数据挖掘技术-导论(1)

合集下载

数据挖掘导论

数据挖掘导论

数据挖掘导论数据挖掘是一种从大量数据中发现隐藏模式、关联和趋势的技术。

它结合了统计学、人工智能和数据库技术,可以帮助企业和组织更好地理解和利用数据。

本文将介绍数据挖掘的基本概念、流程和常用算法,以及其在实际应用中的一些案例。

一、数据挖掘的基本概念数据挖掘是指通过自动或半自动的方式,从大量的数据中发现并提取出有用的信息和知识。

它可以帮助我们发现数据中的模式、关联、异常和趋势,从而为决策提供支持。

数据挖掘的基本任务包括分类、聚类、关联规则挖掘和异常检测。

分类是将数据分为不同的类别,聚类是将数据分为相似的组,关联规则挖掘是找出数据中的关联关系,异常检测是发现数据中的异常值。

二、数据挖掘的流程数据挖掘的流程主要包括问题定义、数据收集与预处理、特征选择与转换、模型选择与建立、模型评估与验证等步骤。

1. 问题定义:明确需要解决的问题,并确定数据挖掘的目标。

2. 数据收集与预处理:收集相关的数据,并对数据进行清洗、去噪、缺失值处理等预处理操作,以确保数据的质量和完整性。

3. 特征选择与转换:选择对问题有意义的特征,并对数据进行转换,以便于后续的建模和分析。

4. 模型选择与建立:选择适合问题的数据挖掘算法,并建立相应的模型。

5. 模型评估与验证:对建立的模型进行评估和验证,以确定模型的准确性和可靠性。

三、常用的数据挖掘算法数据挖掘算法有很多种,常用的包括决策树、朴素贝叶斯、支持向量机、神经网络、聚类算法等。

1. 决策树:通过构建树形结构来表示决策规则,可以用于分类和预测。

2. 朴素贝叶斯:基于贝叶斯定理和特征条件独立性假设,用于分类和概率估计。

3. 支持向量机:通过寻找最优超平面来进行分类和回归。

4. 神经网络:模拟人脑神经元之间的连接和传递过程,用于分类和预测。

5. 聚类算法:将数据分为相似的组,常用的聚类算法有K均值、层次聚类等。

四、数据挖掘的应用案例数据挖掘在各个领域都有广泛的应用,例如市场营销、金融风险评估、医疗诊断等。

数据挖掘导论

数据挖掘导论

数据挖掘导论数据挖掘是一种通过从大量数据中发现模式、关联和趋势来提取实用信息的过程。

它涉及使用计算机技术和统计学方法来分析和解释数据,以便从中获取有关未来趋势和行为的洞察力。

在本文中,我们将介绍数据挖掘的基本概念、技术和应用。

1. 数据挖掘的基本概念数据挖掘是从大量数据中提取实用信息的过程。

它主要包括以下几个方面的内容:1.1 数据预处理数据预处理是数据挖掘的第一步,它涉及数据清洗、数据集成、数据变换和数据规约。

数据清洗是指处理数据中的噪声和缺失值,以确保数据的质量。

数据集成是将来自不同数据源的数据合并到一个统一的数据集中。

数据变换是将数据转换为适合进行挖掘的形式,例如将数据编码为数值型。

数据规约是通过减少数据集的大小来提高挖掘效率。

1.2 数据挖掘技术数据挖掘技术包括分类、聚类、关联规则挖掘和异常检测等。

分类是将数据分为不同的类别,例如将客户分为高价值和低价值客户。

聚类是将数据分为相似的组,例如将顾客分为不同的市场细分。

关联规则挖掘是发现数据中的相关关系,例如购买某种商品的人也会购买另一种商品。

异常检测是发现数据中的异常值,例如检测信用卡欺诈行为。

1.3 模型评估和选择在数据挖掘过程中,需要评估和选择不同的模型来解释数据。

常用的评估指标包括准确率、召回率和F1值等。

准确率是指分类模型预测正确的样本比例,召回率是指分类模型正确预测为正类的样本比例,F1值是准确率和召回率的调和平均值。

2. 数据挖掘的应用领域数据挖掘在各个领域都有广泛的应用,以下是一些常见的应用领域:2.1 金融领域在金融领域,数据挖掘可以用于信用评分、风险管理和欺诈检测等。

通过分析客户的历史交易数据和个人信息,可以预测客户的信用风险,并为银行和金融机构提供决策支持。

2.2 零售领域在零售领域,数据挖掘可以用于市场细分、商品推荐和销售预测等。

通过分析顾客的购买历史和偏好,可以将顾客分为不同的市场细分,并向他们推荐适合的商品。

同时,数据挖掘还可以预测销售量,匡助零售商合理安排库存和采购计划。

数据挖掘CHAPTER1引言

数据挖掘CHAPTER1引言

第一章引言本书是一个导论,介绍什么是数据挖掘,什么是数据库中知识发现。

书中的材料从数据库角度提供,特别强调发现隐藏在大型数据集中有趣数据模式的数据挖掘基本概念和技术。

