复变函数总结汇总

合集下载

复变函数重要知识点总结

复变函数重要知识点总结

复变函数重要知识点总结复变函数是数学中一个非常重要的分支,它在数学、物理、工程等领域都有着广泛的应用。

下面将对复变函数的一些重要知识点进行总结。

一、复数的基本概念复数是由实数和虚数组成的数,通常表示为$z = x + yi$,其中$x$ 称为实部,$y$ 称为虚部,$i$ 是虚数单位,满足$i^2 =-1$。

复数的模长定义为$|z| =\sqrt{x^2 + y^2}$,表示复数在复平面上的距离。

复数的辐角定义为$\theta =\arctan\frac{y}{x}$,表示复数与实轴正方向的夹角。

二、复变函数的定义复变函数是定义在复数域上的函数,通常表示为$w = f(z)$,其中$z$ 是自变量,$w$ 是因变量。

复变函数的导数定义与实函数类似,但需要满足柯西黎曼方程:$\frac{\partial u}{\partial x} =\frac{\partial v}{\partial y}$,$\frac{\partial u}{\partial y} =\frac{\partial v}{\partial x}$,其中$f(z) = u(x,y) + iv(x,y)$。

三、解析函数如果一个复变函数在某点及其邻域内可导,就称该点为函数的解析点。

如果函数在一个区域内处处解析,就称该函数为解析函数。

解析函数具有很多良好的性质,如柯西定理、柯西积分公式等。

四、复变函数的积分复变函数的积分定义为沿着一条曲线对函数进行积分。

柯西定理指出,如果函数在一个单连通区域内解析,那么沿着该区域内任何一条闭合曲线的积分都为零。

柯西积分公式则给出了函数在某点的值与沿着该点周围闭合曲线的积分之间的关系。

五、级数复级数包括幂级数和 Laurent 级数。

幂级数是形如$\sum_{n=0}^{\infty} a_n (z z_0)^n$ 的级数。

收敛半径可以通过比值法或根值法求得。

Laurent 级数是在圆环域内展开的级数,包括正则部分和主要部分。

(完整版)复变函数知识点总结

(完整版)复变函数知识点总结

(完整版)复变函数知识点总结复变函数知识点总结1. 复数与复变函数- 复数是实数和虚数的组合,可表示为a + bi的形式,其中a和b分别是实部和虚部。

- 复变函数是以复数为自变量和因变量的函数,例如f(z)。

2. 复变函数的运算规则- 复变函数的加法和减法:对应实部和虚部进行分别运算。

- 复变函数的乘法:使用分配律进行计算。

- 复变函数的除法:使用共轭形式并应用分配律和除法规则。

3. 复变函数的解析表示- 复变函数可以用级数形式表示,即幂级数或洛朗级数。

- 幂级数表示为f(z) = ∑(c_n * (z - z_0)^n),其中c_n是幂级数的系数,z_0是展开点。

- 洛朗级数表示为f(z) = ∑(c_n * (z - z_0)^n) + ∑(d_n * (z -z_0)^(-n))。

4. 复变函数的性质- 全纯性:如果一个函数在某个区域内都是解析的,则称其为全纯函数。

- 解析性:如果一个函数在某一点附近有解析表示,则称其为解析函数。

- 保角性:保持角度的变化,即函数对角度的保持。

- 映射性:函数之间的对应关系,实现从一个集合到另一个集合的映射。

5. 复变函数的应用- 物理学:用于描述电磁场、电路等问题。

- 工程学:用于信号处理、图像处理等领域。

- 统计学:用于数据分析、模型拟合等方面。

6. 复变函数的计算方法- 积分计算:使用路径积分或者柯西公式进行计算。

- 极限计算:使用洛朗级数展开或级数加和求解极限。

- 零点计算:使用代数方法或数值解法求解函数的零点。

以上是复变函数的知识点总结,希望对您有所帮助!。

复变函数总结完整版

复变函数总结完整版

第一章复数1 i 2=-1 i = ∙, -1 欧拉公式z=x+iy实部Re Z 虚部Im Z2运算① z1≡z2^ Rez1=Rez2Imz1=Imz2②(z1±z2)=Re(z1±z2)+lm(z1±z2)= (Rez1±Rez2)+(lm z1+ Im Z2)乙Z2③=χ1 iy1 χ2 iy2X1X2iχ1y2iχ2y1- y1y2=X1X2 -y』2 i χ1y2 χ2y1④z1 _ z1z2 一χ1 i y1 χ2 -iy2 _ χ1χ2 y1y2 i y1χ2 -χ1y22 2 2 2Z2 Z2Z2 χ2 iy2 χ2 -iy2 χ2 y2 χ2 y2⑤z = X - iy 共轭复数z z =(x+iy I x — iy )=χ2+ y2共轭技巧运算律P1页3代数,几何表示^X iy Z与平面点χ,y-------- 对应,与向量--- 对应辐角当z≠0时,向量Z和X轴正向之间的夹角θ ,记作θ =Arg z= V0■ 2k二k= ± 1 ± 2± 3…把位于-∏v二0≤∏的厲叫做Arg Z辐角主值记作^0= argz04如何寻找arg Zπ例:z=1-i4πz=i2πz=1+i4z=-1 π5 极坐标: X = r CoSr , y = r sin 二Z=Xiy = r COSr isin利用欧拉公式e i 71 =COS71 i Sin71例2 f Z = C 时有(C )=0可得到z=re°Z z2=r1e i J r2e i72=r1r2e iτe i72= r1r2e i 71'y^ 6高次幂及n次方n n in 「nZ Z Z Z ............ z=re r COS 1 Sin nv凡是满足方程国=Z的ω值称为Z的n次方根,记作CO =^Z☆当丄二f Z o时,连续例1 证明f Z =Z在每一点都连续证:f(Z f(Z o )= Z - Z o = Z - Z o τ 0ZT Z o 所以f z = Z在每一点都连续3导数f Z o Jm fZ一f zoz-⅛z°Z-Z o,2n第二章解析函数1极限2函数极限①复变函数对于任一Z- D都有W FP与其对应川=f Z注:与实际情况相比,定义域,值域变化例f z = zZ—Z o 称f Z当Z-:Z o时以A为极限df(z lZ=Zo1例2 f Z = C 时有(C )=0根据C-R 条件可得2x =0,2y = 所以该函数在Z =O 处可导4解析若f z 在Z 00= X = 0,^0的一个邻域内都可导,此时称用C-R 条件必须明确u,v 四则运算 f 一 g =「- g rkf =kf f g = f g f gf Z 在Z 0处解析。

