分) 1. 设,,133312321131131211232221333231232221131211⎪⎪⎪⎭⎫⎝⎛+++=⎪⎪⎪⎭⎫⎝⎛=a a a a a a a a a a a a B a a a a a a a a a A ,101010001,10000101021⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=P P 则必有( ).A B P AP =21 B B A P P =21 C B P AP =12D B A P P =122. 设n 阶方阵A 、B 、C 满足关系式E ABC =,其中E 是n 阶单位阵,则必有( ). A E BCA = B E CBA = C E BAC =D E ACB =3. 设n 阶矩阵A 非奇异()2≥n ,*A 是矩阵A 的伴随矩阵,则()=**A ( ).A A A n 1- B A A n 2- C A An 2+D A An 1+24. 设n 阶矩阵A 与B 等价,则必有( ). A 当()0≠=a a A 时,a B = B 当()0≠=a a A 时,a B -= C 当0≠A 时,0=BD 当0=A 时,0=B5. 设2=λ是非奇异矩阵A 的一个特征值,则矩阵1231-⎪⎭⎫⎝⎛A 有一特征值等于( ).A 34B 21C 43D 41二、填空题(本题15分,每小题3分)1.设行列式2235007022220403--=D ,则第四行各元素代数余子式之和的值为 . 2.设n 阶矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=0111110111110111110111110 A ,则=A .3. 设⎪⎪⎪⎭⎫⎝⎛=543022001A ,*A 是A 的伴随矩阵,则()=-1*A .4. 设矩阵A 满足042=-+E A A ,其中E 为单位矩阵,则()=--1E A .5. 设矩阵⎪⎪⎭⎫⎝⎛-=2112A ,E 为二阶单位矩阵,矩阵B 满足E B BA 2+=,则=B .3三、解答题(本题64分,每小题8分)1.设A 为1010⨯矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=00001010000001000001010A ,计算行列式E A λ-,其中E 为10阶单位矩阵,λ为常数.2. 设A 是n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B .⑴证明B 可逆;⑵求1-AB .43. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,矩阵X 满足X A E AX +=+2,其中E 为三阶单位矩阵,试求出矩阵X .4. 已知三阶矩阵A 的逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛=-3111211111A ,试求伴随矩阵*A 的逆矩阵.55. 求方阵⎪⎪⎪⎭⎫ ⎝⎛----101410213的实特征值与对应的特征向量.6. 设有4阶方阵A 满足条件0,2,02<==+A E AA A E T ,其中E 是4阶单位阵. 求方阵A 的伴随矩阵*A 的一个特征值.67. 解线性方程组⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+-=-+-337713343424313214314321x x x x x x x x x x x x x .78. 设线性方程组为⎪⎪⎩⎪⎪⎨⎧=+--=+--=+++=+++243214312143214321121053153363132kx x x x x x k x x x x x x x x x x ,问1k 与2k 各取何值时,方程组无解?有唯一解?有无穷多解?有无穷多解时,求其一般解.8四、 (本题6分)已知n 阶方阵⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=100000110000111000222200000011000024 A ,求A 中所有元素代数余子式之和∑∑==n i nj ij A 11.。
中南大学2014级线代试卷A及答案
中南大学考试试卷20014——2015学年第二学期 时间:100分钟《线性代数》课程 32 学时 2 学分 考试形式:闭卷 总分:100分一、填空题(每小题3分,共15分)1、设3阶矩阵A 的特征值互不相同,若行列式0A =,则秩()R A = .2、设向量123(1,2,1,0),(1,1,0,2),(2,1,1,)T T Ta ααα=-==,若由123,,ααα生成的向量空间的维数为2,则a = .3、已知(1,1,1)T ξ=-是2125312A a b -⎛⎫⎪= ⎪ ⎪--⎝⎭的一个特征向量,则=a ⎽⎽⎽, b =⎽⎽⎽.4、设,A B 为3阶矩阵,且3A =,2B =,12A B -+=,则1A B -+= .5、设实二次型()312123222132122,,x tx x x x x x x x x Q ++++=是正定的,则t 的取值范围是 .二、选择题(每小题3分,共15分)1、若矩阵A 、B 可逆,则矩阵00A B⎛⎫⎪⎝⎭也可逆,且10A B-⎛⎫⎪⎝⎭=( ). (A )1100A B--⎛⎫⎪⎝⎭. (B )1100B A--⎛⎫⎪⎝⎭. (C )1100A B --⎛⎫ ⎪⎝⎭. (D )1100B A --⎛⎫⎪⎝⎭. 