所讨论的实现方法主要面向可规模化的、有效的数据挖掘工具开发。

本章,你将学习数据挖掘如何成为数据库技术自然进化的一部分,为什么数据挖掘是重要的,以及如何定义数据挖掘。

你将学习数据挖掘系统的一般结构,并考察挖掘的数据种类,可以发现的数据类型,以及什么样的模式提供有用的知识。

除学习数据挖掘系统的分类之外,你将看到建立未来的数据挖掘工具所面临的挑战性问题。

1.1 什么激发数据挖掘?为什么它是重要的?需要是发明之母。

近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。

获取的信息和知识可以广泛用于各种应用,包括商务管理、生产控制、市场分析、工程设计和科学探索等。

数据挖掘是信息技术自然进化的结果。

进化过程的见证是数据库工业界开发以下功能(图1.1):数据收集和数据库创建,数据管理(包括数据存储和提取,数据库事务处理),以及数据分析与理解(涉及数据仓库和数据挖掘)。

例如,数据收集和数据库创建机制的早期开发已成为稍后数据存储和提取、查询和事务处理有效机制开发的必备基础。

随着提供查询和事务处理的大量数据库系统广泛付诸实践,数据分析和理解自然成为下一个目标。

自60年代以来,数据库和信息技术已经系统地从原始的文件处理进化到复杂的、功能强大的数据库系统。

自70年代以来,数据库系统的研究和开发已经从层次和网状数据库发展到开发关系数据库系统(数据存放在关系表结构中;见 1.3.1小节)、数据建模工具、索引和数据组织技术。

此外,用户通过查询语言、用户界面、优化的查询处理和事务管理,可以方便、灵活地访问数据。

联机事务处理(OLTP)将查询看作只读事务,对于关系技术的发展和广泛地将关系技术作为大量数据的有效存储、提取和管理的主要工具作出了重要贡献。

数据挖掘导论

数据挖掘导论

数据挖掘导论数据挖掘是一种通过分析大量数据来发现隐藏在其中模式、关联和趋势的过程。

它结合了统计学、机器学习和数据库技术,旨在从大数据集合中提取有价值的信息。

在本文中,我们将介绍数据挖掘的基本概念、方法和应用,并探讨其在不同领域的应用。

一、数据挖掘的基本概念1.1 数据挖掘的定义数据挖掘是指从大量数据中发现、提取、分析和解释潜在的、有价值的模式、关联和趋势的过程。

它可以帮助人们发现隐藏在数据中的规律,从而做出更准确的预测和决策。

1.2 数据挖掘的过程数据挖掘的过程通常包括以下几个步骤:(1)问题定义:明确挖掘的目标和需求。

(2)数据采集:收集和获取相关数据。

(3)数据预处理:清洗、集成、转换和规范化数据。

(4)特征选择:从原始数据中选择最具代表性的特征。

(5)模型构建:选择合适的模型和算法进行建模。

(6)模型评估:评估模型的性能和准确度。

(7)模型优化:对模型进行调优和改进。

(8)模型应用:将模型应用于实际问题中,得出有价值的结论。

1.3 数据挖掘的方法数据挖掘的方法包括:(1)分类:将数据分为不同的类别或标签。

(2)聚类:将数据分为相似的组别。

(3)关联规则挖掘:发现数据中的关联关系。

(4)预测:根据已有数据预测未来的趋势和结果。

(5)异常检测:发现数据中的异常或离群值。

二、数据挖掘的应用2.1 金融领域数据挖掘在金融领域的应用非常广泛。

它可以帮助银行和金融机构进行信用评估、风险管理和欺诈检测。

通过分析客户的历史交易数据和个人信息,可以预测客户的信用风险,并及时采取相应的措施。

2.2 零售业数据挖掘在零售业中的应用也非常重要。

通过分析顾客的购买历史和行为模式,可以进行个性化推荐和定价策略。

此外,数据挖掘还可以帮助零售商预测销售趋势,优化库存管理和供应链。

2.3 健康医疗数据挖掘在健康医疗领域的应用越来越多。

通过分析患者的病历数据和基因组数据,可以预测疾病的风险和治疗效果。

此外,数据挖掘还可以帮助医院进行资源调配和病例分析。

数据挖掘-数据挖掘导论

数据挖掘-数据挖掘导论
自六十年代开始,数据库及信息技术就逐步从基本的文件处理系统发展为更复 杂功能更强大的数据库系统;七十年代的数据库系统的研究与发展,最终导致了关 系数据库系统、数据建模工具、索引与数据组织技术的迅速发展,这时用户获得了 更方便灵活的数据存取语言和界面;此外在线事务处理(45:
2
数据
数据库 管理
数据仓库
数据挖掘
数据智能 分析
解决方案
图-- 数据到知识的演化过程示意描述

