晶化温度对微晶玻璃析晶行为和性能影响

晶化温度对微晶玻璃析晶行为和性能影响
晶化温度对微晶玻璃析晶行为和性能影响

晶化温度对微晶玻璃析晶行为和性能的影响

摘要:本文以铬渣和铜尾矿为原料,采用熔融法制备微晶玻璃,借助xrd和sem等分析手段,系统研究了晶化温度对微晶玻璃析晶行为的影响;研究结果表明:随着晶化温度的升高,微晶玻璃的主晶相均为普通辉石,且晶体尺寸增大,晶核数量减少,同时微晶玻璃的表观体积密度和显微硬度呈先增大后减小的趋势,当晶化温度为860℃时,表观体积密度和显微硬度达到最大,其值分别为

3.06g·cm-3和925hv。

关键词:微晶玻璃熔融法晶化温度显微硬度

中图分类号:td98 文献标识码:a 文章编

号:1672-3791(2010)7(b)-0106-02

引言

铬渣是指在铬盐生产中,铬铁矿与纯碱、石灰辅料等混合高温煅烧,水浸后的残渣。铬渣的处理被列为我国固体废弃物治理的重中之重,同时也是世界性的难题[1-3]。而微晶玻璃不仅对矿渣中可溶性重金属离子具有很好的转化和固化的作用,且无放射性污染,且具有机械强度高、耐风化、耐磨、抗腐蚀、抗冻、抗渗透和耐污染等特性,是现代建筑行业理想的高档绿色环保装饰材料[4-9]。近年来,国内外矿渣微晶玻璃方面的研究较多,但完全利用尾矿废渣制备微晶玻璃的研究相对较少。本课题以铬渣和铜尾矿为原料采用熔融法制备矿渣微晶玻璃,为铬渣和铜尾矿的资源化提供理论依据。

1 实验

影响玻璃化转变温度的因素-微课脚本.

各位同学,大家好,今天给大家讲解影响玻璃化转变温度的因素。Tg 是聚合物链段从冻结到运动的转变温度,而链段运动是通过单键的内旋转即高分子链通过改变其构象来实现的,所以凡是影响高分子链柔性的因素都会影响Tg 。(第2张PPT ) 如PPT 所示,主要包括:化学结构、其他结构因素和外界条件的影响。(第3张PPT ) 1、化学结构的影响,(1)主链结构:主链化学键的内旋转位垒越低,高分子链的柔性越好, Tg 就越低。主链结构为-C-C-、-C-N-、-Si-O-、-C-O-等单键的非晶态聚合物,由于分子链可以绕单键内旋转,链的柔性大,所以Tg 较低 。 (第4张PPT ) 主链上有孤立双键的柔性好,玻璃化温度低。例如:顺丁橡胶的Tg 为-95℃,天然橡胶为-73℃,丁苯橡胶为-61℃ (第5张PPT ) 主链上引入芳杂环状结构(苯基,联苯基)或共轭双键,分子刚性增大, Tg 升高。 如PC (150℃) ,聚砜,聚苯醚(220℃)它们比相应的脂肪族的Tg 高的多,是耐热性好的工程塑料 (第6张PPT ) (2)侧基或侧链 ① 侧基的极性 a.如果侧基在高分子链上的分布不对称,则侧基极性越大,Tg 越高,柔性越差。 当极性基的数量超过一定量时,极性基团之间斥力大于引力,反而使Tg 下降;若侧基能形成氢键,也使Tg 上升。(第7张PPT ) b.如果极性侧基在高分子链上分布对称,则极性基的静电场相互抵消,因而高聚物有较大的柔性,Tg 较低。比如:聚氯乙烯的玻璃化转变温度远远高于聚偏二氯乙烯(第8张PPT ) ② 侧基(或侧链)的位阻效应和柔顺性 a. 刚性的大侧基,会使单键的内旋转受阻,Tg 上升。(第9张PPT ) b. 长而柔的侧链反而会使 Tg 下降 。因为侧基越大,柔性也越大,柔性的增加足以补偿体积效应,并且起了“内增塑”作用,使大分子相互之间隔离,减小了分子间力。(第10张PPT ) (3)构型。单取代的烯类聚合物的玻璃化温度与它们的等规立构类型无关。双取代的烯类聚合物的玻璃化温度与他们的立构类型有关。 全同<间同,例如PMMA 的全同Tg 为45℃,间同Tg 为115℃ 。 顺式<反式(如BR ,顺式Tg 为-95℃,反式Tg 为-18℃)。(第11张PPT ) (4)分子间作用力。极性:极性越大,Tg 越高;氢键:氢键使Tg 增加;离子键:使Tg 增加,如聚丙烯酸中加入金属离子,玻璃化温度升高。加入钠离子,升高到280 ℃ ,加入铜离子升高到500 ℃ 。(第12-13张PPT ) 2、其他结构因素的影响 ,分子量、共聚和共混、增塑剂、交联、结晶。(第14张PPT ) 当分子量较低时,Tg 随分子量增加而增加;当分子量达到临界分子量时, ,不再随分子量改变。(第15 张PPT ) 共聚,共聚物Tg 的影响取决共聚方法(无规、交替、嵌段 或接枝)、共聚物的组成及共聚单体的化学结构。无规共聚物: Tg 介于两种共聚组成单体的均聚物的Tg 之间 。(第16张PPT ) 交替共聚物:看作两种单体组成一个单体单元的均聚物,只有一个Tg 。接枝、嵌段共聚物:共混聚合物,因此存在一个或两个Tg ,取决于其相容性 。(第17张PPT ) 共混,共混的相容性通常以其Tg 的情况来表征。 相容性极好:均相体系,共混物的Tg 只有一个,且介于两种物质各自的Tg 之间。 相容性较好:微观非均相,宏观均相体系,出现相互靠近的二个Tg 相容性差:仍保持原来物质的二个Tg ,说明不能混容。(第18张PPT ) 增塑剂或稀释剂,它对Tg 的影响是非常显著的。增塑剂使Tg 下降的原因,隔离作用:增塑剂的分子比PVC 小的多,活动比较容易,并且为链段提供活动所需要的空间,即把聚合物分子链隔开,增塑剂的用量越多,这种分子链之间的隔离作用越大;屏蔽作用: 增塑剂上的极性基团与PVC 上的氯原子相互吸引,减小了PVC 分子之间氯与氯的相互作用,相当于把氯基团遮盖起来,称为屏蔽作用。(第19-20张PPT ) 交联 , Tg 随着交联点密度的增加而增加。原因:随着交联点密度的增加,高聚物的自由体积减小,分子链的活动受约束)(∞→g g T T