2、设A 是n 阶方阵,则0||=A 的必要条件是( ).(A )A 中两行(列)元素对应成比例. (B )A 中有一行元素全为零. (C )任一行元素为其余行的线性组合.(D )必有一行元素为其余行的线性组合. 3、设向量组I :12,,,r αααL 可由向量组II: 12,,,S βββL 线性表示.下列命题正确的是().(A )若向量组I 线性无关,则r s ≤. (B )若向量组I 线性相关,则r s >. (C )若向量组II 线性无关,则r s ≤. (D )若向量组II 线性相关,则r s >. 4、设A 为m n ⨯矩阵,B 为n m ⨯矩阵,E 为m 阶单位矩阵,若AB E =,则( ).(A )秩()R A m =,秩()R B m =. (B )秩()R A m =,秩()R B n =.(C )秩()R A n =,秩()R B m =. (D )秩()R A n =,秩()R B n =.5、设1234(,,,)A αααα=是4阶矩阵,*A 为A 的伴随矩阵,若(1,0,1,0)T 是方程组0Ax =的一个基础解系,则*0A x =的基础解系可为().(A )13αα,.(B )12αα,. (C )123ααα,,. (D )234ααα,,.三(本题满分10分)设123221(, , )212122A ααα-⎛⎫ ⎪==- ⎪ ⎪-⎝⎭,1214(, )0342B ββ⎛⎫⎪== ⎪⎪-⎝⎭,证明123, , ααα是3维空间3R 的一个基,并把12, ββ用这个基线性表示.四(本题满分10分)设矩阵010101010A ⎛⎫⎪=- ⎪ ⎪⎝⎭,若矩阵X 满足 22X XA AX AXA E --+=,其中E 为3阶单位矩阵,求X .五(本题满分16分) 设n 元线性方程组Ax b =,其中2222212121212n a a a a a A a a a a ⎛⎫ ⎪ ⎪ ⎪⎪=⎪ ⎪⎪⎪⎝⎭O O O ,12n x x x x ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭M ,100b ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭M . (1) 证明行列式(1)n A n a =+;(2) 当a 为何值时,该方程组有唯一解,并求1x ; (3) 当a 为何值时,该方程组有无穷多解,并求通解.六(本题满分8分)已知4元非齐次线性方程组的系数矩阵的秩为3,又123,,ααα是它的3个解向量,其中1223(1,1,0,2),(1,0,1,3)T T αααα+=+=,求该非齐次线性方程组的通解.七(本题满分14分)设矩阵02313312A a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭与矩阵12000031B b -⎛⎫⎪= ⎪ ⎪⎝⎭相似,(1)求,a b 的值; (2)求可逆矩阵P ,使1P AP -为对角阵.八(本题满分12分)已知1010111001A a a ⎛⎫⎪⎪= ⎪- ⎪-⎝⎭,二次型123(,,)()T T f x x x x A A x =的秩为2,(1)求实数a 的值;(2)求正交变换x Qy =,将f 化为标准形.参考答案一、填空题(每小题3分,共15分)1、2;2、6;3、-3,0;4、3;5、22t -<<. 二、选择题(每小题3分,共15分) BDAAD 三(本题满分10分)解 要证123, , ααα是3R 的一个基,即证123, , ααα线性无关,即证()3R A =或0A ≠或A ~E ,12321311()322211411113(,)21203030231224203355r r r r r r r A B ++-+--⎛⎫⎛⎫⎪ ⎪=-−−−−→-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭132332(3)31002411113330102101021330115500112333r rr r r r-÷-÷-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪−−−→−−−→-- ⎪ ⎪⎪⎪- ⎪ ⎪-⎪ ⎪⎝⎭⎝⎭, 因有A ~E ,故123, , ααα为3R 的一个基,且1212324332(, )(, , )13213ββααα⎛⎫ ⎪ ⎪ ⎪=-⎪ ⎪ ⎪- ⎪⎝⎭. 四、(本题满分10分)解 由 22X XA AX AXA E --+=,得2()()E A X E A E --=,因2110001111,010011102E A E A -⎛⎫⎛⎫⎪ ⎪-=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭都可逆,故121211201312()()111010111110100211X E A E A -----⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=--=-=- ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭.五(本题满分16分)(1) 证法一(用数学归纳法):记n D A =, 当1n =时,12D a =;2n =时,2222132a D a a a==,结论都成立, 假设结论对小于n 的情况成立,将n D 按第1行展开得222112221122110221222122(1)(1)n n n n n n n na a a a D aD aD a D a a a a ana a n a n a ------=-=-=--=+O OO故(1)n A n a =+. 