随着计算机硬件和软件的飞速发展,尤其是数据库技术与应用的日益普及,人 们面临着快速扩张的数据海洋,如何有效利用这一丰富数据海洋的宝藏为人类服务, 业已成为广大信息技术工作者的所重点关注的焦点之一。与日趋成熟的数据管理技 术与软件工具相比,人们所依赖的数据分析工具功能,却无法有效地为决策者提供 其决策支持所需要的相关知识,从而形成了一种独特的现象“丰富的数据,贫乏的 知识”。为有效解决这一问题,自二十世纪 9 年代开始,数据挖掘技术逐步发展起 来,数据挖掘技术的迅速发展,得益于目前全世界所拥有的巨大数据资源以及对将 这些数据资源转换为信息和知识资源的巨大需求,对信息和知识的需求来自各行各 业,从商业管理、生产控制、市场分析到工程设计、科学探索等。数据挖掘可以视 为是数据管理与分析技术的自然进化产物,如图-- 所示。
)。事实上, 一部人类文明发展史,就是在各种活动中,知识的创造、交流,再创造不断积累的 螺旋式上升的历史。
客观世界 客观世界
收集
数据 数据
分析
信息 信息
深入分析
知识 知识
决策与行动
图-- 人类活动所涉及数据与知识之间的关系描述
计算机与信息技术的发展,加速了人类知识创造与交流的这种进程,据德国《世 界报》的资料分析,如果说 ( 世纪时科学定律(包括新的化学分子式,新的物理关 系和新的医学认识)的认识数量一百年增长一倍,到本世纪 / 年代中期以后,每五 年就增加一倍。这其中知识起着关键的作用。当数据量极度增长时,如果没有有效 的方法,由计算机及信息技术来帮助从中提取有用的信息和知识,人类显然就会感 到像大海捞针一样束手无策。据估计,目前一个大型企业数据库中数据,约只有百 分之七得到很好应用。因此目前人类陷入了一个尴尬的境地,即“丰富的数据”( *)而“贫乏的知识0('

数据挖掘导论

数据挖掘导论

数据挖掘导论
数据挖掘是一种通过发现和提取大量数据中隐藏的模式、关联和趋势的过程。

它是从大规模数据集中提取实用信息的一种方法,通常用于匡助企业做出决策、预测未来趋势以及发现隐藏的知识。

在数据挖掘导论中,我们将介绍数据挖掘的基本概念、技术和应用。

这将包括以下几个方面:
1. 数据挖掘的定义和目标:
我们将解释数据挖掘的概念,并讨论它的目标和应用领域。

数据挖掘旨在从大量数据中发现实用的信息,匡助企业做出更好的决策。

2. 数据挖掘的过程:
我们将介绍数据挖掘的基本过程,包括数据预处理、特征选择、模型构建、模型评估和模型部署。

这些步骤是数据挖掘过程中必不可少的组成部份。

3. 数据挖掘的技术:
我们将介绍常用的数据挖掘技术,包括分类、聚类、关联规则挖掘和异常检测。

这些技术可用于从数据中提取实用的信息,并匡助企业做出决策。

4. 数据挖掘的应用:
我们将探讨数据挖掘在不同领域的应用,包括市场营销、金融、医疗和社交网络等。

数据挖掘可以匡助企业发现市场趋势、预测销售额、诊断疾病和推荐个性化产品等。

5. 数据挖掘的挑战和未来发展:
我们将讨论数据挖掘面临的挑战,如数据质量、隐私保护和算法效率等。

同时,我们还将展望数据挖掘的未来发展方向,如深度学习、自动化和实时数据挖掘等。

通过学习数据挖掘导论,您将了解数据挖掘的基本概念和技术,掌握数据挖掘的基本过程,并了解数据挖掘在不同领域的应用。

这将为您在实际工作中应用数据挖掘提供基础,并匡助您做出更好的决策。

数据挖掘导论

数据挖掘导论

本书的亮点之一在于对可视化分析的独到见解。作者指出,可视化是解决复杂 数据挖掘问题的有效手段,可以帮助我们直观地理解数据和发现隐藏在其中的 规律。书中详细讨论了可视化技术的种类、优缺点以及在数据挖掘过程中的作 用。还通过大量实例,让读者切实感受到可视化分析在数据挖掘中的强大威力。
除了可视化分析,本书还对关联规则挖掘、聚类分析等众多经典算法进行了深 入阐述。例如,在关联规则挖掘部分,作者首先介绍了Apriori算法的基本原 理和实现过程,然后提出了一系列改进措施,如基于哈希表的剪枝、基于密度 的剪枝等,有效提高了算法的效率和准确率。在聚类分析部分,不仅详细讨论 了K-Means、层次聚类等经典算法,还对如何评价聚类效果进行了深入探讨。
第4章:关联规则挖掘。讲解了关联规则的定义、算法和实际应用。
第5章:聚类分析。讨论了聚类算法的类型、原理和应用。
第6章:分类。介绍了分类算法的原理、应用及评估方法。
第7章:回归分析。讲解了回归分析的原理、方法和实际应用。
第8章:时间序列分析。探讨了时间序列的基本概念、模型和预测方法。
第9章:社交网络分析。讲解了社交网络的基本概念、测量指标和挖掘方法。
《数据挖掘导论》是一本非常优秀的书籍,全面介绍了数据挖掘领域的基本概 念、技术和应用。通过阅读这本书,我不仅对数据挖掘有了更深入的了解,还 从中获得了不少启示和收获。书中关键点和引人入胜的内容也让我进行了深入 思考。从个人角度来说,这本书给我带来了很多情感体验和思考。结合本书内 容简单探讨了数据挖掘在生活中的应用前景。
在阅读这本书的过程中,我最大的收获是关于数据挖掘技术的理解。书中详细 介绍了各种数据挖掘技术的原理、优缺点以及适用场景。尤其是关联规则挖掘、 聚类分析和分类算法等部分,让我对这些技术有了更深入的认识。通过这些技 术的学习,我明白了如何从大量数据中提取有用的信息和知识。