浅谈微晶玻璃

浅谈微晶玻璃 摘要微晶玻璃是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。微晶玻璃具有很多优异的性能,这些特性一般都超过了普通的金属材料、有机材料及无机非金属材料。这些优异的性能使微晶玻璃受到了极大的欢迎。 关键词微晶玻璃组成结构制备工艺应用发展 1引言 微晶玻璃(Glass-ceramic)又名玻璃陶瓷,它是指将加有形核剂(个别可不加)的特定组成的基础玻璃,通过控制结晶变成具有一种或多种微晶体和残余玻璃相的复合材料,即在非晶态的玻璃内均匀分布着大量(体积百分比约占95%~98%)的随机取向的微小陶瓷晶体(通常小于10μm)。同原始玻璃相比,微晶玻璃的特点是无脆性、强度高、化学稳定性好、热稳定性和硬度比较高,并具有一些特殊的性能;与大理石、花岗岩相比,由于其组成是均匀细小晶体,因此其机械性能、耐化学腐蚀、硬度等主要物化性能均优于大理石、花岗岩,因此具有广泛的发展前途和应用价值,用它来代替天然和人造大理石已逐步成为时代的趋势[1]。我国对微晶玻璃的研究起步于上世纪的八十年代初,经过二十多年的开发,微晶材料的生产工艺基本上已趋于成熟,进人了实用阶段。它主要用做建筑装饰材料、飞机、火箭、卫星等结构材料,医疗、化工等防腐材料以及军事上,如激光制导材料等。 2 微晶玻璃的组成与结构 2.1 组成 与一般玻璃不同,微晶玻璃的组成应分解为: (1)玻璃的总体化学组成,它应未微晶化的玻璃的化学组成一致; (2)各相的化学组成,它包括析出的各晶相和残余玻璃组的化学组成。首先应指出,仅有一定范围的组成能符合制备微晶玻璃的要求。一般都应含有一定量的玻璃形成剂。SiO2 ,B2O8等。其作用在于使玻璃易于晶化而易于引起分,以间接促进核化与晶化。虽然对分相的作用见解分岐,但一般认为,选择亚稳分相附近的组成有益于微晶化。此外,许多种添加剂的引入,会起到晶核剂的作用,促进玻璃的整体晶化。晶核剂及其作用机理的研究是微晶玻璃组成研究的一个重要问题。而在网络外体中往往需引入具有小离子半径、大场强的Li+,Mg2+和Zn2+等。其作用在于使玻璃易于晶化或易于引起分相,以间接促进核化与晶化,同时选择亚稳分相附近的组成有益于微晶化。此外,许多种添加剂的引入,如TiO2、ZrO2、Cr2O3等,会起到晶核剂的作用,促进玻璃的整体晶化。为了保证重新热处理过程中易于整体晶化,在组成设计时必须使玻璃具有适合的粘度—温度曲线[2]。 2.2 结构 材料的外观性能取决于它的内在结构。微晶玻璃的结构包括晶相和玻璃相的组成、数量和它们的相对比例,因此其性能既取决于玻璃的组成又取决于它的晶化工艺,因为晶体的种类

玻璃化温度

对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度形变曲线或热机械曲线。非晶聚物有三种力学状态,它们是玻璃态、高弹态和粘流态。在温度较低时,材料为刚性固体状,与玻璃相似,在外力作用下只会发生非常小的形变,此状态即为玻璃态:当温度继续升高到一定范围后,材料的形变明显地增加,并在随后的一定温度区间形变相对稳定,此状态即为高弹态,温度继续升高形变量又逐渐增大,材料逐渐变成粘性的流体,此时形变不可能恢复,此状态即为粘流态。我们通常把玻璃态与高弹态之间的转变,称为玻璃化转变,它所对应的转变温度即是玻璃化转变温度,或是玻璃化温度。 玻璃化温度是指无定型聚合物(包括结晶型聚合物中的非结晶部分)由玻璃态向高弹态或者由后者向前者的转变温度。是无定型聚合物大分子链段自由运动的最低温度。 通常用Tg表示。没有很固定的数值,往往随着测定的方法和条件而改变。高聚物的一种重要的工艺指标。在此温度以上,高聚物表现出弹性;在此温度以下,高聚物表现出脆性,在用作塑料、橡胶、合成纤维等时必须加以考虑。如聚氯乙烯的玻璃化温度是80℃。 非晶态(无定形)高分于可以按其力学性质区分为玻璃态、高弹态和粘流态三种状态。高弹态的高分子材料随着温度的降低会发生由高弹态向玻璃态的转变,这个转变称为玻璃化转变。它的转变温度称为玻璃化温度Tg。如果高弹态材料温度升高,高分子将发生由高弹态向粘流态的转变,其转变温度称为粘流温度Tf。 当玻璃态高分子在Tg温度发生转变时,其模量降落达3个数量级,使材料从坚硬的固体突然变成柔软的弹性体,完全改变了材料的使用性能。高分子的其他很多物理性质,如体积(比体积)、热力学性质(比热容、焓)和电磁性质(介电常数和介电损耗、核磁共振吸收谱线宽度等)均有明显的变化。 作为塑料使用的高分子,当温度升高到玻璃化转变温度以上时,便失去了塑料的性能,变成了橡胶。平时我们所说的塑料和橡胶是按它们的Tg是在室温以上还是在室温以下而言的。Tg在室温以下的是橡胶,Tg在室温以上的是塑料。因此从工艺的角度来看,Tg是非晶态热塑性塑料使用的上限温度,是橡胶使用的下限温度Tg是高分子的特征温度之一,可以作为表征高分子的指标。 影响玻璃化转变温度的因素很多。因为玻璃化温度是高分子的链段从冻结到运动的一个转变