复变函数与积分变换公式汇总

复变函数与积分变换公式汇总

复变函数与积分变换公式汇总一、复变函数复变函数是将复数域上的变量映射到复数域上的函数。

形式上,复变函数可以表示为f(z) = u(x,y) + iv(x,y),其中z = x + iy是自变量,u(x,y)和v(x,y)是实部和虚部函数。

复变函数的性质包括解析性、全纯性、调和以及实部虚部的关系等。

1.解析函数性质解析函数是复变函数的重要性质之一,它表示函数在其定义域内处处可导,并且其导数连续。

如果f(z)是定义在区域D上的函数,满足Cauchy-Riemann条件,则f(z)是该区域上的解析函数。

Cauchy-Riemann条件可以表示为:∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x2.全纯函数性质全纯函数是解析函数的特殊情形,它在整个复平面上都有定义,并且是解析的。

全纯函数还有许多重要的性质,如Liouville定理、最大模原理等。

3.调和函数性质调和函数是复平面上的实函数,满足拉普拉斯方程(△u=∂²u/∂x²+∂²u/∂y²=0)。

调和函数在物理学中有广泛的应用,例如描述电势、热力学等现象。

4.实部虚部关系对于任意一个复变函数f(z),其实部u(x,y)和虚部v(x,y)之间有一些重要的关系。

例如,如果f(z)是一个解析函数,则它的实部和虚部函数满足调和方程,并且u(x,y)和v(x,y)是共轭调和函数。

二、积分变换公式积分变换是对函数进行积分操作的数学工具,常用于求解微分方程、信号处理等问题。

常见的积分变换公式包括拉普拉斯变换和傅里叶变换等。

1.拉普拉斯变换拉普拉斯变换是一种广泛应用于信号分析和控制系统的积分变换方法。

定义域为半无穷区间的函数f(t)在复平面上进行拉普拉斯变换后得到一个复变函数F(s),满足积分方程:F(s) = L[f(t)] = ∫[0,∞] f(t)e^(-st) dt2.拉普拉斯变换的性质拉普拉斯变换具有一些重要的性质,如线性性、位移性质、尺度变换、微分性质等。

复变函数总结

复变函数总结
u v , u v . x y y x
若函数 f (z) u( x, y) iv( x, y) 在点 z x yi 处 可导,则其导数公式:
定理2 函数 f (z) u( x, y) iv( x, y) 在其定义 域 D内解析的充要条件是: u( x, y)与 v( x, y) 在 D内可微, 并且满足柯西-黎曼方程.

w1 z
1 x iy
x iy x2 y2
1 ( x iy), 9
于是 w u iv 1 x 1 iy u 1 x, v 1 y
99
9
9
u2 v2 1 ( x2 y2) 1 表示 w 平面上的圆.
81
9
26
(2) x 2. 解 因为 z x iy 2 iy
1 (1 2
3i ),
z2
sin
3
i
cos
, 3

z1
z2

z1 z2
.

因为
z1
cos
3
i sin
3
,
z2
cos
6
i
sin
6
,
所以
z1
z2
cos
3
6
i sin
3
6
i,
z1 z2
cos
3
6
i
sin
3
6
3 1i. 22
19
例 计算 3 1 i 的值.
解 因为 n 1 所以 1 2 n1 1 n 0. 1
8


z1
5 5i,
z2
3 4i,
求 z1 z2

z1 z2

复变函数初步例题和知识点总结

复变函数初步例题和知识点总结

复变函数初步例题和知识点总结一、复变函数的基本概念复变函数是指定义在复数域上的函数。

一个复变函数通常可以表示为$w = f(z)$,其中$z = x + iy$ 是复数,$x$ 和$y$ 分别是实部和虚部,$w = u + iv$ 也是复数,$u$ 和$v$ 分别是其实部和虚部。

例如,函数$f(z) = z^2$ 就是一个简单的复变函数。

将$z = x +iy$ 代入,可得:\\begin{align}f(z)&=(x + iy)^2\\&=x^2 y^2 + 2ixy\end{align}\从而得到实部$u = x^2 y^2$,虚部$v = 2xy$。

二、复变函数的极限与连续(一)极限如果对于任意给定的正数$\epsilon$,都存在正数$\delta$,使得当$0 <|z z_0| <\delta$ 时,有$|f(z) A| <\epsilon$,则称$A$ 为函数$f(z)$当$z$ 趋向于$z_0$ 时的极限,记作$\lim_{z \to z_0} f(z) = A$。

例如,考虑函数$f(z) =\frac{z}{|z|}$,当$z$ 沿着实轴正方向趋近于$0$ 时,极限为$1$;当$z$ 沿着实轴负方向趋近于$0$ 时,极限为$-1$。