数据挖掘导论

数据挖掘导论

数据挖掘导论一、引言数据挖掘是从大量数据中发现隐藏模式和知识的过程。

它是一种将统计学、机器学习和数据库技术结合起来的跨学科领域。

本文将介绍数据挖掘的基本概念、方法和应用。

二、数据挖掘的基本概念1. 数据挖掘的定义数据挖掘是从大规模数据集中提取出有用信息的过程。

它涉及到数据的预处理、模型构建、模型评估和模型应用等步骤。

2. 数据挖掘的目标数据挖掘的目标是发现数据中的模式和知识,以支持决策和预测。

它可以帮助企业发现潜在的商业机会、改善业务流程和提高决策的准确性。

3. 数据挖掘的步骤数据挖掘的步骤包括问题定义、数据收集、数据预处理、特征选择、模型构建、模型评估和模型应用。

三、数据挖掘的方法1. 分类分类是数据挖掘中常用的方法之一。

它通过构建分类器来将数据分为不同的类别。

常用的分类算法有决策树、朴素贝叶斯和支持向量机等。

2. 聚类聚类是将数据分为不同的群组的方法。

它可以帮助我们发现数据中的相似性和差异性。

常用的聚类算法有K均值和层次聚类等。

3. 关联规则挖掘关联规则挖掘是发现数据中的频繁项集和关联规则的方法。

它可以帮助我们发现数据中的关联性和依赖性。

常用的关联规则挖掘算法有Apriori和FP-growth等。

4. 异常检测异常检测是发现数据中的异常值和异常模式的方法。

它可以帮助我们发现潜在的问题和异常情况。

常用的异常检测算法有箱线图和聚类方法等。

四、数据挖掘的应用1. 金融领域在金融领域,数据挖掘可以帮助银行发现信用卡欺诈、预测股票市场和优化投资组合等。

2. 零售领域在零售领域,数据挖掘可以帮助商家发现客户购买模式、进行市场细分和制定促销策略等。

3. 健康领域在健康领域,数据挖掘可以帮助医生进行疾病诊断、预测病情发展和优化医疗资源分配等。

4. 社交媒体领域在社交媒体领域,数据挖掘可以帮助企业进行用户行为分析、推荐个性化内容和发现热门话题等。

五、总结数据挖掘是一门重要的技术,它可以帮助我们从海量数据中发现有用的信息和知识。

数据挖掘导论第一二章_924

数据挖掘导论第一二章_924
特征加权(通过赋予某个特征一定的权值来表示器重要性)是另一种保留或删除特征的办法。特征越重要,所赋予的权值越大,而不太重要的特征赋予较小的权值。
2.3.4特征创建
常常可以由原来的属性创建新的属性集,更有效地捕获数据集中的重要信息。三种创建新属性的相关方法:特征提取、映射数据到新的空间和特征构造。
特征提取(feature extraction):由原始数据数据创建新的特征集称作特征提取。最常用的特征提取技术都是高度针对具体领域的。因此,一旦数据挖掘用于一个相对较新的领域,一个关键任务就是开发新的特征和特征提取方法。
首先定义测量误差和数据收集错误,然后进一步考虑涉及测量误差的各种问题:噪声、伪像、偏倚、精度和准确度。最后讨论可能同时涉及测量和数据收集的数据质量问题:离群点、遗漏和不一致值、重复数据。
测量误差(measurement error)指测量过程中导致的问题。
数据收集错误(data collection error)指诸如遗漏数据对象或属性值,或不当的包含了其他数据对象等错误。
过滤方法(filter approach):使用某种独立于数据挖掘任务的方法,在数据挖掘算法运行前进行特征选择。
包装方法(wrapper approach):这些方法将目标数据挖掘算法作为黑盒,使用类似于前面介绍的理想算法,但通常不枚举所有可能的子集来找出最佳属性子集。
过滤方法和包装方法唯一的不同是它们使用了不同的特征子集评估方法。对于包装方法,子集评估使用目标数据挖掘算法;对于过滤方法,子集评估技术不同于目标数据挖掘算法。搜索策略可以不同,但是计算花费应当较低,并且应当找到最优或近似最优的特征子集。通常不可能同时满足这两个要求,因此需要这种权衡。搜索的一个不可缺少的组成部分是评估步骤,根据已经考虑的子集评价当前的特征子集。这需要一种评估度量,针对诸如分类或聚类等数据挖掘任务,确定属性特征子集的质量。对于过滤方法,这种度量试图预测实际的数据挖掘算法在给定的属性集上执行的效果如何;对于包装方法,评估包括实际运行目标数据挖掘应用,子集评估函数就是通常用于度量数据挖掘结果的判断标准。

