数学锐角三角函数的专项培优易错试卷练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、锐角三角函数真题与模拟题分类汇编(难题易错题)
1.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.
(1)求∠BPQ的度数;
(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,
【答案】(1)∠BPQ=30°;
(2)该电线杆PQ的高度约为9m.
【解析】
试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;
(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.
试题解析:延长PQ交直线AB于点E,
(1)∠BPQ=90°-60°=30°;
(2)设PE=x米.
在直角△APE中,∠A=45°,
则AE=PE=x米;
∵∠PBE=60°
∴∠BPE=30°
在直角△BPE中,BE=
3
3
PE=
3
3
x米,
∵AB=AE-BE=6米,
则3
,
解得:3
则BE=(33+3)米.
在直角△BEQ中,
QE=
3
3
BE=
3
3
(33+3)=(3+3)米.
∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).
答:电线杆PQ的高度约9米.
考点:解直角三角形的应用-仰角俯角问题.
2.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.
(1)求证:△MED∽△BCA;
(2)求证:△AMD≌△CMD;
(3)设△MDE的面积为S1,四边形BCMD的面积为S 2,当S2=17
5
S1时,求cos∠ABC的
值.
【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 .
【解析】
【分析】
(1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明∠AMD=∠CMD,从而可利用全等三角形的判定证明△AMD≌△CMD;
(3)易证MD=2AB,由(1)可知:△MED∽△BCA,所以
2
1
1
4
ACB
S MD
S AB
⎛⎫
==
⎪
⎝⎭
,所以
S△MCB=1
2
S△ACB=2S1,从而可求出S△EBD=S2﹣S△MCB﹣S1=
2
5
S1,由于1
EBD
S ME
S EB
=,从而可
知
5
2
ME
EB
=,设ME=5x,EB=2x,从而可求出AB=14x,BC=
7
2
,最后根据锐角三角函数的
定义即可求出答案.【详解】
(1)∵MD∥BC,∴∠DME=∠CBA,
∵∠ACB=∠MED=90°, ∴△MED ∽△BCA ;
(2)∵∠ACB=90°,点M 是斜边AB 的中点, ∴MB=MC=AM , ∴∠MCB=∠MBC , ∵∠DMB=∠MBC , ∴∠MCB=∠DMB=∠MBC , ∵∠AMD=180°﹣∠DMB ,
∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC , ∴∠AMD=∠CMD , 在△AMD 与△CMD 中,
MD MD AMD CMD AM CM =⎧⎪
∠=∠⎨⎪=⎩
, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM , ∴AM=MC=MD=MB , ∴MD=2AB ,
由(1)可知:△MED ∽△BCA , ∴
2
114
ACB S MD S
AB ⎛⎫== ⎪⎝⎭, ∴S △ACB =4S 1, ∵CM 是△ACB 的中线, ∴S △MCB =
1
2
S △ACB =2S 1, ∴S △EBD =S 2﹣S △MCB ﹣S 1=2
5
S 1, ∵
1EBD
S ME
S
EB
=
, ∴1125
S ME
EB S =
,
∴
5
2
ME EB =, 设ME=5x ,EB=2x , ∴MB=7x , ∴AB=2MB=14x , ∵
1
2
MD ME AB BC ==,
∴BC=10x , ∴cos ∠ABC=105
147
BC x AB x ==. 【点睛】
本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.
3.如图,已知点从出发,以1个单位长度/秒的速度沿轴向正方向运动,以
为顶点作菱形
,使点
在第一象限内,且
;以
为圆心,
为
半径作圆.设点运动了秒,求: (1)点的坐标(用含的代数式表示); (2)当点在运动过程中,所有使
与菱形
的边所在直线相切的的
值.
【答案】解:(1)过作
轴于,
,
, ,
,
点的坐标为.
(2)①当
与
相切时(如图1),切点为,此时
,
,,
.