由于这两个极限不相等,所以该函数在$z = 0$ 处极限不存在。

(二)连续如果函数$f(z)$在点$z_0$ 处的极限存在且等于$f(z_0)$,则称函数$f(z)$在点$z_0$ 处连续。

例如,函数$f(z) = z$ 在整个复数域上都是连续的。

三、复变函数的导数复变函数的导数定义与实函数类似,但需要满足柯西黎曼方程。

设函数$f(z) = u(x, y) + iv(x, y)$,则其导数为:\f'(z) =\lim_{\Delta z \to 0} \frac{f(z +\Delta z) f(z)}{\Delta z}\柯西黎曼方程为:\\frac{\partial u}{\partial x} =\frac{\partial v}{\partial y},\quad \frac{\partial u}{\partial y} =\frac{\partial v}{\partial x}\例如,函数$f(z) = z^2 =(x + iy)^2 = x^2 y^2 + 2ixy$,则$u = x^2 y^2$,$v = 2xy$。

复变函数公式及常用方法总结

复变函数公式及常用方法总结

复变函数公式及常用方法总结复变函数是指在复平面上定义域为复数集的函数。

复变函数与实变函数不同,其定义域和值域都是复数集合,因此需要引入复数的运算和性质来研究这类函数。

复变函数在数学以及物理、工程学等领域有广泛的应用,如电路分析、信号处理、流体力学等。

1.复变函数的定义与性质:复变函数可以用以下形式表示:f(z) = u(x, y) + iv(x, y),其中z = x + iy;u(x, y)和v(x, y)为实变量x和y的实函数。

复变函数的一些性质如下:(1)复变函数可以进行加减、乘法和除法运算;(2)复变函数的连续性:若f(z)在特定点z0处连续,则其实部和虚部在该点均连续;(3)复变函数的解析性:若f(z)在特定点z0处可导,则其在该点解析;若f(z)在定义域内每一点都解析,则称其为全纯函数;(4)复变函数的实部和虚部都满足拉普拉斯方程式:∂^2u/∂x^2+∂^2u/∂y^2=0和∂^2v/∂x^2+∂^2v/∂y^2=0。

2.常用的复变函数:(1)幂函数:f(z)=z^n,其中n为整数;(2) 指数函数:f(z) = e^z = e^(x+iy) = e^x * e^(iy) = e^x * (cosy + isiny);(3) 对数函数:f(z) = ln(z);(4) 三角函数:正弦函数f(z) = sin(z),余弦函数f(z) = cos(z),正切函数f(z) = tan(z)等;(5) 双曲函数:双曲正弦函数f(z) = sinh(z),双曲余弦函数f(z)= cosh(z),双曲正切函数f(z) = tanh(z)等。

3.复变函数的常用方法:(1)极坐标表示法:将复数z表示为模长r和辐角θ的形式:z=r*e^(iθ)。

在极坐标下,复变函数的运算更加方便,例如可以用欧拉公式将指数函数表示为e^(iθ)的形式。

(2) 复变函数的导数:复变函数的导数可以用极限的形式表示,即f'(z) = lim(h→0) [f(z+h) - f(z)] / h。

复变函数知识点总结

复变函数知识点总结

复变函数知识点总结复变函数是数学中重要的概念,它在分析学、微分几何、数学物理等领域都有着广泛的应用。

本文将对复变函数的基本概念、性质和常见定理进行总结,希望能够帮助读者更好地理解和掌握复变函数的相关知识。

1. 复数与复变函数。

复数是由实部和虚部组成的数,通常表示为z=x+iy,其中x为实部,y为虚部,i为虚数单位,满足i^2=-1。

复数可以用平面上的点来表示,称为复平面,实部x对应横坐标,虚部y对应纵坐标。

复变函数是定义在复平面上的函数,通常表示为f(z),其中z为复数变量。

2. 复变函数的导数与解析函数。

与实变函数类似,复变函数也有导数的概念,称为复导数。

如果一个函数在某点处可导,并且在该点的邻域内处处可导,那么称该函数在该邻域内解析。

解析函数具有很多良好的性质,比如在其定义域内可以展开成幂级数。

3. 共轭与调和函数。

对于复数z=x+iy,其共轭复数定义为z的实部不变,虚部取相反数,记为z=x-iy。

对于复变函数f(z),如果它满足柯西-黎曼方程,即满足一阶偏导数存在且连续,并且满足偏导数的连续性条件,那么称f(z)为调和函数。

4. 柯西-黎曼方程与全纯函数。

柯西-黎曼方程是复变函数理论中的重要定理,它建立了解析函数与调和函数之间的联系。

柯西-黎曼方程指出,如果复变函数f(z)=u(x,y)+iv(x,y)在某点处可导,那么它满足柯西-黎曼方程,即u和v满足一阶偏导数的连续性条件。

满足柯西-黎曼方程的函数称为全纯函数,也称为解析函数。

5. 柯西积分定理与留数定理。

柯西积分定理是复变函数理论中的重要定理之一,它指出如果f(z)在闭合区域内解析,并且沿着闭合区域的边界进行积分,那么积分结果为0。

留数定理是计算闭合曲线积分的重要方法,它将积分结果与函数在奇点处的留数联系起来,从而简化了积分的计算。

6. 应用领域。

复变函数在物理学、工程学、经济学等领域都有着重要的应用,比如在电路分析中的传输线理论、振动理论中的阻尼比计算、流体力学中的势流与涡流等方面都需要用到复变函数的知识。

