ANSYS R17 拓扑优化ACT使用方法

合集下载

拓扑优化简介及在ansys软件中的实现

拓扑优化简介及在ansys软件中的实现
拓扑优化简介及在ANSYS软
件中的实现
ANSYS TRAINING
主要内容
1
2 3
拓扑优化概述 ANSYS中拓扑优化过程 实例讲解
ANSYS TRAINING
拓扑优化概述
ANSYS TRAINING
拓扑优化概述
工程结构优化
尺寸优化:以几何尺寸为设 计变量,而材料的性质,结构
的拓扑和几何形状保持不变
ANSYS TRAINING
实例讲解
实例二 力热载荷综合作用下的拓扑优化
3.3KN
换热系数 (Wm-2K)
在实例一中的模型上施加热边界条件如下:
位置 温度(K)
长×宽=160 ×120
1 2 3
1358.37 293 363
1092.36 105.3 13433
6.5MPa
ANSYS TRAINING
• GUI操作对应命令流的输出
– 单步查看 – 最终整体输出
Help is very helpful!
ANSYS TRAINING
实例讲解
实例一 力载荷下的拓扑优化
对一长正方形平板零件,底边中部受到均匀的压力6.5MPa,顶部两
侧受到集中载荷3.3KN。本问题的目标是在体积减少70%的条件下,
结构的柔顺度最小。 3.3KN
实例讲解
热-结构耦合分析
耦合方法
采用顺序耦合分析的方法,即首先进行整机温度场分析,然 后利用热分析结果即节点温度作为“体载荷”施加到随后的 结构分析中。
分析流程
温度场 边界条件 清除 物理环境 转换 单元 保存温度场 物理环境 转换 材料属性 温度场 计算 转换 接触算法 设置 参考温度 设置 边界条件
–PLNSOL,TOPO –or General Postproc > Plot Results > Nodal Solution… –红色表示要保留的材料 (pseudo-density 1.0); –蓝色表示可以去掉的材料 (pseudo-density 0.0)。

《Ansys拓扑优化》课件

《Ansys拓扑优化》课件
航空航天
优化飞机和航天器的结构,在减少重量的同时提高强度和刚度。
汽车工程
改进汽车结构以提高燃油效率和碰撞安全性。
建筑工程
优化建筑结构以提供更好的抗震性能和节能效果。
传统的结构优化与拓扑优化的 区别
• 传统的结构优化方法通常只考虑材料的分布,而拓扑优化还考虑了形 状的优化。
• 拓扑优化可以提供更自由的设计空间,允许非常复杂的结构形态。 • 拓扑优化能够更全面地优化结构的性能指标,如重量、刚度、疲劳寿
Ansys提供了先进的优化算法, 能够高效地进行拓扑优化。
集成的结构分析
Ansys可以直接对结构进行有 限元分析,提供准确的性能评 估。
与CAD软件的无缝集成
Ansys可以导入CAD模型,轻 松进行拓扑优化设计。
ቤተ መጻሕፍቲ ባይዱ
Ansys拓扑优化的输入数据要求
• 结构的几何形状和边界条件 • 设计的材料特性 • 优化目标和约束条件
命等。
拓扑优化的基本原理
拓扑优化基于有限元分析和优化算法,通过迭代地将材料从刚度较低的区域 转移到刚度较高的区域,以实现结构的最佳形态。
拓扑优化的流程
1
初始设计生成
2
根据设计要求生成初始设计。
3
优化迭代
4
通过重新分配材料进行优化迭代,直 到达到最优解。
设计空间定义
确定可调整材料的区域和边界条件。
有限元分析
使用有限元方法对结构进行力学分析, 评估性能。
拓扑优化在工程设计中的意义
1 降低成本
通过优化材料使用,减少了成本和浪费。
2 提高性能
优化后的结构能够提供更好的性能指标,如强度、刚度和疲劳寿命。
3 实现轻量化设计

如何利用ANSYS进行拓扑优化

如何利用ANSYS进行拓扑优化

如何利用ANSYS进行拓扑优化前言就目前而言,利用有限元进行优化主要分成两个阶段:(1)进行拓扑优化,明确零件最佳的外形、刚度、体积,或者合理的固有频率,主要目的是确定优化的方向;(2)进行尺寸优化,主要目的是确定优化后的的零件具体尺寸值,通常是在完成拓扑优化之后,再执行尺寸优化。

