遗传算法总结【精品毕业设计】(完整版)

合集下载

grasshopper-galapagos遗传算法【精品毕业设计】(完整版)

grasshopper-galapagos遗传算法【精品毕业设计】(完整版)

Evolutionary Principles applied toProblem Solving遗传算法There is nothing particularly new about Evolutionary Solvers or Genetic Algorithms. The first references to this field of computation stem from the early 60's when Lawrence J. Fogel published the landmark paper "On the Organization of Intellect" which sparked the first endeavours into evolutionary computing. The early 70's witnessed further forays with seminal work produced by -among others- Ingo Rechenberg and John Henry Holland. Evolutionary Computation didn't gain popularity beyond the programmer world until Richard Dawkins' book "The Blind Watchmaker" in 1986, which came with a small program that generated a seemingly endless stream of body-plans called "Bio-morphs" based on human selection. Since the 80's the advent of the personal computer has made it possible for individuals without government funding to apply evolutionary principles to personal projects and they have since made it into the common parlance.其实在遗传算法和基因算法里并什么特别新的理论出现,该领域的第一篇文献出现在六十年代由Lawrence J. Fogel 出版的具有里程碑意义的论文“智能组织”,这篇论文使人们开始致力于研究遗传算法。

遗传算法解决TSP问题【精品毕业设计】(完整版)

遗传算法解决TSP问题【精品毕业设计】(完整版)
2.2遗传算法原型:
GA(Fitness,Fitness_threshold,p,r,m)
Fitness:适应度评分函数,为给定假设赋予一个评估分数
Fitness_threshold:指定终止判据的阈值
p:群体中包含的假设数量
r:每一步中通过交叉取代群体成员的比例
m:变异率
初始化群体:P←随机产生的p个假设
在本程序的TSP问题中一共有20个城市,也就是在图模型中有20个顶点,因此一个染色体的长度为20。
3.3适应函数f(i)
对具有n个顶点的图,已知各顶点之间( , )的边长度d( , ),把 到 间的一条通路的路径长度定义为适应函数:
对该最优化问题,就是要寻找解 ,使f( )值最小。
3.4选择操作
选择作为交叉的双亲,是根据前代染色体的适应函数值所确定的,质量好的个体,即从起点到终点路径长度短的个体被选中的概率较大。
(2)交叉(Crossover):对于选中进行繁殖的两个染色体X,Y,以X,Y为双亲作交叉操作,从而产生两个后代X1,Y1.
(3)变异(Mutation):对于选中的群体中的个体(染色体),随机选取某一位进行取反运算,即将该染色体码翻转。
用遗传算法求解的过程是根据待解决问题的参数集进行编码,随机产生一个种群,计算适应函数和选择率,进行选择、交叉、变异操作。如果满足收敛条件,此种群为最好个体,否则,对产生的新一代群体重新进行选择、交叉、变异操作,循环往复直到满足条件。
3.变异:使用均匀的概率从Ps中选择m%的成员.对于选出的每个成员,在它表示中随机选择一个为取反
4.更新:P←Ps
5.评估:对于P中的每个h计算Fitness(h)
从P中返回适应度最高的假设
3.
3.1 TSP问题的图论描述

遗传算法解释及代码(一看就懂)【精品毕业设计】(完整版)

遗传算法解释及代码(一看就懂)【精品毕业设计】(完整版)

遗传算法( GA , Genetic Algorithm ) ,也称进化算法。

遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。

因此在介绍遗传算法前有必要简单的介绍生物进化知识。

一.进化论知识作为遗传算法生物背景的介绍,下面内容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。

个体:组成种群的单个生物。

基因 ( Gene ) :一个遗传因子。

染色体 ( Chromosome ):包含一组的基因。

生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。

适应度低的个体参与繁殖的机会比较少,后代就会越来越少。

遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。

简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。

那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。

二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。

这样进化N代后就很有可能会进化出适应度函数值很高的个体。

举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。

这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。

编码:需要将问题的解编码成字符串的形式才能使用遗传算法。

基本遗传算法【精品毕业设计】(完整版)

基本遗传算法【精品毕业设计】(完整版)

基本遗传算法【精品毕业设计】(完整版)遗传算法1、遗传算法⽣物学基础和基本理论达尔⽂⾃然选择学说认为,⽣物要⽣存下去,就必须进⾏⽣存⽃争。

⽣存⽃争包括种内⽃争、种间⽃争以及⽣物跟⽆机环境之间的⽃争三个⽅⾯。

在⽣存⽃争中,具有有利变异(mutation)的个体容易存活下来,并且有更多的机会将有利变异传给后代;具有不利变异的个体就容易被淘汰,产⽣后代的机会也少得多。

因此,凡是在⽣存⽃争中获胜的个体都是对环境适应性⽐较强的。

达尔⽂把这种在⽣存⽃争中适者⽣存,不适者淘汰的过程叫做⾃然选择。

达尔⽂的⾃然选择学说表明,遗传和变异是决定⽣物进化的内在因素。

遗传是指⽗代与⼦代之间,在性状上存在的相似现象。

变异是指⽗代与⼦代之间,以及⼦代的个体之间,在性状上或多或少地存在的差异现象。

在⽣物体内,遗传和变异的关系⼗分密切。

⼀个⽣物体的遗传性状往往会发⽣变异,⽽变异的性状有的可以遗传。

遗传能使⽣物的性状不断地传送给后代,因此保持了物种的特性,变异能够使⽣物的性状发⽣改变,从⽽适应新的环境⽽不断地向前发展。

⽣物的各项⽣命活动都有它的物质基础,⽣物的遗传与变异也是这样。

根据现代细胞学和遗传学的研究得知,遗传物质的主要载体是染⾊体(chromsome),染⾊体主要是由DNA(脱氧核糖核酸)和蛋⽩质组成,其中DNA⼜是最主要的遗传物质。