复变函数总结

复变函数总结

复变函数总结复变函数,又称为复数函数,是数学中重要的一个分支。

它在物理、工程、经济等领域具有广泛的应用。

复变函数的研究主要涉及复数、复平面、复数域的性质,以及复数函数的导数、积分等基本理论。

在本文中,我将对复变函数的基本概念、性质和常见应用进行总结。

一、复数的基本概念复数是由实数和虚数构成的数,通常表示为a+bi,其中a为实部,b为虚部,而i为虚数单位,满足i²=-1。

复数可以表示平面上的一个点,实部对应横坐标,虚部对应纵坐标。

复数的加法、减法、乘法和除法规则与实数的运算规则相似。

二、复平面与复函数复平面是由复数构成的平面,以复数的实部和虚部作为坐标轴。

复函数是定义在复数域上的函数,可以将复数作为自变量和因变量。

复函数在复平面上的图像通常是曲线、点或者区域。

三、复变函数的性质1. 解析性:复变函数在一个区域内解析,意味着它在该区域内具有连续性和光滑性,并且在该区域内无奇点。

2. 洛朗级数展开:复变函数可以用洛朗级数展开,即可以由一个主要部分和无穷个幂级数按次幂递减的项组成。

3. 共轭函数:对于复变函数f(z),其共轭函数为f*(z),实部相同,虚部取相反数。

4. 解析函数的判别:柯西-黎曼方程是判断一个函数在某一点是否解析的重要工具,同时也是复变函数的基本性质之一。

5. 调和函数:调和函数是一类特殊的复变函数,满足拉普拉斯方程。

四、复变函数的应用1. 电路分析:复变函数可以用来分析交流电路中的电流和电压,特别是在包含电感和电容的电路中,通过构造复变函数的拉普拉斯变换可以简化问题。

2. 流体力学:复变函数在描述流体的速度场、压力场和流线的分析中具有重要作用,特别是在无旋场和无散场的情况下。

3. 光学:复变函数可用于描述光波的传播和干涉现象,以及计算透镜的成像和衍射效应。

4. 统计学:复数也可应用于统计学中,如复数正态分布在处理随机变量时具有一定的优势。

5. 量子力学:复变函数是量子力学中运动状态和波函数的基础,通过复变函数可以描述粒子的行为以及能量的量子化。

复变函数-总结

复变函数-总结
(sec z )′ = tan z sec z
18
例2 问 f (z) = x +2yi 是否可导?
f (z +∆z) − f (z) 解:这里 lim ∆z→0 ∆z ( x + ∆x) + 2( y + ∆y )i − x − 2 yi ∆x + 2∆yi = lim = lim ∆z → 0 ∆x + ∆yi ∆z → 0 ∆x + ∆yi
∂u ∂v ∂v ∂u = , =− ∂x ∂y ∂x ∂y
解析 ( 可导) ⇔ u , v 可微且满足C-R方程
若 推论 : u, v在( x, y )处一阶偏导数连续且满足C − R
方程,则f ( z ) = u + iv在 z = x + iy 处可导.
22
§2.2 解析函数与调和函数的关系
y
由 C − R 方程知:
u x = v y = − 2 y u y = − v x = −2 x
u( x 1 y ) =
0
( x, y )
(x,0)
x

( x, y)
∆x + 2∆yi ∆x = lim =1. 取∆z = ∆x → 0 , lim ∆z→0 ∆ +∆ x yi ∆z→0 ∆x ∆x + 2∆yi 2∆y 取∆z = i∆y → 0, lim = lim = 2. ∆z→0 ∆ +∆ x yi ∆z→0 ∆y 所以 f (z) = x + 2yi 的导数不存在.
设 f (z) = u(x,y) + iv(x,y) , A = u0+iv0 , z0 = x0+iy0 , 则
lim u(x, y) = u0 x→x0 y→y0 lim f (z) = A ⇔ . z→z0 lim x→x0 v(x, y) = v0 y→y0 运算性质:

《复变函数》总结

《复变函数》总结

复变小结1.幅角(不赞成死记,学会分析).2argtg 20,0,0,0,arctg 0,0,20,arctg arg πππππ<<-⎪⎪⎪⎩⎪⎪⎪⎨⎧=<≠<±≠=±>=x y y x y x x y y x x x y z 其中 -∏<arg z ≤∏Arg(z1z2)=Argz1+Argz2 Arg(z1/z2)=Argz1-Argz2 2. 求根:由z=θi e =r(cos θ+isin θ)得z n =e in θ=r n (cosn θ+isinn θ) 当r=1时,)sin (cos θθi n +=)sin (cos θθn i n + (*1) 当z w n =w= (*2) z arg =θ 例: 可直接利用(*1)式求解可令z=1+i,利用(*2)式求解 3.复函数:a. 一般情况下:w=f(z),直接将z=x+iy 代换求解但遇到特殊情况时:如课本P12例1.13(3)可考虑: z=θi e =r(cos θ+isin θ)代换。

()222cos sin 0,1,2,,1k k n n k i n n n n z rer i k n θπθπθπ+++==+=-L 求方根公式(牢记!):其中。

10(sin cos )55i ππ+41i+b.对于P12例题 1.11可理解为高中所学的平面上三点(A,B,C )共线所满足的公式:(向量) OC=tOA+(1-t )OB=OB+tBAc.对于P15例题1.14中可直接转换成X 和Y 的表达式后判断正负号来确定其图像。

d.判断函数f(z)在区域D 内是否连续可借助课本P17定义1.84.解析函数,指数,对数,幂、三角双曲函数的定义及表达式,能熟练计算,能熟练解初等函数方程a.在某个区域内可导与解析是等价的。

