中南大学线性代数考试卷

合集下载

线性代数单元测试卷(含答案)

线性代数单元测试卷(含答案)

线性代数单元测试卷(含答案)一、选择题(每题2分,共20分)1. 在线性代数中,什么是矩阵的秩?A. 矩阵的行数B. 矩阵的列数C. 矩阵的非零行数D. 矩阵的最大线性无关行数正确答案:D2. 下列哪个不是矩阵的运算?A. 矩阵的加法B. 矩阵的减法C. 矩阵的除法D. 矩阵的乘法正确答案:C3. 矩阵的转置满足下列哪个性质?A. (A^T)^T = AB. (AB)^T = B^T * A^TC. (A + B)^T = A^T + B^TD. (AB)^T = A^T + B^T正确答案:B4. 什么是向量的线性组合?A. 向量相加B. 向量相减C. 向量乘以常数后相加D. 向量与常数相乘正确答案:C5. 下列哪组向量线性无关?A. (1, 0)B. (0, 1)C. (1, 1)D. (1, -1)正确答案:C二、填空题(每题3分,共30分)1. 给定矩阵A = [[1, 2], [3, 4]],求A的逆矩阵。

正确答案:[[-2, 1], [1.5, -0.5]]2. 给定矩阵B = [[2, 4], [1, 3]],求B的特征值。

正确答案:[5, 0]3. 给定向量v = (1, 2, 3),求v的范数。

正确答案:sqrt(14)4. 给定矩阵C = [[1, 2, 3], [4, 5, 6]],求C的秩。

正确答案:25. 给定矩阵D = [[1, 2], [3, 4], [5, 6]],求D的转置矩阵。

正确答案:[[1, 3, 5], [2, 4, 6]]三、解答题(每题10分,共40分)1. 什么是线性相关和线性无关?线性相关表示向量之间存在线性组合的系数不全为零的情况,即存在非零向量组合得到零向量。

线性无关表示向量之间不存在这样的关系,即只有全为零的线性组合才能得到零向量。

2. 什么是矩阵的行列式?矩阵的行列式是一个标量,它是一个方阵中各个元素按照一定规律相乘再求和的结果。

行列式可以用来判断方阵的逆是否存在,以及计算方阵的特征值等。

11级线性代数试卷A答案

11级线性代数试卷A答案

中南大学考试试卷答案2011——2012学年第二学期(2012.4) 时间:100分钟《线性代数》 课程 32 学时 2 学分 考试形式:闭卷专业年级:2011级 总分:100分一、填空题(本题15分,每题3分)1、0;2、8132(练习册P99); 3、3-; 4、⎪⎪⎪⎪⎭⎫ ⎝⎛=--12333212312113311n n A ;5、12+⎪⎪⎭⎫⎝⎛λA (练习册P113)。

二、选择题(本题15分,每题3分)1、D ;2、B (练习册P106);3、C ;(教材P55)4、D ;5、A (练习册P120)。

三、(本题10分) (练习册P102)解:解: D n ====+++c c c c c c n 131121000120012201222=2n –1, 设D n 展开式中正、负项总数分别为x 1, x 2, 则x 1+x 2=n !,x 1–x 2=2n –1,于是正项总数为x 1=1221(!)n n -+。

四、(本题10分)(典型题解P121)解:由X A E AX +=+2,得:E A X E A -=-2)(,)(,010********E A E A -∴≠-==- 可逆,故⎪⎪⎪⎭⎫⎝⎛=+=201030102E A X ;由于09≠=X ,()⎪⎪⎪⎭⎫⎝⎛===∴---*-201030102911)(1111X X X X X 。

五、(本题14分)解:将矩阵()4321,,,αααα化为最简形阶梯形矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000011003101032001000011001030101121306014211035271,(1)()3,,,4321=ααααR ;(2)321,,ααα为所求的一个最大线性无关组,且32143132αααα++=。

六、(本题14分)解:()0311********--=-⎪⎪⎪⎭⎫ ⎝⎛----==λλλααA E A T,(1)A 的特征值为0,0,3;由0=AX 得对应0的特征向量为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛101011l k ,l k ,为不全为零的任意常数,由0)3(=-X A E 得对应3的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-111c ,c 为任意非零常数。

线性代数试题及答案解析

线性代数试题及答案解析

线性代数试题及答案解析一、选择题(每题4分,共40分)1. 矩阵A和矩阵B相乘,得到的结果矩阵的行列数为()。

A. A的行数乘以B的列数B. A的行数乘以B的行数C. A的列数乘以B的列数D. A的列数乘以B的行数答案:D解析:矩阵乘法中,结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。

2. 向量α和向量β线性相关,则下列说法正确的是()。

A. α和β可以是零向量B. α和β可以是任意向量C. α和β中至少有一个是零向量D. α和β中至少有一个是另一个的倍数答案:D解析:线性相关意味着存在不全为零的系数,使得这些系数乘以对应的向量和为零向量,因此至少有一个向量是另一个向量的倍数。

3. 对于n阶方阵A,下列说法不正确的是()。

A. A的行列式可以是0B. A的行列式可以是负数C. A的行列式可以是正数D. A的行列式一定是正数答案:D解析:方阵的行列式可以是正数、负数或0,因此选项D不正确。

4. 矩阵A和矩阵B相等,当且仅当()。

A. A和B的对应元素相等B. A和B的行数相等C. A和B的列数相等D. A和B的行数和列数都相等答案:A解析:两个矩阵相等,必须满足它们具有相同的行数和列数,并且对应元素相等。

5. 向量组α1,α2,…,αn线性无关的充分必要条件是()。

A. 由这些向量构成的矩阵的行列式不为0B. 这些向量不能构成齐次方程组的非零解C. 这些向量不能构成齐次方程组的非平凡解D. 这些向量可以构成齐次方程组的平凡解答案:C解析:向量组线性无关意味着它们不能构成齐次方程组的非平凡解,即唯一的解是零向量。

6. 矩阵A可逆的充分必要条件是()。

A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式为任何非零数答案:A解析:矩阵可逆当且仅当其行列式不为0。

7. 矩阵A的特征值是()。

A. 矩阵A的行数B. 矩阵A的列数C. 矩阵A的对角线元素D. 满足|A-λI|=0的λ值答案:D解析:矩阵的特征值是满足特征方程|A-λI|=0的λ值。

中南大学《线性代数》2021-2022学年第一学期期末试卷

中南大学《线性代数》2021-2022学年第一学期期末试卷

中南大学期末考试试卷2021-2022-1《线性代数》课程32学时2学分考试形式:闭卷总分:100分一、填空题(每小题3分,共15分)⎛-10⎫⎪1、设f(x)=x-3,矩阵A=4⎪,则f(A)= .3⎝⎭22、设A,B为n阶矩阵,如果有n阶可逆矩阵P,使成立,则称A与B相似.3、n元非齐次线性方程组Am⨯nx=b有唯一解的充分必要条件是.22 +3x3-2x1x2+6x1x3-6x2x3,4、已知二次型f(x1,x2,x3)=5x12+5x2则二次型f对应的矩阵A=.5、设4阶方阵A满足:A<0,3E+A=0,AA T=2E(其中E是单位矩阵),则A 的伴随矩阵A*必有一个特征值为 .二、选择题(每小题3分,共15分)1、已知4阶方阵A的伴随矩阵为A*,且A的行列式A=3,则A*=().(A)81.(B)27.(C)12.(D)9.2、设A、B都是n阶方阵,且A与B有相同的特征值,并且A、B都有n个线性无关的特征向量,则()。