数据挖掘导论

数据挖掘导论

数据挖掘导论数据挖掘是一种从大量数据中提取有用信息的过程,通过应用统计学、机器学习和数据库技术等方法,从数据中发现隐藏的模式、关联和趋势。

数据挖掘在各个领域中都有广泛的应用,包括市场营销、金融、医疗保健和社交媒体等。

一、数据挖掘的定义和目标数据挖掘是指从大规模数据集中自动发现有用的信息和模式的过程。

其目标是通过分析数据,提取出有价值的知识,以支持决策和预测。

数据挖掘的任务包括分类、聚类、关联规则挖掘、异常检测和预测等。

二、数据挖掘的流程数据挖掘的流程包括问题定义、数据收集、数据预处理、特征选择、模型构建、模型评估和模型应用等步骤。

1. 问题定义:明确需要解决的问题,并确定数据挖掘的目标和约束条件。

2. 数据收集:收集与问题相关的数据,可以是结构化数据(如数据库)或非结构化数据(如文本、图像等)。

3. 数据预处理:对收集到的数据进行清洗、集成、转换和加载等操作,以确保数据的质量和一致性。

4. 特征选择:从数据集中选择最相关的特征,以提高模型的性能和效果。

5. 模型构建:选择适当的数据挖掘算法,构建模型来解决问题。

常用的算法包括决策树、神经网络、支持向量机等。

6. 模型评估:通过交叉验证、准确率、召回率等指标评估模型的性能和泛化能力。

7. 模型应用:将训练好的模型应用于实际问题中,进行预测、分类、聚类等操作。

三、数据挖掘的常用技术和方法数据挖掘涉及多种技术和方法,以下是其中一些常用的技术和方法:1. 分类:将数据分为不同的类别或标签,常用算法有决策树、朴素贝叶斯和支持向量机等。

2. 聚类:将数据分为相似的组别,常用算法有K均值聚类、层次聚类和DBSCAN等。

3. 关联规则挖掘:发现数据中的关联关系,常用算法有Apriori和FP-growth等。

4. 异常检测:检测数据中的异常值或离群点,常用算法有LOF和孤立森林等。

5. 预测:基于历史数据进行未来事件的预测,常用算法有线性回归、时间序列分析和神经网络等。

数据挖掘导论

数据挖掘导论

数据挖掘导论导论:数据挖掘是一种通过分析大量数据来发现隐藏模式、关联规则和趋势的过程。

它涉及使用统计学、机器学习和数据库技术来识别和提取有用的信息。

数据挖掘可以帮助企业和组织做出决策、预测未来趋势、发现市场机会等。

1. 数据挖掘的定义和目标:数据挖掘是指从大量数据中自动发现模式、关联规则和趋势的过程。

其目标是通过分析数据来获取有价值的信息,以支持决策和预测未来趋势。

2. 数据挖掘的步骤:数据挖掘通常包括以下步骤:2.1 数据收集:收集与分析目标相关的数据,可以是结构化或非结构化的数据。

2.2 数据预处理:清洗数据、处理缺失值和异常值,以及对数据进行转换和归一化等操作,以确保数据的质量和一致性。

2.3 特征选择:选择最具预测能力的特征,以减少数据维度并提高模型的性能。

2.4 模型选择:选择适合问题的数据挖掘模型,如分类、聚类、关联规则等。

2.5 模型构建:使用选择的模型来构建数据挖掘模型,并对数据进行训练和优化。

2.6 模型评估:评估模型的性能和准确性,可以使用交叉验证、混淆矩阵等方法。

2.7 模型应用:将训练好的模型应用于新的数据,并进行预测、分类、聚类等任务。

3. 数据挖掘的技术和方法:数据挖掘使用多种技术和方法来发现隐藏的模式和规律,其中包括:3.1 分类:将数据分为不同的类别或标签,用于预测和分类任务。

3.2 聚类:将数据分组成相似的集群,用于发现数据的内在结构和关系。

3.3 关联规则:发现数据中的关联关系和频繁项集,用于市场篮子分析、推荐系统等。

3.4 预测分析:基于历史数据来预测未来的趋势和结果,如销售预测、股票预测等。

3.5 异常检测:发现数据中的异常值和离群点,用于欺诈检测、故障诊断等。

3.6 文本挖掘:从大量文本数据中提取有用的信息,如情感分析、主题建模等。

4. 数据挖掘的应用领域:数据挖掘在各个领域都有广泛的应用,包括但不限于:4.1 金融领域:用于信用评估、风险管理、交易分析等。

数据挖掘导论--第1章绪论

数据挖掘导论--第1章绪论

数据挖掘导论--第1章绪论数据挖掘导论-第⼀章-绪论为什么会出现数据挖掘?1. 因为随着社会不断快速发展,信息量在不断增加,由于**信息量太⼤** ,⽽⽆法使⽤传统的数据分析⼯具和技术处理它们;2. 即使数据集相对较⼩,但由于数据本⾝有⼀些**⾮传统特点**,也不能使⽤传统的⽅法进⾏处理。