但在某一点解析一定可导,可导不一定解析。

b.柯西——黎曼条件,自己牢记:(注意那个加负那个不加)c.指数函数:复数转换成三角的定义。

复变知识点 总结

复变知识点 总结

复变知识点总结1. 复变函数的定义复变函数是指自变量为复数,因变量也为复数的函数。

一般地,复变函数可表示为f(z)=u(x,y)+iv(x,y),其中z = x+iy,u(x,y)和v(x,y)分别为实部和虚部。

2. 复数的表示复数可以用直角坐标形式z=x+iy表示,也可以用极坐标形式z=re^(iθ)表示,其中r为模,θ为幅角。

3. 复平面和复函数的几何表示复数z=x+iy可以在复平面上表示为点(x,y),复变函数f(z)可以在复平面上表示为一条曲线或曲面。

二、解析函数与全纯函数1. 解析函数的定义如果一个复变函数在某个区域内能够展开成洛朗级数,并且在该区域内收敛,那么称该函数在该区域内是解析的。

2. 全纯函数的定义如果一个解析函数的导数处处存在且连续,那么该函数就是全纯函数。

3. 解析函数的充要条件一个函数在某个区域内解析的充要条件是它在该区域内连续,并且满足柯西-黎曼方程。

三、柯西-黎曼方程1. 柯西-黎曼方程的定义对于复变函数f(z)=u(x,y)+iv(x,y),如果它满足下面的条件:∂u/∂x = ∂v/∂y∂u/∂y = -∂v/∂x那么称它满足柯西-黎曼方程。

2. 柯西-黎曼方程的意义柯西-黎曼方程是解析函数的充要条件,它描述了解析函数的实部和虚部之间的关系,是研究解析函数性质的基本工具。

四、共形映射1. 共形映射的概念如果一个复变函数在一个区域内保持角度和方向不变,那么就称它为共形映射。

2. 共形映射的性质共形映射保持圆周和直线的相交角度不变,它在复平面上的几何性质与保持形状不变,是复变函数理论中的重要概念。

五、留数定理1. 留数的概念对于解析函数f(z),如果z=a是f(z)的孤立奇点,那么f(z)在z=a处的留数定义为Res(f;a)=1/(2πi)∫f(z)dz,积分路径沿着一个围绕z=a的简单闭合曲线C。

2. 留数定理如果f(z)在复平面上有限个孤立奇点,那么它在整个有限区域内的积分等于所有孤立奇点的留数和,即∮f(z)dz=2πiΣRes(f;a)。

复变函数知识点总结

复变函数知识点总结

复变函数知识点总结1. 复数及复平面- 复数由实部和虚部组成,形式为 `z = a + bi`,其中 `a` 为实部,`b` 为虚部,`i` 为虚数单位。

- 复平面将所有复数表示为二维平面上的点,实轴表示实部,虚轴表示虚部。

- 复数可用极坐标和指数形式表示。

2. 复变函数的定义与性质- 复变函数是将复数域映射到复数域的函数。

- 复变函数的导数称为复导数,由极限定义及柯西—黎曼方程求得。

- 复变函数的连续性与分析性与实变函数类似。

3. 元素函数- 复指数函数:`exp(z) = e^z`,其中 `e` 为自然对数的底数。

- 复对数函数:`Log(z) = ln|z| + i(arg(z) + 2πn)`,其中 `arg(z)` 是复数 `z` 的辐角。

- 复正弦函数:`sin(z) = (e^(iz) - e^(-iz))/(2i)`。

- 复余弦函数:`cos(z) = (e^(iz) + e^(-iz))/2`。

4. 复变函数的级数展开- 柯西—黎曼方程可推导出复变函数的泰勒级数展开。

- 复变函数的泰勒级数展开在某一区域内收敛于该函数。

5. 复积分- 路径积分:沿曲线的积分,路径可用参数方程表示。

- 狭义路径积分与宽义路径积分分别对应于可积与不可积的情况。

- 围道积分:路径围成的图形内积分。

6. 复变函数的解析性- 柯西—黎曼方程刻画了函数在一个区域内的解析性。

- 解析函数满足柯西—黎曼方程,其导函数也是解析函数。

7. 复变函数的应用- 复变函数在电路分析、流体力学、量子力学等领域具有广泛应用。

以上是对复变函数的一些知识点的总结,希望能为您提供参考。

复变函数重点知识点总结

复变函数重点知识点总结

复变函数重点知识点总结复变函数是数学分析中的一门重要课程,主要研究复数域上的函数。

复变函数具有许多特殊性质和重要应用,在数学、物理学等领域有广泛的运用。

以下是复变函数的一些重点知识点总结。

1.复变函数的定义及运算法则:-复变函数是定义在复数域上的函数,可以表示为f(z)=u(x,y)+i*v(x,y),其中z=x+i*y为复数,u(x,y)和v(x,y)为实函数,分别称为f的实部和虚部。

-复变函数的加法、减法、乘法和除法运算法则与实数类似,可以进行复数的加减乘除运算。

-复变函数可以表示为级数形式,如幂级数、三角级数等。

2.复变函数的解析性:- 解析函数是指在其定义域内可导的函数,复变函数的解析性与其实部和虚部的连续性及Cauchy-Riemann条件密切相关。

- Cauchy-Riemann条件是解析函数必须满足的条件,即函数的实部和虚部的偏导数满足一定的关系。

-如果一个复变函数在其定义域内解析,则其在该域内无穷次可导,并且导数处处存在。

3.高阶导数及全纯函数:-复变函数的高阶导数可以通过对复变函数的导数进行重复求导得到。

-如果一个复变函数在其定义域内高阶导数均存在,则称该函数为全纯函数。

-全纯函数具有许多优良性质,如解析、无奇点等。

4. 路径积分及Cauchy定理:-路径积分是指沿着一条曲线对复变函数进行积分的操作,复变函数的路径积分与路径无关。

- Cauchy定理是复分析中的重要定理之一,它指出如果一个函数在一个简单连通区域内解析,那么它在该区域中的曲线积分等于零。

5.解析延拓及解析函数的唯一性定理:-解析延拓是指将一个函数的定义域扩展到更大的区域上,使得该函数在扩展后的区域内解析。

-解析函数的唯一性定理是指如果两个解析函数在一些区域内相等,那么它们在该区域内处处相等。

-解析函数的唯一性定理是复分析中的一个重要定理,它可以用于证明解析函数的存在性、奇点的性质等。

6.高阶亚纯函数及留数计算:-亚纯函数是指解析函数和有限阶极点函数的叠加,亚纯函数可以表示为f(z)=P(z)+Q(z),其中P(z)为解析函数,Q(z)为有限阶极点函数。