证法二22132221213102211223212213102411(1).31011n n n a a a a r ar r ar Aa aa aa a a n r ar n a nn a n n a n-----=+-+O OO L LO O O(2)解 当0a ≠时,方程组系数行列式0n D ≠,故方程组有唯一解,由克莱姆法则,将n D 第1列换成b ,得行列式为22112222111210212*********n n n na a a aa aD na a a aa a a a a ---===OO O O OO ,所以,11(1)n n D nx D n a-==+. (3)解 当0a =时,方程组为12110100100100n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭M M OO, 此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为(0,1,0,,0)(1,0,0,,0)T T x k =+L L ,其中k 为任意常数. 六、(本题满分8分)解 因4元非齐次线性方程组的系数矩阵的秩为3,故其导出组的基础解系只含 一个解向量,即可为312312()()(0,1,1,1)T αααααα-=+-+=-, 非齐次特解可为1211(,,0,1)222T αα+=,或23113(,0,,)2222T αα+=, 所以非齐次线性方程组的通解为(0,1,1,1)T k -11(,,0,1)22T +或(0,1,1,1)T k -113(,0,,)222T +,其中k 为任意常数.七、(本题满分14分)解(1)由,A B 相似知,,A B 有相同的特征值,故 迹()(),tr A tr B A B ==,于是 32,23,a b a b +=+-= 解得 4,5,a b == (2)由(1)知,023133124A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭,120050031B -⎛⎫⎪= ⎪ ⎪⎝⎭,因,A B 相似,所以2(1)(5)E A E B λλλλ-=-=--,故A 的特征值为1231,5λλλ===,当121λλ==时,解()0E A X -=,得线性无关的特征向量12231,001ξξ-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,当35λ=,解()50E A X -=,得特征向量为3111ξ-⎛⎫⎪=- ⎪ ⎪⎝⎭,令()123231,,101011P ξξξ--⎛⎫ ⎪==- ⎪ ⎪⎝⎭,则P 为所求可逆矩阵,使1100010005P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.八、(本题满分12分)解 (1)1011010110111000101000A aa a ⎛⎫⎛⎫⎪ ⎪⎪ ⎪=→ ⎪ ⎪-+ ⎪ ⎪-⎝⎭⎝⎭,因秩()()T R A A R A ==2,所以1a =-.(2)因1a =-,所以202022224T A A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则特征多项式为(2)(6)T E A A λλλλ-=--, 于是T A A 的特征值为1232,6,0λλλ===.当12λ=时,由(2)0T E A A x -=,可得属于2110⎛⎫⎪-⎪⎪⎭, 当26λ=时,由(6)0T E A A x -=,可得属于6112⎛⎫⎪⎪⎪⎭,当30λ=时,由0T A Ax =,可得属于0111⎛⎫⎪⎪⎪-⎭,令0Q ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎝,则f 在正交变换x Qy =下的标准形221226f y y =+.。
线性代数期末考试考核试卷
4.以下哪个向量组构成一个基?
A. (1, 0, 0), (0, 1, 0), (0, 0, 0)
B. (1, 2, 3), (4, 5, 6), (7, 8, 9)
C. (1, 2, 3), (2, 4, 6), (1, 1, 1)
D. (1, 1, 0), (0, 1, 1), (1, 0, 1)
...
20.(根据实际题目内容填写答案)
二、多选题
1. BCD
2. ABCD
3. ABC
4. AB
5. ABC
...
20.(根据实际题目内容填写答案)
三、填题
1. 1
2.线性无关
3.主
...
10.(根据实际题目内容填写答案)
四、判断题
1. √
2. √
3. √
...
10. ×
五、主观题(参考)
1.向量组线性无关,可以通过计算行列式不为零来证明。一个可以由给定向量组线性表示的向量可以是它们的线性组合,例如\(a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3\),其中\(a, b, c\)是适当的系数。
D. (1, 1), (1, -1)
(答题括号:________)
5.在求解线性方程组时,以下哪些情况下可以使用高斯消元法?
A.系数矩阵是方阵
B.系数矩阵是非奇异的
C.方程组中方程的个数等于未知数的个数
D.方程组可能有无穷多解
(答题括号:________)
(以下题目类似,省略以节约空间)
6. ...