(A)A与B相似.(B)A=B.(C)A≠B,但|A-B|=0.(D)A与B不一定相似,但|A|=|B|.3、设n阶方阵A为正定矩阵,下面结论不正确的是((A)A可逆.(C)|A|>0.).(B)A-1也是正定矩阵.(D)A的所有元素全为正.4、若n阶实方阵A=A2,E为n阶单位阵,则().(A)R(A)+R(A-E)>n.(B)R(A)+R(A-E)<n.(C)R(A)+R(A-E)=n.(D)无法比较R(A)+R(A-E)与n的大小.⎛0⎫⎛0⎫⎛1⎫⎛-1⎫ ⎪ ⎪ ⎪ ⎪5、设α1= 0⎪,α2= 1⎪,α3= -1⎪,α4= 1⎪,其中c 1,c 2,c 3,c 4为任意常数, c ⎪ c ⎪ c ⎪ c ⎪⎝1⎭⎝2⎭⎝3⎭⎝4⎭则下列向量组线性相关的为((A )α1,α2,α3.(C )α1,α3,α4.三(本题满分10分)).(B )α1,α2,α4.(D )α2,α3,α4.x计算n (n ≥2)阶行列式D n =a x aa a x,D n的主对角线上的元素都为a ax ,其余位置元素都为a ,且x ≠a .四(本题满分10分)设3阶矩阵A ,B 满足关系:A -1BA =6A +BA ,⎛12 且A = 00⎝0140⎫0⎪⎪0⎪,求矩阵B .⎪⎪1⎪⎪7⎭五(本题满分10分)设方阵A 满足A 2-A -2E =0(其中E 是单位矩阵),求A -1,(A +2E )-1.六(本题满分12分)⎛1⎫⎛2⎫⎛1⎫⎛3⎫ ⎪ ⎪ ⎪ ⎪4-1-5-6已知向量组A :α1= ⎪,α2= ⎪,α3= ⎪,α4= ⎪,1⎪ -3⎪ -4⎪ -7⎪ ⎪ ⎪ ⎪ ⎪21-1⎝⎭⎝⎭⎝⎭⎝0⎭(1)求向量组A 的秩;(2)求向量组A 的一个最大线性无关组,并把不属于该最大无关组的其它向量用该最大无关组线性表示.七(本题满分14分)⎡1α设矩阵A =⎢⎢α1⎢⎣1β1⎤⎡000⎤⎢010⎥相似,β⎥B =与矩阵⎥⎢⎥⎢1⎥⎦⎣002⎥⎦(1)求α,β;(2)求正交矩阵P ,使P -1AP =B .八(本题满分14分)设有线性方程组为⎧x 1+a 1x 2+a 12x 3=a 13⎪23⎪x 1+a 2x 2+a 2x 3=a 2⎨23x +a x +a x =a 3⎪1323323⎪⎩x 1+a 4x 2+a 4x 3=a 4(1)证明:若a 1,a 2,a 3,a 4两两不等,则此方程组无解.(2)设a 1=a 3=k ,a 2=a 4=-k (k ≠0),且已知β1,β2是该方程组的两个解,其中β1=(-1, 1, 1)T ,β2=(1, 1,-1)T ,写出此方程组的通解.参考答案一、填空题(每小题3分,共15分)⎛5-13⎫⎛-2 0⎫4 ⎪-1-15-31、 ;2、;3、;4、;5、P AP =B R (A )=R (A ,b )=n ⎪ ⎪38 6⎝⎭ 3-33⎪⎝⎭二、选择题(每小题3分,共15分) BADCC 三(本题满分10分,见教材P44习题第5题)x +(n -1)a 解:后面n -1列都加到第1列,得D n=a xa a xx +(n -1)ax +(n -1)a a1c 1÷[x +(n -1)a ]a x a 0a a x=(x -a )n -1[x +(n -1)a ].===[x +(n -1)a ]11 1[x +(n -1)a ]c ====+(-a )cc n +(-a )c n32c 2+(-a )c 11 1x -ax -a四、(本题满分10分,与典型题解P172例6类似)-1-1⎡⎛2⎫⎛1⎫⎤⎛1⎫⎛6⎫⎢⎥ ⎪ ⎪ ⎪ ⎪.解:B =6(A -1-E )-1=6⎢ 4-1=63=2⎪ ⎪⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎢7⎭⎝1⎭⎥6⎭1⎪⎝⎝⎭⎣⎝⎦五、(本题满分10分,见练习册P118第五大题第1小题和典型题解P173例7)A -E A -E解:A 2-A -2E =0⇒A .=E ⇒A -1=22(A -E )23E -AA -A -2E =0⇒A +2E =A ⇒(A +2E )=(A )=(A )=或4422-12-1-12六、(本题满分12分,见教材P89习题3第2题,或典型题解P178例6)3⎫⎛121⎪4-1-5-6⎪→解:1-3-4-7⎪ ⎪⎝21-10⎭⎛1 0→ 0 ⎝00-1-1⎫⎪112⎪,⎪000⎪000⎭R (A )=2,α1,α2为所求的一个最大线性无关组,且α3=-α1+α2,α4=-α1+2α2.七、(本题满分14分,见典型题解P190例14)解:(1)由A ,B 相似知,A ,B 有相同的特征值,而B 的特征值为0,1,2,⎧0⋅E -A =0⎪故得A 的特征值为λ1=0,λ2=1,λ3=2,从而有⎨,1⋅E -A =0⎪⎩由此解得α=0,β=0.⎛1⎫-⎪⎛-1⎫2⎪ ⎪(2)对于λ1=0,解(0⋅E -A )X =0,得特征向量 0⎪,单位化得:p 1= 0⎪;1⎪ 1⎪⎝⎭ ⎪2⎝⎭⎛0⎫⎪对于λ2=1,解(E -A )X =0,得特征向量为p 1= 1⎪;0⎪⎝⎭⎛ ⎛1⎫⎪0λ=2对于3,解(2E -A )X =0,得特征向量为 ⎪,单位化得:p 1=1⎪⎝⎭⎝⎛1 -2令P =(p 1,p 2,p 3)= 01 ⎝20101⎫⎪2⎪0⎪,则P 为正交阵,且使P -1AP =B .1⎪⎪2⎭1⎫⎪2⎪0⎪1⎪⎪2⎭八、(本题满分14分,见教材P87例3.13)解:(1)增广矩阵B 的行列式是4阶范德蒙行列式:11|B |=11a 1a 2a 3a4a 122a 22a 32a 4a 133a 2=∏(a j -a i )3a 31≤i <j ≤43a 4由于a 1,知|B |≠0,从而R (B )=4,但系数矩阵A 的秩R (A )≤3,a 2,a 3,a 4两两不等,故R (A )≠R (B ),因此方程组无解.(2)a 1=a 3=k ,a 2=a 4=-k (k ≠0)时,方程组变为⎧x 1+kx 2+k 2x 3=k 3⎪23⎧x 1+kx 2+k 2x 3=k 3⎪x 1-kx 2+k x 3=-k 即⎨⎨2323x +kx +k x =k x -kx +k x =-k 23⎩123⎪123⎪⎩x 1-kx 2+k x 3=-k 因为1k=-2k ≠0,故R (A )=R (B )=2,所以方程组有解,且对应的齐次方1-k程组的基础解系含3-2=1个解向量,又β1,β2是原非齐次方程组的两个解,故ξ=β2-β1=(2, 0,-2)T 是对应齐次方程组的解;由于ξ≠0,故ξ是它的基础解系。