什么是数据挖掘?数据挖掘是⼀种技术,它将传统的数据分析⽅法与处理⼤量数据的复杂算法相结合。

数据挖掘是在⼤型数据存储库中,⾃动地发现有⽤信息的过程。

数据挖掘是数据库中知识发现(knowledge discovery in database,KDD)不可缺少的⼀部分。

数据挖掘要解决的问题可伸缩⾼维性异种数据和复杂数据数据的所有权与分布⾮传统的分析数据挖掘任务通常,数据挖掘任务分为下⾯两⼤类预测任务:这些任务的⽬标是根据其他属性的值,预测特定属性的值。

被预测的属性⼀般称为⽬标变量或因变量⽤来做预测的属性称说明变量或⾃变量描述任务:其⽬标是导出概括数据中潜在联系的模式(相关、趋势、聚类、轨迹和异常)。

本质上,描述性数据挖掘任务通常是探查性的,并且常常需要后处理技术验证和解释结果下图展⽰了其余部分讲述的四种主要数据挖掘任务预测建模:以说明变量函数的⽅式为⽬标变量建⽴模型。

有两类预测建模任务:分类(classification):⽤于预测离散的⽬标变量回归(regression):⽤于预测连续的⽬标变量关联分析:⽤来发现描述数据中强关联特征的模式。

所发现的模式通常⽤蕴涵规则或特征⼦集的形式表⽰聚类分析:旨在发现紧密相关的观测值组群,使得与属于不同簇的观测值相⽐,属于同⼀簇的观测值相互之间尽可能类似异常检测:任务是识别其特征显著不同于其他数据的观测值。

这样的观测值称为异常点或离群点## 参考⽂献: 1. 数据挖掘导论(完整版)。

《数据挖掘导论》课件

《数据挖掘导论》课件

详细描述
KNIME是一款基于可视化编程的数据挖掘工具,用户 可以通过拖拽和连接不同的数据流模块来构建数据挖掘 流程。它提供了丰富的数据挖掘和分析功能,包括分类 、聚类、关联规则挖掘、时间序列分析等,并支持多种 数据源和输出格式。
Microsoft Azure ML
总结词
云端的数据挖掘工具
详细描述
Microsoft Azure ML是微软Azure云平台上的数据挖掘工具,它提供了全面的数据挖掘和分析功能, 包括分类、聚类、关联规则挖掘、预测建模等。它支持多种数据源和输出格式,并提供了强大的可扩 展性和灵活性,方便用户在云端进行大规模的数据挖掘任务。
03
数据挖掘过程
数据准备
01
数据清洗
去除重复、错误或不完整的数据, 确保数据质量。
数据集成
将多个来源的数据整合到一个统一 的数据集。
03
02
数据转换
将数据从一种格式或结构转换为另 一种,以便于分析。
数据归一化
将数据缩放到特定范围,以消除规 模差异。
04
数据探索
数据可视化
通过图表、图形等展示数据的分布和关系。
序列模式挖掘
总结词
序列模式挖掘是一种无监督学习方法,用于 发现数据集中项之间具有时间顺序关系的有 趣模式。
详细描述
序列模式挖掘广泛应用于股票市场分析、气 候变化研究等领域。常见的序列模式挖掘算 法包括GSP、PrefixSpan等。这些算法通过 扫描数据集并找出项之间具有时间顺序关系 的模式,如“股票价格在某段时间内持续上
高维数据挖掘
高维数据的降维
高维数据的聚类和分类
利用降维技术如主成分分析、线性判 别分析等,将高维数据降维到低维空 间,以便更好地理解和分析数据。

《数据挖掘导论》教材配套教学PPT——第1章 认识数据挖掘

《数据挖掘导论》教材配套教学PPT——第1章 认识数据挖掘

• 数据实例(Instance)
– 用于有指导学习的样本数据
• 训练实例(Training Instance)
– 用于训练的实例
• 检验实例(Test Instance)
– 分类模型建立完成后,经过检验实例进行检验,判断模型是否 能够很好地应用在未知实例的分类或预测中。
2022年3月23日星期三
第10页,共65页
Knowledge)
2022年3月23日星期三
第21页,共65页
1.4 专家系统
清华大学出版社
专家系统(Expert System)
• 一种具有“智能”的计算机软件系统。 • 能够模拟某个领域的人类专家的决策过程,解决那些需要人类专家
处理的复杂问题。 • 一般包含以规则形式表示的领域专家的知识和经验,系统就是利用
• 决策树有很多算法(第2章)
Sore-throat Yes Cooling-effect
Not good
Unknown Good
No
Cold Type=Viral (3/0)
Cold Type=Bacterial (4/1)
Cold Type=Viral (2/0)
Cold Type=Bacterial (1/0)
Sore-
throat 咽痛
Cooling-
effect 退热效果
Group 群体发病
Cold-type 感冒类型
1
Yes
2
No
3
Yes
4
Yes
5
No
6
No
7
No
8
Yes
9
Yes
10
Yes
No
Yes