现代分⼦⽔平的遗传学的研究⼜进⼀步证明,基因(gene)是有遗传效应的⽚段,它储存着遗传信息,可以准确地复制,也能够发⽣突变,并可通过控制蛋⽩质的合成⽽控制⽣物的性状。

⽣物体⾃⾝通过对基因的复制(reproduction)和交叉(crossover),即基因分离、基因⾃由组合和基因连锁互换)的操作使其性状的遗传得到选择和控制。

同时,通过基因重组、基因变异和染⾊体在结构和数⽬上的变异产⽣丰富多采的变异现象。

需要指出的是,根据达尔⽂进化论,多种多样的⽣物之所以能够适应环境⽽得以⽣存进化,是和上述的遗传和变异⽣命现象分不开的。

自然计算遗传算法【精品毕业设计】(完整版)

自然计算遗传算法【精品毕业设计】(完整版)

自然计算大作业一.二进制编码在遗传算法中,首先要将数据进行编码,这里采用二进制的方式进行编码。

第一步,我们根据题目的介绍可以得知该函数含有两个变量,以及各自的定义域。

在二进制编码中,我们首先要先计算它的编码长度。

计算公式如下: $${2^{{m_j} - 1}} < ({b_j} - {a_j})*precision \le {2^{{m_j}}} - 1$$其中precision为精度,如小数点后5位,则precision=10^5,mj为编码长度,${x_j} \in [{a_j},{b_j}]$二.二进制解码解码即编码的逆过程:$${x_j} = {a_j} + {\rm{decimal}}(substrin{g_j}) \times \frac{{{b_j} - {a_j}}}{{{2^{{m_j}}} - 1}}$$三.种群初始化编码完成后,开始对种群初始化,为了简便采用随机地方式进行初始化。

初始群体的生成:随机产生N个初始串结构数据,每个串结构数据称为一个个体,N个个体构成了一个群体。

GA以这N个串结构数据作为初始点开始进化。

def rand_init(self):for i in range(self.code_x1_length):self.code_x1 += str(random.randint(0, 1))for i in range(self.code_x2_length):self.code_x2 += str(random.randint(0, 1))四.适应度评估适应度表明个体或解的优劣性。

不同的问题,适应度函数的定义方式也不同。

def decoding(self, code_x1, code_x2):self.x1 = self.bounds[0][0] + int(code_x1, 2) * (self.bounds[0][1] - self.bounds[0][0]) / (2 ** self.code_x1_length - 1)self.x2 = self.bounds[1][0] + int(code_x2, 2) * (self.bounds[1][1] - self.bounds[1][0]) / (2 ** self.code_x2_length - 1)五.选择选择的目的是为了从当前群体中选出优良的个体,使它们有机会作为父代为下一代繁殖子孙。

使用遗传算法求解函数最大值【精品毕业设计】(完整版)

使用遗传算法求解函数最大值【精品毕业设计】(完整版)

使用遗传算法求解函数最大值题目使用遗传算法求解函数f(x,y)=x∗sin(6∗y)+y∗cos⁡(8∗x)在x∈[1,2]及y∈[1,2]的最大值。

解答算法使用遗传算法进行求解,篇末所附源代码中带有算法的详细注释。

算法中涉及不同的参数,参数的取值需要根据实际情况进行设定,下面运行时将给出不同参数的结果对比。

定义整体算法的结束条件为,当种群进化次数达到maxGeneration时停止,此时种群中的最优解即作为算法的最终输出。

设种群规模为N,首先是随机产生N个个体,实验中定义了类型Chromosome表示一个个体,并且在默认构造函数中即进行了随机的操作。

然后程序进行若干次的迭代,在每次迭代过程中,进行选择、交叉及变异三个操作。

一选择操作首先计算当前每个个体的适应度函数值,这里的适应度函数即为所要求的优化函数,然后归一化求得每个个体选中的概率,然后用轮盘赌的方法以允许重复的方式选择选择N个个体,即为选择之后的群体。

但实验时发现结果不好,经过仔细研究之后发现,这里在x、y取某些值的时候,目标函数计算出来的适应值可能会出现负值,这时如果按照把每个个体的适应值除以适应值的总和的进行归一化的话会出现问题,因为个体可能出现负值,总和也可能出现负值,如果归一化的时候除以了一个负值,选择时就会选择一些不良的个体,对实验结果造成影响。

对于这个问题,我把适应度函数定为目标函数的函数值加一个正数,保证得到的适应值为正数,然后再进行一般的归一化和选择的操作。

实验结果表明,之前的实验结果很不稳定,修正后的结果比较稳定,趋于最大值。

二交叉操作首先是根据交叉概率probCross选择要交叉的个体进行交叉。

这里根据交叉参数crossnum进行多点交叉,首先随机生成交叉点位置,允许交叉点重合,两个重合的交叉点效果互相抵消,相当于没有交叉点,然后根据交叉点进行交叉操作,得到新的个体。