最新聚合物的玻璃化转变温度

聚合物的玻璃化转变温度 姓名:罗新杰学号:20101648 班级:高分子材料与工程一班 摘要:在高分子科学中,聚合物的玻璃化转变是一个非常重要的现象,玻璃化转变是非晶 态高分子材料固有的性质,是高分子运动形式转变的宏观体现,它直接影响到材料的使用性能和工艺性能,因此长期以来它都是高分子物理研究的主要内容。本文主要简单地介绍玻璃化转变温度的相关知识和理论。 前言:玻璃化转变温度(Tg)是非晶态聚合物的一个重要的物理性质,也是凝聚态物理基础理论中的一个重要问题和难题,是涉及动力学和热力学的众多前沿问题。玻璃转变的理论一直在不断的发展和更新。从20世纪50年代出现的自由体积理论到现在还在不断完善的模态祸合理论及其他众多理论,都只能解决玻璃转变中的某些问题。一个完整的玻璃转变理论仍需要人们作艰苦的努力。 对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度-形变曲线或热机械曲线。非晶聚物有四种力学状态,它们是玻璃态、粘弹态、高弹态和粘流态。在温度较低时,材料为刚性固体状,与玻璃相似,在外力作用下只会发生非常小的形变,此状态即为玻璃态,当温度继续升高到一定范围后,材料的形变明显地增加,并在随后的一定温度区间形变相对稳定,此状态即为高弹态,温度继续升高形变量又逐渐增大,材料逐渐变成粘性的流体,此时形变不可能恢复,此状态即为粘流态。我们通常把玻璃态与高弹态之间的转变,称为玻璃化转变,它所对应的转变温度即是玻璃化转变温度,或是玻璃化温度。 高分子材料玻璃化转变的表征可提供丰富的信息,例如固化程度、热历史、材料的最高服役温度,共聚、共混物组分的相容性和相分离,组分的定性和定量等等,因此长期以来它都是高分子物理研究的主要内容。所以我们得研究和掌握不同高分子玻璃化转变温度的测试方法,并比较不同测试方法的优缺点。 通过对玻璃化转变温度的不断研究,人们逐渐了解了影响玻璃化转变温度的不同因素,从而能更加灵活的处理和运用聚合物的玻璃化转变温度。让玻璃化转变温度得到更加广泛的应用。 1、玻璃化转变 玻璃化转变是指无定形或半结晶的聚合物材料中的无定形区域在降温过程中从橡胶态或高弹态转变为玻璃态的一种可逆变化。在橡胶态/高弹态时,分子能发生相对移动(即分子重排);在玻璃态,分子重排被冻结。从分子结构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不像相转变那样有相变热,所以它是一种二级相变(高分子动态力学中称主转变)。在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动;而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,如果温度再升高,进一步达到粘流温度,就使整个分子链运动而表现出粘流性质。所以在聚合物使用上,玻璃化转变温度一般为塑料的使用湿度上限,橡胶使用温度的下限。 2、玻璃化转变温度的测定方法

微晶玻璃简述

微晶玻璃简要概述 刘帅聪 (无机非金属材料工程1301班,湖南工学院材料与化学工程学院 湖南衡阳 421002) 摘要 微晶玻璃是通过基础玻璃或其它材料在加热过程中进行控制晶化而得到的一种中含有大量微晶体和玻璃体的复合固体材料。由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等优越的综合性能,已在许多领域得到广泛的应用。 关键词微晶玻璃特点制备工艺应用发展 Brief Introduction of Glass - Ceramics Shuai Cong Liu (Inorganic Nonmetallic Materials Engineering1301class,Hunan Institute of TechnologyDepartment of Material and Chemical Engineering Hunan Hengyang 421002) Abstract: Crystalline glass is a composite solid material containing a large amount of microcrystals and vitreous bodies obtained by controlling crystallization during the heating process by the base glass or other materials. Because of its high mechanical strength, adjustable thermal expansion, good thermal shock resistance, chemical resistance, low dielectric loss, good electrical insulation properties such as superior performance, has been widely used in many fields. Key words: glass - ceramics, characteristics, preparation technology, application development

可加工微晶玻璃

微晶玻璃陶瓷性能指标 可加工微晶玻璃陶瓷是以合成云母为主晶相的氟金云母微晶玻璃,主要成分是氟金云母(Mg3K[AlF2O(SiO3)3]).和以二氧化硅为主要成分的玻璃组成。材料类似MACOR。性能基本一致。 可加工陶瓷性能表:(Machinable Glass Ceramic)