数据挖掘导论

数据挖掘导论

数据挖掘导论引言:数据挖掘是一种通过发现和提取大量数据中的隐藏模式、关联和知识的过程。

它涉及使用各种算法和技术来分析和解释数据,以便从中获得有价值的信息。

本文将介绍数据挖掘的基本概念、方法和应用领域。

一、数据挖掘的定义和目标数据挖掘是指从大规模数据集中自动发现有用信息的过程。

其目标是通过分析数据,揭示数据背后的模式、关联和趋势,以支持决策和预测。

二、数据挖掘的基本步骤1. 问题定义:明确数据挖掘的目标和需求。

例如,预测销售额、识别欺诈交易等。

2. 数据收集:收集与问题相关的数据,并进行清洗和预处理,以确保数据的质量和一致性。

3. 数据探索:通过可视化和统计分析等方法,对数据进行探索和理解,寻找数据中的模式和趋势。

4. 特征选择:选择最具预测能力的特征,以减少数据维度并提高模型的性能。

5. 模型构建:选择合适的数据挖掘算法,构建模型来解决问题。

常用的算法包括决策树、聚类、关联规则等。

6. 模型评估:通过交叉验证等方法,评估模型的性能和准确度。

7. 模型优化:根据评估结果,对模型进行调优和优化,以提高其预测能力和泛化能力。

8. 模型应用:将优化后的模型应用于实际问题中,并监控模型的性能和效果。

三、数据挖掘的常用技术和算法1. 分类算法:用于将数据样本分为不同的类别,常用的算法包括决策树、支持向量机、朴素贝叶斯等。

2. 聚类算法:用于将数据样本分为不同的组或簇,常用的算法包括K均值、层次聚类等。

3. 关联规则挖掘:用于发现数据中的关联关系,常用的算法包括Apriori算法、FP-Growth算法等。

4. 异常检测:用于识别数据中的异常或离群点,常用的算法包括LOF算法、孤立森林等。

四、数据挖掘的应用领域1. 市场营销:通过分析客户数据,预测客户行为和需求,制定个性化的营销策略。

2. 金融风险管理:通过分析交易数据,识别潜在的欺诈行为,减少金融风险。

3. 医疗诊断:通过分析患者数据,辅助医生进行疾病诊断和预测。

数据挖掘导论第一章

数据挖掘导论第一章
范明, 孟小峰译 数据挖掘:概念与技术(第二版) 机械工业出版社, 2007
2020/9/29
数据挖掘导论
3
2020/9/29
数据挖掘导论
4
2020/9/29
数据挖掘导论
5
Jiawei Han
在数据挖掘领域做出杰出贡献的郑州大学校友——韩家炜
2020/9/29
数据挖掘导论
6
第1章 绪论
?
No
S in g le 4 0 K
?
No
M a rrie d 8 0 K
?
10
Training Set
Learn Classifier
Test Set
Model
2020/9/29
数据挖掘导论
23
分类:应用1
Direct Marketing Goal: Reduce cost of mailing by targeting a set of consumers likely to buy a new cell-phone product. Approach: Use the data for a similar product introduced before. We know which customers decided to buy and which decided otherwise. This {buy, don’t buy} decision forms the class attribute. Collect various demographic, lifestyle, and company-interaction related information about all such customers. Type of business, where they stay, how much they earn, etc. Use this information as input attributes to learn a classifier model.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Data Mining
数据挖掘发展
•关系数据模型 •SQL •关联规则 •数据仓库 •数据压缩技术 •相似度度量 •聚类 •信息检索系统 •Web 搜索引擎
Data Mining
•算法设计 •算法分析 •数据结构
•贝叶斯定理 •回归分析 •EM 算法 •K均值聚类 •时间序列分析
•神经网络 •决策树算法
Reject Accept Accept
Simple
Fuzzy
信息检索
Data Mining
信息检索 (IR): 从文本数据中检索出所需的信息. 图书馆(管理)学 数字资源 Web 搜索引擎 基于传统关键词的搜索 简单例子:
找出所有关于数据挖掘的书.
DM: 相似度度量; 文本数据挖掘.
T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley & Sons, 2003 U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in Knowledge Discovery and
相关的概念
目标: 研究每个概念及其与数据挖掘的联系.
数据库/OLTP系统 模糊集和模糊逻辑 信息检索(Web 搜索引擎) 多维数据建模 数据仓库 OLAP/决策支持系统 统计学 机器学习 模式匹配
Data Mining
数据库和OLTP系统
具有特定的关联结构和模式
– 无指导的学习 – 分割
基本数据挖掘任务
Data Mining
汇总 将数据映射到伴有简单描述的子集.
– 特征化
– 泛化
关联规则(连接分析) 揭示数据之间相互 关系的一项数据挖掘任务.
– 偏好的分析
– 关联规则
– 序列发现.
时间序列分析
例子: 证券市场
Data Mining
预测未来的市值
Data Mining
数据挖掘算法
目标: 为数据找一个适合的模型
– 描述型模型
Data Mining
– 预测型模型
偏好 – 必须使用一些标准来进行模型选择
数据库处理 vs. 数据挖掘
查询 查询 – 很难定义
Data Mining
– 容易定义
– SQL