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案

完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。

(下面的r(A),r(B)分别表示矩阵A,B的秩)。

A) r(A)。

r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。

A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。

3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。

(B) B的每个行向量都是齐次线性方程组AX=O的解。

(C) BA=O。

(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。

+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。

5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。

11;(C) -1;(D)。

(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。

A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。

1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。

(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案一、选择题(每题5分,共20分)1. 下列矩阵中,哪个是可逆矩阵?A. \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)D. \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\)答案:C2. 矩阵\(A\)的行列式为0,那么\(A\)的秩是:A. 0B. 1C. 2D. 3答案:A3. 向量\(\vec{a} = (1, 2, 3)\)和向量\(\vec{b} = (4, 5, 6)\)的点积为:A. 14B. 32C. 8D. 22答案:A4. 矩阵\(A\)的转置矩阵记作\(A^T\),那么\((A^T)^T\)等于:A. \(A^T\)B. \(A\)C. \(A^{-1}\)D. \(A^2\)答案:B二、填空题(每题5分,共20分)1. 若矩阵\(A\)的行列式为-5,则\(A^{-1}\)的行列式为______。

答案:\(\frac{1}{5}\)2. 矩阵\(A\)的秩为2,那么\(A\)的零空间的维数为\(\_\_\_\_\)。

答案:\(n-2\)(其中n为\(A\)的列数)3. 向量\(\vec{a} = (1, 2)\)和向量\(\vec{b} = (3, 4)\)的叉积为______。

答案:\(-2\)4. 若\(\vec{a} = (1, 0, 0)\),\(\vec{b} = (0, 1, 0)\),\(\vec{c} = (0, 0, 1)\),则\(\vec{a} \times \vec{b} =\_\_\_\_\_\)。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案**线性代数考试题及答案**一、单项选择题(每题3分,共30分)1. 矩阵A的行列式为0,则矩阵A()A. 可逆B. 不可逆C. 可交换D. 不可交换答案:B2. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D3. 向量组α1,α2,…,αs线性无关,则()A. s ≤ nB. s > nC. s ≥ nD. s < n答案:A4. 矩阵A的特征值是()A. 矩阵A的行最简形式B. 矩阵A的列最简形式C. 矩阵A的对角线元素D. 满足|A-λE|=0的λ值答案:D5. 矩阵A和B相等的充要条件是()A. A和B的对应元素相等B. A和B的行向量组相同C. A和B的列向量组相同D. A和B的秩相等答案:A6. 若矩阵A可逆,则下列说法正确的是()A. |A|≠0B. A的秩为nC. A的行列式为1D. A的转置矩阵可逆答案:AA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:C8. 向量组α1,α2,…,αn线性相关,则()A. 存在不全为0的k个向量,使得k个向量线性组合等于0B. 存在不全为0的n个向量,使得n个向量线性组合等于0C. 存在不全为0的n+1个向量,使得n+1个向量线性组合等于0D. 存在不全为0的m个向量,使得m个向量线性组合等于0,其中1≤m≤n答案:DA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:B10. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D二、填空题(每题4分,共20分)1. 若矩阵A的行列式|A|=2,则矩阵A的伴随矩阵的行列式|adj(A)|= _ 。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案一、选择题(每题2分,共20分)1. 以下哪个矩阵是可逆的?A. [1 0; 0 0]B. [1 2; 3 4]C. [1 0; 0 1]D. [0 1; 1 0]2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行或列的最大数目D. 矩阵的对角线元素的个数3. 线性方程组有唯一解的条件是什么?A. 方程个数等于未知数个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩4. 向量空间的基具有什么性质?A. 基向量的数量必须为1B. 基向量必须是正交的C. 基向量必须是线性无关的D. 基向量必须是单位向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在非零向量v,使得A^Tv=λv,则λ是A 的特征值,v是A的特征向量C. 对于矩阵A,如果存在非零向量v,使得A^-1v=λv,则λ是A 的特征值,v是A的特征向量D. 对于矩阵A,如果存在非零向量v,使得Av=v,则λ是A的特征值,v是A的特征向量6. 线性变换的矩阵表示是什么?A. 线性变换的逆矩阵B. 线性变换的转置矩阵C. 线性变换的雅可比矩阵D. 线性变换的对角矩阵7. 以下哪个不是线性代数中的基本概念?A. 向量B. 矩阵C. 行列式D. 微积分8. 什么是线性方程组的齐次解?A. 方程组的所有解B. 方程组的特解C. 方程组的零解D. 方程组的非平凡解9. 矩阵的迹是什么?A. 矩阵的对角线元素的和B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆10. 什么是正交矩阵?A. 矩阵的转置等于其逆矩阵B. 矩阵的所有行向量都是单位向量C. 矩阵的所有列向量都是单位向量D. 矩阵的所有行向量都是正交的答案:1-5 C C C C A;6-10 D D C A A二、简答题(每题10分,共20分)11. 请简述线性代数中的向量空间(Vector Space)的定义。

线性代数大学试题及答案

线性代数大学试题及答案

线性代数大学试题及答案一、选择题(每题5分,共20分)1. 设A是一个3阶方阵,且满足A^2 = A,则下列说法正确的是:A. A是可逆矩阵B. A是幂等矩阵C. A是正交矩阵D. A是单位矩阵答案:B2. 若矩阵A的特征值为1,则下列说法正确的是:A. 1是A的迹B. 1是A的行列式C. 1是A的一个特征值D. 1是A的秩答案:C3. 设向量组α1, α2, ..., αn线性无关,则下列说法正确的是:A. 向量组中任意向量都可以用其他向量线性表示B. 向量组中任意向量都不可以被其他向量线性表示C. 向量组中任意向量都可以被其他向量线性表示D. 向量组中任意向量都不可以被其他向量线性表示,除非它们线性相关答案:B4. 若矩阵A的秩为2,则下列说法正确的是:A. A的行向量组线性无关B. A的列向量组线性无关C. A的行向量组线性相关D. A的列向量组线性相关答案:A二、填空题(每题5分,共30分)1. 若矩阵A的行列式为0,则A的______。