可加工陶瓷,其定义为:可以用对金属加工的工具和器械对其进行钻孔、车削、铣削、攻丝等加工并获得精密尺寸的陶瓷材料。 我公司生产的可加工陶瓷MACRE㊣是一种多晶复相材料,是以合成云母微晶为主晶相的微晶玻璃。该材料又叫微晶玻璃陶瓷。这种材料颜色洁白,组织致密。微晶量占总体积的50%以上,微晶颗粒在5ν—20μ之间。它是七十年代出现的新材料,有一系列优良特性,有广泛的用途。可加工陶瓷有较高的机械强度,优良的介电性质和热性能,良好的化学稳定性。可加工陶瓷的最突出的特点是良好的可加工性。它可采用通用的金属加工设备进行车、铣、刨、锯、磨、切、攻丝等加工成形状复杂的各种零件,且能达到相当高的加工精度。不需要特殊的刀具和设备。 可加工陶瓷材料有优良的电绝缘性能(电击穿达到40KV/A每毫米),较高的机械强度,耐急冷急热性(耐零下200度到800度急冷急热,在焊接夹具、光学玻璃成型模具等方面广泛使用)。其耐腐蚀性也优于普通陶瓷,其优良耐腐蚀性使其应用于各类化工设备中,相对聚四氟乙烯,它更耐腐蚀,不老化,使用寿命长。可加工陶瓷真空放气率极低(广泛应用于各类真空设备、光伏真空镀膜设备等),另可加工陶瓷在电磁方面也性能优良,现已大规模用做各类线圈骨架,典型应用在导弹陀螺仪器线圈骨架,我公司已为二炮提供各类导弹陀螺仪线圈骨架十多年。获得多家军工单位一致好评。 可加工陶瓷最突出的特点在于它的可加工性,能满足高精度技术要求,无需开模,直接加工成型,大大缩减设计及加工周期。可加工陶瓷能灵活的应用于各种需要形状复杂、精度要求高、成型难度大、(如各种陶瓷薄壁、陶瓷螺纹等)的结构陶瓷件之场合。

晶化温度对飞灰-废屏玻璃协同制备CaO-Al2O3-MgO-SiO2系微晶玻璃析晶及

· 443 ·第 39 卷 第 4 期Journal of Ceramics VoI.39 No.4Aug. 2018 第 39 卷 第 4 期2018 年 8 月DOI:10.13957/https://www.360docs.net/doc/693435892.html,ki.tcxb.2018.04.013Received date:2017-11-15. Revised date:2018-04-12.Correspondent author:GUO Yanping(1982-), female, Ph.D., Associate professor.E-mail:yanping_guo830@https://www.360docs.net/doc/693435892.html, 收稿日期:2017-11-15。 修订日期:2018-04-12。 基金项目:广东省科技发展专项资金项目(2017A070712013); 广东 省环保专项资金项目(粤财工[2015]318号);2017年佛山市科技创新 项目(高校和医院科研基础平台):佛山市陶瓷废渣高附加值综合利 用先进技术创新平台;院长基金项目(KY201301002);2016年佛山 市自筹经费类科技计划项目。 通信联系人:郭艳平(1982—),女,博士,副教授。晶化温度对飞灰/废屏玻璃协同制备CaO-Al 2O 3-MgO-SiO 2 系微晶玻璃析晶及性能的影响 李保庆 1,2,3,郭艳平 1,2,方红生1,2,党海峰 4,黄 玲 1,梁展星 5,王文祥 1,2(1. 广东环境保护工程职业学院, 广东 佛山 528216;2. 广东省固体废弃物资源化与重金属污染控制工程技术研究中心,广东 佛山 528216;3. 华南师范大学 化学与环境学院,广东 广州 510631;4. 东莞理工学院 生态环境与建筑工程学院, 广东 东莞 523808;5. 广州市环境保护技术设备公司,广东 广州 510091)摘 要:以城市生活垃圾焚烧飞灰、废屏玻璃、化学辅助试剂为原料,采用熔融法制备了复合晶相的微晶玻璃,采用DSC、XRD、SEM等研究了晶化温度(940 ℃-1060 ℃)对结晶过程和晶相结构变化的影响,测试了微晶玻璃样品的体积密度、吸水率、抗弯强度、显微硬度等性能。结果表明:晶化温度为1030 ℃时,微晶玻璃的体积密度、抗弯强度、显微硬度最大,分别为2.81 g · cm -3,83.78 MPa和7.4 GPa,吸水率最小为0.10%。 关键词:微晶玻璃;晶化温度;垃圾焚烧飞灰;晶化行为 中图法分类号:TQ174.75 文献标识码: A 文章编号:1000-2278(2018)04-0443-06 Effect of Crystallization Temperature on Crystallization and Properties of CaO-Al 2O 3-MgO-SiO 2 Glass-ceramics from Fly Ash and Waste Panel Glass LI Baoqing 1,2,3, GUO Yanping 1,2, FANG Hongsheng 1,2, DANG Haifeng 4, HUANG Ling 1 , LIANG Zhanxing 5, WANG Wenxiang 1,2(1.Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, Guangdong China; 2. Guangdong Engineering and Technology Research Center of Solid Waste Resource Recovery and Heavy Metal Pollution Control, Foshan 528216, Guangdong China; 3.South China Normal University, Guangzhou 510631, Guangdong China; 4. School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong China; 5. Guangzhou Environmental Protection Technology and Equipment Company, Guangzhou, Guangdong China 510091) Abstract:Glass-ceramics with the pyroxene, forsterite and mullite as the crystalline phases were prepared using fly ash, waste panel glass and chemical reagents by melting method. Effect of crystallization temperature (940 °C-1060 °C) on the crystal performance and microstructure of glass-ceramic samples was analyzed by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM). The properties of density, water absorption, flexural strength and micro hardness were also measured. The results showed that the glass-ceramics with the highest bulk density (2.81 g/cm 3), highest flexural strength (83.78 MPa), highest micro hardness (7.4 GPa) and the minimum water absorption (0.10%) were obtained by crystallizing at 1030 °C. Key words:glass-ceramics; crystallization temperature; fly ash; crystallization behavior 万方数据