在ANSYS中,利用拓扑优化,可以完成以下两个目的:(1)在特定载荷和约束的条件下,确定零件的最佳外形,或者最小的体积(或者质量);(2)利用拓扑优化,使零件达到需要的固有频率,避免在使用过程中产生共振等不利影响。

本文主要就在ANSYS环境中如何执行拓扑优化进行说明。

1、利用ANSYS进行拓扑优化的过程在ANSYS中,执行优化,通常分为以下6个步骤:、定义需要求解的结构问题对于结构进行优化分析,定义结构的物理特性必不可少,例如,需要定义结构的杨氏模量、泊松比(其值在~之间)、密度等相关的结构特性方面的信息,以供结构计算能够正常执行下去。

、选择合理的优化单元类型在ANSYS中,不是所有的单元类型都可以执行优化的,必须满足如下的规定:(1)2D平面单元:PLANE82单元和PLANE183单元;(2)3D实体单元:SOLID92单元和SOLID95单元;(3)壳单元:SHELL93单元。

上述单元的特性在帮助文件中有详细的说明,同时对于2D单元,应使用平面应力或者轴对称的单元选项。

、指定优化和非优化的区域在ANSYS中规定,单元类型编号为1的单元,才执行优化计算;否则,就不执行优化计算。

例如,对于结构分析中,对于不能去除的部分区域将单元类型编号设定为≥2,就可以不执行优化计算,请见下面的代码片段:…………Et,1,solid92Et,2,solid92……Type,1Vsel,s,num,,1,2Vmesh,all……Type,2Vsel,s,num,,3Vmesh,all……说明:上述代码片段定义相同的单元类型(solid92),但编号分别为1和2,并将单元类型编号1利用网格划分分配给了1#体和2#体,从而对其进行优化计算;而单元编号为2利用网格划分分配给了3#体,从而不执行优化计算。

《Ansys拓扑优化》课件

《Ansys拓扑优化》课件
《ansys拓扑优化》 ppt课件
REPORTING
• 拓扑优化概述 • ANSYS拓扑优化的基本原理 • ANSYS拓扑优化的操作流程 • 拓扑优化案例分析 • 结论与展望
目录
PART 01
拓扑优化概述
REPORTING
拓扑优化的定义
拓扑优化是在给定设计空间、载荷和约束条件下,通过求解数学优化问题,确定 最优的材料分布方案,以达到结构轻量化、刚度最大化或柔度最小化的目的。
PART 05
结论与展望
REPORTING
拓扑优化在工程设计中的重要性
01
02
03
提高结构效率
通过优化材料的分布,减 少不必要的材料,降低重 量并提高结构的刚度和稳 定性。
降低制造成本
减少材料使用意味着减少 生产成本和资源消耗,同 时优化设计可降低加工难 度。
创新设计
拓扑优化能够发现传统设 计方法无法达到的全新设 计方案,为工程师提供更 多创新选择。
熟悉ANSYS软件
深入了解ANSYS拓扑优化的基本原理、操作 流程和参数设置。
建立合理的模型
根据实际工程问题,建立准确的数学模型, 并选择合适的优化算法。
迭代与调整
在优化过程中,根据收敛情况和结果反馈, 不断调整优化参数和方法。
结果验证与评估
对优化后的设计方案进行实验验证,确保其 在实际应用中的可行性和可靠性。
迭代与收敛
在优化过程中,迭代计算并检查收敛性,直 至达到预设的收敛准则或迭代次数。
结果后处理和评估
评估与验证
根据优化结果,评估设计的可行性和有效性 ,如有需要可进行实验验证。
结果后处理
查看拓扑优化结果,如等效应力、应变分布 等。
设计优化建议

ansys优化方法简介以及实例

ansys优化方法简介以及实例

拓扑优化理论及在ANSYS软件中的实现一.拓扑优化概论:连续体结构的拓扑优化设计是继结构的尺寸优化设计和形状优化设计之后,在结构优化领域出现的一种富有挑战性的研究方向,它是一种比尺寸优化和形状优化更高层次的优化方法,也是结构优化问题中最为复杂的一类问题。