A.若A为m×n矩阵,则A的转置为n×m矩阵
B.若A为m×n矩阵,则A的转置为m×n矩阵
线性代数考试题和答案
线性代数考试题和答案****一、单项选择题(每题3分,共30分)1. 矩阵的秩是指矩阵中线性无关的行(列)向量的最大个数,以下关于矩阵秩的描述正确的是()。
A. 矩阵的秩等于其行数B. 矩阵的秩等于其列数C. 矩阵的秩是其行向量和列向量线性无关的最大数量D. 矩阵的秩与矩阵的行数和列数无关**答案:C**2. 向量组的线性相关性是指()。
A. 向量组中至少有一个向量可以由其他向量线性表示B. 向量组中所有向量都是零向量C. 向量组中至少有一个向量是零向量D. 向量组中所有向量都是线性无关的**答案:A**3. 对于一个n阶方阵A,若其行列式|A|=0,则矩阵A是()。
A. 可逆的B. 不可逆的C. 正定的D. 负定的**答案:B**4. 矩阵A和B相乘,结果为零矩阵,即AB=0,以下说法正确的是()。
A. A和B中至少有一个是零矩阵B. A和B都是零矩阵C. A和B线性相关D. A和B线性无关**答案:A**5. 线性方程组有唯一解的充分必要条件是()。
A. 系数矩阵是可逆的B. 系数矩阵的行列式不为零C. 增广矩阵的秩等于系数矩阵的秩D. 系数矩阵的秩等于未知数的个数**答案:D**6. 矩阵的特征值是指()。
A. 矩阵的对角元素B. 矩阵的非零元素C. 满足|A-λI|=0的λ值D. 矩阵的行元素**答案:C**7. 两个向量α和β,若α=kβ(k≠0),则称向量α和β是()。
A. 线性无关的B. 线性相关的C. 正交的D. 垂直的**答案:B**8. 矩阵A的转置记作()。
A. A'B. A^TC. A^*D. A^H**答案:B**9. 以下哪个矩阵是对称矩阵()。
A. [1 2; 3 4]B. [1 3; 2 4]C. [1 2; 2 1]D. [1 0; 0 1]**答案:C**10. 以下哪个矩阵是正交矩阵()。
A. [1 0; 0 1]B. [1/√2 1/√2; -1/√2 1/√2]C. [1 2; 3 4]D. [1 0; 0 -1]**答案:B**二、填空题(每题4分,共20分)11. 若矩阵A=[1 2; 3 4],则矩阵A的行列式|A|=______。
线性代数考试题及答案
线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。
答案:基的向量个数2. 矩阵A的行列式表示为_________。
答案:det(A)3. 线性变换的矩阵表示是_________。
中南大学《线性代数》考试试卷2021~2022 (B卷)含参考答案及评分标准
大学考试试卷(B 卷)2021~2022 学年 学期 线性代数 课程 时间110分钟 学时, 闭 卷,总分 100 分,占总评成绩 70 %一、选择题(每小题3分,共15分)1、设b a ,为实数,则当=a , =b 时,010100=---abb a.( )(A) 0,0; (B) 0,1; (C) 1,0; (D) 1,1.2、设A 为n m ⨯矩阵,0=AX 仅有零解的充分必要条件是系数矩阵的秩)(A r ( ). (A)小于m ; (B) 小于n ; (C)等于m ; (D) 等于n .3、A 是n 阶方阵,k 是非零常数,则=||kA ( ).(A) ||A k ; (B) ||||A k ; (C) ||A k n; (D) ||||A k n.4、设B A ,是n 阶方阵,则下列结论成立的是( )(A )O B O A O AB ≠≠⇔≠且; (B )O A O A =⇔=; (C )000==⇔=B A AB 或; (D )1=⇔=A E A .5、向量组TT T T T )4,1(,)2,1(,)0,0(,)0,2(,)0,1(54321-=====ααααα的一个极大线性无关组是( )(A) 21,αα; (B) 52,αα;(C) 43,αα; (D) 541,,ααα.二、填空题(每小题3分,共24分)1.=-2112 ;2.排列36715284的逆序数是 ;3.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=321A ,)321(=B ,则=AB ;4.若行列式中两行(列)的对应元素相同,则此行列式的值等于 ;5.已知⎪⎪⎪⎭⎫ ⎝⎛--=523012101A ,则矩阵A 的伴随矩阵=*A ;6.设⎪⎪⎪⎭⎫ ⎝⎛=120130005A ,则=-1A ;7. 已知T )1,1,2,1(1-=α,T)0,3,0,2(2=α,T )2,5,4,0(3--=α,T )1,7,2,3(4--=α,则=),,,(4321ααααr ____________;8、向量组:TT T )2,5,3(,)0,2,2(,)1,0,1(321-=-=-=ααα是 .(填“线性相关”或“线性无关”)三、解答题(共61分)1、计算下列行列式:(第1小题3分,第2小题4分,第5小题,共12分)(1)22baba ; (2)123012111; (3)2310421121214321------. 2、(12分)已知⎪⎪⎪⎭⎫ ⎝⎛=432112122121A ,⎪⎪⎪⎭⎫ ⎝⎛----=101012121234B ,计算:(1)B A -3;(2)B A 32+;(3)若X 满足B X A =+,求X .3、(12分) 设101026161A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,满足2AX E A X +=+,求矩阵X .4、(10分)求解齐次线性方程组⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x .5、(15分)讨论线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=+--=+++=+++tx x x x x px x x x x x x x x x x 4321432143214321121053153363132,当t p ,取何值时,方程组无解?