答案:秩小于矩阵的阶数2. 设向量空间V的一组基为{v1, v2, ..., vn},则任意向量v∈V可以唯一地表示为______。

答案:v = c1v1 + c2v2 + ... + cnn,其中ci为标量3. 设矩阵A和B可交换,即AB = BA,则A和B的______。

答案:特征值相同4. 若线性变换T: R^n → R^m,且T是可逆的,则T的______。

答案:行列式不为零5. 设A为n阶方阵,若A的特征多项式为f(λ) = (λ-1)^2(λ-2),则A的特征值为______。

答案:1, 1, 26. 若向量组α1, α2, ..., αn线性无关,则向量组α1, α2, ..., αn, α1+α2也是______。

答案:线性相关三、简答题(每题10分,共20分)1. 简述什么是矩阵的秩,并给出如何计算矩阵的秩的方法。

答案:矩阵的秩是指矩阵行向量或列向量组中线性无关向量的最大个数。

线代II

线代II

1---○---○------○---○---………… 评卷密封线………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理…………评卷密封线………… 中南大学考试试卷2010 ~2011 学年 2 学期 线性代数Ⅱ 课程 时间100分钟24 学时,1.5学分,闭卷,总分100分,占总评成绩70 %一、单项选择题(本题15分,每小题3分) 1. 设,,133312321131131211232221333231232221131211⎪⎪⎪⎭⎫⎝⎛+++=⎪⎪⎪⎭⎫⎝⎛=a a a a a a a a a a a a B a a a a a a a a a A ,101010001,10000101021⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=P P 则必有( ).A B P AP =21 B B A P P =21 C B P AP =12D B A P P =122. 设n 阶方阵A 、B 、C 满足关系式E ABC =,其中E 是n 阶单位阵,则必有( ). A E BCA = B E CBA = C E BAC =D E ACB =3. 设n 阶矩阵A 非奇异()2≥n ,*A 是矩阵A 的伴随矩阵,则()=**A ( ).A A A n 1- B A A n 2- C A An 2+D A An 1+24. 设n 阶矩阵A 与B 等价,则必有( ). A 当()0≠=a a A 时,a B = B 当()0≠=a a A 时,a B -= C 当0≠A 时,0=BD 当0=A 时,0=B5. 设2=λ是非奇异矩阵A 的一个特征值,则矩阵1231-⎪⎭⎫⎝⎛A 有一特征值等于( ).A 34B 21C 43D 41二、填空题(本题15分,每小题3分)1.设行列式2235007022220403--=D ,则第四行各元素代数余子式之和的值为 . 2.设n 阶矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=0111110111110111110111110 A ,则=A .3. 设⎪⎪⎪⎭⎫⎝⎛=543022001A ,*A 是A 的伴随矩阵,则()=-1*A .4. 设矩阵A 满足042=-+E A A ,其中E 为单位矩阵,则()=--1E A .5. 设矩阵⎪⎪⎭⎫⎝⎛-=2112A ,E 为二阶单位矩阵,矩阵B 满足E B BA 2+=,则=B .3三、解答题(本题64分,每小题8分)1.设A 为1010⨯矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=00001010000001000001010A ,计算行列式E A λ-,其中E 为10阶单位矩阵,λ为常数.2. 设A 是n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B .⑴证明B 可逆;⑵求1-AB .43. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,矩阵X 满足X A E AX +=+2,其中E 为三阶单位矩阵,试求出矩阵X .4. 已知三阶矩阵A 的逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛=-3111211111A ,试求伴随矩阵*A 的逆矩阵.55. 求方阵⎪⎪⎪⎭⎫ ⎝⎛----101410213的实特征值与对应的特征向量.6. 设有4阶方阵A 满足条件0,2,02<==+A E AA A E T ,其中E 是4阶单位阵. 求方阵A 的伴随矩阵*A 的一个特征值.67. 解线性方程组⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+-=-+-337713343424313214314321x x x x x x x x x x x x x .78. 设线性方程组为⎪⎪⎩⎪⎪⎨⎧=+--=+--=+++=+++243214312143214321121053153363132kx x x x x x k x x x x x x x x x x ,问1k 与2k 各取何值时,方程组无解?有唯一解?有无穷多解?有无穷多解时,求其一般解.8四、 (本题6分)已知n 阶方阵⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=100000110000111000222200000011000024 A ,求A 中所有元素代数余子式之和∑∑==n i nj ij A 11.。

中南大学2014级线代试卷A及答案

中南大学2014级线代试卷A及答案

中南大学考试试卷20014——2015学年第二学期 时间:100分钟《线性代数》课程 32 学时 2 学分 考试形式:闭卷 总分:100分一、填空题(每小题3分,共15分)1、设3阶矩阵A 的特征值互不相同,若行列式0A =,则秩()R A = .2、设向量123(1,2,1,0),(1,1,0,2),(2,1,1,)T T Ta ααα=-==,若由123,,ααα生成的向量空间的维数为2,则a = .3、已知(1,1,1)T ξ=-是2125312A a b -⎛⎫⎪= ⎪ ⎪--⎝⎭的一个特征向量,则=a ⎽⎽⎽, b =⎽⎽⎽.4、设,A B 为3阶矩阵,且3A =,2B =,12A B -+=,则1A B -+= .5、设实二次型()312123222132122,,x tx x x x x x x x x Q ++++=是正定的,则t 的取值范围是 .二、选择题(每小题3分,共15分)1、若矩阵A 、B 可逆,则矩阵00A B⎛⎫⎪⎝⎭也可逆,且10A B-⎛⎫⎪⎝⎭=( ). (A )1100A B--⎛⎫⎪⎝⎭. (B )1100B A--⎛⎫⎪⎝⎭. (C )1100A B --⎛⎫ ⎪⎝⎭. (D )1100B A --⎛⎫⎪⎝⎭. 2、设A 是n 阶方阵,则0||=A 的必要条件是( ).(A )A 中两行(列)元素对应成比例. (B )A 中有一行元素全为零. (C )任一行元素为其余行的线性组合.(D )必有一行元素为其余行的线性组合. 3、设向量组I :12,,,r αααL 可由向量组II: 12,,,S βββL 线性表示.下列命题正确的是().(A )若向量组I 线性无关,则r s ≤. (B )若向量组I 线性相关,则r s >. (C )若向量组II 线性无关,则r s ≤. (D )若向量组II 线性相关,则r s >. 4、设A 为m n ⨯矩阵,B 为n m ⨯矩阵,E 为m 阶单位矩阵,若AB E =,则( ).(A )秩()R A m =,秩()R B m =. (B )秩()R A m =,秩()R B n =.(C )秩()R A n =,秩()R B m =. (D )秩()R A n =,秩()R B n =.5、设1234(,,,)A αααα=是4阶矩阵,*A 为A 的伴随矩阵,若(1,0,1,0)T 是方程组0Ax =的一个基础解系,则*0A x =的基础解系可为().(A )13αα,.(B )12αα,. (C )123ααα,,. (D )234ααα,,.三(本题满分10分)设123221(, , )212122A ααα-⎛⎫ ⎪==- ⎪ ⎪-⎝⎭,1214(, )0342B ββ⎛⎫⎪== ⎪⎪-⎝⎭,证明123, , ααα是3维空间3R 的一个基,并把12, ββ用这个基线性表示.四(本题满分10分)设矩阵010101010A ⎛⎫⎪=- ⎪ ⎪⎝⎭,若矩阵X 满足 22X XA AX AXA E --+=,其中E 为3阶单位矩阵,求X .五(本题满分16分) 设n 元线性方程组Ax b =,其中2222212121212n a a a a a A a a a a ⎛⎫ ⎪ ⎪ ⎪⎪=⎪ ⎪⎪⎪⎝⎭O O O ,12n x x x x ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭M ,100b ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭M . (1) 证明行列式(1)n A n a =+;(2) 当a 为何值时,该方程组有唯一解,并求1x ; (3) 当a 为何值时,该方程组有无穷多解,并求通解.六(本题满分8分)已知4元非齐次线性方程组的系数矩阵的秩为3,又123,,ααα是它的3个解向量,其中1223(1,1,0,2),(1,0,1,3)T T αααα+=+=,求该非齐次线性方程组的通解.七(本题满分14分)设矩阵02313312A a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭与矩阵12000031B b -⎛⎫⎪= ⎪ ⎪⎝⎭相似,(1)求,a b 的值; (2)求可逆矩阵P ,使1P AP -为对角阵.八(本题满分12分)已知1010111001A a a ⎛⎫⎪⎪= ⎪- ⎪-⎝⎭,二次型123(,,)()T T f x x x x A A x =的秩为2,(1)求实数a 的值;(2)求正交变换x Qy =,将f 化为标准形.参考答案一、填空题(每小题3分,共15分)1、2;2、6;3、-3,0;4、3;5、22t -<<. 二、选择题(每小题3分,共15分) BDAAD 三(本题满分10分)解 要证123, , ααα是3R 的一个基,即证123, , ααα线性无关,即证()3R A =或0A ≠或A ~E ,12321311()322211411113(,)21203030231224203355r r r r r r r A B ++-+--⎛⎫⎛⎫⎪ ⎪=-−−−−→-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭132332(3)31002411113330102101021330115500112333r rr r r r-÷-÷-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪−−−→−−−→-- ⎪ ⎪⎪⎪- ⎪ ⎪-⎪ ⎪⎝⎭⎝⎭, 因有A ~E ,故123, , ααα为3R 的一个基,且1212324332(, )(, , )13213ββααα⎛⎫ ⎪ ⎪ ⎪=-⎪ ⎪ ⎪- ⎪⎝⎭. 四、(本题满分10分)解 由 22X XA AX AXA E --+=,得2()()E A X E A E --=,因2110001111,010011102E A E A -⎛⎫⎛⎫⎪ ⎪-=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭都可逆,故121211201312()()111010111110100211X E A E A -----⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=--=-=- ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭.五(本题满分16分)(1) 证法一(用数学归纳法):记n D A =, 当1n =时,12D a =;2n =时,2222132a D a a a==,结论都成立, 假设结论对小于n 的情况成立,将n D 按第1行展开得222112221122110221222122(1)(1)n n n n n n n na a a a D aD aD a D a a a a ana a n a n a ------=-=-=--=+O OO故(1)n A n a =+. 证法二22132221213102211223212213102411(1).31011n n n a a a a r ar r ar Aa aa aa a a n r ar n a nn a n n a n-----=+-+O OO L LO O O(2)解 当0a ≠时,方程组系数行列式0n D ≠,故方程组有唯一解,由克莱姆法则,将n D 第1列换成b ,得行列式为22112222111210212*********n n n na a a aa aD na a a aa a a a a ---===OO O O OO ,所以,11(1)n n D nx D n a-==+. (3)解 当0a =时,方程组为12110100100100n n x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭M M OO, 此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为(0,1,0,,0)(1,0,0,,0)T T x k =+L L ,其中k 为任意常数. 六、(本题满分8分)解 因4元非齐次线性方程组的系数矩阵的秩为3,故其导出组的基础解系只含 一个解向量,即可为312312()()(0,1,1,1)T αααααα-=+-+=-, 非齐次特解可为1211(,,0,1)222T αα+=,或23113(,0,,)2222T αα+=, 所以非齐次线性方程组的通解为(0,1,1,1)T k -11(,,0,1)22T +或(0,1,1,1)T k -113(,0,,)222T +,其中k 为任意常数.七、(本题满分14分)解(1)由,A B 相似知,,A B 有相同的特征值,故 迹()(),tr A tr B A B ==,于是 32,23,a b a b +=+-= 解得 4,5,a b == (2)由(1)知,023133124A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭,120050031B -⎛⎫⎪= ⎪ ⎪⎝⎭,因,A B 相似,所以2(1)(5)E A E B λλλλ-=-=--,故A 的特征值为1231,5λλλ===,当121λλ==时,解()0E A X -=,得线性无关的特征向量12231,001ξξ-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,当35λ=,解()50E A X -=,得特征向量为3111ξ-⎛⎫⎪=- ⎪ ⎪⎝⎭,令()123231,,101011P ξξξ--⎛⎫ ⎪==- ⎪ ⎪⎝⎭,则P 为所求可逆矩阵,使1100010005P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.八、(本题满分12分)解 (1)1011010110111000101000A aa a ⎛⎫⎛⎫⎪ ⎪⎪ ⎪=→ ⎪ ⎪-+ ⎪ ⎪-⎝⎭⎝⎭,因秩()()T R A A R A ==2,所以1a =-.(2)因1a =-,所以202022224T A A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则特征多项式为(2)(6)T E A A λλλλ-=--, 于是T A A 的特征值为1232,6,0λλλ===.当12λ=时,由(2)0T E A A x -=,可得属于2110⎛⎫⎪-⎪⎪⎭, 当26λ=时,由(6)0T E A A x -=,可得属于6112⎛⎫⎪⎪⎪⎭,当30λ=时,由0T A Ax =,可得属于0111⎛⎫⎪⎪⎪-⎭,令0Q ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎝,则f 在正交变换x Qy =下的标准形221226f y y =+.。