复变函数 知识点

复变函数 知识点

复变函数知识点一、复数的基本概念。

1. 复数的定义。

- 设x,y∈ R,称z = x+iy为复数,其中i为虚数单位,满足i^2=- 1。

x称为复数z的实部,记作x = Re(z);y称为复数z的虚部,记作y = Im(z)。

2. 复数的相等。

- 两个复数z_1=x_1+iy_1和z_2=x_2+iy_2相等,当且仅当x_1=x_2且y_1=y_2。

3. 复数的共轭。

- 对于复数z = x + iy,其共轭复数¯z=x-iy。

共轭复数具有性质:z¯z=x^2+y^2,Re(z)=frac{z + ¯z}{2},Im(z)=frac{z-¯z}{2i}等。

二、复数的四则运算。

1. 加法与减法。

- 设z_1=x_1+iy_1,z_2=x_2+iy_2,则z_1± z_2=(x_1± x_2)+i(y_1± y_2)。

2. 乘法。

- z_1z_2=(x_1+iy_1)(x_2+iy_2)=x_1x_2-y_1y_2+i(x_1y_2+x_2y_1)。

3. 除法。

- frac{z_1}{z_2}=frac{x_1+iy_1}{x_2+iy_2}=frac{(x_1+iy_1)(x_2-iy_2)}{(x_2+iy_2)(x_2-iy_2)}=frac{x_1x_2+y_1y_2}{x_2^2+y_2^2}+ifrac{x_2y_1-x_1y_2}{x_2^2+y_2^2}(z_2≠0)。

三、复数的几何表示。

1. 复平面。

- 复数z = x+iy可以用复平面上的点(x,y)来表示,其中x轴称为实轴,y轴称为虚轴。

2. 复数的模与辐角。

- 复数z = x + iy的模| z|=√(x^2)+y^{2},它表示复数z在复平面上对应的点到原点的距离。

- 复数z≠0的辐角θ满足z=| z|(cosθ + isinθ),辐角不唯一,Arg(z)=θ + 2kπ,k∈ Z,其中θ∈(-π,π]称为z的主辐角,记作θ = arg(z)。

复变函数总结汇总

复变函数总结汇总

第一章复数与复变函数、复数几种表示(1)代数表示z =x • yi(2)几何表示:用复平面上点表示(复数z、点z、向量z视为同一概念)(3)三角式:z = r(cosv isi nr)(4)指数式:z = re iT1辐角Argz =arg z 2k 二|zh ,x2y2yarctan丄,x》0,xyarcta n丄+兀,x<0,y〉0xargz={ yarcta n± - x,x<0,yc0x兀/2, x = 0, y:>0-■: /2, x =0,y : 0z - z2i、乘幕与方根(1)乘幕:(2)方根:re i-____ 2k n/t argz.R'z=n:|z|e n , k= 0,1,2,…n—1第二章解析函数一、连续、导数与微分概念类似于一元实变函数求导法则与一元实变函数类似注:(1)点解析=点可导,点可导推不出点解析(2)区域内解析与可导等价二、定理1 W = f (z)=u • iv在Z o可导二u,v在Z o可微,满足C-R方程定理2 w二f⑵二u • iv在区域D内解析(可导)二u,v在区域D内可微,满足C-R方程讨论1 u,v在区域D内4个偏导数存在且连续,满足C-R方程=w = f (z)二u iv在区域D内解析(可导)三、解析函数和调和函数的关系1、定义1调和函数:满足拉普拉斯方程,且有二阶连续偏导数的函数。

定义2设(x,y)^ (x, y)是区域D内调和函数,且满足C-R方程, xx,则称是「的共轭调和函数。

2、定理1解析函数的虚部与实部都是调和函数。

定理2函数在D内解析二虚部是实部的共轭调和函数。

3、问题:已知解析函数的实部(或虚部),求虚部(或实部)理论依据:(1)虚部、实部是调和函数。

(2)实部与虚部满足C-R方程。

求解方法:(例如已知v)(1)偏积分法:先求u x,u y,再求u = udx (y),得出(y)(2)利用曲线积分:求u x,u y,du,再u = u x dx u y dy c(x o,y o)(3)直接凑全微分:求u x,u y,du,再du四、初等函数1、 指数函数 w=e z =e x e iy =e x (cosy i sin y )性质:(1) e z 是单值函数,(2) e z 除无穷远点外处处有定义(3) e z = 0(4) e z 处处解析,(e z )'eZ(5) e z1 Z2 =e Zl e Z2(6) e z 是周期函数,周期是2k 「:i2、 对数函数w =Lnz =ln |z| i argz i2k 二 (多值函数)主值(枝)ln z=l n | z| iargz (单值函数)性质:(1)定义域是z = 0,(2) 多值函数(3) 除去原点和负实轴的平面内连续(5) Ln(wz 2) = Lnz j Lnz 2 Ln 三二 Ln^ - Lnz 2J3、幕函数w = z ,e-Lnz (z = 0「是复常数)(1) 为正整数,函数单值、处处解析,(2) 〉为负整数,函数单值、除去z = 0及其负实轴处处解析,4、三角函数欧拉公式 e i = c 0'S i s i n(4)除去原点和负实轴的平面内解析,1 1(Lnz) (In z): z ,z或 eJe 乂cos , s i n 二 2 2iiz _iz iz _iz定义: e +e . e -e cosz , sin z 二 2 2itan z=sin z/cosz, cot z = cosz/sin zsecz =1/cosz, cscz =1/sin z性质: 周期性、可导性、奇偶性、零点、等于实函数一样各种三角公式、求导公式照搬注: sin z, cosz 的有界性 保护成立。