三变异操作首先是根据变异概率probMutation选择要变异的个体。

遗传算法总结

遗传算法总结

遗传算法总结By xudong 内容提要遗传算法的实现过程遗传算法基本理论遗传算法的三个算例TSP问题装箱问题网络结构优化遗传算法的实现过程产生初始种群在适应度函数的基础上选择parents从parents中产生children有三种途径:将parents中最优秀的个体直接保留到children杂交变异遗传算法实现流程下面以一个函数优化的过程为例说明遗传算法的工作过程,材料来自matlab中遗传算法的算法说明。

【生成初始种群】这是函数的等值线图,图中的蓝点表示初始种群中的个体。

【生成下一代种群】图中的符号表示下一代个体,具体不同符号表示不同的产生途径。

【迭代过程】可以看出,随着迭代的增加,整个种群逐渐收敛到最优解。

遗传算法基本理论这里只叙述定理的内容和评价,定理中所涉及的概念和定理的推导过程大家感兴趣的话可以翻翻书。

【模式定理】内容:遗传算法中,在选择、交叉、变异算子的作用下,具有低阶、短的定义长度,并且平均适应度高于群体平均适应度的模式将按指数级增长。

评价:看到这个定理首先想到的就是《自私的基因中》的核心观点,基因是进化的基本单位。

短小,并且适应度高的基因在进化过程中被保留下来,并且在群体中不断增加。

【积木块假定】内容:基因能够互相拼接在一起,形成适应度更高的编码串。

评价:模式定理是说遗传算法能够产生高质量的建筑砖头(基因),积木块假定是说可以用这些高质量的建筑砖头建造高质量的大楼(编码串)。

需要注意的是,我们把上述内容称为假定,而并非定理,这是因为有时候积木块假定并不成立,也就是说高质量的转头不一定能够建成高质量的大楼。

出现这种情况的原因是1+1<2的现象,各个基因之间高度相关,适应度很高的两个基因之间存在很强的负交互作用,结果导致整体的适应度下降。

【遗传算法收敛性】内容1.不保留优秀个体,收敛于最优解的概率小于12.保留优秀个体,遗传算法收敛于最优解的概率等于1评价:这两个定理说明了我们为什么在遗传算法中保留优秀个体的一个原因,保留优秀个体的另外一个原因是保证遗传算法每一代的解总是单调减少的(假设目标是极小化目标函数)。

R语言GA遗传算法【精品毕业设计】(完整版)

R语言GA遗传算法【精品毕业设计】(完整版)

GA包遗传算法最大化使用遗传算法的适应度函数。

默认求最大值。

用法:ga(type = c("binary", "real-valued", "permutation"), fitness, ..., min, max, nBits, population = gaControl(type)population,<br/>selection=gaControl(type)selection, crossover = gaControl(type)crossover,<br/> mutation=gaControl(type)mutation, popSize = 50, pcrossover = 0.8, pmutation = 0.1, elitism = base::max(1, round(popSize*0.05)), maxiter = 100, run = maxiter, maxfitness = Inf, names = NULL, suggestions = NULL, keepBest = FALSE, parallel = FALSE, monitor = gaMonitor, seed = NULL)参数说明•type: 解得编码类型–binary :二进制编码–real-valued:实数浮点编码–permutation:问题涉及到重新排序的列表,字符串编码。

可求解TSP 问题•fitness:适应度函数•min:解得下界(多元变量为一个向量)•max:解得上界(多元变量为一个向量)•nBits:一个种群用二进制编码的长度是多少(长度越大代表精度越高) •population:初始种群•selection:选择•crossover: 交叉•crossover:变异•popsize:种群大小•pcrossover: 交叉概率(默认0.8)•pmutation:变异概率(默认0.1)•elitism: 代沟(默认情况下,前5%个体将在每个迭代中保留)•maxiter:最大迭代次数(默认100)•maxfitness:适应度函数的上界,GA搜索后中断•keepBest:是否保留每一代的最优解•parallel:是否采用并行运算•monitor:绘图用的,监控遗传算法的运行状况•seed:一个整数值包含随机数发生器的状态。

遗传算法新论文【精品毕业设计】(完整版)

遗传算法新论文【精品毕业设计】(完整版)

学校代码 10126 学号 00708037 分类号密级本科毕业论文基于遗传算法的图像阈值分割学院、系数学科学学院计算数学系专业名称信息与计算科学年级 2007级学生姓名刘家祥指导教师曹军2011年 5月 20 日内容摘要图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。