线性代数期末考试考核试卷

线性代数期末考试考核试卷
(答题括号:________)
4.以下哪个向量组构成一个基?
A. (1, 0, 0), (0, 1, 0), (0, 0, 0)
B. (1, 2, 3), (4, 5, 6), (7, 8, 9)
C. (1, 2, 3), (2, 4, 6), (1, 1, 1)
D. (1, 1, 0), (0, 1, 1), (1, 0, 1)
...
20.(根据实际题目内容填写答案)
二、多选题
1. BCD
2. ABCD
3. ABC
4. AB
5. ABC
...
20.(根据实际题目内容填写答案)
三、填题
1. 1
2.线性无关
3.主
...
10.(根据实际题目内容填写答案)
四、判断题
1. √
2. √
3. √
...
10. ×
五、主观题(参考)
1.向量组线性无关,可以通过计算行列式不为零来证明。一个可以由给定向量组线性表示的向量可以是它们的线性组合,例如\(a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3\),其中\(a, b, c\)是适当的系数。
D. (1, 1), (1, -1)
(答题括号:________)
5.在求解线性方程组时,以下哪些情况下可以使用高斯消元法?
A.系数矩阵是方阵
B.系数矩阵是非奇异的
C.方程组中方程的个数等于未知数的个数
D.方程组可能有无穷多解
(答题括号:________)
(以下题目类似,省略以节约空间)
6. ...
A.若A为m×n矩阵,则A的转置为n×m矩阵
B.若A为m×n矩阵,则A的转置为m×n矩阵

线性代数考试题和答案

线性代数考试题和答案

线性代数考试题和答案****一、单项选择题(每题3分,共30分)1. 矩阵的秩是指矩阵中线性无关的行(列)向量的最大个数,以下关于矩阵秩的描述正确的是()。

A. 矩阵的秩等于其行数B. 矩阵的秩等于其列数C. 矩阵的秩是其行向量和列向量线性无关的最大数量D. 矩阵的秩与矩阵的行数和列数无关**答案:C**2. 向量组的线性相关性是指()。

A. 向量组中至少有一个向量可以由其他向量线性表示B. 向量组中所有向量都是零向量C. 向量组中至少有一个向量是零向量D. 向量组中所有向量都是线性无关的**答案:A**3. 对于一个n阶方阵A,若其行列式|A|=0,则矩阵A是()。

A. 可逆的B. 不可逆的C. 正定的D. 负定的**答案:B**4. 矩阵A和B相乘,结果为零矩阵,即AB=0,以下说法正确的是()。

A. A和B中至少有一个是零矩阵B. A和B都是零矩阵C. A和B线性相关D. A和B线性无关**答案:A**5. 线性方程组有唯一解的充分必要条件是()。

A. 系数矩阵是可逆的B. 系数矩阵的行列式不为零C. 增广矩阵的秩等于系数矩阵的秩D. 系数矩阵的秩等于未知数的个数**答案:D**6. 矩阵的特征值是指()。

A. 矩阵的对角元素B. 矩阵的非零元素C. 满足|A-λI|=0的λ值D. 矩阵的行元素**答案:C**7. 两个向量α和β,若α=kβ(k≠0),则称向量α和β是()。

A. 线性无关的B. 线性相关的C. 正交的D. 垂直的**答案:B**8. 矩阵A的转置记作()。

A. A'B. A^TC. A^*D. A^H**答案:B**9. 以下哪个矩阵是对称矩阵()。

A. [1 2; 3 4]B. [1 3; 2 4]C. [1 2; 2 1]D. [1 0; 0 1]**答案:C**10. 以下哪个矩阵是正交矩阵()。

A. [1 0; 0 1]B. [1/√2 1/√2; -1/√2 1/√2]C. [1 2; 3 4]D. [1 0; 0 -1]**答案:B**二、填空题(每题4分,共20分)11. 若矩阵A=[1 2; 3 4],则矩阵A的行列式|A|=______。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。