有唯一解?有无穷多解?并在方程组有无穷多解时求出其全部解.《线性代数》参考答案及评分标准卷别:B 卷一、选择题(每题3分,合计15分)1、A ;2、D ;3、C ;4、C ;5、B .二、填空题(每题3分,合计24分)1、5;2、13;3、⎪⎪⎪⎭⎫ ⎝⎛963642321;4、0;5、⎪⎪⎪⎭⎫ ⎝⎛----1272210125;6、⎪⎪⎪⎭⎫ ⎝⎛--320110005/1;7、2 ;8、线性相关。
中南大学线性代数试卷
考试试卷1闭卷考试时间:100分钟一、填空题(本题15分,每小题3分)1、设()4321,,,A A A A A =为四阶方阵,其中)4,3,2,1(=i A i 为A 的第i 个列向量, 令()14433221,,,A A A A A A A A B ----=,则=B 。
2、设A 为三阶方阵,*A 为A 的伴随矩阵,且3||=A ,则=-*|)(|1A 。
3、设⎪⎪⎪⎭⎫ ⎝⎛-----=2531312311112t t A ,且2)(=A R ,则=t 。
4、若n 阶方阵A 有特征值λ,则E a A a A a A A f k k k 0111)(++++=-- 必有特征值 .5、若二次型yz xz axy z y x f 2223222+++++=经正交变换化为22214y y f +=,则=a 。
二、选择题(本题15分,每题3分)1、设A 是n 阶方阵,则0||=A 的必要条件是( )。
(A )A 中两行(列)元素对应成比例; (B)A 中有一行元素全为零; (C)任一行元素为其余行的线性组合; (D )必有一行元素为其余行的线性组合。
2、设A 是n 阶对称阵,B 是n 阶反对称阵,则下列矩阵中反对称矩阵是( ) (A )BAB ; (B )ABA ; (C )ABAB ; (D )BABA .3、设向量组()()(),,,,,,,,,TTTt 31321111321===ααα当=t ( )时,向量组321ααα,,线性相关。
(A)5(B)4(C )3(D )24、设A 为34⨯矩阵,321,,ηηη是非齐次线性方程组b Ax =的3个线性无关的解向量,21,k k 为任意常数,则非齐次线性方程组b Ax =的通解为( )。
(A ))(212132ηηηη-++k ; (B))(212132ηηηη-+-k ; (C ))()(213212132ηηηηηη-+-++k k ; (D ))()(213212132ηηηηηη-+-+-k k 。
中南大学线性代数
13) A,B均为 阶矩阵,则必有 均为n阶矩阵 均为 阶矩阵,
√
A) |A+B|=|A|+|B|. C) |AB|=|BA|.
B) AB=BA. D) (A+B)-1=A-1+B-1.
15)若α1 , α 2 , α 3 , β1 , β 2都是四维列向量,且四阶行列式 | α1 , α 2 , α 3 , β1 |= m, 1 , α 2 , β 2 , α 3 |= n, 则四阶行列式 |α | α 3 , α 2 , α1(β1 + β 2)= , |
7) n阶矩阵 的各行元素之和均为 ,且A的秩为 阶矩阵A的各行元素之和均为 的秩为n-1, 阶矩阵 的各行元素之和均为0, 的秩为 则线性方阵组AX=0的通解为 的通解为__________ 则线性方阵组 的通解为 A的秩为 的秩为n-1,所以 所以AX=0的基础解系只含一个非零向 的秩为 所以 的基础解系只含一个非零向 由于n阶矩阵 的各行元素之和均为0, 阶矩阵A的各行元素之和均为 量,由于 阶矩阵 的各行元素之和均为 ,所以 (1,1,…,1)T是该齐次方程组的一个非零解向量,故通 是该齐次方程组的一个非零解向量, 解为k 解为 (1,1,…,1)T,k≠0
1 2 s
B ) α1 ,α 2 ,Lα s中任意两个向量的分量成比例 ; s -1个向量线性表示;
D) α1 ,α 2 ,Lα s中有一部分向量线性无关。
21)α1 ,α 2 ,Lα m均为n维向量,下列结论正确的是 B √)若对任一组不全为0的数k , k ,L k ,都有
1 2 m
A)若k1α1 + k2α 2 + L + kmα m =0,则α1 ,α 2 ,Lα m线性相关; k1α1 + k2α 2 + L + kmα m ≠ 0,则α1 ,α 2 ,Lα m线性无关 ;
中南大学09线性代数考试试卷
***********************************************************************************************************************************************一、填空题(本题15分,每题3分)1、91; 2、432122ααααβ-++-=; 3、2; 4、1; 5、⎪⎪⎪⎭⎫ ⎝⎛=2000200022E 。
二、选择题(本题15分,每题3分)1、D ;2、C ;3、B ;4、A ;5、A. 三、计算行列式(本题10分)nn a a a a 000100000001000121-,其中.,,2,1,0n i a i =≠。
解:按第一行展开,原式=)1(112--n n a a a a 。