拓扑优化处于结构的概念设计阶段,其优化结果是一切后续设计的基础。

因而在初始设计阶段需要确定结构的最佳拓扑形式。

拓扑优化的目的是寻求结构的刚度在设计空间最佳的分布形式,或在设计域空间需求结构最佳的传力路线,以优化结构的某些性能或减轻结构的重量。

目前对于拓扑优化的研究主要集中在以下几个方面:结构拓扑描述方式和材料插值模型;拓扑优化中结构拓扑描述方式和材料的插值模型非常重要,是一切后续拓扑优化工作的基础。

常用的拓扑描述方式和材料插值模型有均匀化方法、密度法、变厚度法和拓扑函数描述法等。

拓扑优化求解数值算法,新型优化算法在拓扑优化中的应用;拓扑优化的数值计算方法主要包括有限元法和无网格法,基于成熟的有限元理论的拓扑优化格式简单,便于实现,但在优化过程中常因网格的重分和细化导致计算困难,结构中常出现中间密度材料、棋盘格现象和网格依赖性等问题。

无网格法是今年发展的一种新型数值求解技术,摆脱了有限元繁琐的网格生成过程,从理论上看比有限元法拥有更广阔的应用前景,但目前尚处于发展和完善中。

拓扑优化的特点是:设计变量多,计算规模大,目标函数和约束函数一般为设计变量的非线性、非单调函数。

目前应用于连续体结构拓扑优化计算的优化算法主要包括两类:优化准则法和序列凸规划法。

去除优化过程中数值计算不稳定的方法,优化结果的提取和重构;拓扑优化中经常出现的数值计算问题有:多孔材料、棋盘格现象、网格依赖性和局部极值问题。

优化结果的提取和应用主要考虑的是如何将优化的结果转化为可用的CAD模型问题,实现CAE和CAD之间的数据共享和交流。

随着拓扑优化理论研究的不断深入,拓扑优化在航空和汽车领域已开始得到初步的应用,主要是通过拓扑优化获得结构的最初拓扑形式,并在最初拓扑形式的基础上进行相关的后续优化设计。

(完整版)ANSYS拓扑优化原理讲解及实例操作

(完整版)ANSYS拓扑优化原理讲解及实例操作

拓扑优化是指形状优化,有时也称为外型优化。

拓扑优化的目标是寻找承受单载荷或多载荷的物体的最正确材料分配方案。

这种方案在拓扑优化中表现为“最大刚度〞设计。

与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。

目标函数、状态变量和设计变量〔参见“优化设计〞一章〕都是预定义好的。

用户只需要给出结构的参数〔材料特性、模型、载荷等〕和要省去的材料百分比。

给每个有限元的单元赋予内部伪密度来实现。

这些伪密度用PLNSOL,TOPO命令来绘出。

拓扑优化的目标——目标函数——是在满足结构的约束〔V〕情况下减少结构的变形能。

减小结构的变形能相当于提高结构的刚度。

这个技术通过使用设计变量。

结构拓扑优化的根本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料分布的问题。

通过拓扑优化分析,设计人员可以全面了解产品的结构和功能特征,可以有针对性地对总体结构和具体结构进行设计。

特别在产品设计初期,仅凭经验和想象进行零部件的设计是不够的。

只有在适当的约束条件下,充分利用拓扑优化技术进行分析,并结合丰富的设计经验,才能设计出满足最正确技术条件和工艺条件的产品。

连续体结构拓扑优化的最大优点是能在不知道结构拓扑形状的前提下,根据边界条件和载荷条件确定出较合理的结构形式,它不涉及具体结构尺寸设计,但可以提出最正确设计方案。

拓扑优化技术可以为设计人员提供全新的设计和最优的材料分布方案。

拓扑优化基于概念设计的思想,作为结果的设计空间需要被反应给设计人员并做出适当的修改。

最优的设计往往比概念设计的方案结构更轻,而性能更佳。

经过设计人员修改正的设计方案可以再经过形状和尺寸优化得到更好的方案。

5.1.2优化拓扑的数学模型优化拓扑的数学解释可以转换为寻求最优解的过程,对于他的描述是:给定系统描述和目标函数,选取一组设计变量及其范围,求设计变量的值,使得目标函数最小〔或者最大〕。

一种典型的数学表达式为:&g1x,x,v&g2x,x,vminfx,v式中,x-系统的状态变量;g1、g2-一等式和不等式的结束方程;fx,v-目标函数;-设计变量。

拓扑优化简介和在ansys软件中的实现33页PPT

拓扑优化简介和在ansys软件中的实现33页PPT
Nhomakorabea▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
33
拓扑优化简介和在ansys软件中的实现
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