玻璃化温度的定义及其测量

玻璃化温度 玻璃化转变温度,glass transition temperature,T g:非晶态聚合物或部分结晶聚合物中非晶相发生玻璃化转变所对应的温度。其值依赖于温度变化速率和测量频率,常有一定的分布宽度。 一、玻璃化转变 玻璃化转变是非晶态高分子材料固有的性质,是高分子运动形式转变的宏观体现,它直接影响到材料的使用性能和工艺性能,因此长期以来它都是高分子物理研究的主要内容。由于高分子结构要比低分子结构复杂,其分子运动也就更为复杂和多样化。 根据高分子的运动力形式不同,非晶聚合物有四种物理状态(或称力学状态):玻璃态、粘弹态、高弹态(橡胶态)和粘流态。我们通常把玻璃态与高弹态之间的转变,称为玻璃化转变;它所对应的转变温度即是玻璃化转变温度(玻璃化温度)。 在温度较低时,材料为刚性固体状;与玻璃相似,在外力作用下只会发生非常小的形变,此状态即为玻璃态。当温度继续升高到一定范围后,材料的形变明显地增加,并在随后的一定温度区间形变相对稳定,此状态即为高弹态。温度继续升高形变量又逐渐增大,材料逐渐变成粘性的流体,此时形变不可能恢复,此状态即为粘流态。 从分子结构上讲,玻璃化转变温度是高聚物无定形部分从冻结状态到解冻状态的一种松弛现象,而不象相转变那样有相变热,所以它是一种二级相变(高分子动态力学中称主转变)。 在玻璃化转变温度以下,高聚物处于玻璃态,分子链和链段都不能运动,只是构成分子的原子(或基团)在其平衡位置作振动;而在玻璃化转变温度时分子链虽不能移动,但是链段开始运动,表现出高弹性质,温度再升高,就使整个分子链运动而表现出粘流性质。 对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度形变曲线或热机械曲线。 玻璃化转变温度(T g)是非晶态聚合物的一个重要的物理性质,也是凝聚态物理基础理论中的一个重要问题和难题,是涉及动力学和热力学的众多前沿问

微晶玻璃的制备方法与应用

X X X X 大学 材料制备原理课程论文 题目微晶玻璃的制备方法与应用 学院材料科学与工程学院 专业班级无机072 学生姓名 2010 年 6 月11 日

微晶玻璃的制备方法与应用 摘要:微晶玻璃是一种由基础玻璃严格控制晶化行为而制成的微晶体和玻璃相均匀分布的材料。由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等优越的综合性能,已在许多领域得到广泛的应用。本文来主要介绍微晶玻璃的制备方法及其应用。 关键词:微晶玻璃;制备;应用 1.引言 微晶玻璃是将加有晶核剂的特定组合的玻璃,在有控条件(一定温度)下进行晶化热处理,成为具有微晶体和玻璃相均匀分布的复合材料。微晶玻璃由玻璃相与结晶相组成。两者的分布状况随其比例而变化:当玻璃相占的比例大时,玻璃相为连续的基体,晶相孤立地均匀地分布在其中;当玻璃相较少时,玻璃相分散在晶体网架之间,呈连续网状;当玻璃相数量很低,则玻璃相以薄膜状态分布在晶体之间。这种结构也决定了其机械强度高,绝缘性能优良,介电损耗少,介电常数稳定,热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高的良好性能。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优于天石材和陶瓷,可用于建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途的21世纪的新型材料。 2.制备方法 微晶玻璃的制备方法根据其所用原材料的种类、特性、对材料的性能要求而变化,主要的有熔融法、烧结法、溶胶—凝胶法、二次成型工艺、强韧化技术等。 2.1 熔融法 熔融后急冷,退火后在经一定的热处理制度进行成核和晶化以获得晶粒细小、含量多、结构均匀的微晶玻璃制品。热处理制度的确定是微晶玻璃生产的关键技术。作为初步的近似估计,最佳成核温度介于Tg 和比它高50℃的温度之间。晶化温度上限应低于主晶相在一个适当的时间内重熔的温度。通常是25℃~50℃。微晶玻璃的理想热处理制度见图1。 图1 微晶玻璃的理想热处理制度 常用的晶核剂有TiO2,P2O5,ZrO2,CaO,CaF2,Cr2O3、硫化物、氟化物。晶核剂的选择与基础玻璃化学组成有关,也与期望析出的晶相种类有关。Stooky指出,良好的晶核剂应具备如下性能:(1)在玻璃熔融成形温度下,应具有良好的溶解性,在热处理时应具有较小的溶解性,并能降低成核的活化能。(2) 晶核剂质点扩散的活化能要尽量小,使之在玻

熔体成型速率对微晶玻璃显微结构的影响 (1)