图像的分割是以灰度值作为分割的依据,通过各个像素的灰度值和事先确定的阈值的比较来分割图像。

如何确定最合适的阈值是处理好图像分割的关键,这自然成为一直以来分割算法研究的焦点。

遗传算法是对生物进化论中自然选择和遗传学机理中生物进化过程的模拟来计算最优解的方法。

遗传算法具有众多的优点,如鲁棒性、并行性、自适应性和快速收敛,可以应用在图像处理技术领域中图像分割技术来确定分割阈值。

本文主要介绍基于遗传算法的最小误差阈值法、最大类间方差法(Otsu法)以及最佳直方图熵法(KSW熵法)等三种方法分割图像。

关键词:图像分割,遗传算法,阈值分割AbstractImage segmentation refers to the image into regions each with characteristics and goals of the technology to extract and process of interest. Segmentation is a segmentation based on gray value, gray value of each pixel through the predetermined threshold value and comparing the image segmentation. How to determine the most appropriate threshold is the key to handling image segmentation, which has naturally become the focus of segmentation algorithms.Genetic algorithm is a biological theory of evolution and genetic mechanism of natural selection in biological evolution simulation method to calculate the optimal solution. Genetic algorithm has many advantages, such as robustness, parallel, adaptive, and fast convergence, can be used in the field of image processing image segmentation technique to determine the split threshold.In this paper, genetic algorithm based on minimum error threshold, the largest class variance (Otsu method) and the best histogram entropy (KSW entropy method) are three ways to split the image.Keywords : Image segmentation, genetic algorithms, threshold目录第一章绪论 .................................................. - 1 - 第二章遗传算法概述 ........................................ . - 2 -2.1遗传算法的研究历史....................................... - 2 -2.2生物背景................................................. - 2 -2.3遗传算法的基本思想....................................... - 3 -2.4遗传算法的几个概念....................................... - 4 -2.4.1适应度函数......................................... - 4 -2.4.2遗传算法最常用的算子............................... - 4 -2.5遗传算法运算的基本流程................................... - 5 - 第三章图像分割的现状 ........................................ - 7 -3.1图像分割简介............................................. - 7 -3.2图像分割方法............................................. - 8 -3.2.1基于边缘检测的分割................................. - 8 -3.2.2基于区域的分割..................................... - 8 -3.2.3边缘与区域相结合的分割............................. - 9 -3.3阈值选取................................................. - 9 - 第四章基于遗传算法的图像阈值分割 ........................... - 10 -4.1图像阈值................................................ - 10 -4.2阈值分割的原理.......................................... - 10 -4.3最小误差阈值法.......................................... - 11 -4.3.1最小误差法图像阈值分割............................ - 11 -4.3.2 利用遗传算法来改进最小误差法...................... - 12 -4.4 最大类间方差法(Otsu法)............................... - 13 -4.4.1最大类间方差法(Otsu法)阈值分割.................. - 13 -4.4.2 Otsu阈值分割的遗传算法设计........................ - 15 -4.5 KSW熵法................................................ - 17 -4.5.1 KSW熵阈值分割................................... - 17 -4.5.2 KSW单阈值分割的遗传算法设计..................... - 18 -4.5.3 KSW双阈值分割的遗传算法设计..................... - 19 - 第五章基于新的遗传算法的图像分割 ........................... - 25 -5.1混沌遗传算法............................................ - 25 -5.2量子遗传算法............................................ - 25 -5.3免疫遗传算法............................................ - 25 - 结论 .......................................................... - 26 - 致谢 .......................................................... - 27 - 参考文献: ..................................................... - 28 -内蒙古大学本科学年论文第- 1 - 页基于遗传算法的图像阈值分割第一章绪论图像分割是图像处理与计算机视觉的基本问题之一,是图像处理到图像分析的关键步骤。

遗传算法学习心得【精品毕业设计】(完整版)

遗传算法学习心得【精品毕业设计】(完整版)

基本概念遗传算法(Genetic Algorithms, GA)是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。

它模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。

GA的组成:(1)编码(产生初始种群)(2)适应度函数(3)遗传算子(选择、交叉、变异)(4)运行参数编码基因在一定能够意义上包含了它所代表的问题的解。

基因的编码方式有很多,这也取决于要解决的问题本身。

常见的编码方式有:(1)二进制编码,基因用0或1表示(常用于解决01背包问题)如:基因A:00100011010 (代表一个个体的染色体)(2)互换编码(用于解决排序问题,如旅行商问题和调度问题)如旅行商问题中,一串基因编码用来表示遍历的城市顺序,如:234517986,表示九个城市中,先经过城市2,再经过城市3,依此类推。

(3)树形编码(用于遗传规划中的演化编程或者表示)如,问题:给定了很多组输入和输出。

请你为这些输入输出选择一个函数,使得这个函数把每个输入尽可能近地映射为输出。

编码方法:基因就是树形结构中的一些函数。

(4)值编码(二进制编码不好用时,解决复杂的数值问题)在值编码中,每个基因就是一串取值。

这些取值可以是与问题有关任何值:整数,实数,字符或者其他一些更复杂的东西。

适应度函数遗传算法对一个个体(解)的好坏用适应度函数值来评价,适应度函数值越大,解的质量越好。

适应度函数是遗传算法进化过程的驱动力,也是进行自然选择的唯一标准,它的设计应结合求解问题本身的要求而定。

如TSP问题,遍历各城市路径之和越小越好,这样可以用可能的最大路径长度减去实际经过的路径长度,作为该问题的适应度函数。

遗传算子——选择遗传算法使用选择运算来实现对群体中的个体进行优胜劣汰操作:适应度高的个体被遗传到下一代群体中的概率大;适应度低的个体,被遗传到下一代群体中的概率小。

遗传算法论文【精品毕业设计】(完整版)

遗传算法论文【精品毕业设计】(完整版)

论文名称:遗传算法姓名:***学号:***********班级:计算机科学与技术1班院系:信息与电气工程学院日期:2014年6月18日摘要 (2)第一章引言 (3)1.1搜索法 (3)1.2遗传算法 (3)第二章遗传算法(Genetic Algorithms,GA) (4)2.1遗传算法的基本概念 (4)2.2遗传算法的实现步骤 (6)第三章遗传算法的特点及应用 (9)3.1遗传算法的特点 (9)3.2遗传算法的应用 (9)第四章遗传算法的缺点及发展 (12)4.1遗传算法的缺点 (12)第五章遗传算法代码实现 (13)附录遗传算法代码(GA Code) (14)摘要智能搜索算法包括遗传算法、禁忌算法、模拟退火算法等。