复变函数总结可修改文字

复变函数总结可修改文字
(6) sin z , cos z can be greater than 1
tan z sin z , cot z cos z ,
cos z
sin z
sec z 1 , csc z 1 ,
cos z
sin z
4. 双曲函数
ez ez
ez ez
sinhz
, cosh z
,
2
2
tanh z sinh z , coth z cosh z ,
k 0
称为以 b 为展开中心的幂级数。其中 ak 为复常数。
幂级数的收敛圆及其收敛半径
k
对于幂级数 ak (z b)k ,必定存在一以 b 为圆心,R 为
k 0
半径的圆,在圆内该级数绝对收敛(而且在较小的圆内 一致收敛),而在圆外发散。这个圆称为该幂级数的收敛 圆,R 称为它的收敛半径。
确定幂级数的收敛半径
z rei
(1.2.14)
复数的乘幂与方根
zn z z z
zn rn (cos n i sin n )
wk
n
i 2kπ
re n
n
r [cos(
2kπ ) i sin(
n
2kπ )], n
(k 0,1, 2,, n 1)
区域
z0的去心邻域 : 点集 z 0 z z0
复变函数总结
复数的表示
1.2.1 复数的几何表示
y
P y
r
x
o
图 1.1
x
y
0
x
2kπ 0
图 1.2
复数的指数表示
定义 1.2.6 复数的指数表示 利用欧拉(Euler)公式
ei cos i sin
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 复数与复变函数一、复数几种表示 (1)代数表示 yi x z +=(2)几何表示:用复平面上点表示(复数z 、点z 、向量z 视为同一概念) (3)三角式:)sin (cos θθi r z += (4)指数式 : θi re z = 辐角πk z Argz 2arg += 22||y x z +=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<=->=<<-><+>=0,0,2/0,0,2/0,0,arctan 0,0,arctan ,0,arctan arg y x y x y x x yy x x yx x y z ππππ izz y z z x 2,2-=+= 二、乘幂与方根(1)乘幂: θi re z =,θin n n e r z = (2)方根: 1,2,1,0,||arg 2-==+n k ez z i nzk n nπ第二章 解析函数一、连续、导数与微分概念类似于一元实变函数 求导法则与一元实变函数类似函数点解析的定义:函数在一点及其点的邻域内处处可导注:(1)点解析⇒点可导, 点可导推不出点解析 (2)区域内解析与可导等价二、定理1 iv u z f w +==)(在0z 可导⇔v u ,在0z 可微,满足C-R 方程定理2 iv u z f w +==)(在区域D 内解析(可导) ⇔v u ,在区域D 内可微,满足C-R 方程讨论1 v u ,在区域D 内4个偏导数存在且连续,满足C-R 方程 ⇒iv u z f w +==)(在区域D 内解析(可导) 三、解析函数和调和函数的关系1、定义1 调和函数:满足拉普拉斯方程,且有二阶连续偏导数的函数。

定义2 设),(),,(y x y x ψϕ是区域D 内调和函数,且满足C-R 方程,x y y x ψϕψϕ-==,,则称ψ是ϕ的共轭调和函数。

2、定理1 解析函数的虚部与实部都是调和函数。

定理2 函数在D 内解析⇔虚部是实部的共轭调和函数。

3、问题:已知解析函数的实部(或虚部),求虚部(或实部) 理论依据:(1)虚部、实部是调和函数。

(2)实部与虚部满足C-R 方程。

求解方法:(例如已知v )(1)偏积分法:先求y x u u ,,再求)(y dx u u x ϕ+=⎰,得出)(y ϕ(2)利用曲线积分:求du u u y x ,,,再c dy u dx u u y x y x y x ++=⎰),(),(00(3)直接凑全微分:求du u u y x ,,,再du四、初等函数1、指数函数)sin (cos y i y e e e e w x iy x z +=== 性质:(1)z e 是单值函数,(2)z e 除无穷远点外处处有定义 (3)0≠z e(4)z e 处处解析,z z e e =')((5)2121z z z z e e e =+(6)z e 是周期函数,周期是i k π22、对数函数πk i z i z Lnz w 2arg ||ln ++== (多值函数) 主值(枝)z i z z arg ||ln ln += (单值函数) 性质:(1)定义域是0≠z , (2)多值函数(3)除去原点和负实轴的平面内连续 (4)除去原点和负实轴的平面内解析,z Lnz 1)(=',z z 1)(ln =',(5)3、幂函数ααα,0(≠==z e z w Lnz 是复常数) (1)α为正整数,函数单值、处处解析,(2)α为负整数,函数单值、除去0=z 及其负实轴处处解析, 4、三角函数欧拉公式 θθθsin cos i e i +=2121)(Lnz Lnz z z Ln +=2121Lnz Lnz z z Ln -=或 i e e e e i i i i 2sin ,2cos θθθθθθ---=+= 定义:ie e z e e z iziz iz iz 2sin ,2cos ---=+= z z z z z z sin /cos cot ,cos /sin tan == z z z z sin /1csc ,cos /1sec ==性质:周期性、可导性、奇偶性、零点、等于实函数一样 各种三角公式、求导公式照搬 注:z z cos ,sin 的有界性 保护成立。

第三章 复变函数的积分一、复积分⎰⎰++=c c yi x d vi u dz z f )()()(⎰⎰++-=c c udy vdx i vdy udx⎰cdz z f )( (c 的正向为逆时针方向)计算方法:(1)第二类曲线积分计算 (2)化为普通定积分b a t t iy t x t z zc →+==:),()()(:dt t y i t x t y t x iv t y t x u dz z f bac)]()([))](),(())(),(([)('+'+=⎰⎰重要结果:⎩⎨⎧≠==-⎰=-1,01,2)(1||00n n i dz z z r z z n π (n 为任意整数) 二、柯西积分定理定理1(柯西积分定理) 设)(z f 在单连通区域D 内解析,C 为D内任意一条简单闭曲线,则0)(=⎰Cdz z f 。