熔体成型速率对微晶玻璃显微结构的影响 董伟1,卢金山1,李要辉2 (1.南昌航空大学材料科学与工程学院,南昌330063; 2.中国建筑材料科学研究总院玻璃科学研究所,北京100024) 摘要:通过熔融法制备出不同熔体成型速率的锂铝硅(LAS)玻璃,利用XRD、DTA、IR、SEM等,研究了成型速率对热处理后微晶玻璃显微结构的影响。结果表明:成型速率低(1cm·s-1)的玻璃内部由于冷却慢,冷却过程中部分Al3+取代了Si4+,析出了初始晶核,热处理后转变为白色的β-锂辉石固溶体,而玻璃表层冷却快,未出现明显的析晶,热处理后形成了无色透明的β-石英固溶体;熔体成型速率高(6cm·s-1)的玻璃内部冷却也快,热处理后表层与内部都转变为单一的β-石英固溶体。 关键词:成型速率;微晶玻璃;显微结构 中图分类号:文献标志码:文章编号: Effects of Melt Forming Rate on Microstructure of Glass-Ceramics (1 .School of Materials Science and Engineering,Nanchang Hangkong University, Nanchang 330063,China; 2.Ulass Science institute, China Building Materials Academy, Beijing 100024,China) Abstract:Lithium aluminosilicate glass with different melt forming rates were prepared by the melting method. he effect of forming rate on the microstructure of heat treated glass-ceramics was analyzed using XRD,D A,lR and SEM techniques.he results show that the replacement of some Al''+ for Si'+ occurred in the interior of glass with low forming rate in the process of slow cooling(1 cm·s),which led to the primary nuclei precipitated. The glass interior converted into a white spodumene structure after heat treatment. Meanwhile,because of rapid cooling of the glass surface, the nucleation did not occur obviously. A transparent and colorless quartz solid solution was formed after heat treatment. High melt forming rate(6 cm·s)led to rapid cooling in the interior of glass,too. A single quartz solid solution was formed on surface and in interior after heat trcament. 0引言 锂铝硅系(LAS)微晶玻璃具有高透明度和低热膨胀系数两大特点,广泛应用于高温观察窗、光学器件、激光陀螺等方面[1]。熔融法制备LAS微晶玻璃需要进行玻璃料熔制、玻璃熔体成型以及玻璃晶化热处理等工艺步骤,玻璃

玻璃化温度

指无定型聚合物(包括结晶型聚合物中的非结晶部分)由玻璃态向高弹态或者由后者向前者的转变温度。是无定型聚合物大分子链段自由运动的最低温度, 但是,他不是制品工作温度的上限。比如,橡胶的工作温度必须在玻璃化温度以上,否则就失去高弹性。指无定型聚合物(包括结晶型聚合物中的非结晶部分)由玻璃态向高弹态或者由后者向前者的转变温度。是无定型聚合物大分子链段自由运动的最低温度,也是制品工作温度的上限。玻璃化温度Tg:指无定型聚合物(包括结晶型聚合物中的非结晶部分)由玻璃态向高弹态或者由后者向前者的转变温度。是无定型聚合物大分子链段自由运动的最低温度。 应考范围包括:高分子的基本概念及常识、自由基聚合、自由基共聚合、阴离子聚合、阳离子聚合、配位聚合、逐步聚合、聚合方法、聚合物的化学反应、聚合物分析及表征。 摘要:通过对热固性树脂的热变形温度、马丁耐热、玻璃化转变温度、绝缘耐热等级以及耐腐蚀使用温度五个温度概念辨析,帮助人们在使用过程中理清头绪,正确选择树脂,有效应用于实际生产。 关键词:热固性树脂热变形温度马丁耐热玻璃化转变温度绝缘耐热等级耐腐蚀使用温度 随着国民经济的发展,树脂基复合材料的应用越来越广,但是对于作为树脂基复合材料主体材料树脂的很多性能概念人们还是混淆不清,不能很好的利用各种树脂的特性为人们服务,特别是各种温度指标特性的了解。热固性树脂的温度指标很多,例如:热变形温度、马丁耐热、玻璃化转变温度、绝缘耐热等级、热扭转温度、脆化温度、失强温度等,我们在本文中就着重对树脂的热变形温度、马丁耐热、玻璃化转变温度、绝缘耐热等级以及耐腐蚀使用温度五个温度概念辨析,而对其它概念就不一一加以赘述,帮助人们在使用过程中理清头绪,正确选择树脂,有效应用于实际生产。 1. 玻璃化转变温度 热固性树脂固化物均是线性非晶相高聚物,线性非晶相高聚物由于温度改变(在一定应力下)可呈现三种力学状态,即玻璃态、高弹态和粘流态。 当温度较高时,大分子和链段都能进行热运动。这时高聚物成为粘流态,受外力作用时,分子间相互滑动而产生形变;除去外力后,不能回复原状,所以形变是不可逆的,这种形变称为粘性流动形变或塑性形变,出现这种形变的温度称为流动温度Tf,这种状态成为粘流态(又叫塑性态)。如果把处于粘流态的高聚物逐渐降低温度。粘度也就逐渐增大,最后呈弹性状态,加应力时产生缓慢的形变,解除外力后又能缓慢地回复原状,这种状态叫高弹态。当温度继续下降,高聚物变得越来越硬,在外力作用时只产生很小的形变这种状态叫玻璃态。热固性树脂固化物是在玻璃态使用的,所以Tg愈高愈好,也是衡量树脂耐热性的一个指标。如:898高交联环氧乙烯基树脂的Tg=190℃,就具有高耐热性,在烟气脱硫工业中可以承受200℃的高温。