其中遗传算法(GA)是人类从基因遗传的生物进化思想的启发下提出的,它是一种进化计算,进化计算实质上是自适应的机器学习方法,遗传算法根据基因遗传时候的变化,它在运算的时候也分为选择、交叉、变异三种行为。

它比盲目的搜索效率高的多,又比专门的针对特定问题的算法通用性强,它是一种于问题无关的求解模式。

但是遗传算法又有很大的不确定性,以及过早的收敛性,所以可以和其他算法一起使用来对问题求解。

关键词:遗传算法;GA;实现;应用;改进第一章引言1.1搜索法人工智能问题广义地说,都可以看作是一个问题求解问题,在问题的求解过程中,人们所面临的大多数现实问题往往没有确定性的算法,通常需要用搜索算法来解决。

搜索法是人工智能中问题的求解的基本方法,搜索法可大致分为有信息搜索和无信息搜索,约束满足问题和博弈问题的求解均可表述为搜索过程。

搜索法的本质是再状态空间中从问题的初始状态搜索到通向目标状态的路径。

当前的智能搜索算法本质上也是搜索法,如遗传算法、蚁群算法、神经网络等。

一般搜索可以根据是否使用启发式信息分为盲目搜素和启发式搜索,也可以根据问题的表示方式分为状态空间搜索和与/或树搜索。

盲目搜索一般是指从当前状态到目标状态需要走多少步或者并不知道每条路径的花费,所能做的只是可以区分出哪个是目标状态。

遗传算法毕业论文【精品毕业设计】(完整版)

遗传算法毕业论文【精品毕业设计】(完整版)

目录1 引言 (1)2 问题描述 (2)3 基于遗传算法TSP算法 (2)3.1 基于遗传算法的TSP算法总体框架 (2)3.2算法的详细设计 (3)3.2.1 解空间的表示方式 (3)3.2.2 种群初始化 (4)3.2.3适应度函数 (4)3.2.4选择操作 (4)3.2.5交叉操作 (5)3.2.6变异操作 (6)3.2.7进化逆转操作 (6)3.3 实验结果分析 (7)4 基于模拟退火算法的TSP算法 (10)4.1 SA算法的实现过程 (10)4.2 算法流程图 (10)4.3模拟退火算法的实现过程 (10)4.4实验结果 (11)5 对两种算法的评价 (14)5.1遗传算法优缺点 (14)5.2 模拟退火算法的优缺点 (15)6结语 (15)参考文献 (17)附录: ............................................................................................................ 错误!未定义书签。

廊坊师范学院本科生毕业论文论文题目:基于遗传算法与模拟退火算法的TSP算法求解10大城市最短旅途论文摘要:TSP问题为组合优化中的经典的NP完全问题.本论文以某旅行社为中国十大旅游城市--珠海、西安、杭州、拉萨、北京、丽江、昆明、成都、洛阳、威海制定最短旅途为例,分别利用基于遗传算法的TSP算法与基于模拟退火算法的TSP算法求解10大城市旅游路线问题.本论文给出了遗传算法与模拟退火算法中各算子的实现方法,并展示出求解系统的结构和求解系统基于MATLAB的实现机制.利用MATLAB软件编程,运行出结果,并对基于遗传算法的TSP算法结果与基于模拟退火算法的TSP算法的结果进行比较,描述其优缺点,并选择最为恰当的TSP算法,实现最短旅途的最优解.关键词:遗传算法;模拟退火算法;TSP;最短路径;Title:TSP Algorithm Based on Genetic Algorithm or Simulated Annealing Algorithm for Solving the Shortest Journey of 10 CitiesAbstract:TSP problem is a classic NP problem about combinatorial optimization.This article takes a travel agency looking for the shortesttrip of ten tourist cities in China-Zhuhai,Xi'an,Hangzhou,Lhasa,Beijing,Lijiang,Kunming,Chengdu,Luoyang and Weihai forinstance,and solves this problem by TSP algorithm based on geneticalgorithm and simulated annealing algorithm.The article gives theimplementations of every operator of genetic algorithm and simulatedannealing algorithm and demonstrates the architecture and theimplementation mechanism of the solving system based on MATLAB.Iprogram and operate the results by MATLAB software,and compare theresults based on genetic algorithm and simulated annealingalgorithm.And describe their advantages and disadvantages so thatchoose the most appropriate TSP algorithm to achieve the optimalsolution for the shortest path.Keywords:genetic algorithm;simulated annealing algorithm;TSP;the shortest path1 引言TSP问题为组合优化中的经典问题,已经证明为一NP完全问题[1],即其最坏情况下的时间复杂性随着问题规模的扩大,按指数方式增长[2],到目前为止不能找到一个多项式时间的有效算法.TSP问题可描述为:已知n个城市相互之间的距离,某一旅行商从某个城市出发访问每个城市一次且仅一次,最后回到出发城市,如何安排才使其所走路线最短.TSP问题不仅仅是一个简单的组合优化问题,其他许多的NP完全问题可以归结为TSP问题,如邮路问题、装配线上的螺帽问题和产品的生产安排问题等,使得TSP问题的有效求解具有重要的意义.本文中的TSP算法主要采用遗传算法与模拟退火算法.遗传算法是一种进化算法,其基本原理是仿效生物界中的“物竞天择,适者生存”的演化法则[3].遗传算法把问题参数编码为染色体,再按照所选择的适应度函数,利用迭代的方式进行选择、交叉、变异以及进化逆转等运算对个体进行筛选和进化,使适应值大的个体被保留,适应值小的个体被淘汰[4],新的群体继承了上一代的信息,又优于上一代,这样反复循环,直至满足条件,最后留下来的个体集中分布在最优解的周围,筛选出最优个体作为问题的解.模拟退火算法的出发点是基于物理中固体物质的退火过程与一般的组合优化问题之间的相似性[5],该算法是一种优化算法,其物理退火过程由三部分组成,分别为:加温过程、等温过程、冷却过程.其中,加温过程对应算法设定初温,等温过程对应算法的Metropolis[6]抽样过程,冷却过程对应控制参数的下降.这里能量的变化就是目标函数,要得到的最优解就是能量最低态[7].Metropolis准则是SA算法收敛于全局最优解的关键所在,Metropolis 准则以一定的概率接受恶化解,这样就使算法跳离局部最优的陷阱.2 问题描述本案例为某旅行社为中国十大旅游城市,分别为珠海、西安、杭州、拉萨、北京、丽江、昆明、成都、洛阳、威海,根据全程路径最短为目的,制定最优的旅游顺序依次游玩这十个城市.这类问题就由TSP算法来解决,寻找出一条最短遍历这10个城市的路径.利用google地图找到城市坐标,下表为这十个城市的位置坐标如表2-1所示.表2-1 10个城市的位置坐标3 基于遗传算法TSP算法3.1 基于遗传算法的TSP算法总体框架TSP问题的遗传算法包括编码设计、种群初始化、适应度函数选择、终止条件设定、选择操作设定、交叉操作设定以及变异操作设定和进化逆转操作.为简化TSP问题的求解,假设每个城市和其它任意一个城市之间都以欧氏距离[8]直接相连.遗传算法TSP问题的流程图如图2-1所示.。