ANSYS教程二---拓扑优化

ANSYS教程二---拓扑优化

ANSYS教程二---拓扑优化拓扑优化什么是拓扑优化?拓扑优化是指形状优化,有时也称为外型优化。

拓扑优化的目标是寻找承受单载荷或多载荷的物体的最佳材料分配方案。

这种方案在拓扑优化中表现为“最大刚度”设计。

与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。

目标函数、状态变量和设计变量(参见“优化设计”一章)都是预定义好的。

用户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。

拓扑优化的目标――目标函数――是在满足结构的约束(V)情况下减少结构的变形能。

减小结构的变形能相当于提高结构的刚度。

这个技术通过使用设计变量(i)给每个有限元的单元赋予内部伪密度来实现。

这些伪密度用PLNSOL,TOPO命令来绘出。

例如,给定V=60表示在给定载荷并满足最大刚度准则要求的情况下省去60%的材料。

图2-1表示满足约束和载荷要求的拓扑优化结果。

图2-1a表示载荷和边界条件,图2-2b表示以密度云图形式绘制的拓扑结果。

图2-1 体积减少60%的拓扑优化示例如何做拓扑优化拓扑优化包括如下主要步骤:1.定义拓扑优化问题。

2.选择单元类型。

3.指定要优化和不优化的区域。

4.定义和控制载荷工况。

5.定义和控制优化过程。

6.查看结果。

拓扑优化的细节在下面给出。

关于批处理方式和图形菜单方式不同的做法也同样提及。

定义拓扑优化问题定义拓扑优化问题同定义其他线性,弹性结构问题做法一样。

用户需要定义材料特性(杨氏模量和泊松比),选择合适的单元类型生成有限元模型,施加载ANSYS教程二---拓扑优化荷和边界条件做单载荷步或多载荷步分析。

参见“ANSYS Analysis Procedures Guides”第一、二章。

选择单元类型拓扑优化功能可以使用二维平面单元,三维块单元和壳单元。

要使用这个功能,模型中只能有下列单元类型:二维实体单元:SOLID2和__三维实体单元:__和__壳单元:__二维单元用于平面应力问题。

ansys workbench拓扑优化实例

ansys workbench拓扑优化实例

ansys workbench拓扑优化实例
拓扑优化(Topology Optimization)是一种结构优化的方法,通过在给定的设计空间内寻找最佳材料分布来实现结构的轻量化和性能优化。

在ANSYS Workbench 中,可以通过拓扑优化模块来进行这种优化分析。

以下是一个简单的ANSYS Workbench 拓扑优化实例的步骤:
1. 创建几何模型:首先,在ANSYS Workbench 中创建一个几何模型,可以是一个零件或者一个装配体。

2. 设定材料属性:为模型中的材料定义材料属性,包括弹性模量、泊松比等。

3. 设定加载和约束条件:定义模型的加载和约束条件,包括受力点、受力大小和方向,以及约束点和约束类型。

4. 添加拓扑优化模块:在Workbench 中选择拓扑优化模块,并将模型导入到拓扑优化模块中。

5. 设定优化目标和约束条件:定义优化的目标,比如最小化结构的重量或者最大化结构的刚度,同时设置一些约束条件,比如最大应力、最大变形等。

6. 设定优化参数:定义拓扑优化的参数,比如拓扑优化的迭代次数、网格分辨率等。

7. 运行优化分析:运行拓扑优化分析,软件会根据设定的优化目标和约束条件,在给定的设计空间内寻找最佳的材料分布。

8. 分析结果:分析优化结果,查看优化后的结构形态和性能指标,根据需要对设计进行进一步的调整和优化。

请注意,以上步骤是一个简化的示例,实际的拓扑优化分析可能涉及到更多的参数设定和分析步骤。

在实际应用中,建议根据具体的工程问题和软件版本进行详细的参数设定和分析。

ansys拓扑优化[整理版]

ansys拓扑优化[整理版]