四、(本题15分)讨论b a ,取何值时,线性方程组⎪⎩⎪⎨⎧-=+-=-+-=+-.106,132,2321321321bx x x x x x a x x x无解,有惟一解或有无穷多个解?并在有无穷多个解时,写出通解。
解:⎪⎪⎪⎭⎫ ⎝⎛--+---→⎪⎪⎪⎭⎫ ⎝⎛---+---→⎪⎪⎪⎭⎫ ⎝⎛-----=9370012550211102501255021110611132211a b a a a b a a b a A(1) 当7≠b 时,方程组有惟一解;***************************************************************************** (2)当37≠=a b ,时,方程组无解;(3)当37==a b ,时,方程组有无穷多个解,其通解为:⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-11107851k 。
五、证明题(本题10分) 设r ααα,,,21 )2(≥r 是数域P 上的线性空间V 中线性无关的向量组,任取P k k k r ∈-121,, ,求证:,111r k ααβ+=,222r k ααβ+=, r r r r r r k αβααβ=+=---,111线性无关。
线性代数期末考试题及答案
线性代数期末考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 1/4C. 2D. 4答案:B2. 向量α=(1,2,3)和向量β=(4,5,6),则向量α和向量β的点积为:A. 32B. 22C. 14D. 0答案:A3. 设A为3×3矩阵,且A的秩为2,则A的行向量线性相关,下列说法正确的是:A. 正确B. 错误答案:A4. 若A为n阶方阵,且A^2=0,则A的秩为:A. nB. n-1C. 0D. 不确定答案:C5. 设A为3阶方阵,且A的特征值为1,2,3,则矩阵A的迹为:A. 6B. 1C. 2D. 3答案:A二、填空题(每题5分,共30分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置为\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]。
答案:\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]2. 设向量α=(2,3),向量β=(4,6),则向量α和向量β共线,其比例系数为2。
答案:23. 若矩阵A=\[\begin{bmatrix}1 & 1 \\ 2 & 2\end{bmatrix}\],则矩阵A的行列式为2。
答案:24. 设矩阵B=\[\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}\],则矩阵B的逆矩阵为\[\begin{bmatrix}0 & -1 \\ 1 &0\end{bmatrix}\]。
答案:\[\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}\]5. 设矩阵C=\[\begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\],则矩阵C的特征值为1和2。
大一线性代数考试题库及答案解析
大一线性代数考试题库及答案解析一、选择题1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为多少?A. 1/2B. 2C. 1/4D. 1答案:C解析:根据行列式的性质,一个矩阵的逆矩阵的行列式等于原矩阵行列式的倒数。
因此,|A^(-1)| = 1/|A| = 1/2。
2. 向量α=(1,2,3)和β=(-1,0,1)是否共线?A. 是B. 否答案:A解析:若向量α和β共线,则存在一个实数k使得β=kα。
将向量α和β的对应分量相除,得到-1/1=0/2=1/3,显然不存在这样的实数k,因此向量α和β不共线。
二、填空题3. 设矩阵B是一个3×3的矩阵,且B的秩为2,则矩阵B的零空间的维数为____。
答案:1解析:矩阵B的零空间的维数等于矩阵的列数减去矩阵的秩,即3-2=1。
4. 若线性方程组Ax=b有唯一解,则系数矩阵A的秩等于____。
答案:n解析:若线性方程组Ax=b有唯一解,则系数矩阵A的秩等于未知数的个数n。
三、解答题5. 给定向量组α1=(1,2,3),α2=(4,5,6),α3=(7,8,9),求证向量组α1,α2,α3线性相关。
答案:证明:首先计算向量组α1,α2,α3的行列式:|α1 α2 α3| = |1 2 3||4 5 6||7 8 9| = 0由于行列式为0,根据行列式的性质,向量组α1,α2,α3线性相关。
6. 设矩阵C为3×3的矩阵,且C的行列式为0,求证矩阵C不可逆。
答案:证明:根据矩阵的逆矩阵的定义,若矩阵C可逆,则存在矩阵C^(-1)使得CC^(-1)=I。
但是,由于|C|=0,根据行列式的性质,不存在矩阵C^(-1)使得CC^(-1)=I,因此矩阵C不可逆。
四、计算题7. 计算矩阵D=\begin{bmatrix}1 & 2 & 3\\4 & 5 & 6\\7 & 8 &9\end{bmatrix}的行列式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考试试卷1闭卷考试时间:100分钟一、填空题(本题15分,每小题3分)1、设()4321,,,A A A A A =为四阶方阵,其中)4,3,2,1(=i A i 为A 的第i 个列向量, 令()14433221,,,A A A A A A A A B ----=,则=B 。