遗传算法解决TSP问题的matlab程序【精品毕业设计】(完整版)

遗传算法解决TSP问题的matlab程序【精品毕业设计】(完整版)

1.遗传算法解决TSP 问题(附matlab源程序)2.知n个城市之间的相互距离,现有一个推销员必须遍访这n个城市,并且每个城市3.只能访问一次,最后又必须返回出发城市。

如何安排他对这些城市的访问次序,可使其4.旅行路线的总长度最短?5.用图论的术语来说,假设有一个图g=(v,e),其中v是顶点集,e是边集,设d=(dij)6.是由顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶7.点且每个顶点只通过一次的具有最短距离的回路。

8.这个问题可分为对称旅行商问题(dij=dji,,任意i,j=1,2,3,…,n)和非对称旅行商9.问题(dij≠dji,,任意i,j=1,2,3,…,n)。

10.若对于城市v={v1,v2,v3,…,vn}的一个访问顺序为t=(t1,t2,t3,…,ti,…,tn),其中11.ti∈v(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为:12.min l=σd(t(i),t(i+1)) (i=1,…,n)13.旅行商问题是一个典型的组合优化问题,并且是一个np难问题,其可能的路径数目14.与城市数目n是成指数型增长的,所以一般很难精确地求出其最优解,本文采用遗传算法15.求其近似解。

16.遗传算法:17.初始化过程:用v1,v2,v3,…,vn代表所选n个城市。

定义整数pop-size作为染色体的个数18.,并且随机产生pop-size个初始染色体,每个染色体为1到18的整数组成的随机序列。

19.适应度f的计算:对种群中的每个染色体vi,计算其适应度,f=σd(t(i),t(i+1)).20.评价函数eval(vi):用来对种群中的每个染色体vi设定一个概率,以使该染色体被选中21.的可能性与其种群中其它染色体的适应性成比例,既通过轮盘赌,适应性强的染色体被22.选择产生后台的机会要大,设alpha∈(0,1),本文定义基于序的评价函数为eval(vi)=al23.pha*(1-alpha).^(i-1) 。

基于遗传算法求解背包问题【精品毕业设计】(完整版)

基于遗传算法求解背包问题【精品毕业设计】(完整版)

毕业设计(论文)基于遗传算法求解背包问题院别专业名称班级学号学生姓名指导教师2012年6月15日基于遗传算法求解背包问题摘要背包问题(Knapsack problem)是一种组合优化的NP完全问题,本文首先介绍了基本遗传算法的基本原理、特点及其基本实现技术,接着针对背包问题,论述了遗传算法在编码表示和遗传算子(包括选择算子、交叉算子变异算子这三种算子)等方面的应用情况。