注:条件变为)(z f 在单连通区域D 内解析,在D 的边界C 上连续,结论成立,即0)(=⎰Cdz z f 。

定理2 设)(z f 在单连通区域D 内解析,则积分与路径无关。

记积分为⎰zz dz z f 0)(,或⎰zz d f 0)(ξξ原函数定义结论:⎰=zz d f z F 0)()(ξξ是)(z f 的原函数。

)()()(011z F z F dz z f z z -=⎰(条件:)(z f 是解析函数)定理3 (闭路变形原理)(柯西积分定理推广到多连通区域) 21,C C 是两条简单闭曲线,2C 在1C 内部,)(z f 在21,C C 所围区域D 内解析,在21,C C 上连续,则⎰⎰=21)()(C C dz z f dz z f注:定理3说明:区域内的解析函数沿闭曲线的积分,不因闭曲线在区域内的连续变动而改变它的值。

三、柯西积分公式定理1 (柯西积分公式))(z f 在简单闭曲线C 上连续,C 的内部解析(即单连通区域D 内解析),0z 是C 的内部一点,则)(2)(00z f i dz z z z f Cπ=-⎰注:(1)D 为多连通区域时,公式仍 成立。

(2)提供了计算积分的一种方法。

推论1 (平均值公式)设)(z f 在R z z <-||0内解析,在R z z =-||0上连续,则⎰+=πθθπ2000)Re (21)(d e z f z f i定理2 (最大模原理)设)(z f 在区域D 内解析,又)(z f 不是常数,则在D 内|)(|z f 没有最大值。

推论1 区域D 内的解析函数,若其模在D 内一点达到最大值,则此函数被常数。

(定理2的逆否命题)四、解析函数的高阶导数定理1 (解析函数的高阶导数)设)(z f 在简单闭曲线C 所围的单连通区域D 内解析,在C 上连续,则)(z f 的各阶导数均在D 内解析,且对D 内z 有 ξξξπd z f i n z f C n n ⎰+-=1)()()(2!)( ,或)(!2)()()(1z f n i d z f n C n πξξξ=-⎰+ 注:由柯西积分公式)(2)(z if d zf Cπξξξ=-⎰求导即得。

第四章 解析函数的级数表示 一、数项级数∑∞=1n n z ,其中n n n iy x z +=定理∑∞=1n nz收敛的必要条件是0lim =∞→n n z定理 ∑∞=1n nz收敛⇔∑∞=1n nx与∑∞=1n ny均收敛定理∑∞=1||n nz收敛⇒∑∞=1n nz收敛,称为绝对收敛∑∞=1||n nz发散,∑∞=1n n z 收敛,称为条件收敛二、幂级数∑∞=-0)(n nnz z c收敛半径|,|lim 1n n n c c +∞→=λ ,||lim n n n c ∞→=λ 则λ1=R收敛圆R z z <-||0三、函数展开成泰勒级数(幂级数)公式:1、∑∞==-011n n z z ,1||<z 2、∑∞==0!1n n zz n e , ∞<||z3、 -+-=53!51!31sin z z z z ,∞<||z-+-=42!41!211cos z z z , ∞<||z4、对数函数,反三角函数求导数 四、洛朗级数 (函数在环域内展开) 第五章 留数一、孤立奇点0z (函数在0z 不解析,在0z 的去心邻域内解析)分类:1、可去奇点(洛朗级数中没有负幂项) 判定(1)洛朗级数,(2))(lim 0z f zz →存在2、极点(洛朗级数中有有限负幂项) 判定(1)洛朗级数, (2)∞=→)(lim 0z f zz极点阶数判定: (1)洛朗级数 (2))()(1)(0z z z z f mϕ-=,)(z ϕ在0z 解析,0)(0≠z ϕ,则0z 是)(z f 的m 阶极点。

(3)零点与极点关系 (4))()()(z Q z P z f =,0z 是分子的n 阶零点,是分母的m 阶零点, m>n 时,0z 是函数的m-n 阶极点,否则,是可去奇点。

3、本性奇点(洛朗级数中有无限负幂项) 判定 (1)洛朗级数,(2))(lim 0z f zz →不存在,也不是无穷。

二、m 阶零点法1 0)(,1,,1,0,0)(0)(0)(≠-==z f m k z f m k 法2 函数在0z 展开成幂级数三、留数 10]),([Re -=c z z f s ,1-c 是洛朗级数中01z z -系数。

留数计算: 可去奇点处留数为零 本性奇点:通过洛朗级数求解 m 阶极点:)1(00)]()[(lim )!1(1]),([Re 0-→--=m m z z z f z z m z z f s 一阶极点 )()(lim ]),([Re 000z f z z z z f s zz -=→或 0|)()(]),([Re 0z z z Q z P z z f s ==,0z 是分母1阶零点,不是分子零点 注:用洛朗级数求留数,不需判定奇点类型。

留数定理:∑⎰==nk k C z z f s i dz z f 1]),([Re 2)(π,条件;)(z f 在C 内除有限个孤立奇点外处处解析。

函数在∞留数:=∞]),([Re z f s ]0),1(1[Re 2zf z s -= 定理 函数在扩充复平面上各点留数和为零。

四、留数在定积分中的应用 1、形如 ⎰πθθθ20d )sin ,(cos R 的积分2、形如⎰∞+∞-xx R d )( 的积分3、)0(d )(e >⎰∞+∞-a x x R iax。

相关文档
最新文档