微晶玻璃

二硅酸锂微晶玻璃材料综述 何志龙-3112007045 (金属材料强度国家重点实验室, 西安交通大学材料科学与工程学院,西安710049) 摘要:微晶玻璃以其优异的力学、化学、生物等性能,在国防、航空、建筑、电子、光学、化工、机械及医疗等领域作为结构材料、技术材料、光学材料、电绝缘材料等而获得广泛应用,吸引了许多研究者的关注。本文在参考学习了诸多相关文献的基础上,对微晶玻璃材料的制备、性能、应用及研究进展进行了论述,列举了人们在该领域取得的重要研究进展,以及微晶玻璃材料领域存在的研究难题。 关键词:晶化,微晶玻璃,综述,非均匀成核 1 研究背景与意义 自从1957年,美国康宁公司著名玻璃化学家S.D.Stookey研制出第一种微晶玻璃以来,微晶玻璃就凭借其组分广泛、性能优异、品种繁多而著称。由于析出的晶粒尺寸可控,与界面结合强度高,抗弯强度可以达到200MPa以上,大量微晶玻璃体系涌现出来,它们的形成机制也得到大量深入研究。 微晶玻璃又称玻璃陶瓷,它是将某些特定组成的基础玻璃,在一定温度下进行控制晶化,制得的一种同时含有微晶相和玻璃相的多晶固体材料。在热处理过程中,基础玻璃内部产生晶核及晶体长大,因为析出的晶体非常小,被称作微晶玻璃。 微晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或易产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1-0.5μm)和残余玻璃组成的复相;而玻璃则是非晶态或无定形体。微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。 2 微晶玻璃分类 按照基础玻璃的组成,微晶玻璃主要有以下四大类: (1)硅酸盐类微晶玻璃 由碱金属、碱土金属的硅酸盐晶相组成,主晶相有:透辉石、顽辉石、硅灰石、二硅酸锂等,这些晶相的种类影响微晶玻璃的性能。其中,最早研究的矿渣微晶玻璃和光敏微晶玻璃属此类。

玻璃化温度测量方法

1,体积的变化 用膨胀计测定玻璃化温度是最常用的方法。一般是测定高聚物的比体积对温度的关系.把曲线两端的直线部分外推至交点作为T g(如图1) 从图可以看出,玻璃化转变同冷却 速率有关:冷却的快。得出的T g高; 冷却的慢,T g就较低。同样,加热速 率或快或慢,T g也或高或低。产生这 种现象的原因是体系没有达到平衡。 但要达到平衡,需要很长的时间(无限 长),这在实验上做不到。通常采用的 标准是每分钟3℃。 测量时.常把试样在封闭体系中 加热或冷却,体积的变化通过填充液 体的液面升降而读出、这种液体不能 和高聚物发生反应或溶解、溶胀,最 常用的是水银、也有人用空气作测量的流体,达时可测定压力的变化。 其它与体积有关的性质也可用于测定,加试样的折射系数、X射线的吸收等。 2,热力学方法 量热方法也是测定玻璃化温度的常用方法。在T g时,热焓有明显变化,热容有—个突变。自从有了差热分析(DTA)和差示扫描量热计后,量热方法变得更为重要。 象体积变化一样,热焓和热容的变化也和速率有关:图2表示比体积(V)和焓(H)对温度的关系,图3表示体膨胀系数和热容对温度的关系,都出现行“滞后”现象。图中曲线1是缓慢冷却,曲线2是正常冷却和升温,曲线3是快速冷却;曲线1、3是正常升温。 3,核磁共振法(NMR) 利用电磁性质的变化研究高聚物玻璃化转变的方法是核磁共振法(NMR)。 在分子运动开始前,分子中的质子处于各种不同的状态,因而反映质子状态的NMR谱线很宽。当湿度升高,分子运动加速后,质子的环境被平均化,共振谱线变窄,到了T g时谱线的宽度有了很大改变。图5给出了聚氯乙烯的NNR线宽(ΔH)的变化。由图5可得Tg 为82℃。

玻璃化温度与食品稳定性1

玻璃化温度与食品稳定性 1前言 随着科学技术的迅猛发展,以及社会经济的发展和人民生活水平的快速发展,我国食品工业以年均递增10%以上的高增长率飞速发展,其食品品种之多,发展之快,可以说在众多商品中是名列前茅。然而,据统计,中国每年有总值750亿元的食品在运送过程中腐坏,是食品企业不可回避的严峻问题[1]。因此,提高食品的加工及储藏技术对改善食品品质和减少食品企业损失有着至关重要的影响。 在众多食品加工及保藏技术中,本文就针对玻璃化技术原理及其在食品工业中的应用进行了综述。早在20世纪30年代,Troy和Sharp甲就发现了食品中存在玻璃化转变现象。80年代Harry levine和Louise slad指出,玻璃化转变这一性质在食品储存和加工中有着广泛的应用前景。1990年,https://www.360docs.net/doc/693435892.html,buza和E.A.Pavis指出食品体系的玻璃化转变温度与水分活度及其它物理性质有关。近年来,又有大量的研究结果表明,玻璃化转变对半流态加工成固态食品的工艺及干燥食品的储存具有重要意义[2]。 2玻璃态、玻璃化转变及玻璃化温度 对于非晶聚合物,根据其力学性质随温度变化的特征,可以把非晶聚合物按温度区域不同分为3种力学状态———玻璃态、高弹态和粘流态,这3种力学状态是内部分子处于不同运动状态的宏观表现。

在玻璃态下,由于温度较低,高分子物质内部的分子运动能量不足以克服主链内旋转的位垒,因此不足以激发起链段的运动,即链段处于被冻结的状态, 只有那些较小的运动单元如侧基、支链和小链节能运动。所以,高分子链不能实现从一种构象到另一种构象的转变,宏观力学性质和小分子的玻璃差不多,是一种非结晶结构的固体,介于液体与结晶的中间状态,具有一定的体积和形状,类似于固体,但分子排列上为近程有序远程无序,可以看作“过冷液体”,粘度为1010 Pa.s~1014 Pa.s,可以支持自身的重量,因此称为玻璃态[3]。 玻璃态情况下,物体的自由体积非常小,造成分子流动阻力较大,从而体系具有较大的粘度,同样由于这个原因,食品体系中的分子扩散速率就很小,这样分子间相互接触和发生反应的速率就很小。这就是食品处于玻璃态时不易发生化学反应,不易发生褐变、劣败,能够有较长保质期的原因。当物料温度上升,分子热运动能量增加到一定阶段时,分子能量足以克服内旋转的位垒,这时链段运动被激发,链段构象可改变,物质进入高弹态。玻璃态和高弹态之间的转变,称为玻璃化转变,对应的转变温度即玻璃化转变温度(用Tg表示)[4]。 3.食品成分对玻璃化转变温度的影响 在食品体系中, Tg即为最大冷冻浓缩溶液发生玻璃化时的温度。对于低水分食品体系( w≤20%),玻璃化转变温度用Tg表示;当w>20%时,冷却速率因受到水的影响而不会很高,因此食品体系形成的是不完全玻璃态,此时用Tg’表示[5]。在