2、设A 为三阶方阵,*A 为A 的伴随矩阵,且3||=A ,则=-*|)(|1A 。
3、设⎪⎪⎪⎭⎫ ⎝⎛-----=2531312311112t t A ,且2)(=A R ,则=t 。
4、若n 阶方阵A 有特征值λ,则E a A a A a A A f k k k 0111)(++++=-- 必有特征值 。
5、若二次型yz xz axy z y x f 2223222+++++=经正交变换化为22214y y f +=,则=a 。
二、选择题(本题15分,每题3分)1、设A 是n 阶方阵,则0||=A 的必要条件是( )。
(A )A 中两行(列)元素对应成比例; (B )A 中有一行元素全为零;(C )任一行元素为其余行的线性组合; (D )必有一行元素为其余行的线性组合。
2、设A 是n 阶对称阵,B 是n 阶反对称阵,则下列矩阵中反对称矩阵是( ) (A )BAB ; (B )ABA ; (C )ABAB ; (D )BABA 。
3、设向量组()()(),,,,,,,,,TTTt 31321111321===ααα当=t ( )时,向量组321ααα,,线性相关。
(A )5(B )4(C )3(D )24、设A 为34⨯矩阵,321,,ηηη是非齐次线性方程组b Ax =的3个线性无关的解向量,21,k k 为任意常数,则非齐次线性方程组b Ax =的通解为( )。
(A ))(212132ηηηη-++k ; (B ))(212132ηηηη-+-k ; (C ))()(213212132ηηηηηη-+-++k k ; (D ))()(213212132ηηηηηη-+-+-k k 。
5、设方阵⎪⎪⎪⎭⎫ ⎝⎛=20001011k k A 是正定矩阵,则必有( )。
(A )0>k ; (B )1>k ; (C )2>k ; (D )1->k 。
三、(本题8分) 计算行列式xa x a x a a n n 0100010001121-----,其中1,,2,1,0,0-=≠n i a i 。
四、(本题12分) 设X A E AX +=+2,且⎪⎪⎪⎭⎫⎝⎛=101020101A ,求矩阵X 及()*-1X ,其中()*-1X 为1-X 的伴随矩阵,E 为单位矩阵。
五、(本题14分) 设向量组()()()TTT531110101321,,,,,,,,===ααα不能由向量组 (),1111T ,,=β(),3,2,12T =β()Tk ,4,33=β线性表示。
(1)求向量组321ααα,,的一个极大无关组; (2)求k 的值; (3)将向量1β用321ααα,,线性表示。
六、(本题14分) 设齐次线性方程组(Ⅰ)为⎩⎨⎧=-=+004221x x x x ,已知齐次线性方程组(Ⅱ)的通解为()()TTk k 1,2,2,10,1,1,021-+。
(1)求方程组(Ⅰ)的基础解系;(2)问方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有非零公共解,若没有,则说明理由。
七、(本题14分) 设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=110010000010010x A ,(1)已知A 的一个特征值为,2 求x ; (2)求方阵P ,使()()AP AP T为对角阵。
八、(本题8分) 试证明:n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=1112 b b b b b b b b b a A 的最大特征值为])1(1[2b n a -+,其中10<<b 。
参考答案一、填空题(本题15分,每题3分) 1、0; 2、91; 3、4; 4、)(λf ; 5、1。
二、选择题(本题15分,每题3分) 1、D ; 2、B ; 3、A ; 4、C ; 5、B. 三、(本题8分) 解:从第一行开始,每行乘x 后逐次往下一行加,再按最后一行展开得:原式=122110----++++n n n n a x a x a x a 。
四、(本题12分)解:由X A E AX +=+2,得:E A X E A -=-2)(,)(,010********E A E A -∴≠-==- 可逆,故⎪⎪⎪⎭⎫⎝⎛=+=201030102E A X ;由于09≠=X ,()⎪⎪⎪⎭⎫⎝⎛===∴---*-201030102911)(1111X X XX X 。
五、(本题14分) 解:(1) 令),,(321ααα=A ,3)(,01=∴≠=A R A ,则321,,ααα线性无关, 故321,,ααα是向量组321ααα,,的一个极大无关组;(2)由于4个3维向量 )3,2,1(321=i i αβββ,,,线性相关,若321βββ,,线性无关,则i α可由321βββ,,线性表示,与题设矛盾;于是321βββ,,线性相关,从而5,0531421311||321=∴=-==k k kβββ,,。
(3)令⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛==110040102001151113101101),,,(1321 βαααB ,321142αααβ-+=∴。