– 没有一个精确的语言

数据
– 操作性数据
Data Mining
Modified from [FPSS96C]
选择: 从不同的数据源获取数据. 预处理: 清洗数据. 变换: 将不同数据源获得的数据转成统一 的格式. 数据挖掘: 产生期望的挖掘结果. 解释/评价: 向最终用户提交结果.
可视化技术
图形的 几何的 基于图标的 基于象素的 层次的 混合的
维数据建模
Data Mining
以一种不同的方式查看和问询数据库中的数据, 但不是必须,仅为了高效 可在DSS和数据挖掘相结合的任务中使用 维: 是一个逻辑相关的属性集合. 事实: 存储的特殊数据 例如:维– 产品, 地区, 日期 事实 – 数目, 单价
数据挖掘: 把数据看成多维的.
信息检索 (续)
Data Mining
相似性: 度量查询得到的文档与用户有兴 趣的文档的相似程度. 有效性. 度量方法: – 查准率 = 检索到的相关文档 检索到的文档数
– 召回率 = 检索到的相关文档
实际相关的文档数
IRta Mining
不相关
B D
大规模数据集合中检索文档时,可把文档分成四组: •系统检索到的相关文档(A) •系统检索到的不相关文档(B) •相关但是系统没有检索到的文档(C) •不相关也未被系统检索到的文档(D)
召回率R:R=A/(A+C) (recall rate) 查准率P: P=A/(A+B). (precision)
Data Mining. AAAI/MIT Press, 1996
U. Fayyad, G. Grinstein, and A. Wierse, Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001 J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2 nd ed., 2006 D. J. Hand, H. Mannila, and P. Smyth, Principles of Data Mining, MIT Press, 2001 T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer-Verlag, 2001 B. Liu, Web Data Mining, Springer 2006. T. M. Mitchell, Machine Learning, McGraw Hill, 1997 G. Piatetsky-Shapiro and W. J. Frawley. Knowledge Discovery in Databases. AAAI/MIT Press, 1991 P.-N. Tan, M. Steinbach and V. Kumar, Introduction to Data Mining, Wiley, 2005 S. M. Weiss and N. Indurkhya, Predictive Data Mining, Morgan Kaufmann, 1998 I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, 2nd ed. 2005
Data Mining
多维数据的关系视图
ProdID 123 123 150 150 150 150 200 300 500 500
1
LocID Dallas Houston Dallas Dallas Fort Worth Chicago Seattle Rochester Bradenton Chicago
– (ID,Name,Address,Salary,JobNo)
Data Mining
数据模型
– 实体-关系(ER) – 关联
处理 查询:
SELECT Name FROM T WHERE Salary > 100000
DM: 不确定的查询
模糊集和模糊逻辑
Data Mining
模糊集: 一个集合,隶属于函数f,f是一个实值函数,
数据挖掘的发展
数据挖掘的问题
引言
数据量正在以惊人的速度增长 用户希望得到深层的信息 如何得到??
Data Mining
得到数据中隐藏着的信息 数据挖掘(DM)
数据挖掘的定义
从数据库中发现隐藏的信息 为数据寻找一个适合的模型 类似的定义
– 探索性数据分析 – 数据驱动发现 – 归纳学习
LOGO
数据挖掘技术
第一部分 导论
教材
Data Mining
数据挖掘导论(完整版),范明 等译,人民
邮电出版社
数据挖掘工具
1. WEKA (基于Java)
2. scikits.learn (基于python)
3. matlab 4. SPSS
Recommended Reference Books
数据挖掘提纲
第一部分 – 概述 – 相关概念 – 数据挖掘技术 第二部分
– 分类 – 聚类 – 关联规则
Data Mining
第三部分
– Web 挖掘 – 空间数据挖掘 – 时序数据挖掘
概述
Data Mining
目标: 提供数据挖掘的基本概念.
数据挖掘的定义
数据挖掘与数据库
数据挖掘任务
数据挖掘的问题
人的作用 过拟和 异常点 结果的解释 结果可视化 大型数据库
Data Mining
高维数据
数据挖掘的问题(续)
多媒体数据 缺失数据 不相关数据 噪声数据 变化数据
Data Mining
集成
应用
数据挖掘度量
有效性 投资回报率 (ROI) 准确性 空间、时间
“面向主题的, 集成的, 随时间变化的, 非
易失的” 数据. 信息型数据: 它们可以用来支持其他功能. 数据挖掘工具经常读取数据仓库,而不是 William Inmon 操作型数据: 公司日常需要的,在使用的
确定不用时间序列的相似性 确定时间序列行为
数据挖掘VS知识发现
Data Mining
知识发现 (KDD): 从数据中发现有用的(隐 藏的)模式.——知识抽取、信息发现、探
索性数据分析、信息收获、无指导模式识
别. 数据挖掘: 使用算法来抽取信息和模式,是 KDD过程的一个步骤.
KDD 过程
数据挖掘
– 顾客具有那些购买习惯. (聚类) – 寻找出常常与牛奶一起被购买的商品. (关联规则)
Data Mining
数据挖掘模型及任务
基本数据挖掘任务
– 有指导学习 – 模式识别 – 预测
Data Mining
分类 将数据映射到预先定义好的群组或类
回归 将数据项映射到一个实值预测变量(线 性回归,非线性回归,Logistic回归). 聚类 将类似的数据归并为同一类别的过程.
相关文档
最新文档