热处理温度对CaO-Al2O3-SiO2系粉煤灰微晶玻璃析晶及性能的影响

- 5 - 第36卷第4期 非金属矿 Vol.36 No.4 2013年7月 Non-Metallic Mines July, 2013 微晶玻璃是经特定组分设计的基础玻璃在加热处理中通过成核和晶化过程制成的一类含有微晶相和玻璃相复合材料,具有玻璃和陶瓷双重特性[1],其机械性能、耐化学腐蚀性、热稳定性和绝缘性能良好,热膨胀系数可调,广泛用于建筑装饰、机械、化工、电子电工、航天等领域[2]。 粉煤灰作为火力发电厂排放的固体工业废渣,主要用于水泥掺和料、路基材料、砌块骨料、土壤改良剂和橡塑填料等[3-4], 其附加值一般较低。粉煤灰中富含SiO 2、 Al 2O 3、CaO 、Fe 2O 3 等[5],可作为制备微晶玻璃的原料。粉煤灰微晶玻璃的制备方法主要有烧结法和熔 融法,近年来人们利用烧结法分别制备了以硅灰石、长石类及辉石类矿物为主晶相的粉煤灰微晶玻璃,并对其配方做了大量研究[6-9]。在烧结析晶过程中所生成的晶相增加了玻璃黏度,进而阻碍玻璃的烧结致密化过程[10]。玻璃的黏度及析晶速率受到热处理温度的影响,通过调整热处理温度可控制析晶和烧结过程,所以热处理温度影响微晶玻璃的晶相种类、含量,显微结构及组织形态等[11], 而这些因素又直接影响微晶玻璃的机械性能[6]和耐酸碱腐蚀性[12]等。因此,有必要开展热处理温度对微晶玻璃烧结过程及性能影响的研究。目前对粉煤灰微晶玻璃的机械性能研究较多[7,9],而烧结过程对微晶玻璃的属性如晶相种类、含量,显微结构及组织形态及化学稳定性的研究较少。 本实验以江油发电厂的粉煤灰为主要原料,配入一定量石灰石和纯碱,采用烧结法制备了粉煤灰微晶热处理温度对CaO-Al 2O 3-SiO 2系粉煤灰微晶玻璃析晶及 性能的影响 曹?超1?彭同江1,2*?孙红娟1,2?丁文金1 (1 西南科技大学 固体废物处理与资源化教育部重点实验室,四川 绵阳 621010;2 西南科技大学 矿物材料及应用研究所,四川 绵阳 621010) 摘?要?以粉煤灰、 石灰石和Na 2CO 3为原料,通过熔融烧结法制备了粉煤灰微晶玻璃。借助DTA 、XRD 及SEM 等分析测试手段,研究了核化温度(760 ℃)及晶化温度(850~1000 ℃)对微晶玻璃析晶行为、显微形貌、烧结性能及化学稳定性的影响。结果表明,样品核化处理后除生成少量霞石相,主体仍为玻璃相;在晶化处理后,所形成的微晶玻璃样品主晶相为钙铝黄长石相;随晶化温度的升高,微晶玻璃样品晶相种类不变,但主晶相含量、线收缩率及体积密度呈现先增高后降低的变化;粉煤灰微晶玻璃具有良好的析晶性能及化学稳定性,在晶化温度为950 ℃时得到的微晶玻璃烧结效果和化学稳定性最好。 关键词?粉煤灰?微晶玻璃?核化?晶化?烧结 中图分类号: TQ171.73+3; X773 文献标识码:A 文章编号:1000-8098(2013)04-0005-04Effects of Heat Treatment Temperature on Crystallization Behavior and Performance of Glass-ceramics of CaO-Al 2O 3-SiO 2 from Coal Fly Ash Cao Chao 1 Peng Tongjiang 1,2* Sun Hongjuan 1,2 Ding Wenjin 1 (1 Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Ministry of Education, Mianyang, Sichuan 621010; 2 Institute of Mineral Materials & Application, Southwest University of Science and Technology, Mianyang, Sichuan 621010)Abstract The glass-ceramics was prepared with coal fly ash, limestone and Na 2CO 3 by sintering process. Effects of nucleation temperature (760 ℃) and crystallization temperature (850~1000 ℃) on crystallization behavior, microstructure, sintering character and chemical stability of glass-ceramics samples were analyzed by means of DTA, XRD, SEM and other analytical methods. The results show that besides a limited amount of nepheline emerges in the nucleating samples, the main form of the sample is glass phase. The main crystalline phase of the obtained glass–ceramics after crystallization is gehlenite (2CaO ·Al 2O 3·SiO 2). With the increasing of heat treatment temperature, the species of the crystalline is the same, but the main crystalline intensity, line shrinkage rate and bulk density increase first, and then decrease. The glass-ceramics have good crystallization properties and chemical stability. The glass-ceramics samples with best sintering character and chemical stability are obtained by crystallizing at 950 ℃. Key words coal fly ash glass-ceramics nucleation crystallization sintering 收稿日期:2013-05-15 基金项目:固体废物处理与资源化教育部重点实验室开放基金(12zxgk04)。 * 通讯作者,E-mail: tjpeng@https://www.360docs.net/doc/693435892.html, 。

相关文档
最新文档