六、(本题14分)解:(1) ⎪⎪⎭⎫⎝⎛-→⎪⎪⎭⎫ ⎝⎛-=1010100110100011A ,所以方程组(Ⅰ)的基础解系为:()()TT1,0,1,1,010021-==ηη,,,; (2)设()()2413211,2,2,10,1,1,0ηηk k k k TT+=-+,即⎪⎪⎪⎪⎪⎭⎫⎝⎛--→→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----00001100101010011010012110211010,010100121102110104321 k k k k ,故上述方程组的解为T k )1,1,1,1(-,于是方程组(Ⅰ)和(Ⅱ)所有非零公共解为:)0()1,1,1,1(为任意常数≠-k k T 。
七、(本题14分)解:(1)()()0)1(1111111110000100122=---=----⋅--=------=-x xxA E λλλλλλλλλλλ,将2=λ代人上式,得1=x ;(2)由(1)得⎪⎪⎪⎪⎪⎭⎫⎝⎛=1100110000010010A ,显然A 为实对称阵,而⎪⎪⎪⎪⎪⎭⎫⎝⎛=2200220000100001A A T令⎪⎪⎭⎫ ⎝⎛==212A OO A A A A T ,显然2A A A T 和也是实对称阵,1A 是单位阵, 由()0422222=-=----=-λλλλλA E ,得2A 的特征值4021==λλ,,2A 属于1λ对应的特征向量为T )11(1-=,α,单位化:T)2222(1-=,η, 2A 属于2λ对应的特征向量为T )11(2,=α, 单位化:T )2222(2,=η, 取⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=22220022220000100001P ,则有()()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==4000000000100001)(P A A P AP AP TT T 。
八、(本题8分)证明:由()())1(22122222222222222=-+-+-=------------=--b a n aba a ab a ba ba b a b a a b a b a b a b a a A E n λλλλλλ得A 的特征值)1(],)1(1[23221b a b n a n -====-+=λλλλ ,n a b λλλλ===>∴><< 3212,0,10,故A 的最大特征值是])1(1[21b n a -+=λ。
考试试卷2闭卷考试时间:100分钟一、填空题(本题15分,每小题3分)1、若n 阶行列式零元素的个数超过n (n-1)个,则行列式为 。
2、若A 为4阶矩阵,且A =21,则*12)3(A A --= 。
3、设A=⎪⎪⎪⎪⎪⎭⎫⎝⎛k k k k111111111111,且R (A )=3,则k= 。
4、已知向量,α=(1,2,3),β=(1,31,21,),设A=βαT ,则A n= 。
5、设A 为n 阶方阵,A *≠A ,0为A 的伴随矩阵,E 为n 阶单位阵,若A 有特征值E A +*2,)则(λ必有特征值 。
二、选择题(本题15分,每题3分)1、设A ,B,C 为n 阶方阵,E 为n 阶单位阵,且ABC=E ,则下列各式中( )不成立。
(A ) CAB=E (B) E C A B =---111(C) BCA=E (D)E BA C =---1112、设A,B 均为n 阶非零矩阵,且AB=O ,则它们的秩满足( )。
(A )必有一个等于零 (B )都小于n (C) 一个小于n ,一个等于n (D )都等于n3、下列命题中正确的是( )(A )在线性相关的向量组中,去掉若干个向量后所得向量组仍然线性相关 (B )在线性无关的向量组中,去掉每个向量的最后若干分量后仍然线性无关 (C )任何n+k 个n 维向量(k 1≥)必然线性相关(D )若只有m k k k ,,21全为零时,等式01111=+++m m m m k k k k ββαα 才成立,且m ααα 21,线性无关,则m βββ 21,线性无关4、设T )1,2,1(1-=α,,)1,1,1(2T-=α则3α=( )时,有321,,ααα为3R 的基(A )T )2,1,2( (B )T )1,0,1( (C )T )0,1,0( (D )T)1,0,0(5、设二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=k A 20211012,且此二次型的正惯性指数为3,则( )(A ) k>8 ( B) k>7 (C) k>6 (D) k>5三、(10分)计算n 阶行列式111111111111 ----=n D ,并求该行列式展开后的正项总数。
四、(10分) 设E AX +=X A +2,且⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,求矩阵*-)(1X X 及,其中11)(-*-X X 为的伴随矩阵,E 为单位矩阵。
五、(本题14分) 设有向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=02311α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=314072α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=10123α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=26154α, (1)求该向量组的秩;(2)求该向量组的一个最大无关组,并把其余向量分别用求得的最大无关组线性表出。