答案:基的向量个数2. 矩阵A的行列式表示为_________。

答案:det(A)3. 线性变换的矩阵表示是_________。

中南大学《线性代数》考试试卷2021~2022 (B卷)含参考答案及评分标准

中南大学《线性代数》考试试卷2021~2022 (B卷)含参考答案及评分标准

大学考试试卷(B 卷)2021~2022 学年 学期 线性代数 课程 时间110分钟 学时, 闭 卷,总分 100 分,占总评成绩 70 %一、选择题(每小题3分,共15分)1、设b a ,为实数,则当=a , =b 时,010100=---abb a.( )(A) 0,0; (B) 0,1; (C) 1,0; (D) 1,1.2、设A 为n m ⨯矩阵,0=AX 仅有零解的充分必要条件是系数矩阵的秩)(A r ( ). (A)小于m ; (B) 小于n ; (C)等于m ; (D) 等于n .3、A 是n 阶方阵,k 是非零常数,则=||kA ( ).(A) ||A k ; (B) ||||A k ; (C) ||A k n; (D) ||||A k n.4、设B A ,是n 阶方阵,则下列结论成立的是( )(A )O B O A O AB ≠≠⇔≠且; (B )O A O A =⇔=; (C )000==⇔=B A AB 或; (D )1=⇔=A E A .5、向量组TT T T T )4,1(,)2,1(,)0,0(,)0,2(,)0,1(54321-=====ααααα的一个极大线性无关组是( )(A) 21,αα; (B) 52,αα;(C) 43,αα; (D) 541,,ααα.二、填空题(每小题3分,共24分)1.=-2112 ;2.排列36715284的逆序数是 ;3.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=321A ,)321(=B ,则=AB ;4.若行列式中两行(列)的对应元素相同,则此行列式的值等于 ;5.已知⎪⎪⎪⎭⎫ ⎝⎛--=523012101A ,则矩阵A 的伴随矩阵=*A ;6.设⎪⎪⎪⎭⎫ ⎝⎛=120130005A ,则=-1A ;7. 已知T )1,1,2,1(1-=α,T)0,3,0,2(2=α,T )2,5,4,0(3--=α,T )1,7,2,3(4--=α,则=),,,(4321ααααr ____________;8、向量组:TT T )2,5,3(,)0,2,2(,)1,0,1(321-=-=-=ααα是 .(填“线性相关”或“线性无关”)三、解答题(共61分)1、计算下列行列式:(第1小题3分,第2小题4分,第5小题,共12分)(1)22baba ; (2)123012111; (3)2310421121214321------. 2、(12分)已知⎪⎪⎪⎭⎫ ⎝⎛=432112122121A ,⎪⎪⎪⎭⎫ ⎝⎛----=101012121234B ,计算:(1)B A -3;(2)B A 32+;(3)若X 满足B X A =+,求X .3、(12分) 设101026161A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,满足2AX E A X +=+,求矩阵X .4、(10分)求解齐次线性方程组⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x .5、(15分)讨论线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=+--=+++=+++tx x x x x px x x x x x x x x x x 4321432143214321121053153363132,当t p ,取何值时,方程组无解?有唯一解?有无穷多解?并在方程组有无穷多解时求出其全部解.《线性代数》参考答案及评分标准卷别:B 卷一、选择题(每题3分,合计15分)1、A ;2、D ;3、C ;4、C ;5、B .二、填空题(每题3分,合计24分)1、5;2、13;3、⎪⎪⎪⎭⎫ ⎝⎛963642321;4、0;5、⎪⎪⎪⎭⎫ ⎝⎛----1272210125;6、⎪⎪⎪⎭⎫ ⎝⎛--320110005/1;7、2 ;8、线性相关。

中南大学线性代数试卷

中南大学线性代数试卷

考试试卷1闭卷考试时间:100分钟一、填空题(本题15分,每小题3分)1、设()4321,,,A A A A A =为四阶方阵,其中)4,3,2,1(=i A i 为A 的第i 个列向量, 令()14433221,,,A A A A A A A A B ----=,则=B 。

2、设A 为三阶方阵,*A 为A 的伴随矩阵,且3||=A ,则=-*|)(|1A 。

3、设⎪⎪⎪⎭⎫ ⎝⎛-----=2531312311112t t A ,且2)(=A R ,则=t 。

4、若n 阶方阵A 有特征值λ,则E a A a A a A A f k k k 0111)(++++=-- 必有特征值 .5、若二次型yz xz axy z y x f 2223222+++++=经正交变换化为22214y y f +=,则=a 。

二、选择题(本题15分,每题3分)1、设A 是n 阶方阵,则0||=A 的必要条件是( )。

(A )A 中两行(列)元素对应成比例; (B)A 中有一行元素全为零; (C)任一行元素为其余行的线性组合; (D )必有一行元素为其余行的线性组合。

2、设A 是n 阶对称阵,B 是n 阶反对称阵,则下列矩阵中反对称矩阵是( ) (A )BAB ; (B )ABA ; (C )ABAB ; (D )BABA .3、设向量组()()(),,,,,,,,,TTTt 31321111321===ααα当=t ( )时,向量组321ααα,,线性相关。

(A)5(B)4(C )3(D )24、设A 为34⨯矩阵,321,,ηηη是非齐次线性方程组b Ax =的3个线性无关的解向量,21,k k 为任意常数,则非齐次线性方程组b Ax =的通解为( )。

(A ))(212132ηηηη-++k ; (B))(212132ηηηη-+-k ; (C ))()(213212132ηηηηηη-+-++k k ; (D ))()(213212132ηηηηηη-+-+-k k 。

中南大学线性代数

中南大学线性代数
n 2 n
13) A,B均为 阶矩阵,则必有 均为n阶矩阵 均为 阶矩阵,

A) |A+B|=|A|+|B|. C) |AB|=|BA|.
B) AB=BA. D) (A+B)-1=A-1+B-1.
15)若α1 , α 2 , α 3 , β1 , β 2都是四维列向量,且四阶行列式 | α1 , α 2 , α 3 , β1 |= m, 1 , α 2 , β 2 , α 3 |= n, 则四阶行列式 |α | α 3 , α 2 , α1(β1 + β 2)= , |
7) n阶矩阵 的各行元素之和均为 ,且A的秩为 阶矩阵A的各行元素之和均为 的秩为n-1, 阶矩阵 的各行元素之和均为0, 的秩为 则线性方阵组AX=0的通解为 的通解为__________ 则线性方阵组 的通解为 A的秩为 的秩为n-1,所以 所以AX=0的基础解系只含一个非零向 的秩为 所以 的基础解系只含一个非零向 由于n阶矩阵 的各行元素之和均为0, 阶矩阵A的各行元素之和均为 量,由于 阶矩阵 的各行元素之和均为 ,所以 (1,1,…,1)T是该齐次方程组的一个非零解向量,故通 是该齐次方程组的一个非零解向量, 解为k 解为 (1,1,…,1)T,k≠0
1 2 s
B ) α1 ,α 2 ,Lα s中任意两个向量的分量成比例 ; s -1个向量线性表示;
D) α1 ,α 2 ,Lα s中有一部分向量线性无关。
21)α1 ,α 2 ,Lα m均为n维向量,下列结论正确的是 B √)若对任一组不全为0的数k , k ,L k ,都有
1 2 m
A)若k1α1 + k2α 2 + L + kmα m =0,则α1 ,α 2 ,Lα m线性相关; k1α1 + k2α 2 + L + kmα m ≠ 0,则α1 ,α 2 ,Lα m线性无关 ;