并且结合背包问题实例,给出了具体的编码方法,运行参数,群体大小,最大迭代次数,以及合适的遗传算子。

最后,简单说明了遗传算法在求解背包问题中的应用并对遗传算法解决背包问题的前景提出了展望。

关键词:背包问题,遗传算法,遗传算子Genetic Algorithm for KPAuthor:Yang DongTutor:Kong ZhiAbstractKP (Knapsack Problem) is a combinatorial optimization of NP - complete problem. The primary knowledge, characteristics and the basic techniques of GA are introduced firstly. The encoding model and genetic operators (including selection operation, crossover operation and mutation operation) solving KP are discussed secondly. Combined with examples of knapsack problem, we have given the specific encoding method, operating parameters, popsize, maxgeneration, and suitable genetic operator. At last, the application of genetic algorithm is simple presented, and the prospect for the future of genetic algorithm in solving KP has been given.Key Words: KP, genetic algorithm, genetic operators目录1绪论 (III)1.1 引言 (1)1.2 背包问题概述 (1)1.2.1 背包问题的描述 (2)1.2.2 研究背包问题的意义 (9)1.3 遗传算法 (10)1.3.1 遗传算法概述 (10)1.3.2 遗传算法的特点 (10)1.3.3 遗传算法的应用领域 (11)2遗传算法的基本原理 (13)2.1 基本流程 (14)2.2 编码 (14)2.3 适应度函数 (15)2.4 遗传算子 (15)2.4.1 选择算子 (15)2.4.2 交叉算子 (17)2.4.3 变异算子 (17)2.5 参数控制 (18)2.5.1 群体规模 (18)2.5.2 交叉概率 (18)2.5.3 变异概率 (18)2.6 算法结束条件控制 (19)3求解实现背包问题的遗传算法 (20)3.1 0_1背包问题中染色体的表示 (20)3.2 算法求解01背包问题时用到的参数 (20)3.3 选择操作 (20)3.4 交叉操作 (21)3.5 精英策略 (22)3.6 变异操作 (22)3.7 代际更新 (23)3.8 算法的终止 (23)3.9 仿真结果与测试 (24)3.9.1 不同交叉概率下所的测试结果 (25)3.9.2 极端数据对结果的影响 (27)3.9.3 仿真结果总结 (29)结论 (31)致谢 (32)参考文献 (33)附录 (34)1绪论1.1引言现代科学理论研究与实践中存在着大量与优化、自适应相关的问题,但除了一些简单的情况之外,人们对于大型复杂系统的优化和自适应问题仍然无能为力。

遗传算法的研究及应用毕业设计

遗传算法的研究及应用毕业设计

毕业设计遗传算法的研究及应用摘要本文分为三部分:第一部分:遗传算法的概述。

主要介绍了遗传算法的基本思想、遗传算法的构成要素、遗传算法的特点、遗传算法的基本模型、遗传算法的应用情况及今后的研究方向等等的内容。

第二部分:基于Matlab 7.0下的遗传算法求解函数最值问题。

遗传算法作为一种新的优化方法,广泛地用于计算科学、模式识别和智能故障诊断等方面,它适用于解决复杂的非线性和多维空间寻优问题,近年来也得到了较为广阔的应用。

本人选择了函数优化这个应用领域,按照遗传算法的步骤,即编码、解码、计算适应度(函数值)、选择复制运算、交叉运算和变异运算,对函数进行求解最值。

第三部分:对遗传算法求函数最值问题的改进。

这部分主要针对本文第二部分进行改进,通过改变基本遗传算法运行参数值,如改变交叉概率Pc值和变异概率Pm值,从而使最优值更加接近相对标准下函数的最值。

关键词:遗传算法适应度交叉概率变异概率目录1 前言 (1)2 遗传算法概述 (1)2.1生物进化理论和遗传学的基本知识 (1)2.2遗传算法的基本思想 (3)2.3遗传算法的构成要素 (3)2.3.1 染色体编码方法 (3)2.3.2 适应度函数 (4)2.3.3 遗传算子 (4)2.3.4 基本遗传算法运行参数 (5)2.4遗传算法的特点 (6)2.5遗传算法的基本模型 (7)2.6遗传算法的应用 (8)2.7遗传算法今后的研究方向 (10)3 基于MATLAB 7.0下的遗传算法求解函数最值问题 (11)3.1遗传算法的标准函数 (11)3.2解题步骤说明 (12)3.2.1 编码问题 (12)3.2.2 选择运算 (12)3.2.3 交叉运算 (13)3.2.4 变异运算 (13)3.3运行参数说明 (14)3.4对遗传算法求得的最值的分析 (14)3.5运行程序以及对其解释 (14)3.6从数学的角度求解函数最优值 (18)3.6.1 自变量x以0.2为步进单位 (18)3.6.2 自变量x以0.1为步进单位 (19)3.6.3 自变量x以更精确的数为步进单位 (21)4 对遗传算法求解函数最值问题的改进 (21)4.1寻找求得最优解的运行参数值 (22)4.1.1 当Pc=0.9和Pm=0.0001 (22)4.1.2 当Pc=0.9和Pm=0.001 (23)4.1.3 当Pc=0.9和Pm=0.01 (24)4.1.4 当Pc=0.9和Pm=0.1 (26)4.1.5 当Pc=0.4和Pm=0.1 (27)5 结论 (29)参考文献 (30)ABSTRACT (31)附录 (32)致谢 (38)仲恺农业工程学院毕业论文(设计)成绩评定表 (39)1 前言生命科学与工程科学的相互交叉、相互渗透和相互促进是近代科学技术发展的一个显著特点,而遗传算法的蓬勃发展正体现了科学发展的这一特征和趋势。

遗传算法 (1)【精品毕业设计】(完整版)

遗传算法 (1)【精品毕业设计】(完整版)

遗传算法定义遗传算法(Genetic Algorithm)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它是有美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。

每个个体实际上是染色体(chromosome)带有特征的实体。

染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。

因此,在一开始需要实现从表现型到基因型的映射即编码工作。

由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜务汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。

这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

遗传算法特点遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:1、遗传算法以决策变量的编码作为运算对象。