ansys拓扑优化[整理版][ANSYS拓扑优化]注意点结果对载荷情况十分敏感。

很小的载荷变化将导致很大的优化结果差异。

结果对网格划分密度敏感。

一般来说,很细的网格可以产生“清晰”的拓扑结果,而较粗的网格会生成“混乱”的结果。

但是,较大的有限元模型需要更多的收敛时间。

,在一些情况下会得到珩架形状的拓扑结果。

这通常在用户指定很大的体积减少值和较细的网格划分时出现。

很大的体积减少值如80%或更大(TOPDEF命令)。

, 如果有多个载荷工况时,有多种方式将其联合进行拓扑优化求解。

例如,考虑有五个载荷工况的情况。

可以选择使用五个单独的拓扑优化分析过程,也可以使用包括这五个工况的一次拓扑优化分析。

还有,也可以将这五个工况合成为一个工况,然后做一次优化。

综合起来,可以有七个不同的拓扑优化求解:,5 独立的拓扑优化求解(每个工况一次)1 拓扑优化求解针对五个工况1 拓扑优化求解针对一个联合工况附加的结果或结果的组合都是可用的。

结果对泊松比敏感但对杨氏模量不敏感。

但是,随泊松比变化的效果不明显。

, TOPDEF和TOPITER命令中的指定值并不存储在ANSYS数据库中;因此,用户必须在每次拓扑优化时重新指定优化目标和定义。

[ANSYS拓扑优化]二维多载荷优化设计示例在本例中,对承受两个载荷工况的梁进行拓扑优化。

问题描述图2表示一个承载的弹性梁。

梁两端固定,承受两个载荷工况。

梁的一个面是用一号单元划分的,用于拓扑优化,另一个面是用二号单元划分的,不作优化。

最后的形状是单元1的体积减少50%。

图片2 承受两个载荷工况的梁图片3 拓扑优化结果——50%体积减少本问题是用下列的ANSYS命令流求解的。

两个载荷工况定义并用LSWRITE命令写入文件。

使用ANSYS选择功能,单元SOLID82通过类型号1和2分别指定优化和不优化的部分。

TOPDEF命令定义问题有两个载荷工况并要求50%体积减少。

TOPEXE命令在本例中没有使用,代之以用TOPITER宏命令指定最大迭代次数为12次。

ANSYS R17 拓扑优化ACT使用方法

ANSYS R17 拓扑优化ACT使用方法
1
Notes: • During the scan of the available extensions, the folders will be analyzed according to the following order:
1. The application data folder(e.g. %AppData%\Ansys\v170\ACT\extensions) 2. The additional folders defined in the “Additional Extension Folders” property 3. The installation folder 4. The “extensions” folder part of the current Workbench project (if the project was previously saved with the extension) • If an extension is available in more than one of these locations, the 1st one according to the scan order is used
Installing from the ACT Start Page:
1. From the project page, select the “ACT Start Page” option
2. Click on “Extension Manager” 3. Press “+” symbol in the top right corner 4. It will open a file dialog to select the
1. In the “Tools” menu, select the “Options…” 2. Select “Extensions” in the pop up panel 3. Add the path under “Additional Extensions Folder …”

如何利用ANSYS进行拓扑优化(转)

如何利用ANSYS进行拓扑优化(转)

如何利用ANSYS进行拓扑优化前言就目前而言,利用有限元进行优化主要分成两个阶段:(1)进行拓扑优化,明确零件最佳的外形、刚度、体积,或者合理的固有频率,主要目的是确定优化的方向;(2)进行尺寸优化,主要目的是确定优化后的的零件具体尺寸值,通常是在完成拓扑优化之后,再执行尺寸优化。

在ANSYS中,利用拓扑优化,可以完成以下两个目的:(1)在特定载荷和约束的条件下,确定零件的最佳外形,或者最小的体积(或者质量);(2)利用拓扑优化,使零件达到需要的固有频率,避免在使用过程中产生共振等不利影响。

本文主要就在ANSYS环境中如何执行拓扑优化进行说明。

1、利用ANSYS进行拓扑优化的过程在ANSYS中,执行优化,通常分为以下6个步骤:定义需要求解的结构问题选择合理的优化单元类型设定优化和非优化的区域定义载荷步或者需要提取的频率对优化过程进行定义和控制计算并查看结果1.1、定义需要求解的结构问题对于结构进行优化分析,定义结构的物理特性必不可少,例如,需要定义结构的杨氏模量、泊松比(其值在0.1~0.4之间)、密度等相关的结构特性方面的信息,以供结构计算能够正常执行下去。

1.2、选择合理的优化单元类型在ANSYS中,不是所有的单元类型都可以执行优化的,必须满足如下的规定:(1)2D平面单元:PLANE82单元和PLANE183单元;(2)3D实体单元:SOLID92单元和SOLID95单元;(3)壳单元:SHELL93单元。