中南大学09线性代数考试试卷

中南大学09线性代数考试试卷

***********************************************************************************************************************************************一、填空题(本题15分,每题3分)1、91; 2、432122ααααβ-++-=; 3、2; 4、1; 5、⎪⎪⎪⎭⎫ ⎝⎛=2000200022E 。

二、选择题(本题15分,每题3分)1、D ;2、C ;3、B ;4、A ;5、A. 三、计算行列式(本题10分)nn a a a a 000100000001000121-,其中.,,2,1,0n i a i =≠。

解:按第一行展开,原式=)1(112--n n a a a a 。

四、(本题15分)讨论b a ,取何值时,线性方程组⎪⎩⎪⎨⎧-=+-=-+-=+-.106,132,2321321321bx x x x x x a x x x无解,有惟一解或有无穷多个解?并在有无穷多个解时,写出通解。

解:⎪⎪⎪⎭⎫ ⎝⎛--+---→⎪⎪⎪⎭⎫ ⎝⎛---+---→⎪⎪⎪⎭⎫ ⎝⎛-----=9370012550211102501255021110611132211a b a a a b a a b a A(1) 当7≠b 时,方程组有惟一解;***************************************************************************** (2)当37≠=a b ,时,方程组无解;(3)当37==a b ,时,方程组有无穷多个解,其通解为:⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-11107851k 。

五、证明题(本题10分) 设r ααα,,,21 )2(≥r 是数域P 上的线性空间V 中线性无关的向量组,任取P k k k r ∈-121,, ,求证:,111r k ααβ+=,222r k ααβ+=, r r r r r r k αβααβ=+=---,111线性无关。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题(每题4分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为:A. 1/2B. 1/4C. 2D. 4答案:B2. 向量α=(1,2,3)和向量β=(4,5,6),则向量α和向量β的点积为:A. 32B. 22C. 14D. 0答案:A3. 设A为3×3矩阵,且A的秩为2,则A的行向量线性相关,下列说法正确的是:A. 正确B. 错误答案:A4. 若A为n阶方阵,且A^2=0,则A的秩为:A. nB. n-1C. 0D. 不确定答案:C5. 设A为3阶方阵,且A的特征值为1,2,3,则矩阵A的迹为:A. 6B. 1C. 2D. 3答案:A二、填空题(每题5分,共30分)1. 设矩阵A=\[\begin{bmatrix}1 & 2 \\ 3 & 4\end{bmatrix}\],则矩阵A的转置为\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]。

答案:\[\begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}\]2. 设向量α=(2,3),向量β=(4,6),则向量α和向量β共线,其比例系数为2。

答案:23. 若矩阵A=\[\begin{bmatrix}1 & 1 \\ 2 & 2\end{bmatrix}\],则矩阵A的行列式为2。

答案:24. 设矩阵B=\[\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}\],则矩阵B的逆矩阵为\[\begin{bmatrix}0 & -1 \\ 1 &0\end{bmatrix}\]。

答案:\[\begin{bmatrix}0 & -1 \\ 1 & 0\end{bmatrix}\]5. 设矩阵C=\[\begin{bmatrix}1 & 0 \\ 0 & 2\end{bmatrix}\],则矩阵C的特征值为1和2。

大一线性代数考试题库及答案解析

大一线性代数考试题库及答案解析

大一线性代数考试题库及答案解析一、选择题1. 设矩阵A为3阶方阵,且|A|=2,则矩阵A的逆矩阵的行列式为多少?A. 1/2B. 2C. 1/4D. 1答案:C解析:根据行列式的性质,一个矩阵的逆矩阵的行列式等于原矩阵行列式的倒数。

因此,|A^(-1)| = 1/|A| = 1/2。

2. 向量α=(1,2,3)和β=(-1,0,1)是否共线?A. 是B. 否答案:A解析:若向量α和β共线,则存在一个实数k使得β=kα。

将向量α和β的对应分量相除,得到-1/1=0/2=1/3,显然不存在这样的实数k,因此向量α和β不共线。

二、填空题3. 设矩阵B是一个3×3的矩阵,且B的秩为2,则矩阵B的零空间的维数为____。

答案:1解析:矩阵B的零空间的维数等于矩阵的列数减去矩阵的秩,即3-2=1。

4. 若线性方程组Ax=b有唯一解,则系数矩阵A的秩等于____。

答案:n解析:若线性方程组Ax=b有唯一解,则系数矩阵A的秩等于未知数的个数n。

三、解答题5. 给定向量组α1=(1,2,3),α2=(4,5,6),α3=(7,8,9),求证向量组α1,α2,α3线性相关。

答案:证明:首先计算向量组α1,α2,α3的行列式:|α1 α2 α3| = |1 2 3||4 5 6||7 8 9| = 0由于行列式为0,根据行列式的性质,向量组α1,α2,α3线性相关。

6. 设矩阵C为3×3的矩阵,且C的行列式为0,求证矩阵C不可逆。

答案:证明:根据矩阵的逆矩阵的定义,若矩阵C可逆,则存在矩阵C^(-1)使得CC^(-1)=I。

但是,由于|C|=0,根据行列式的性质,不存在矩阵C^(-1)使得CC^(-1)=I,因此矩阵C不可逆。

四、计算题7. 计算矩阵D=\begin{bmatrix}1 & 2 & 3\\4 & 5 & 6\\7 & 8 &9\end{bmatrix}的行列式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考试试卷1闭卷考试时间:100分钟一、填空题(本题15分,每小题3分)1、设()4321,,,A A A A A =为四阶方阵,其中)4,3,2,1(=i A i 为A 的第i 个列向量, 令()14433221,,,A A A A A A A A B ----=,则=B 。

2、设A 为三阶方阵,*A 为A 的伴随矩阵,且3||=A ,则=-*|)(|1A 。

3、设⎪⎪⎪⎭⎫ ⎝⎛-----=2531312311112t t A ,且2)(=A R ,则=t 。

4、若n 阶方阵A 有特征值λ,则E a A a A a A A f k k k 0111)(++++=-- 必有特征值 。

5、若二次型yz xz axy z y x f 2223222+++++=经正交变换化为22214y y f +=,则=a 。

二、选择题(本题15分,每题3分)1、设A 是n 阶方阵,则0||=A 的必要条件是( )。

(A )A 中两行(列)元素对应成比例; (B )A 中有一行元素全为零;(C )任一行元素为其余行的线性组合; (D )必有一行元素为其余行的线性组合。

2、设A 是n 阶对称阵,B 是n 阶反对称阵,则下列矩阵中反对称矩阵是( ) (A )BAB ; (B )ABA ; (C )ABAB ; (D )BABA 。

3、设向量组()()(),,,,,,,,,TTTt 31321111321===ααα当=t ( )时,向量组321ααα,,线性相关。

(A )5(B )4(C )3(D )24、设A 为34⨯矩阵,321,,ηηη是非齐次线性方程组b Ax =的3个线性无关的解向量,21,k k 为任意常数,则非齐次线性方程组b Ax =的通解为( )。

(A ))(212132ηηηη-++k ; (B ))(212132ηηηη-+-k ; (C ))()(213212132ηηηηηη-+-++k k ; (D ))()(213212132ηηηηηη-+-+-k k 。