传统的优化算法往往直接决策变量的实际植本身,而遗传算法处理决策变量的某种编码形式,使得我们可以借鉴生物学中的染色体和基因的概念,可以模仿自然界生物的遗传和进化机理,也使得我们能够方便的应用遗传操作算子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遗传算法总结
遗传算法是借鉴生物的自然选择和遗传进化机制而开发出的一种全局自适应概率搜索算法。

一、遗传算法流程图
算法开始
原问题参数集
染色体编码,产生初始种群
计算种群中个体的适应值
终止条件判断
N
选择
交叉
Y
变异
新种群
输出结果
算法结束
图1 遗传算法流程图
二、遗传算法的原理和方法
1)染色体编码
把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法就称为编码。

De Jong 曾提出了两条操作性较强的实用编码原则:编码原则一:应使用能易于产生与所求问题相关的且具有低阶、短定义长度模式的编码方案;编码原则二:应使用能使问题得到自然表示或描述的具有最小编码字符集的编码方案。

编码方法主要有以下几种:二进制编码方法、格雷码编码方法、浮点数编码方法、符号编码方法、参数级联编码方法、多参数交叉编码方法。

2) 适应值计算
由解空间中某一点的目标函数值()f x 到搜索空间中对应个体的适应度函数值
(())Fit f x 的转换方法基本上有一下三种:
a . 直接以待解的目标函数值()f x 转化为适应度函数值(())Fit f x ,令
() (())=() f x Fit f x f x ⎧⎨
-⎩目标函数为最大化函数
目标函数为最小化函数
b . 对于最小值的问题,做下列转化max max () ()
(())0 C f x f x C Fit f x -<⎧=⎨⎩
其他,其中max C 是
()f x 的最大输入值。

c . 若目标函数为最小值问题,1
(()), 0, ()01()
Fit f x c c f x c f x =
≥+≥++
若目标函数为最大值问题,1
(()), 0, ()01()
Fit f x c c f x c f x =≥-≥+-
3) 选择、交叉、变异
遗传算法使用选择算子来对群体中的个体进行优胜劣汰操作:根据每个个体的适应度值大小选择。

适应度较高的个体被遗传到下一代群体中的概率较大;适应度较低的个体的被遗传到下一代群体中的概率较小。

其中选择的方法有:轮盘赌选择、随机竞争选择、最佳保留选择、无回放随机选择、确定式选择等。

遗传算法中的所谓交叉运算,是指对两个相互配对的染色体按某种方式相互交换其部分基因,从而形成两个新的个体。

交叉操作主要有单点交叉、两点交叉与多点交叉、均匀交叉和算数交叉四种。

遗传算法中的变异运算,是指将个体染色体编码串中的某些基因座上的基因值用该基因座的其他基因来替换,从而形成一个新的个体。

主要有基本位变异、均匀变异、边界变异等几种变异操作方法。

4) 控制参数选择
交叉概率c p 一般取0.4~0.99;变异概率m p 一般取0.0001~0.1;群体规模一般取10~200。

三、算例
⎪⎩

⎨⎧∈≤≤=+=≤+=-+-=N
10,042),(5),(..)2()3(),( min 121212112
2212112
22121x x x x x x x h x x x x g t s x x x x f , (1)
1)三种不同的遗传方法
方法一:原模型中12x x 、均为决策变量,操作如下。

a. 采用混合整数编码,对1x 进行十进制编码,2x 进行二进制编码;
b. 适应度函数值采用12121
((,))(,)
Fit f x x c f x x =
+计算,其中
112112max{0,(,)5}max{0,|(,)4|}c g x x h x x λμ=⨯-+⨯-,λ=μ=10000;
c. 采用赌轮盘选择、单点交叉和基本位变异;
d. c p =0.8,m p =0.1,遗传代数为200,种群中个体数100;
e. 终止条件为连续十次最优个体保持不变或遗传代数到达200。

方法二:已知等式约束112(,)h x x ,可得21(4)/2x x =-,则原问题可化为
221
112
211111114min ()(3)((
)2)2
4()()52..010N 4010
2x f x x x g x x s t x x x -=-+--⎧=+≤⎪⎪≤≤∈⎨⎪-⎪≤≤⎩

(2)
即等式约束简化后的模型为 22
1112
21111
11min ()(3)()2
4()()5..204N
x
f x x x
g x x s t x x =-+-⎧=+≤⎪⎨⎪≤≤∈⎩, (3)
其中a~b 的操作如下,而c~e 的操作同方法一。

a. 对1x 进行十进制编码;
b. 适应度函数值采用12121
((,))(,)
Fit f x x c f x x =
+计算,其中
112max{0,(,)5}c g x x λ=⨯-,λ=10000
方法三:在方法二的基础上,改变1x 的编码方法,对1x 进行二进制编码。

由于104x ≤≤,且为自然数,则二进制编码至少为3位,但3位的二进制可以表示0~7的整数,所以存在冗余编码。

则通过惩罚来排除冗余编码,即适应度函数值采用
12121
((,))(,)
Fit f x x c f x x =
+计算。

其中1121max{0,(,)5}max{0,()4}c g x x x i λλ=⨯-+⨯-,λ=10000。

1()x i 表示个体解码后的1x 。

2)三种方法的计算结果
方法一可得到三个不同的解:
解1:12122,1, ((,))0.4646, () 2.0000x x Fit f x x f x ====,适应度趋势图如下:
图2 方法一解1的适应度趋势图
解2:12120,2, ((,))0.1075, ()9.0000x x Fit f x x f x ====,适应度趋势图如下:。

相关文档
最新文档