上述单元的特性在帮助文件中有详细的说明,同时对于2D单元,应使用平面应力或者轴对称的单元选项。

1.3、指定优化和非优化的区域在ANSYS中规定,单元类型编号为1的单元,才执行优化计算;否则,就不执行优化计算。

例如,对于结构分析中,对于不能去除的部分区域将单元类型编号设定为≥2,就可以不执行优化计算,请见下面的代码片段:…………Et,1,solid92Et,2,solid92……Type,1Vsel,s,num,,1,2Vmesh,all……Type,2Vsel,s,num,,3Vmesh,all…………说明:上述代码片段定义相同的单元类型(solid92),但编号分别为1和2,并将单元类型编号1利用网格划分分配给了1#体和2#体,从而对其进行优化计算;而单元编号为2利用网格划分分配给了3#体,从而不执行优化计算。

ANSYS R17 拓扑优化ACT使用方法ppt课件

ANSYS R17 拓扑优化ACT使用方法ppt课件
appropriate “*.wbex” binary file 5. The extension is installed
Loading the extension:
1. From the Extension Manager, click on your extension and choose ‘Load Extension’
2
© 2016 ANSYS, Inc.
August 12, 2020
Information
• Please pay attention to paragraph 9 of the CLICKWRAP SOFTWARE LICENSE AGREEMENT FOR ACS EXTENSIONS regarding TECHNICAL ENHANCEMENTS AND CUSTOMER SUPPORT (TECS): “TECS is not included with the Program(s)”
• Report any issue or provide feedback related to this app please contact:
Steve.Pilz@
3
© 2016 ANSYS, Inc.
August 12, 2020
Binary App Installation (1)
2. The extension is loaded
Notes: • The extension to be installed will be stored in the following location: %AppData%\Ansys\v170\ACT\extensions • The installation will create a folder in this location, in addition to the .wbex file

如何利用ANSYS进行拓扑优化(转)教学内容

如何利用ANSYS进行拓扑优化(转)教学内容
(2)TOVAR:定义优化变量,可以是目标变量,也可以是约束变量等;
(3)TODEF:定义优化的初始化条件或者收敛准则;
(4)TOEXE:执行单次优化计算;
(5)TOLOOP:批量执行多次优化分析计算。
说说TOEXE和TOLOOP之间的区别:TOEXE执行单次优化分析计算,其本身不执行结构分析过程,因此,在利用TOEXE命令执行优化计算之前,需要利用SOLVE或者LSSOLVE命令先执行结构静态分析计算;而TOLOOP是一个执行优化计算的宏命令,其中包含了SOLVE和LSSOLVE等命令,因此在上述代码片段中没有出现SOLVE或者LSSOLVE命令。就使用的便利性而言,利用TOLOOP命令可能更方便,但是利用TOEXE命令用户可以创建自己的优化宏命令,各有所长,主要是看用户如何使用这两个命令了。
相关命令:TOCOMP、TOVAR、TODEF、TOEXE、TOLOOP和简要说明。
(1)TOCOMP:定义结构优化任务目标。(如何理解COMPLIANCE:Compliance本意是一致性,统一性,在结构优化分析中,特别是对于多个载荷步,需要在多个载荷步之间取得一致性的结果,才能满足结构优化分析的目标)
……
……
/solution
Antype,modal
Finish
Tofreq,mfreq,reciprocal,3
Tovar,mfreq,obj
Tovar,volume,con,,50
Todef,1.0d-4
Toloop,20
……
……
说明:首先定义模态求解作为分析类型,之后利用tofreq设定频率优化作为优化任务,名称为mfreq(其中reciprocal表示多阶模态频率,本例中为前3阶模态),并利用命令tovar设定了体积减少50%作为优化的约束条件,之后设定优化的收敛准则,最后利用toloop命令执行最多20次优化迭代计算。在本例中,因为toloop是一个宏命令,所以并没有显式的使用modopt和mxpand命令,如果使用toexe命令,则用户必须显式的使用modopt和mxpand命令。

拓扑优化简介和在ansys软件中的实现33页PPT

拓扑优化简介和在ansys软件中的实现33页PPT


29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊

31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
拓扑优化简介和在ansys软件中的实

26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•Hale Waihona Puke 28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯

拓扑优化简介和在ansys软件中的实现PPT文档33页

拓扑优化简介和在ansys软件中的实现PPT文档33页

❖ 知识就是财富 ❖ 丰富你的人生Байду номын сангаас
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
拓扑优化简介和在ansys软件中的实现
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
谢谢你的阅读
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• Report any issue or provide feedback related to this app please contact:
Steve.Pilz@
3
© 2016 ANSYS, Inc.
September 2, 2016
Binary App Installation (1)
5 © 2016 ANSYS, Inc. September 2, 2016
User Documentation Contents
• Overview
• User Guide
– Design Optimization – Validation Analysis
6
© 2016 ANSYS, Inc.

– – – – –
Optimize Design
Link to downstream Topology Optimization System (ACT Extension) Define Design Objectives, Design and Manufacturing Constraints Solve to obtain optimized model Visualize, inspect and “extract” shape of optimized model Export/Save STL file of optimized model
other location – Default path: %AppData%\Ansys\v170\ACT\extensions – New path: Any location on your machine, shared drive etc.
• All users interested in using the extension need to include that path in their Workbench Options
4 © 2016 ANSYS, Inc. September 2, 2016
Binary App Installation (2)
• Once the binary extension is installed at default location, one can move the *.wbex and the folder to any
Exposes Topology Optimization capabilities in Workbench Mechanical. The optimized model can then be exported and edited in SpaceClaim to perform subsequent validation analysis, optionally import into a CAD system, and/or be sent to a 3D printer for manufacture.
• Objective Functions
– – – – – Single and Multi Compliance Local Degree of Freedom Local Displacement Reaction Force Volume, Mass
• Constraint Functions
September 2, 2016
ANSYS Topology Optimization ACT Extension
• Summary of capabilities:
– This ACT App installs a Topology Optimization System in the Workbench Project Schematic – The ACT App exposes Topology Optimization capabilities in Workbench Mechanical – Various optimization objective and constraint response types are available for optimizing Static Structural designs – The shape of the optimized design can be viewed and saved in the form of an STL file – SpaceClaim can be used to clean up, modify and convert the STL file into a solid model – The design can be verified by importing the solid model into a downstream Static Structural System and performing validation analysis – The STL file of the optimized model can be sent to a 3D printer for manufacture
Loading the extension:
1. From the Extension Manager, click on your extension and choose ‘Load Extension’ 2. The extension is loaded
Notes: • The extension to be installed will be stored in the following location: %AppData%\Ansys\v170\ACT\extensions • The installation will create a folder in this location, in addition to the .wbex file
8
© 2016 ANSYS, Inc.
September 2, 2016
Capabilities Overview: Exposure and Workflow (1)
• Static Structural Problem Setup
– Set up in Static Structural System – Optionally Solve to obtain reference solution
7
© 2016 ANSYS, Inc.
September 2, 2016
Capabilities Overview: Topology Optimization
• Mechanical Physics
– – – – Linear Stress Steady State Linear Bonded Contact Solid Bodies (2D and 3D)
17.0 Release
ANSYS Topology Optimization ACT Extension
ANSYS Inc.
1
© 2016 ANSYS, Inc.
September 2, 2016
ANSYS Topology Optimization - Overview
• ACT Application name: ANSYS Topology Optimization • ACT Application version: R17.0 • Target application: WB Mechanical • ANSYS compatible version: R17.0 • Description:
9
© 2016 ANSYS, Inc.
September 2, 2016
Capabilities Overview: Exposure and Workflow (2)
• Validate Design
– – – – Edit STL model in SpaceClaim and convert to solid geometry Create downstream Static Structural System to validate optimized design Import model into downstream Static Structural System, remesh and reapply problem setup Perform validation analysis
Installing from the ACT Start Page:
1. From the project page, select the “ACT Start Page” option 2. Click on “Extension Manager” 3. Press “+” symbol in the top right corner 4. It will open a file dialog to select the appropriate “*.wbex” binary file 5. The extension is installed
– – – – – Local Degree of Freedom Reaction Force Volume, Mass Local Stress Global Snts
– – – – Maximum Member Size Minimum Member Size Symmetry Extrusion
1. 2. 3. In the “Tools” menu, select the “Options…” Select “Extensions” in the pop up panel Add the path under “Additional Extensions Folder …”
2
3
相关文档
最新文档