5、设方阵⎪⎪⎪⎭⎫ ⎝⎛=20001011k k A 是正定矩阵,则必有( )。

(A )0>k ; (B )1>k ; (C )2>k ; (D )1->k 。

三、(本题8分) 计算行列式xa x a x a a n n 0100010001121-----,其中1,,2,1,0,0-=≠n i a i 。

四、(本题12分) 设X A E AX +=+2,且⎪⎪⎪⎭⎫⎝⎛=101020101A ,求矩阵X 及()*-1X ,其中()*-1X 为1-X 的伴随矩阵,E 为单位矩阵。

五、(本题14分) 设向量组()()()TTT531110101321,,,,,,,,===ααα不能由向量组 (),1111T ,,=β(),3,2,12T =β()Tk ,4,33=β线性表示。

(1)求向量组321ααα,,的一个极大无关组; (2)求k 的值; (3)将向量1β用321ααα,,线性表示。

六、(本题14分) 设齐次线性方程组(Ⅰ)为⎩⎨⎧=-=+004221x x x x ,已知齐次线性方程组(Ⅱ)的通解为()()TTk k 1,2,2,10,1,1,021-+。

(1)求方程组(Ⅰ)的基础解系;(2)问方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有非零公共解,若没有,则说明理由。

七、(本题14分) 设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=110010000010010x A ,(1)已知A 的一个特征值为,2 求x ; (2)求方阵P ,使()()AP AP T为对角阵。

八、(本题8分) 试证明:n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=1112 b b b b b b b b b a A 的最大特征值为])1(1[2b n a -+,其中10<<b 。

参考答案一、填空题(本题15分,每题3分) 1、0; 2、91; 3、4; 4、)(λf ; 5、1。

二、选择题(本题15分,每题3分) 1、D ; 2、B ; 3、A ; 4、C ; 5、B. 三、(本题8分) 解:从第一行开始,每行乘x 后逐次往下一行加,再按最后一行展开得:原式=122110----++++n n n n a x a x a x a 。

四、(本题12分)解:由X A E AX +=+2,得:E A X E A -=-2)(,)(,010********E A E A -∴≠-==- 可逆,故⎪⎪⎪⎭⎫⎝⎛=+=201030102E A X ;由于09≠=X ,()⎪⎪⎪⎭⎫⎝⎛===∴---*-201030102911)(1111X X XX X 。

五、(本题14分) 解:(1) 令),,(321ααα=A ,3)(,01=∴≠=A R A ,则321,,ααα线性无关, 故321,,ααα是向量组321ααα,,的一个极大无关组;(2)由于4个3维向量 )3,2,1(321=i i αβββ,,,线性相关,若321βββ,,线性无关,则i α可由321βββ,,线性表示,与题设矛盾;于是321βββ,,线性相关,从而5,0531421311||321=∴=-==k k kβββ,,。

(3)令⎪⎪⎪⎭⎫ ⎝⎛-→→⎪⎪⎪⎭⎫ ⎝⎛==110040102001151113101101),,,(1321 βαααB ,321142αααβ-+=∴。

六、(本题14分)解:(1) ⎪⎪⎭⎫⎝⎛-→⎪⎪⎭⎫ ⎝⎛-=1010100110100011A ,所以方程组(Ⅰ)的基础解系为:()()TT1,0,1,1,010021-==ηη,,,; (2)设()()2413211,2,2,10,1,1,0ηηk k k k TT+=-+,即⎪⎪⎪⎪⎪⎭⎫⎝⎛--→→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----00001100101010011010012110211010,010100121102110104321 k k k k ,故上述方程组的解为T k )1,1,1,1(-,于是方程组(Ⅰ)和(Ⅱ)所有非零公共解为:)0()1,1,1,1(为任意常数≠-k k T 。

七、(本题14分)解:(1)()()0)1(1111111110000100122=---=----⋅--=------=-x xxA E λλλλλλλλλλλ,将2=λ代人上式,得1=x ;(2)由(1)得⎪⎪⎪⎪⎪⎭⎫⎝⎛=1100110000010010A ,显然A 为实对称阵,而⎪⎪⎪⎪⎪⎭⎫⎝⎛=2200220000100001A A T令⎪⎪⎭⎫ ⎝⎛==212A OO A A A A T ,显然2A A A T 和也是实对称阵,1A 是单位阵, 由()0422222=-=----=-λλλλλA E ,得2A 的特征值4021==λλ,,2A 属于1λ对应的特征向量为T )11(1-=,α,单位化:T)2222(1-=,η, 2A 属于2λ对应的特征向量为T )11(2,=α, 单位化:T )2222(2,=η, 取⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=22220022220000100001P ,则有()()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==4000000000100001)(P A A P AP AP TT T 。

八、(本题8分)证明:由()())1(22122222222222222=-+-+-=------------=--b a n aba a ab a ba ba b a b a a b a b a b a b a a A E n λλλλλλ得A 的特征值)1(],)1(1[23221b a b n a n -====-+=λλλλ ,n a b λλλλ===>∴><< 3212,0,10,故A 的最大特征值是])1(1[21b n a -+=λ。

考试试卷2闭卷考试时间:100分钟一、填空题(本题15分,每小题3分)1、若n 阶行列式零元素的个数超过n (n-1)个,则行列式为 。

2、若A 为4阶矩阵,且A =21,则*12)3(A A --= 。

3、设A=⎪⎪⎪⎪⎪⎭⎫⎝⎛k k k k111111111111,且R (A )=3,则k= 。

4、已知向量,α=(1,2,3),β=(1,31,21,),设A=βαT ,则A n= 。

5、设A 为n 阶方阵,A *≠A ,0为A 的伴随矩阵,E 为n 阶单位阵,若A 有特征值E A +*2,)则(λ必有特征值 。

二、选择题(本题15分,每题3分)1、设A ,B,C 为n 阶方阵,E 为n 阶单位阵,且ABC=E ,则下列各式中( )不成立。

(A ) CAB=E (B) E C A B =---111(C) BCA=E (D)E BA C =---1112、设A,B 均为n 阶非零矩阵,且AB=O ,则它们的秩满足( )。

(A )必有一个等于零 (B )都小于n (C) 一个小于n ,一个等于n (D )都等于n3、下列命题中正确的是( )(A )在线性相关的向量组中,去掉若干个向量后所得向量组仍然线性相关 (B )在线性无关的向量组中,去掉每个向量的最后若干分量后仍然线性无关 (C )任何n+k 个n 维向量(k 1≥)必然线性相关(D )若只有m k k k ,,21全为零时,等式01111=+++m m m m k k k k ββαα 才成立,且m ααα 21,线性无关,则m βββ 21,线性无关4、设T )1,2,1(1-=α,,)1,1,1(2T-=α则3α=( )时,有321,,ααα为3R 的基(A )T )2,1,2( (B )T )1,0,1( (C )T )0,1,0( (D )T)1,0,0(5、设二次型的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=k A 20211012,且此二次型的正惯性指数为3,则( )(A ) k>8 ( B) k>7 (C) k>6 (D) k>5三、(10分)计算n 阶行列式111111111111 ----=n D ,并求该行列式展开后的正项总数。

四、(10分) 设E AX +=X A +2,且⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,求矩阵*-)(1X X 及,其中11)(-*-X X 为的伴随矩阵,E 为单位矩阵。

五、(本题14分) 设有向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=02311α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=314072α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=10123α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=26154α, (1)求该向量组的秩;(2)求该向量组的一个最大无关组,并把其余向量分别用求得的最大无关组线性表出。

相关文档
最新文档